1
|
Gamble MC, Williams BR, Singh N, Posa L, Freyberg Z, Logan RW, Puig S. Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Front Syst Neurosci 2022; 16:1059089. [PMID: 36532632 PMCID: PMC9751598 DOI: 10.3389/fnsys.2022.1059089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the prevalence of opioid misuse, opioids remain the frontline treatment regimen for severe pain. However, opioid safety is hampered by side-effects such as analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, or reward. These side effects promote development of opioid use disorders and ultimately cause overdose deaths due to opioid-induced respiratory depression. The intertwined nature of signaling via μ-opioid receptors (MOR), the primary target of prescription opioids, with signaling pathways responsible for opioid side-effects presents important challenges. Therefore, a critical objective is to uncouple cellular and molecular mechanisms that selectively modulate analgesia from those that mediate side-effects. One such mechanism could be the transactivation of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-effects can be uncoupled from analgesia signaling via targeting RTK family receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This review focuses on the current state of knowledge surrounding the basic pharmacology of RTKs and bidirectional regulation of MOR signaling, as well as how MOR-RTK signaling may modulate undesirable effects of chronic opioid use, including opioid analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, and reward. Further research is needed to better understand RTK-MOR transactivation signaling pathways, and to determine if RTKs are a plausible therapeutic target for mitigating opioid side effects.
Collapse
Affiliation(s)
- Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Navsharan Singh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Luca Posa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
2
|
Alfonzo-Méndez MA, Hernández-Espinosa DA, Carmona-Rosas G, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Protein Kinase C Activation Promotes α 1B-Adrenoceptor Internalization and Late Endosome Trafficking through Rab9 Interaction. Role in Heterologous Desensitization. Mol Pharmacol 2017; 91:296-306. [PMID: 28082304 DOI: 10.1124/mol.116.106583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
Upon agonist stimulation, α1B-adrenergic receptors couple to Gq proteins, calcium signaling and protein kinase C activation; subsequently, the receptors are phosphorylated, desensitized, and internalized. Internalization seems to involve scaffolding proteins, such as β-arrestin and clathrin. However, the fine mechanisms that participate remain unsolved. The roles of protein kinase C and the small GTPase, Rab9, in α1B-AR vesicular traffic were investigated by studying α1B-adrenergic receptor-Rab protein interactions, using Förster resonance energy transfer (FRET), confocal microscopy, and intracellular calcium quantitation. In human embryonic kidney 293 cells overexpressing Discosoma spp. red fluorescent protein (DsRed)-tagged α1B-ARs and enhanced green fluorescent protein--tagged Rab proteins, pharmacological protein kinase C activation mimicked α1B-AR traffic elicited by nonrelated agents, such as sphingosine 1-phosphate (i.e., transient α1B-AR-Rab5 FRET signal followed by a sustained α1B-AR-Rab9 interaction), suggesting brief receptor localization in early endosomes and transfer to late endosomes. This latter interaction was abrogated by blocking protein kinase C activity, resulting in receptor retention at the plasma membrane. Similar effects were observed when a dominant-negative Rab9 mutant (Rab9-GDP) was employed. When α1B-adrenergic receptors that had been mutated at protein kinase C phosphorylation sites (S396A, S402A) were used, phorbol ester-induced desensitization of the calcium response was markedly decreased; however, interaction with Rab9 was only partially decreased and internalization was observed in response to phorbol esters and sphingosine 1-phosphate. Finally, Rab9-GDP expression did not affect adrenergic-mediated calcium response but abolished receptor traffic and altered desensitization. Data suggest that protein kinase C modulates α1B-adrenergic receptor transfer to late endosomes and that Rab9 regulates this process and participates in G protein-mediated signaling turn-off.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - David A Hernández-Espinosa
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - Gabriel Carmona-Rosas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - M Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - Guadalupe Reyes-Cruz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| |
Collapse
|
3
|
Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3. PLoS One 2015; 10:e0140583. [PMID: 26473723 PMCID: PMC4608732 DOI: 10.1371/journal.pone.0140583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/27/2015] [Indexed: 12/31/2022] Open
Abstract
Results The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1–3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1–3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. Conclusion Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.
Collapse
|
4
|
Boularan C, Gales C. Cardiac cAMP: production, hydrolysis, modulation and detection. Front Pharmacol 2015; 6:203. [PMID: 26483685 PMCID: PMC4589651 DOI: 10.3389/fphar.2015.00203] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/03/2015] [Indexed: 01/04/2023] Open
Abstract
Cyclic adenosine 3′,5′-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.
Collapse
Affiliation(s)
- Cédric Boularan
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| | - Céline Gales
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| |
Collapse
|
5
|
Castillo-Badillo JA, Sánchez-Reyes OB, Alfonzo-Méndez MA, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. PLoS One 2015; 10:e0121165. [PMID: 25799564 PMCID: PMC4370394 DOI: 10.1371/journal.pone.0121165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022] Open
Abstract
Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs. heterologous).
Collapse
Affiliation(s)
- Jean A. Castillo-Badillo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Omar B. Sánchez-Reyes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Marco A. Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - M. Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., Mexico
| | - J. Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
- * E-mail:
| |
Collapse
|
6
|
Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, Ammendola R. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 2014; 15:19700-28. [PMID: 25356505 PMCID: PMC4264134 DOI: 10.3390/ijms151119700] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy.
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Marta De Marinis
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Domenico Tafuri
- Department of Sport Science and Wellness, University of Naples Parthenope, Naples 80133, Italy.
| | - Mariapia Cinelli
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
7
|
Castillo-Badillo JA, Molina-Muñoz T, Romero-Ávila MT, Vázquez-Macías A, Rivera R, Chun J, García-Sáinz JA. Sphingosine 1-phosphate-mediated α1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:245-54. [PMID: 22019450 PMCID: PMC3273635 DOI: 10.1016/j.bbamcr.2011.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 12/26/2022]
Abstract
Sphingosine-1-phosphate-induced α1B-adrenergic receptor desensitization and phosphorylation were studied in rat-1 fibroblasts stably expressing enhanced green fluorescent protein-tagged adrenoceptors. Sphingosine-1-phosphate induced adrenoceptor desensitization and phosphorylation through a signaling cascade that involved phosphoinositide 3-kinase and protein kinase C activities. The autocrine/paracrine role of sphingosine-1-phosphate was also studied. It was observed that activation of receptor tyrosine kinases, such as insulin growth factor-1 (IGF-I) and epidermal growth factor (EGF) receptors increased sphingosine kinase activity. Such activation and consequent production of sphingosine-1-phosphate appear to be functionally relevant in IGF-I- and EGF-induced α1B-adrenoceptor phosphorylation and desensitization as evidenced by the following facts: a) expression of a catalytically inactive (dominant-negative) mutant of sphingosine kinase 1 or b) S1P1 receptor knockdown markedly reduced this growth factor action. This action of sphingosine-1-phosphate involves EGF receptor transactivation. In addition, taking advantage of the presence of the eGFP tag in the receptor construction, we showed that S1P was capable of inducing α1B-adrenergic receptor internalization and that its autocrine/paracrine generation was relevant for internalization induced by IGF-I. Four distinct hormone receptors and two autocrine/paracrine mediators participate in IGF-I receptor-α1B-adrenergic receptor crosstalk.
Collapse
Affiliation(s)
- Jean A. Castillo-Badillo
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - Tzindilú Molina-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - M. Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - Aleida Vázquez-Macías
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - Richard Rivera
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| |
Collapse
|
8
|
Colín-Santana CC, Avendaño-Vázquez SE, Alcántara-Hernández R, García-Sáinz JA. EGF and angiotensin II modulate lysophosphatidic acid LPA(1) receptor function and phosphorylation state. Biochim Biophys Acta Gen Subj 2011; 1810:1170-7. [PMID: 21914461 DOI: 10.1016/j.bbagen.2011.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/23/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a local mediator that exerts its actions through G protein coupled receptors. Knowledge on the regulation of such receptors is scarce to date. Here we show that bidirectional cross-talk exits between LPA(1) and EGF receptors. METHODS C9 cells expressing LPA(1) receptor fussed to the enhanced green fluorescent protein were used. We studied intracellular calcium concentration, Akt/PKB phosphorylation, LPA(1) and EGF receptor phosphorylation. RESULTS EGF diminished LPA-mediated intracellular calcium response and induced LPA(1) receptor phosphorylation, which was sensitive to protein kinase C inhibitors. Angiotensin II and LPA induced EGF receptor transactivation as evidenced by Akt/PKB phosphorylation through metalloproteinase-catalyzed membrane shedding of heparin-binding EGF and autocrine/paracrine activation of EGF receptors. This process was found to be of major importance in angiotensin II-induced LPA(1) receptor phosphorylation. Attempts to define a role for EGF receptor transactivation in homologous LPA(1) receptor desensitization and phosphorylation suggested that G protein-coupled receptor kinases are the major players in this process, overshadowing other events. CONCLUSIONS EGF receptors and LPA(1) receptors are engaged in an intense liaison, in that EGF receptors are capable of modulating LPA(1) receptor function through phosphorylation cascades. EGF transactivation plays a dual role: it mediates some LPA actions, and it modulates LPA(1) receptor function in inhibitory fashion. GENERAL SIGNIFICANCE EGF and LPA receptors coexist in many cell types and play key roles in maintaining the delicate equilibrium that we call health and in the pathogenesis of many diseases. The intense cross-talk described here has important physiological and pathophysiological implications.
Collapse
Affiliation(s)
- Christian C Colín-Santana
- Departmento de Biología Celular y Desarrollo, Instituto de Fisiologíca Celular, Universidad Naxional Autónoma de México, México
| | | | | | | |
Collapse
|
9
|
García-Sáinz JA, Romero-Ávila MT, Alcántara-Hernández R. Mechanisms involved in α1B-adrenoceptor desensitization. IUBMB Life 2011; 63:811-5. [PMID: 21815242 DOI: 10.1002/iub.519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/22/2011] [Indexed: 12/12/2022]
Abstract
α(1B)-Adrenergic receptors mediate many of the actions of the natural catecholamines, adrenaline and noradrenaline. They belong to the seven transmembrane domains G protein-coupled receptor superfamily and exert their actions mainly through activation of Gq proteins and phosphoinositide turnover/calcium signaling. Many hormones and neurotransmitters are capable of inducing α(1B)-adrenergic receptor phosphorylation and desensitization; among them: adrenaline and noradrenaline, phorbol esters, endothelin-I, bradykinin, lysophosphatidic acid, insulin, EGF, PDGF, IGF-I, TGF-β, and estrogens. Key protein kinases for these effects are G protein coupled receptor kinases and protein kinase C. The lipid/protein kinase, phosphoinositide-3 kinase also appears to play a key role, acting upstream of protein kinase C. In addition to the agents employed for cells stimulation, we observed that paracrine/autocrine mediators also participate; these processes include EGF transactivation and sphingosine-1-phosphate production and action. The complex regulation of these receptors unlocks opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap. Postal 70-248, México, Distrito Federal.
| | | | | |
Collapse
|
10
|
García-Sáinz JA, Romero-Ávila MT, Medina LDC. Dissecting how receptor tyrosine kinases modulate G protein-coupled receptor function. Eur J Pharmacol 2010; 648:1-5. [PMID: 20828551 DOI: 10.1016/j.ejphar.2010.08.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 02/06/2023]
Abstract
Receptor tyrosine kinases and G protein-coupled receptors modulate physiological processes and are also involved in the pathogenesis of some diseases. These receptors have intense bidirectional crosstalks leading to interactions in their signaling pathways and also modulation of the receptors themselves. In some cases, the receptor tyrosine kinases phosphorylate G protein-coupled receptors whereas in others phosphoinositide 3-kinase, protein kinase B and protein kinase C are key elements in these crosstalks. Two paracrine/ autocrine processes also participate, i.e., epidermal growth factor transactivation and sphingosine 1-phosphate generation and signaling. G proteins seem to mediate actions of receptor tyrosine kinases, but how this takes place is far from completely understood; some models are presented. Recent data indicate that the mitogen activated protein kinase cascade also mediate crosstalks. In the present perspective these processes are outlined using information from receptors that have been intensively studied, and important gaps in our knowledge are indicated.
Collapse
Affiliation(s)
- J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, México D.F. 04510.
| | | | | |
Collapse
|
11
|
Hyun E, Ramachandran R, Cenac N, Houle S, Rousset P, Saxena A, Liblau RS, Hollenberg MD, Vergnolle N. Insulin Modulates Protease-Activated Receptor 2 Signaling: Implications for the Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2010; 184:2702-9. [DOI: 10.4049/jimmunol.0902171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Alcántara-Hernández R, Adolfo García-Sáinz J. Effect of inhibitors of mitogen-activated protein kinase kinase on alpha(1B)-adrenoceptor phosphorylation. AUTONOMIC & AUTACOID PHARMACOLOGY 2009; 29:13-23. [PMID: 19302552 DOI: 10.1111/j.1474-8673.2009.00427.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
1 Mitogen-activated protein kinases mediate hormone/neurotransmitter action on proliferation and differentiation and participate in receptor regulation. The effect of inhibitors of mitogen-activated kinase kinase (MEK) on alpha(1B)-adrenoceptor phosphorylation state and function was studied using different cell lines. It was observed that at nanomolar concentrations the MEK inhibitors, PD98059 (2'-amino-3'-methoxyflavone) and UO126 [1,4-(diamino-2,3-dicyano/1,4-bis-(2-aminophenylthio)-butadiene], increased alpha(1B)-adrenoceptor phosphorylation and diminished the functional response of this receptor to noradrenaline. These agents did not alter the action of lysophosphatidic acid. 2 Staurosporine (IC(50) approximately 0.8 nm) (a general protein kinase inhibitor) and bis-indolyl-maleimide I (IC(50) approximately 200 nm) (a selective protein kinase C inhibitor) inhibited PD98059-induced alpha(1B)-adrenoceptor phosphorylation. In contrast, neither wortmannin (phosphoinositide 3-kinase inhibitor) nor genistein (protein tyrosine kinase inhibitor) had any effect. The data suggest the possibility that MEK might exert control on the activity of the enzymes that regulate receptor phosphorylation, such as G-protein-coupled receptor kinases, protein kinase C or serine/threonine protein phosphatases. 3 Coimmunoprecipitation studies showed a constant association of total extracellular signal-regulated kinase 2 (ERK2) with alpha(1B)-adrenoceptors. Association of phospho-ERK 1/2 to alpha(1B)-adrenoceptors increased not only in response to agonist but also in response to agents that increase alpha(1B)-adrenoceptor and ERK1/2 phosphorylation [such as endothelin-1, phorbol 12-myristate-13-acetate (PMA) and epidermal growth factor (EGF)]; not surprisingly, PD98059 decreased this effect. 4 Our data show that blockade of MEK activity results in increased alpha(1B)-adrenoceptor phosphorylation, diminished adrenoceptor function and perturbation of receptor-ERK1/2 interaction.
Collapse
Affiliation(s)
- R Alcántara-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F., Mexico
| | | |
Collapse
|
13
|
Rodríguez-Pérez CE, Calvo-Ochoa E, Kalashnikova EV, Reyes-Cruz G, Romero-Avila MT, García-Sáinz JA. Receptor tyrosine kinases regulate alpha1D-adrenoceptor signaling properties: phosphorylation and desensitization. Int J Biochem Cell Biol 2008; 41:1276-83. [PMID: 19038360 DOI: 10.1016/j.biocel.2008.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/22/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Human alpha(1D)-adrenoceptors (truncated at the amino terminus (Delta1-79) to increase their membrane expression) were stably expressed in Rat-1 fibroblasts (1-1.5 pmol/mg protein). The receptors were functional as evidenced by a robust increase in intracellular calcium in response to noradrenaline. Using this cell line, the possibility that activation of receptor tyrosine kinases could modulate this adrenoceptor subtype was studied. It was observed that cell preincubation with insulin, IGF-I, EGF or PDGF markedly reduced the intracellular calcium increase observed in response to noradrenaline. Inhibitors of PI3K and PKC essentially blocked insulin-, IGF-I- and EGF-induced desensitizations. Interestingly, PDGF-induced alpha(1D)-adrenergic desensitization was only partially ameliorated by PI3K inhibitors and was not affected by those of PKC. Insulin, IGF-I, EGF and PDGF induced concentration-dependent increases in the phosphorylation state of alpha(1D)-adrenoceptors; phosphorylation took place on serine residues. Inhibitors of PI3K and PKC markedly reduced the effects of insulin, IGF-I and EGF on this parameter. These inhibitors only marginally reduced PDGF-induced alpha(1D)-adrenoceptors phosphorylation. The ability of IGF-I to induce alpha(1D)-adrenergic desensitization and phosphorylation was confirmed in cells expressing non-truncated rat alpha(1D)-adrenoceptors. Our data indicate that the function and phosphorylation state of alpha(1D)-adrenoceptors is modulated by activation of receptor tyrosine kinases. Insulin, IGF-I and EGF actions take place through the action of PI3K and PKC; additional pathway(s) seem to participate in PDGF-induced alpha(1D)-adrenoceptor desensitization and phosphorylation.
Collapse
Affiliation(s)
- C Ekaterina Rodríguez-Pérez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México, DF 04510, Mexico
| | | | | | | | | | | |
Collapse
|
14
|
Alcántara-Hernández R, Casas-González P, García-Sáinz JA. Roles of c-Src in alpha1B-adrenoceptor phosphorylation and desensitization. ACTA ACUST UNITED AC 2008; 28:29-39. [PMID: 18257749 DOI: 10.1111/j.1474-8673.2007.00414.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1 The role of the protein tyrosine kinase, c-Src, on the function and phosphorylation of alpha1B-adrenoceptors (alpha1B-AR) and their association with G-protein-coupled receptor kinase (GRK) isozymes was studied. 2 Inhibitors of this kinase (PP2 and Src Inhibitor II) decreased ( approximately 50-75%) noradrenaline- (NA) and phorbol myristate acetate-mediated receptor phosphorylation. Expression of a dominant-negative mutant of c-Src similarly reduced receptor phosphorylation induced by the natural agonists, active phorbol esters and endothelin-1 (ET-1). 3 c-Src, GRK2, GRK3 and GRK5 coimmunoprecipitate with alpha1B-ARs in the basal state. In cells treated with NA or phorbol myristate acetate the amount of coimmunoprecipitated GRK2 and GRK3 increased ( approximately 2- to 3-fold), while treatment with ET-1 only augmented the amount of coimmunoprecipitated GRK2 ( approximately 2-fold). The Src inhibitor, PP2, markedly attenuated all these increases. 4 Cell pretreatment with PP2 amplified the increase in intracellular-free calcium observed with NA, in the basal state and after the stimulation (desensitization) induced by ET-1. 5 The data suggest a role of c-Src in alpha1B-AR desensitization/phosphorylation and in the interaction of these ARs with GRKs.
Collapse
Affiliation(s)
- R Alcántara-Hernández
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, México DF 04510
| | | | | |
Collapse
|
15
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Molina-Muñoz T, Romero-Avila MT, Avendaño-Vázquez SE, García-Sáinz JA. Phosphorylation, desensitization and internalization of human alpha1B-adrenoceptors induced by insulin-like growth factor-I. Eur J Pharmacol 2007; 578:1-10. [PMID: 17915215 DOI: 10.1016/j.ejphar.2007.08.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/21/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
The effect of insulin-like growth factor-I (IGF-I) on human alpha(1B)-adrenoceptor function, phosphorylation state and cellular location was studied. Rat-1 fibroblasts were transfected with a plasmid construction containing enhanced green fluorescent protein joined to the carboxyl terminus of the human alpha(1B)-adrenoceptor. Receptors were identified by radioligand binding and photoaffinity labeling, and were immunoprecipitated with an antiserum generated against the enhanced green fluorescent protein. The receptor was functional, as evidenced by noradrenaline action on intracellular calcium and inositol phosphate production. IGF-I had no significant effect by itself on these parameters but markedly reduced the effects of noradrenaline. IGF-I induced alpha(1B)-adrenoceptor phosphorylation, which was markedly reduced by the following agents: pertussis toxin, a metalloproteinase inhibitor, diphtheria toxin mutant CRM 197, an epidermal growth factor (EGF) receptor intrinsic kinase activity inhibitor, and by phosphoinositide 3-kinase and protein kinase C inhibitors. IGF-I action appears to involve activation of a pertussis toxin-sensitive G protein, shedding of heparin-binding EGF and autocrine activation of EGF receptors. G protein subunits and phosphotyrosine residues stimulate phosphoinositide 3-kinase activity leading to activation of protein kinase C, which in turn phosphorylates alpha(1B)-adrenoceptors. Confocal fluorescent microscopy showed that alpha(1B)-adrenoceptors fussed to the green fluorescent protein were located in plasma membrane and intracellular vesicles in the basal state. IGF-I induced receptor redistribution favoring the intracellular location; this effect was blocked by hypertonic sucrose and concanavalin A. Our data show that IGF-I induces alpha(1B)-adrenoceptor desensitization associated to receptor phosphorylation and internalization.
Collapse
Affiliation(s)
- Tzindilú Molina-Muñoz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México D. F. 04510, Mexico
| | | | | | | |
Collapse
|