1
|
Abdellatif AB, Fernandes-Rosa FL, Boulkroun S, Zennaro MC. Vascular and hormonal interactions in the adrenal gland. Front Endocrinol (Lausanne) 2022; 13:995228. [PMID: 36506065 PMCID: PMC9731668 DOI: 10.3389/fendo.2022.995228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Primary aldosteronism is the most common form of secondary arterial hypertension, due to excessive aldosterone production from the adrenal gland. Although somatic mutations have been identified in aldosterone producing adenoma, the exact mechanisms leading to increased cell proliferation and nodule formation remain to be established. One hypothesis is that changes in vascular supply to the adrenal cortex, due to phenomena of atherosclerosis or high blood pressure, may influence the morphology of the adrenal cortex, resulting in a compensatory growth and nodule formation in response to local hypoxia. In this review, we will summarize our knowledge on the mechanisms regulating adrenal cortex development and function, describe adrenal vascularization in normal and pathological conditions and address the mechanisms allowing the cross-talk between the hormonal and vascular components to allow the extreme tissue plasticity of the adrenal cortex in response to endogenous and exogenous stimuli. We will then address recent evidence suggesting a role for alterations in the vascular compartment that could eventually be involved in nodule formation and the development of primary aldosteronism.
Collapse
Affiliation(s)
| | | | - Sheerazed Boulkroun
- Université Paris Cité, PARCC, INSERM, Paris, France
- *Correspondence: Maria-Christina Zennaro, ; Sheerazed Boulkroun,
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, INSERM, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- *Correspondence: Maria-Christina Zennaro, ; Sheerazed Boulkroun,
| |
Collapse
|
2
|
Targeting AU-rich element-mediated mRNA decay with a truncated active form of the zinc-finger protein TIS11b/BRF1 impairs major hallmarks of mammary tumorigenesis. Oncogene 2019; 38:5174-5190. [DOI: 10.1038/s41388-019-0784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/20/2019] [Accepted: 03/02/2019] [Indexed: 12/19/2022]
|
3
|
Lema I, Amazit L, Lamribet K, Fagart J, Blanchard A, Lombès M, Cherradi N, Viengchareun S. RNA-binding protein HuR enhances mineralocorticoid signaling in renal KC3AC1 cells under hypotonicity. Cell Mol Life Sci 2017; 74:4587-4597. [PMID: 28744670 PMCID: PMC11107542 DOI: 10.1007/s00018-017-2594-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023]
Abstract
Mineralocorticoid receptor (MR) mediates the sodium-retaining action of aldosterone in the distal nephron. Herein, we decipher mechanisms by which hypotonicity increases MR expression in renal principal cells. We identify HuR (human antigen R), an mRNA-stabilizing protein, as an important posttranscriptional regulator of MR expression. Hypotonicity triggers a rapid and reversible nuclear export of HuR in renal KC3AC1 cells, as quantified by high-throughput microscopy. We also identify a key hairpin motif in the 3'-untranslated region of MR transcript, pivotal for the interaction with HuR and its stabilizing function. Next, we show that hypotonicity increases MR recruitment onto Sgk1 promoter, a well-known MR target gene, thereby enhancing aldosterone responsiveness. Our data shed new light on the crucial role of HuR as a stabilizing factor for the MR transcript and provide evidence for a short autoregulatory loop in which expression of a nuclear receptor transcriptionally regulating water and sodium balance is controlled by osmotic tone.
Collapse
Affiliation(s)
- Ingrid Lema
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France
| | - Larbi Amazit
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France
- UMS 32, 94276, Le Kremlin-Bicêtre, France
| | - Khadija Lamribet
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France
| | - Jérôme Fagart
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France
| | - Anne Blanchard
- Inserm, Centre d'Investigations Cliniques 9201, 75015, Paris, France
| | - Marc Lombès
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, 94275, Le Kremlin-Bicêtre, France.
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale, Inserm U1036, 38000, Grenoble, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, 38000, Grenoble, France.
- Université Grenoble Alpes, Unité Mixte de Recherche-S1036, 38000, Grenoble, France.
| | - Say Viengchareun
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France.
| |
Collapse
|
4
|
Desroches-Castan A, Feige JJ, Cherradi N. ACTH Action on Messenger RNA Stability Mechanisms. Front Endocrinol (Lausanne) 2017; 8:3. [PMID: 28163695 PMCID: PMC5247459 DOI: 10.3389/fendo.2017.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 01/30/2023] Open
Abstract
The regulation of mRNA stability has emerged as a critical control step in dynamic gene expression. This process occurs in response to modifications of the cellular environment, including hormonal variations, and regulates the expression of subsets of proteins whose levels need to be rapidly adjusted. Modulation of messenger RNA stability is usually mediated by stabilizing or destabilizing RNA-binding proteins (RNA-BP) that bind to the 3'-untranslated region regulatory motifs, such as AU-rich elements (AREs). Destabilizing ARE-binding proteins enhance the decay of their target transcripts by recruiting the mRNA decay machineries. Failure of such mechanisms, in particular misexpression of RNA-BP, has been linked to several human diseases. In the adrenal cortex, the expression and activity of mRNA stability regulatory proteins are still understudied. However, ACTH- or cAMP-elicited changes in the expression/phosphorylation status of the major mRNA-destabilizing protein TIS11b/BRF1 or in the subcellular localization of the stabilizing protein Human antigen R have been reported. They suggest that this level of regulation of gene expression is also important in endocrinology.
Collapse
Affiliation(s)
- Agnès Desroches-Castan
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l’Infection, Grenoble, France
- Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l’Infection, Grenoble, France
- Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l’Infection, Grenoble, France
- Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
- *Correspondence: Nadia Cherradi,
| |
Collapse
|
5
|
Ryu J, Seong H, Yoon NA, Seo SW, Park JW, Kang SS, Park JM, Han YS. Tristetraprolin regulates the decay of the hypoxia-induced vascular endothelial growth factor mRNA in ARPE-19 cells. Mol Med Rep 2016; 14:5395-5400. [PMID: 27840917 DOI: 10.3892/mmr.2016.5890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of tristetraprolin (TTP) on the vascular endothelial growth factor (VEGF) mRNA and protein expression levels in retinal pigment epithelial cells under hypoxic conditions, and to consider the possibility of using TTP as a novel treatment tool for neovascular age‑related macular degeneration (AMD). Overexpression of TTP reduced the expression and secretion levels of VEGF in ARPE‑19 cells under hypoxic conditions. TTP destabilized the VEGF mRNA by binding to adenosine and uridine‑rich elements regions in its 3'‑untranslated region. Furthermore, conditioned medium (CM) from TTP‑overexpressing ARPE‑19 cells suppressed the tube formation in human umbilical vein endothelial cells compared with hypoxic CM. These findings indicate that regulation of TTP expression may be a promising therapeutic tool for neovascular AMD, however, further research is required.
Collapse
Affiliation(s)
- Jinhyun Ryu
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea
| | - Hyemin Seong
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea
| | - Nal Ae Yoon
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea
| | - Seong Wook Seo
- Department of Ophthalmology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea
| | - Jong Moon Park
- Department of Ophthalmology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea
| | - Yong Seop Han
- Department of Ophthalmology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea
| |
Collapse
|
6
|
Rataj F, Planel S, Desroches-Castan A, Le Douce J, Lamribet K, Denis J, Feige JJ, Cherradi N. The cAMP pathway regulates mRNA decay through phosphorylation of the RNA-binding protein TIS11b/BRF1. Mol Biol Cell 2016; 27:3841-3854. [PMID: 27708140 PMCID: PMC5170607 DOI: 10.1091/mbc.e16-06-0379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 02/01/2023] Open
Abstract
TIS11b belongs to the tristetraprolin family of zinc-finger proteins, which target short-lived mRNA for degradation. This study shows that the cAMP pathway up-regulates TIS11b expression and modulates its function in mRNA decay through PKA-dependent phosphorylation of two highly conserved phosphosites. TPA-inducible sequence 11b/butyrate response factor 1 (TIS11b/BRF1) belongs to the tristetraprolin (TTP) family of zinc-finger proteins, which bind to mRNAs containing AU-rich elements in their 3′-untranslated region and target them for degradation. Regulation of TTP family function through phosphorylation by p38 MAP kinase and Akt/protein kinase B signaling pathways has been extensively studied. In contrast, the role of cAMP-dependent protein kinase (PKA) in the control of TTP family activity in mRNA decay remains largely unknown. Here we show that PKA activation induces TIS11b gene expression and protein phosphorylation. Site-directed mutagenesis combined with kinase assays and specific phosphosite immunodetection identified Ser-54 (S54) and Ser-334 (S334) as PKA target amino acids in vitro and in vivo. Phosphomimetic mutation of the C-terminal S334 markedly increased TIS11b half-life and, unexpectedly, enhanced TIS11b activity on mRNA decay. Examination of protein–protein interactions between TIS11b and components of the mRNA decay machinery revealed that mimicking phosphorylation at S334 enhances TIS11b interaction with the decapping coactivator Dcp1a, while preventing phosphorylation at S334 potentiates its interaction with the Ccr4-Not deadenylase complex subunit Cnot1. Collectively our findings establish for the first time that cAMP-elicited phosphorylation of TIS11b plays a key regulatory role in its mRNA decay-promoting function.
Collapse
Affiliation(s)
- Felicitas Rataj
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Séverine Planel
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Agnès Desroches-Castan
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Juliette Le Douce
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Khadija Lamribet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Josiane Denis
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| |
Collapse
|
7
|
Lefebvre H, Thomas M, Duparc C, Bertherat J, Louiset E. Role of ACTH in the Interactive/Paracrine Regulation of Adrenal Steroid Secretion in Physiological and Pathophysiological Conditions. Front Endocrinol (Lausanne) 2016; 7:98. [PMID: 27489549 PMCID: PMC4951519 DOI: 10.3389/fendo.2016.00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
In the normal human adrenal gland, steroid secretion is regulated by a complex network of autocrine/paracrine interactions involving bioactive signals released by endothelial cells, nerve terminals, chromaffin cells, immunocompetent cells, and adrenocortical cells themselves. ACTH can be locally produced by medullary chromaffin cells and is, therefore, a major mediator of the corticomedullary functional interplay. Plasma ACTH also triggers the release of angiogenic and vasoactive agents from adrenocortical cells and adrenal mast cells and, thus, indirectly regulates steroid production through modulation of the adrenal blood flow. Adrenocortical neoplasms associated with steroid hypersecretion exhibit molecular and cellular defects that tend to reinforce the influence of paracrine regulatory loops on corticosteroidogenesis. Especially, ACTH has been found to be abnormally synthesized in bilateral macronodular adrenal hyperplasia responsible for hypercortisolism. In these tissues, ACTH is detected in a subpopulation of adrenocortical cells that express gonadal markers. This observation suggests that ectopic production of ACTH may result from impaired embryogenesis leading to abnormal maturation of the adrenogonadal primordium. Globally, the current literature indicates that ACTH is a major player in the autocrine/paracrine processes occurring in the adrenal gland in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Hervé Lefebvre
- U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France
- *Correspondence: Hervé Lefebvre,
| | - Michaël Thomas
- U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Rouen, France
| | - Céline Duparc
- U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Rouen, France
| | - Jérôme Bertherat
- U1016, INSERM, Institut Cochin, Paris, France
- Department of Endocrinology and Metabolic Diseases, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Estelle Louiset
- U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Rouen, France
| |
Collapse
|
8
|
Cho YW, Han YS, Chung IY, Kim SJ, Seo SW, Yoo JM, Park JM. Suppression of laser-induced choroidal neovascularization by intravitreal injection of tristetraprolin. Int J Ophthalmol 2014; 7:952-8. [PMID: 25540745 DOI: 10.3980/j.issn.2222-3959.2014.06.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 08/25/2014] [Indexed: 11/02/2022] Open
Abstract
AIM To examine the effect of intravitreal adenoviral vector-mediated tristetraprolin (Ad-TTP) on VEGF mRNA expression in a rat model of laser-induced choroidal neovascularization. METHODS Ad-TTP was prepared using a commercial kit. Retinal laser-induced photocoagulation (10 spots per eye) was performed on rats in this experimental choroidal neovascularization (CNV) model. Rats were divided into four groups: control (single intravitreal injection of balanced salt solution, n=10), laser-induced CNV (photocoagulation only, n=20), laser-induced CNV plus Ad-TTP injection (photocoagulation plus a single intravitreal Ad-TTP injection, n=20) and Ad-TTP injection only (n=10). Changes in choroidal morphology were evaluated in ten rats in the laser only and the laser plus Ad-TTP groups. Two weeks after laser injury, the size of CNV was calculated by perfusion with high-molecular-weight fluorescein isothiocyanate (FITC)-dextran. VEGF mRNA expression in retina-choroid tissue from ten rats in each group was measured by reverse transcription polymerase chain reaction (RT-PCR). RESULTS Two weeks after treatment, the area of laser-induced CNV was reduced by approximately 60% in the rats given the Ad-TTP injection compared with that in the laser-only group. There was a tendency toward decreased VEGF mRNA expression in the Ad-TTP injection groups. CONCLUSION A single intravitreal injection of Ad-TTP significantly suppressed CNV size in this experimental laser-induced CNV model. Ad-TTP injection also decreased VEGF mRNA expression compared with that in the laser-induced CNV group. The present study is meaningful as the first study to investigate the effect of tristetraprolin delivered via intravitreal injection.
Collapse
Affiliation(s)
- Yong Wun Cho
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea
| | - Yong Seop Han
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| | - In Young Chung
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| | - Seong Jae Kim
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea
| | - Seong Wook Seo
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| | - Ji Myong Yoo
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| | - Jong Moon Park
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| |
Collapse
|
9
|
Gravina GL, Tortoreto M, Mancini A, Addis A, Di Cesare E, Lenzi A, Landesman Y, McCauley D, Kauffman M, Shacham S, Zaffaroni N, Festuccia C. XPO1/CRM1-selective inhibitors of nuclear export (SINE) reduce tumor spreading and improve overall survival in preclinical models of prostate cancer (PCa). J Hematol Oncol 2014; 7:46. [PMID: 25284315 PMCID: PMC4283114 DOI: 10.1186/1756-8722-7-46] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Exportin 1 (XPO1), also called chromosome region maintenance 1 (CRM1), is the sole exportin mediating transport of many multiple tumor suppressor proteins out of the nucleus. AIM AND METHODS To verify the hypothesis that XPO1 inhibition affects prostate cancer (PCa) metastatic potential, orally available, potent and selective, SINE compounds, Selinexor (KPT- 330) and KPT-251, were tested in preclinical models known to generate bone lesions and systemic tumor spread. RESULTS In vitro, Selinexor reduced both secretion of proteases and ability to migrate and invade of PCa cells. SINEs impaired secretion of pro-angiogenic and pro-osteolytic cytokines and reduced osteoclastogenesis in RAW264.7 cells. In the intra-prostatic growth model, Selinexor reduced DU145 tumor growth by 41% and 61% at the doses of 4 mg/Kg qd/5 days and 10 mg/Kg q2dx3 weeks, respectively, as well as the incidence of macroscopic visceral metastases. In a systemic metastasis model, following intracardiac injection of PCb2 cells, 80% (8/10) of controls, 10% (1/10) Selinexor- and 20% (2/10) KPT-251-treated animals developed radiographic evidence of lytic bone lesions. Similarly, after intra-tibial injection, the lytic areas were higher in controls than in Selinexor and KPT-251 groups. Analogously, the serum levels of osteoclast markers (mTRAP and type I collagen fragment, CTX), were significantly higher in controls than in Selinexor- and KPT-251-treated animals. Importantly, overall survival and disease-free survival were significantly higher in Selinexor- and KPT-251-treated animals when compared to controls. CONCLUSIONS Selective blockade of XPO1-dependent nuclear export represents a completely novel approach for the treatment of advanced and metastatic PCa.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- />Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, L’Aquila, Italy
- />Department of Experimental Medicine, Pathophysiology Section, Sapienza University of Rome, Rome, Italy
| | - Monica Tortoreto
- />Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Andrea Mancini
- />Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, L’Aquila, Italy
| | - Alessandro Addis
- />Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Ernesto Di Cesare
- />Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L’Aquila, L’Aquila, Italy
| | - Andrea Lenzi
- />Department of Experimental Medicine, Pathophysiology Section, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Nadia Zaffaroni
- />Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Claudio Festuccia
- />Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
10
|
Viengchareun S, Lema I, Lamribet K, Keo V, Blanchard A, Cherradi N, Lombès M. Hypertonicity compromises renal mineralocorticoid receptor signaling through Tis11b-mediated post-transcriptional control. J Am Soc Nephrol 2014; 25:2213-21. [PMID: 24700863 DOI: 10.1681/asn.2013091023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The mineralocorticoid receptor (MR) mediates the Na(+)-retaining action of aldosterone. MR is highly expressed in the distal nephron, which is submitted to intense variations in extracellular fluid tonicity generated by the corticopapillary gradient. We previously showed that post-transcriptional events control renal MR abundance. Here, we report that hypertonicity increases expression of the mRNA-destabilizing protein Tis11b, a member of the tristetraprolin/ZFP36 family, and thereby, decreases MR expression in renal KC3AC1 cells. The 3'-untranslated regions (3'-UTRs) of human and mouse MR mRNA, containing several highly conserved adenylate/uridylate-rich elements (AREs), were cloned downstream of a reporter gene. Luciferase activities of full-length or truncated MR Luc-3'-UTR mutants decreased drastically when cotransfected with Tis11b plasmid, correlating with an approximately 50% shorter half-life of ARE-containing transcripts. Using site-directed mutagenesis and RNA immunoprecipitation, we identified a crucial ARE motif within the MR 3'-UTR, to which Tis11b must bind for destabilizing activity. Coimmunoprecipitation experiments suggested that endogenous Tis11b physically interacts with MR mRNA in KC3AC1 cells, and Tis11b knockdown prevented hypertonicity-elicited repression of MR. Moreover, hypertonicity blunted aldosterone-stimulated expression of glucocorticoid-induced leucine-zipper protein and the α-subunit of the epithelial Na(+) channel, supporting impaired MR signaling. Challenging the renal osmotic gradient by submitting mice to water deprivation, diuretic administration, or high-Na(+) diet increased renal Tis11b and decreased MR expression, particularly in the cortex, thus establishing a mechanistic pathway for osmotic regulation of MR expression in vivo. Altogether, we uncovered a mechanism by which renal MR expression is regulated through mRNA turnover, a post-transcriptional control that seems physiologically relevant.
Collapse
Affiliation(s)
- Say Viengchareun
- Institut National de la Santé et de la Recherche Médicale, U693, Le Kremlin-Bicêtre, France; University of Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S693, Le Kremlin-Bicêtre, France
| | - Ingrid Lema
- Institut National de la Santé et de la Recherche Médicale, U693, Le Kremlin-Bicêtre, France; University of Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S693, Le Kremlin-Bicêtre, France
| | - Khadija Lamribet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Grenoble, France; University of Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| | - Vixra Keo
- Institut National de la Santé et de la Recherche Médicale, U693, Le Kremlin-Bicêtre, France; University of Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S693, Le Kremlin-Bicêtre, France
| | - Anne Blanchard
- Institut National de la Santé et de la Recherche Médicale, Centre d'Investigations Cliniques 9201, Paris, France; and
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Grenoble, France; University of Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France;
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale, U693, Le Kremlin-Bicêtre, France; University of Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S693, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Ciais D, Cherradi N, Feige JJ. Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cell Mol Life Sci 2013; 70:2031-44. [PMID: 22968342 PMCID: PMC11113850 DOI: 10.1007/s00018-012-1150-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
Members of the tristetraprolin (TTP/TIS11) family are important RNA-binding proteins initially characterized as mediators of mRNA degradation. They act via their interaction with AU-rich elements present in the 3'UTR of regulated transcripts. However, it is progressively appearing that the different steps of mRNA processing and fate including transcription, splicing, polyadenylation, translation, and degradation are coordinately regulated by multifunctional integrator proteins that possess a larger panel of functions than originally anticipated. Tristetraprolin and related proteins are very good examples of such integrators. This review gathers the present knowledge on the functions of this family of RNA-binding proteins, including their role in AU-rich element-mediated mRNA decay and focuses on recent advances that support the concept of their broader involvement in distinct steps of mRNA biogenesis and degradation.
Collapse
Affiliation(s)
- Delphine Ciais
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| |
Collapse
|
12
|
Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci 2013; 14:10015-41. [PMID: 23665903 PMCID: PMC3676826 DOI: 10.3390/ijms140510015] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022] Open
Abstract
The human embryonic lethal abnormal vision-like protein, HuR, is a member of the Hu family of RNA-binding proteins. Over the past decade, this ubiquitously expressed protein has been extensively investigated in cancer research because it is involved in the regulation of mRNA stability and translation in many cell types. HuR activity and function is associated with its subcellular distribution, transcriptional regulation, translational and post-translational modifications. HuR regulation of target mRNAs is based on the interaction between the three specific domains of HuR protein and one or several U- or AU-rich elements (AREs) in the untranslated region of target mRNAs. A number of cancer-related transcripts containing AREs, including mRNAs for proto-oncogenes, cytokines, growth factors, and invasion factors, have been characterized as HuR targets. It has been proposed that HuR has a central tumorigenic activity by enabling multiple cancer phenotypes. In this review, we comprehensively survey the existing evidence with regard to the diverse functions of HuR in caner development and progression. The current data also suggest that HuR might be a novel and promising therapeutic target and a marker for treatment response and prognostic evaluation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-531-5166-5336; Fax: +86-531-5166-6649
| | - Yan Guo
- Department of Outpatient, Military Command of Shandong Province, Jinan 250013, China; E-Mail:
| | - Huili Chu
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Yaping Guan
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Jingwang Bi
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Baocheng Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| |
Collapse
|
13
|
Boufettal H, Feige JJ, Benharouga M, Aboussaouira T, Nadifi S, Mahdaoui S, Samouh N, Alfaidy N. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases]. ACTA ACUST UNITED AC 2013; 61:178-83. [PMID: 23647696 DOI: 10.1016/j.patbio.2013.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 02/15/2013] [Indexed: 10/26/2022]
Abstract
Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter.
Collapse
Affiliation(s)
- H Boufettal
- 29, lotissement Abdelmoumen, résidence Al Mokhtar, 20340 Casablanca, Maroc; Centre d'études doctorales, formation doctorale en génétique et biologie moléculaire, faculté de médecine et de pharmacie, université Aïn Chok, Casablanca, Maroc; Service de gynécologie-obstétrique « C », faculté de médecine et de pharmacie, université Aïn Chok, CHU Ibn Rochd, Casablanca, Maroc.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Desroches-Castan A, Cherradi N, Feige JJ, Ciais D. A novel function of Tis11b/BRF1 as a regulator of Dll4 mRNA 3'-end processing. Mol Biol Cell 2011; 22:3625-33. [PMID: 21832157 PMCID: PMC3183017 DOI: 10.1091/mbc.e11-02-0149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report the characterization of Delta-like-4 (Dll4), an angiogenesis-related gene for which haploinsufficiency is lethal, as an additional target of Tis11b-mediated regulation. Unexpectedly, we show that Tis11b does not alter mRNA stability but rather seems to modulate 3′-processing of Dll4 mRNA in endothelial cells. Tis11b/BRF1 belongs to the tristetraprolin family, the members of which are involved in AU-rich-dependent regulation of mRNA stability/degradation. Mouse inactivation of the Tis11b gene has revealed disorganization of the vascular network and up-regulation of the proangiogenic factor VEGF. However, the VEGF deregulation alone cannot explain the phenotype of Tis11b knockouts. Therefore we investigated the role of Tis11b in expression of Dll4, another angiogenic gene for which haploinsufficiency is lethal. In this paper, we show that Tis11b silencing in endothelial cells leads to up-regulation of Dll4 protein and mRNA expressions, indicating that Dll4 is a physiological target of Tis11b. Tis11b protein binds to endogenous Dll4 mRNA, and represses mRNA expression without affecting its stability. In the Dll4 mRNA 3′ untranslated region, we identified one particular AUUUA motif embedded in a weak noncanonical polyadenylation (poly(A)) signal as the major Tis11b-binding site. Moreover, we observed that inhibition of Tis11b expression changes the ratio between mRNAs that are cleaved or read through at the poly(A) signal position, suggesting that Tis11b can interfere with mRNA cleavage and poly(A) efficiency. Last, we report that this Tis11b-mediated mechanism is used by endothelial cells under hypoxia for controlling Dll4 mRNA levels. This work constitutes the first description of a new function for Tis11b in mammalian cell mRNA 3′-end maturation.
Collapse
Affiliation(s)
- Agnès Desroches-Castan
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Biologie du Cancer et de l'Infection, Grenoble F-38054, France
| | | | | | | |
Collapse
|
15
|
Chamboredon S, Ciais D, Desroches-Castan A, Savi P, Bono F, Feige JJ, Cherradi N. Hypoxia-inducible factor-1α mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell 2011; 22:3366-78. [PMID: 21775632 PMCID: PMC3172262 DOI: 10.1091/mbc.e10-07-0617] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endothelial cells (ECs) are the primary sensors of variations in blood oxygen concentrations. They use the hypoxia-sensitive stabilization of the hypoxia-inducible factor-1α (HIF-1α) transcription factor to engage specific transcriptional programs in response to oxygen changes. The regulation of HIF-1α expression is well documented at the protein level, but much less is known about the control of its mRNA stability. Using small interfering RNA knockdown experiments, reporter gene analyses, ribonucleoprotein immunoprecipitations, and mRNA half-life determinations, we report a new regulatory mechanism of HIF-1α expression in ECs. We demonstrate that 1) sustained hypoxia progressively decreases HIF-1α mRNA while HIF-1α protein levels rapidly peak after 3 h and then slowly decay; 2) silencing the mRNA-destabilizing protein tristetraprolin (TTP) in ECs reverses hypoxia-induced down-regulation of HIF-1α mRNA; 3) the decrease in the half-life of Luciferase-HIF-1α-3'UTR reporter transcript that is observed after prolonged hypoxia is mediated by TTP; 4) TTP binds specifically to HIF-1α 3'UTR; and 5) the most distal AU-rich elements present in HIF-1α 3'UTR (composed of two hexamers) are sufficient for TTP-mediated repression. Finally, we bring evidence that silencing TTP expression enhances hypoxia-induced increase in HIF-1α protein levels with a concomitant increase in the levels of the carbonic anhydrase enzyme CA IX, thus suggesting that TTP physiologically controls the expression of a panel of HIF-1α target genes. Altogether, these data reveal a new role for TTP in the control of gene expression during the response of endothelial cell to hypoxia.
Collapse
Affiliation(s)
- Sandrine Chamboredon
- Institut National de la Santé et de la Recherche Médicale, Unité 1036 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Jefcoate CR, Lee J, Cherradi N, Takemori H, Duan H. cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover. Mol Cell Endocrinol 2011; 336:53-62. [PMID: 21147196 PMCID: PMC3404512 DOI: 10.1016/j.mce.2010.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 10/18/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein is generated in rodents from 1.6 kb and 3.5 kb mRNA formed by alternative polyadenylation. The zinc finger protein, TIS11B (also Znf36L1), is elevated by cAMP in adrenal cells in parallel with StAR mRNA. TIS11b selectively destabilizes the 3.5 kb mRNA through AU-rich sequences at the end of the 3'UTR. siRNA suppression shows that TIS11b surprisingly increases StAR protein and cholesterol metabolism. StAR transcription is directly activated by PKA phosphorylation. cAMP responsive element binding (CREB) protein 1 phosphorylation is a key step leading to recruitment of the co-activator, CREB binding protein (CBP). A second protein, CREB regulated transcription coactivator (TORC/CRTC), enhances this recruitment, but is inhibited by salt inducible kinase (SIK). Basal StAR transcription is constrained through this phosphorylation of TORC. PKA provides an alternative stimulation by phosphorylating SIK, which prevents TORC inactivation. PKA stimulation of StAR nuclear transcripts substantially precedes TORC recruitment to the StAR promoter, which may, therefore, mediate a later step in mRNA production. Inhibition of SIK by staurosporine elevates StAR transcription and TORC recruitment to maximum levels, but without CREB phosphorylation. TORC suppression by SIK evidently limits basal StAR transcription. Staurosporine and cAMP stimulate synergistically. SIK targets the phosphatase, PP2a (activation), and Type 2 histone de-acetylases (inhibition), which may each contribute to suppression. Staurosporine stimulation through SIK inhibition is repeated in cAMP stimulation of many steroidogenic genes regulated by steroidogenic factor 1 (SF-1) and CREB. TIS11b and SIK may combine to attenuate StAR expression when hormonal stimuli decline.
Collapse
Affiliation(s)
- Colin R Jefcoate
- University of Wisconsin Medical School, Madison, WI, United States.
| | | | | | | | | |
Collapse
|
17
|
Mcgray AJR, Gingerich T, Petrik JJ, Lamarre J. Regulation of thrombospondin-1 expression through AU-rich elements in the 3'UTR of the mRNA. Cell Mol Biol Lett 2011; 16:55-68. [PMID: 21161418 PMCID: PMC6275769 DOI: 10.2478/s11658-010-0037-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/24/2010] [Indexed: 01/20/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular protein that participates in numerous normal and pathological tissue processes and is rapidly modulated by different stimuli. The presence of 8 highly-conserved AU rich elements (AREs) within the 3'-untranslated region (3'UTR) of the TSP-1 mRNA suggests that post-transcriptional regulation is likely to represent one mechanism by which TSP-1 gene expression is regulated. We investigated the roles of these AREs, and proteins which bind to them, in the control of TSP-1 mRNA stability. The endogenous TSP-1 mRNA half-life is approximately 2.0 hours in HEK293 cells. Luciferase reporter mRNAs containing the TSP-1 3'UTR show a similar rate of decay, suggesting that the 3'UTR influences the decay rate. Site-directed mutagenesis of individual and adjacent AREs prolonged reporter mRNA halflife to between 2.2 and 4.4 hours. Mutation of all AREs increased mRNA half life to 8.8 hours, suggesting that all AREs have some effect, but that specific AREs may have key roles in stability regulation. A labeled RNA oligonucleotide derived from the most influential ARE was utilized to purify TSP-1 ARE-binding proteins. The AU-binding protein AUF1 was shown to associate with this motif. These studies reveal that AREs in the 3'UTR control TSP-1 mRNA stability and that the RNA binding protein AUF1 participates in this control. These studies suggest that ARE-dependent control of TSP-1 mRNA stability may represent an important component in the control of TSP-1 gene expression.
Collapse
Affiliation(s)
- Asa J. Robert Mcgray
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Timothy Gingerich
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Jonathan Lamarre
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| |
Collapse
|
18
|
A novel concept in antiangiogenic and antitumoral therapy: multitarget destabilization of short-lived mRNAs by the zinc finger protein ZFP36L1. Oncogene 2010; 29:5989-6003. [PMID: 20802528 DOI: 10.1038/onc.2010.341] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiogenesis inhibitors have shown clinical benefits in patients with advanced cancer, but further therapeutic improvement is needed. We have previously shown that the zinc finger protein 36, C3H type-like 1 (ZFP36L1) enhances vascular endothelial growth factor (VEGF) mRNA decay through its interaction with AU-rich elements within VEGF 3'-untranslated region. In this study, we evaluated the possibility to develop an antiangiogenic and antitumoral strategy using the mRNA-destabilizing activity of ZFP36L1. We engineered a cell-penetrating ZFP36L1, by fusing it to the protein transduction domains (PTDs) TAT derived from HIV, or the polyarginine peptides R7 or R9. PTD-ZFP36L1 fusion proteins were expressed in bacterial cells and affinity-purified to homogeneity. TAT-, R7- and R9-ZFP36L1 were efficiently internalized into living cells and decreased both endogenous VEGF mRNA half-life and VEGF protein levels in vitro. Importantly, a single injection of R9-TIS11b fusion protein into a high-VEGF expressing tissue in vivo (in this study, the mouse adrenal gland) markedly decreased VEGF expression. We further evaluated the effect of R9-ZFP36L1 on tumor growth using Lewis Lung Carcinoma (LL/2) cells implanted subcutaneously into nude mice. Intratumoral injection of R9-ZFP36L1 significantly reduced tumor growth and markedly decreased the expression of multiple angiogenic and inflammatory cytokines, including VEGF, acidic fibroblast growth factor, tumor necrosis factor α, interleukin (IL)-1α and IL-6, with a concomitant obliteration of tumor vascularization. These findings indicate that R9-ZFP36L1 fusion protein may represent a novel antiangiogenic and antitumoral agent, and supports the emerging idea that modulation of mRNA stability represents a promising therapeutic approach to treat cancer.
Collapse
|
19
|
Lee HH, Son YJ, Lee WH, Park YW, Chae SW, Cho WJ, Kim YM, Choi HJ, Choi DH, Jung SW, Min YJ, Park SE, Lee BJ, Cha HJ, Park JW. Tristetraprolin regulates expression of VEGF and tumorigenesis in human colon cancer. Int J Cancer 2010; 126:1817-1827. [PMID: 19697322 DOI: 10.1002/ijc.24847] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability. Here, we report that TTP suppress the growth of human colon cancer cells both in vivo and in vitro by regulating of the expression of vascular endothelial growth factor (VEGF). TTP protein expression in human colonic tissues was markedly decreased in colonic adenocarcinoma compared with in normal mucosa and adenoma. VEGF expression was higher in colonic adenocarcinoma than in normal mucosa and adenoma. Specific inhibition of TTP expression by RNA-interference increased the expression of VEGF in cultured human colon cancer cells, and TTP overexpression markedly decreased it. In addition, elevated expression of TTP decreased the expression level of luciferase linked to a 3' terminal AU-rich element (ARE) of VEGF mRNA. Colo320/TTP cells overexpressing TTP grew slowly in vitro and became tumors small in size when xenografted s.c into nude mice. These findings demonstrate that TTP acts as a negative regulator of VEGF gene expression in colon cancer cells, suggesting that it can be used as novel therapeutic agent to treat colon cancer.
Collapse
Affiliation(s)
- Hyun Hee Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Young Joon Son
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Won Hyeok Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Young Woo Park
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wha Ja Cho
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Young Min Kim
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hye-Jeong Choi
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Dae Hwa Choi
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Seok Won Jung
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Young Joo Min
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.,Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Soon Eun Park
- Department of Anesthesia and Pain Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.,Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.,Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
20
|
Viengchareun S, Kamenicky P, Teixeira M, Butlen D, Meduri G, Blanchard-Gutton N, Kurschat C, Lanel A, Martinerie L, Sztal-Mazer S, Blot-Chabaud M, Ferrary E, Cherradi N, Lombès M. Osmotic stress regulates mineralocorticoid receptor expression in a novel aldosterone-sensitive cortical collecting duct cell line. Mol Endocrinol 2009; 23:1948-62. [PMID: 19846540 DOI: 10.1210/me.2009-0095] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aldosterone effects are mediated by the mineralocorticoid receptor (MR), a transcription factor highly expressed in the distal nephron. Given that MR expression level constitutes a key element controlling hormone responsiveness, there is much interest in elucidating the molecular mechanisms governing MR expression. To investigate whether hyper- or hypotonicity could affect MR abundance, we established by targeted oncogenesis a novel immortalized cortical collecting duct (CCD) cell line and examined the impact of osmotic stress on MR expression. KC3AC1 cells form domes, exhibit a high transepithelial resistance, express 11beta-hydroxysteroid dehydrogenase 2 and functional endogenous MR, which mediates aldosterone-stimulated Na(+) reabsorption through the epithelial sodium channel activation. MR expression is tightly regulated by osmotic stress. Hypertonic conditions induce expression of tonicity-responsive enhancer binding protein, an osmoregulatory transcription factor capable of binding tonicity-responsive enhancer response elements located in MR regulatory sequences. Surprisingly, hypertonicity leads to a severe reduction in MR transcript and protein levels. This is accompanied by a concomitant tonicity-induced expression of Tis11b, a mRNA-destabilizing protein that, by binding to the AU-rich sequences of the 3'-untranslated region of MR mRNA, may favor hypertonicity-dependent degradation of labile MR transcripts. In sharp contrast, hypotonicity causes a strong increase in MR transcript and protein levels. Collectively, we demonstrate for the first time that optimal adaptation of CCD cells to changes in extracellular fluid composition is accompanied by drastic modification in MR abundance via transcriptional and posttranscriptional mechanisms. Osmotic stress-regulated MR expression may represent an important molecular determinant for cell-specific MR action, most notably in renal failure, hypertension, or mineralocorticoid resistance.
Collapse
|
21
|
Lu L, Wang S, Zheng L, Li X, Suswam EA, Zhang X, Wheeler CG, Nabors LB, Filippova N, King PH. Amyotrophic lateral sclerosis-linked mutant SOD1 sequesters Hu antigen R (HuR) and TIA-1-related protein (TIAR): implications for impaired post-transcriptional regulation of vascular endothelial growth factor. J Biol Chem 2009; 284:33989-98. [PMID: 19805546 DOI: 10.1074/jbc.m109.067918] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Down-regulation of vascular endothelial growth factor (VEGF) in the mouse leads to progressive and selective degeneration of motor neurons similar to amyotrophic lateral sclerosis (ALS). In mice expressing ALS-associated mutant superoxide dismutase 1 (SOD1), VEGF mRNA expression in the spinal cord declines significantly prior to the onset of clinical manifestations. In vitro models suggest that dysregulation of VEGF mRNA stability contributes to that decline. Here, we show that the major RNA stabilizer, Hu Antigen R (HuR), and TIA-1-related protein (TIAR) colocalize with mutant SOD1 in mouse spinal cord extracts and cultured glioma cells. The colocalization was markedly reduced or abolished by RNase treatment. Immunoanalysis of transfected cells indicated that colocalization occurred in insoluble aggregates and inclusions. RNA immunoprecipitation showed a significant loss of VEGF mRNA binding to HuR and TIAR in mutant SOD1 cells, and there was marked depletion of HuR from polysomes. Ectopic expression of HuR in mutant SOD1 cells more than doubled the mRNA half-life of VEGF and significantly increased expression to that of wild-type SOD1 control. Cellular effects produced by mutant SOD1, including impaired mitochondrial function and oxidative stress-induced apoptosis, were reversed by HuR in a gene dose-dependent pattern. In summary, our findings indicate that mutant SOD1 impairs post-transcriptional regulation by sequestering key regulatory RNA-binding proteins. The rescue effect of HuR suggests that this impairment, whether related to VEGF or other potential mRNA targets, contributes to cytotoxicity in ALS.
Collapse
Affiliation(s)
- Liang Lu
- Department of Neurology, University of Alabama at Birmingham and the Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sinha S, Dutta S, Datta K, Ghosh AK, Mukhopadhyay D. Von Hippel-Lindau gene product modulates TIS11B expression in renal cell carcinoma: impact on vascular endothelial growth factor expression in hypoxia. J Biol Chem 2009; 284:32610-8. [PMID: 19801654 DOI: 10.1074/jbc.m109.058065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TIS11B belongs to a group of RNA-binding proteins (including TIS11/tristetraprolin and TIS11D) that share characteristic tandem CCCH-type zinc-finger domains and can be rapidly induced by multiple stimuli. TIS11B has been shown to regulate vascular endothelial growth factor (VEGF) mRNA stability in adrenocorticotropic hormone-stimulated primary adrenocortical cells. TIS11B has also been documented as a negative regulator of VEGF during development, but nothing has yet been reported in the context of human cancers. The Von Hippel-Lindau (VHL) tumor suppressor protein regulates VEGF gene expression at both the transcriptional and post-transcriptional levels in normoxia. However, whether it can do so in hypoxia is still unclear. Here, we report a unique regulatory function of VHL in VEGF expression in hypoxia that is mediated through modulation of TIS11B protein levels in renal cancer cells. In normoxia, we detected increased expression of the microRNA hsa-miR-29b in the VHL-overexpressing renal cancer cell line 786-O. We also show that this increased expression of hsa-miR-29b decreased TIS11B protein expression by post-transcriptional regulation in normoxia. In contrast, in hypoxia, increased TIS11B expression paralleled an increased TIS11B mRNA stability in VHL-overexpressing 786-O cells. This VHL-mediated TIS11B up-regulation in hypoxia may be important for TIS11B-regulated gene expression: we observed a down-regulation of VEGF mRNA in hypoxia in VHL-overexpressing cells compared with parental 786-O cells, and this effect was reversible by silencing TIS11B expression.
Collapse
Affiliation(s)
- Sutapa Sinha
- Department of Biochemistry and Molecular Biology, Mayo Clinic Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
23
|
Ghisolfi L, Calastretti A, Franzi S, Canti G, Donnini M, Capaccioli S, Nicolin A, Bevilacqua A. B cell lymphoma (Bcl)-2 protein is the major determinant in bcl-2 adenine-uridine-rich element turnover overcoming HuR activity. J Biol Chem 2009; 284:20946-55. [PMID: 19520857 DOI: 10.1074/jbc.m109.023721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the 3'-untranslated region, the destabilizing adenine-uridine (AU)-rich elements (AREs) control the expression of several transcripts through interactions with ARE-binding proteins (AUBPs) and RNA degradation machinery. Although the fundamental role for AUBPs and associated factors in eliciting ARE-dependent degradation of cognate mRNAs has been recently highlighted, the molecular mechanisms underlying the specific regulation of individual mRNA turnover have not yet been fully elucidated. Here we focused on the post-transcriptional regulation of bcl-2 mRNA in human cell lines under different conditions and genetic backgrounds. In the context of an AUBPs silencing approach, HuR knockdown reduced the expression of endogenous bcl-2, whereas unexpectedly, a bcl-2 ARE-reporter transcript increased significantly, suggesting that HuR expression has opposite effects on endogenous and ectopic bcl-2 ARE. Moreover, evidence was provided for the essential, specific and dose-dependent role of the Bcl-2 protein in regulating the decay kinetics of its own mRNA, as ascertained by a luciferase reporter system. Altogether, the data support a model whereby the Bcl-2 protein is the major determinant of its own ARE-dependent transcript half-life in living cells and its effect overcomes the activity of ARE-binding proteins.
Collapse
Affiliation(s)
- Laura Ghisolfi
- Department of Pharmacology, Università degli Studi di Milano, 20129 Milan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Feige JJ. Angiogenesis in adrenocortical physiology and tumor development. ANNALES D'ENDOCRINOLOGIE 2009; 70:153-5. [DOI: 10.1016/j.ando.2009.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod 2009; 15:321-33. [PMID: 19321517 DOI: 10.1093/molehr/gap025] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are synthesized in the adrenal gland, gonads, placenta and brain and are critical for normal reproductive function and bodily homeostasis. The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroid biosynthesis, i.e. the delivery of cholesterol from the outer to the inner mitochondrial membrane. The expression of the StAR protein is predominantly regulated by cAMP-dependent mechanisms in the adrenal and gonads. Whereas StAR plays an indispensable role in the regulation of steroid biosynthesis, a complete understanding of the regulation of its expression and function in steroidogenesis is not available. It has become clear that the regulation of StAR gene expression is a complex process that involves the interaction of a diversity of hormones and multiple signaling pathways that coordinate the cooperation and interaction of transcriptional machinery, as well as a number of post-transcriptional mechanisms that govern mRNA and protein expression. However, information is lacking on how the StAR gene is regulated in vivo such that it is expressed at appropriate times during development and is confined to the steroidogenic cells. Thus, it is not surprising that the precise mechanism involved in the regulation of StAR gene has not yet been established, which is the key to understanding the regulation of steroidogenesis in the context of both male and female development and function.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
26
|
Li X, Lu L, Bush DJ, Zhang X, Zheng L, Suswam EA, King PH. Mutant copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3'-untranslated region. J Neurochem 2009; 108:1032-44. [PMID: 19196430 PMCID: PMC2646909 DOI: 10.1111/j.1471-4159.2008.05856.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a neurotrophic factor essential for maintenance of motor neurons. Loss of this factor produces a phenotype similar to amyotrophic lateral sclerosis (ALS). We recently showed that ALS-producing mutations of Cu/Zn-superoxide dismutase (SOD1) disrupt post-transcriptional regulation of VEGF mRNA, leading to significant loss of expression [Lu et al., J. Neurosci.27 (2007), 7929]. Mutant SOD1 was present in the ribonucleoprotein complex associated with adenine/uridine-rich elements (ARE) of the VEGF 3'-untranslated region (UTR). Here, we show by electrophoretic mobility shift assay that mutant SOD1 bound directly to the VEGF 3'-UTR with a predilection for AREs similar to the RNA stabilizer HuR. SOD1 mutants A4V and G37R showed higher affinity for the ARE than L38V or G93A. Wild-type SOD1 bound very weakly with an apparent K(d) 11- to 72-fold higher than mutant forms. Mutant SOD1 showed an additional lower shift with VEGF ARE that was accentuated in the metal-free state. A similar pattern of binding was observed with AREs of tumor necrosis factor-alpha and interleukin-8, except only a single shift predominated. Using an ELISA-based assay, we demonstrated that mutant SOD1 competes with HuR and neuronal HuC for VEGF 3'-UTR binding. To define potential RNA-binding domains, we truncated G37R, G93A and wild-type SOD1 and found that peptides from the N-terminal portion of the protein that included amino acids 32-49 could recapitulate the binding pattern of full-length protein. Thus, the strong RNA-binding affinity conferred by ALS-associated mutations of SOD1 may contribute to the post-transcriptional dysregulation of VEGF mRNA.
Collapse
Affiliation(s)
- Xuelin Li
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Liang Lu
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Donald J. Bush
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaowen Zhang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lei Zheng
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Esther A. Suswam
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, Birmingham, Alabama, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
Duan H, Cherradi N, Feige JJ, Jefcoate C. cAMP-dependent posttranscriptional regulation of steroidogenic acute regulatory (STAR) protein by the zinc finger protein ZFP36L1/TIS11b. Mol Endocrinol 2009; 23:497-509. [PMID: 19179481 DOI: 10.1210/me.2008-0296] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Star is expressed in steroidogenic cells as 3.5- and 1.6-kb transcripts that differ only in their 3'-untranslated regions (3'-UTR). In mouse MA10 testis and Y-1 adrenal lines, Br-cAMP preferentially stimulates 3.5-kb mRNA. ACTH is similarly selective in primary bovine adrenocortical cells. The 3.5-kb form harbors AU-rich elements (AURE) in the extended 3'-UTR, which enhance turnover. After peak stimulation of 3.5-kb mRNA, degradation is seen. Star mRNA turnover is enhanced by the zinc finger protein ZFP36L1/TIS11b, which binds to UAUUUAUU repeats in the extended 3'-UTR. TIS11b is rapidly stimulated in each cell type in parallel with Star mRNA. Cotransfection of TIS11b selectively decreases cytomegalovirus-promoted Star mRNA and luciferase-Star 3'-UTR reporters harboring the extended 3'-UTR. Direct complex formation was demonstrated between TIS11b and the extended 3'-UTR of the 3.5-kb Star. AURE mutations revealed that TIS11b-mediated destabilization required the first two UAUUUAUU motifs. HuR, which also binds AURE, did not affect Star expression. Targeted small interfering RNA knockdown of TIS11b specifically enhanced stimulation of 3.5-kb Star mRNA in bovine adrenocortical cells, MA-10, and Y-1 cells but did not affect the reversals seen after peak stimulation. Direct transfection of Star mRNA demonstrated that Br-cAMP stimulated a selective turnover of 3.5-kb mRNA independent of AURE, which may correspond to these reversal processes. Steroidogenic acute regulatory (STAR) protein induction was halved by TIS11b knockdown, concomitant with decreased cholesterol metabolism. TIS11b suppression of 3.5-kb mRNA is therefore surprisingly coupled to enhanced Star translation leading to increased cholesterol metabolism.
Collapse
Affiliation(s)
- Haichuan Duan
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
28
|
Birk DM, Barbato J, Mureebe L, Chaer RA. Current insights on the biology and clinical aspects of VEGF regulation. Vasc Endovascular Surg 2008; 42:517-30. [PMID: 18799497 DOI: 10.1177/1538574408322755] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key molecule that orchestrates the formation and function of vascular networks. Impaired regulation of angiogenesis is implicated in a number of pathologic states. For instance, neoplasias exhibit uncontrolled angiogenesis, whereas ischemia and states of vascular insufficiency involve reduced VEGF activity. As the role of VEGF has been elucidated in these disease processes, its therapeutic role has been developed. The Food and Drug Administration has approved several anti-VEGF agents for treating colorectal, lung, and kidney cancer. VEGF-inducing agents have also been used experimentally to induce angiogenesis in patients with critical limb ischemia. As more knowledge is gathered about the biology of VEGF and its receptors, there is greater promise for therapeutic modulation of VEGF expression. The purpose of this review is to describe the various therapeutic and biologic factors that regulate the expression of VEGF.
Collapse
Affiliation(s)
- Daniel M Birk
- College of Physicians and Surgeons, Columbia University, New York, USA
| | | | | | | |
Collapse
|
29
|
Essafi-Benkhadir K, Onesto C, Stebe E, Moroni C, Pagès G. Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol Biol Cell 2007; 18:4648-58. [PMID: 17855506 PMCID: PMC2043565 DOI: 10.1091/mbc.e07-06-0570] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3'-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors.
Collapse
Affiliation(s)
- Khadija Essafi-Benkhadir
- *Institute of Signalling, Developmental Biology, and Cancer Research, Unité Mixte de Recherche Centre National de la Recherche Scientifique 6543, University of Nice-Sophia Antipolis, Equipe Labellisée Ligue Nationale Contre le Cancer, 06189 Nice Cedex, France; and
| | - Cercina Onesto
- *Institute of Signalling, Developmental Biology, and Cancer Research, Unité Mixte de Recherche Centre National de la Recherche Scientifique 6543, University of Nice-Sophia Antipolis, Equipe Labellisée Ligue Nationale Contre le Cancer, 06189 Nice Cedex, France; and
| | - Emmanuelle Stebe
- *Institute of Signalling, Developmental Biology, and Cancer Research, Unité Mixte de Recherche Centre National de la Recherche Scientifique 6543, University of Nice-Sophia Antipolis, Equipe Labellisée Ligue Nationale Contre le Cancer, 06189 Nice Cedex, France; and
| | - Christoph Moroni
- Institute for Medical Microbiology, Department of Clinical-Biological Sciences, University of Basel, CH-4003 Basel, Switzerland
| | - Gilles Pagès
- *Institute of Signalling, Developmental Biology, and Cancer Research, Unité Mixte de Recherche Centre National de la Recherche Scientifique 6543, University of Nice-Sophia Antipolis, Equipe Labellisée Ligue Nationale Contre le Cancer, 06189 Nice Cedex, France; and
| |
Collapse
|
30
|
David PS, Tanveer R, Port JD. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1. RNA (NEW YORK, N.Y.) 2007; 13:1453-68. [PMID: 17626845 PMCID: PMC1950754 DOI: 10.1261/rna.501707] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3' UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein-protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover.
Collapse
Affiliation(s)
- Pamela S David
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
31
|
Lu L, Zheng L, Viera L, Suswam E, Li Y, Li X, Estévez AG, King PH. Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J Neurosci 2007; 27:7929-38. [PMID: 17652584 PMCID: PMC6672720 DOI: 10.1523/jneurosci.1877-07.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a neuroprotective role in mice harboring mutations of copper-zinc superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis (ALS). Conversely, the loss of VEGF expression through genetic depletion can give rise to a phenotype resembling ALS independent of SOD1 mutations. Here, we observe a profound downregulation of VEGF mRNA expression in spinal cords of G93A SOD1 mice that occurred early in the course of the disease. Using an in vitro culture model of glial cells expressing mutant SOD1, we demonstrate destabilization and downregulation of VEGF RNA with concomitant loss of protein expression that correlates with level of transgene expression. Using a luciferase reporter assay, we show that this molecular effect is mediated through a portion of the VEGF 3'-untranslated region (UTR) that harbors a class II adenylate/uridylate-rich element. Other mutant forms of SOD1 produced a similar negative effect on luciferase RNA and protein expression. Mobility shift assay with a VEGF 3'-UTR probe reveals an aberrantly migrating complex that contains mutant SOD1. We further show that the RNA stabilizing protein, HuR (human antigen R), is translocated from nucleus to cytoplasm in mutant SOD1 cells in vitro and mouse motor neurons in vivo. In summary, our data suggest that mutant SOD1 gains a novel function, possibly by altering the ribonucleoprotein complex with the VEGF 3'-UTR. We postulate that the resultant dysregulation of VEGF posttranscriptional processing critically reduces the level of this neuroprotective growth factor and accelerates the neurodegenerative process in ALS.
Collapse
Affiliation(s)
- Liang Lu
- Departments of Neurology
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| | | | - Liliana Viera
- Laboratory of Motor Neuron Biology, Burke Medical Research Institute
| | | | - Yanyan Li
- Departments of Neurology
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| | - Xuelin Li
- Departments of Neurology
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| | - Alvaro G. Estévez
- Laboratory of Motor Neuron Biology, Burke Medical Research Institute
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, White Plains, New York 10605
| | - Peter H. King
- Departments of Neurology
- Genetics, and
- Physiology and Biophysics, University of Alabama, Birmingham, and
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| |
Collapse
|