1
|
Li C, Xie Z, Xing Z, Zhu H, Zhou W, Xie S, Zhang Z, Li MH. The Notch Signaling Pathway Regulates Differentiation of NG2 Cells into Oligodendrocytes in Demyelinating Diseases. Cell Mol Neurobiol 2022; 42:1-11. [PMID: 33826017 PMCID: PMC11421596 DOI: 10.1007/s10571-021-01089-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
NG2 cells are highly proliferative glial cells that can self-renew or differentiate into oligodendrocytes, promoting remyelination. Following demyelination, the proliferative and differentiation potentials of NG2 cells increase rapidly, enhancing their differentiation into functional myelinating cells. Levels of the transcription factors Olig1 and Olig2 increase during the differentiation of NG2 cells and play important roles in the development and repair of oligodendrocytes. However, the ability to generate new oligodendrocytes is hampered by injury-related factors (e.g., myelin fragments, Wnt and Notch signaling components), leading to failed differentiation and maturation of NG2 cells into oligodendrocytes. Here, we review Notch signaling as a negative regulator of oligodendrocyte differentiation and discuss the extracellular ligands, intracellular pathways, and key transcription factors involved.
Collapse
Affiliation(s)
- Chengcai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zelong Xing
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Huaxin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shenke Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Mei-Hua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
2
|
Kular L, Ewing E, Needhamsen M, Pahlevan Kakhki M, Covacu R, Gomez-Cabrero D, Brundin L, Jagodic M. DNA methylation changes in glial cells of the normal-appearing white matter in Multiple Sclerosis patients. Epigenetics 2022; 17:1311-1330. [PMID: 35094644 PMCID: PMC9586622 DOI: 10.1080/15592294.2021.2020436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multiple Sclerosis (MS), the leading cause of non-traumatic neurological disability in young adults, is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Due to the poor accessibility to the target organ, CNS-confined processes underpinning the later progressive form of MS remain elusive thereby limiting treatment options. We aimed to examine DNA methylation, a stable epigenetic mark of genome activity, in glial cells to capture relevant molecular changes underlying MS neuropathology. We profiled DNA methylation in nuclei of non-neuronal cells, isolated from 38 post-mortem normal-appearing white matter (NAWM) specimens of MS patients (n = 8) in comparison to white matter of control individuals (n = 14), using Infinium MethylationEPIC BeadChip. We identified 1,226 significant (genome-wide adjusted P-value < 0.05) differentially methylated positions (DMPs) between MS patients and controls. Functional annotation of the altered DMP-genes uncovered alterations of processes related to cellular motility, cytoskeleton dynamics, metabolic processes, synaptic support, neuroinflammation and signaling, such as Wnt and TGF-β pathways. A fraction of the affected genes displayed transcriptional differences in the brain of MS patients, as reported by publically available transcriptomic data. Cell type-restricted annotation of DMP-genes attributed alterations of cytoskeleton rearrangement and extracellular matrix remodelling to all glial cell types, while some processes, including ion transport, Wnt/TGF-β signaling and immune processes were more specifically linked to oligodendrocytes, astrocytes and microglial cells, respectively. Our findings strongly suggest that NAWM glial cells are highly altered, even in the absence of lesional insult, collectively exhibiting a multicellular reaction in response to diffuse inflammation.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ruxandra Covacu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Gomez-Cabrero
- Department of Medicine, Unit of Computational Medicine, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, London, UK
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (Chn), Universidad Pública de Navarra (Upna), IdiSNA, Pamplona, Spain
- Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | - Lou Brundin
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Lindblom RPF, Shen Q, Axén S, Landegren U, Kamali-Moghaddam M, Thelin S. Protein Profiling in Serum and Cerebrospinal Fluid Following Complex Surgery on the Thoracic Aorta Identifies Biological Markers of Neurologic Injury. J Cardiovasc Transl Res 2018; 11:503-516. [PMID: 30367354 PMCID: PMC6294830 DOI: 10.1007/s12265-018-9835-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Surgery on the arch or descending aorta is associated with significant risk of neurological complications. As a consequence of intubation and sedation, early neurologic injury may remain unnoticed. Biomarkers to aid in the initial diagnostics could prove of great value as immediate intervention is critical. Twenty-three patients operated in the thoracic aorta with significant risk of perioperative neurological injury were included. Cerebrospinal fluid (CSF) and serum were obtained preoperatively and in the first and second postoperative days and assessed with a panel of 92 neurological-related proteins. Three patients suffered spinal cord injury (SCI), eight delirium, and nine hallucinations. There were markers in both serum and CSF that differed between the affected and non-affected patients (SCI; IL6, GFAP, CSPG4, delirium; TR4, EZH2, hallucinations; NF1). The study identifies markers in serum and CSF that reflect the occurrence of neurologic insults following aortic surgery, which may aid in the care of these patients.
Collapse
Affiliation(s)
- Rickard P F Lindblom
- Department of Cardiothoracic Surgery and Anesthesia, Uppsala University Hospital, SE-751 85, Uppsala, Sweden. .,Department of Surgical Sciences, Section of Thoracic Surgery, Uppsala University, Uppsala, Sweden.
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sofie Axén
- Department of Cardiothoracic Surgery and Anesthesia, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Thelin
- Department of Cardiothoracic Surgery and Anesthesia, Uppsala University Hospital, SE-751 85, Uppsala, Sweden.,Department of Surgical Sciences, Section of Thoracic Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Peng XP, Huang L, Liu ZH. miRNA-133a attenuates lipid accumulation via TR4-CD36 pathway in macrophages. Biochimie 2016; 127:79-85. [PMID: 27109382 DOI: 10.1016/j.biochi.2016.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
lipid metabolism is the major causes of atherosclerosis. There is increasing evidence that miR-133a plays an important role in atherosclerosis. However, the regulatory mechanism of miR-133a in macrophages is still unclear. Several lines of evidence indicate that loss of TR4 leads to reduce lipid accumulation in liver and adipose tissues, etc, and lesional macrophages-derived TR4 can greatly increase the foam cell formation through increasing the CD36-mediated the uptake of ox-LDL. Interestingly, computational analysis suggests that TR4 may be a target gene of miR-133a. Here, we examined whether miR-133a regulates TR4 expression in ox-LDL-induced mouse RAW 264.7 macrophages, thereby affecting lipid accumulation. Using ox-LDL-treatment RAW 264.7 macrophages transfected with miR-133a mimics or inhibitors, we have showed that miR-133a can directly regulate the expression of TR4 in RAW 264.7 cells, thereby attenuates CD36-medide lipid accumulation. Furthermore, our studies suggest an additional explanation for the regulatory mechanism of miR-133a regulation to its functional target, TR4 in RAW 264.7 macrophages. Thus, our findings suggest that miR-133a may regulate lipid accumulation in ox-LDL-stimulated RAW 264.7 macrophages via TR4-CD36 pathway.
Collapse
Affiliation(s)
- Xiao-Ping Peng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Lei Huang
- Department of Geratology, First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.
| | - Zhi-Hong Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| |
Collapse
|
5
|
Liu S, Lin SJ, Li G, Kim E, Chen YT, Yang DR, Tan MHE, Yong EL, Chang C. Differential roles of PPARγ vs TR4 in prostate cancer and metabolic diseases. Endocr Relat Cancer 2014; 21:R279-300. [PMID: 24623743 DOI: 10.1530/erc-13-0529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ, NR1C3) and testicular receptor 4 nuclear receptor (TR4, NR2C2) are two members of the nuclear receptor (NR) superfamily that can be activated by several similar ligands/activators including polyunsaturated fatty acid metabolites, such as 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, as well as some anti-diabetic drugs such as thiazolidinediones (TZDs). However, the consequences of the transactivation of these ligands/activators via these two NRs are different, with at least three distinct phenotypes. First, activation of PPARγ increases insulin sensitivity yet activation of TR4 decreases insulin sensitivity. Second, PPARγ attenuates atherosclerosis but TR4 might increase the risk of atherosclerosis. Third, PPARγ suppresses prostate cancer (PCa) development and TR4 suppresses prostate carcinogenesis yet promotes PCa metastasis. Importantly, the deregulation of either PPARγ or TR4 in PCa alone might then alter the other receptor's influences on PCa progression. Knocking out PPARγ altered the ability of TR4 to promote prostate carcinogenesis and knocking down TR4 also resulted in TZD treatment promoting PCa development, indicating that both PPARγ and TR4 might coordinate with each other to regulate PCa initiation, and the loss of either one of them might switch the other one from a tumor suppressor to a tumor promoter. These results indicate that further and detailed studies of both receptors at the same time in the same cells/organs may help us to better dissect their distinct physiological roles and develop better drug(s) with fewer side effects to battle PPARγ- and TR4-related diseases including tumor and cardiovascular diseases as well as metabolic disorders.
Collapse
Affiliation(s)
- Su Liu
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Shin-Jen Lin
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Gonghui Li
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Eungseok Kim
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Yei-Tsung Chen
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Dong-Rong Yang
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - M H Eileen Tan
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Eu Leong Yong
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, TaiwanGeorge Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| |
Collapse
|
6
|
Lin SJ, Zhang Y, Liu NC, Yang DR, Li G, Chang C. Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4. Mol Endocrinol 2014; 28:805-21. [PMID: 24702179 DOI: 10.1210/me.2013-1422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Testicular nuclear receptor 4 (TR4), also known as NR2C2, belongs to the nuclear receptor superfamily and shares high homology with the testicular nuclear receptor 2. The natural ligands of TR4 remained unclear until the recent discoveries of several energy/lipid sensors including the polyunsaturated fatty acid metabolites, 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, and their synthetic ligands, thiazolidinediones, used for treatment of diabetes. TR4 is widely expressed throughout the body and particularly concentrated in the testis, prostate, cerebellum, and hippocampus. It has been shown to play important roles in cerebellar development, forebrain myelination, folliculogenesis, gluconeogenesis, lipogenesis, muscle development, bone development, and prostate cancer progression. Here we provide a comprehensive summary of TR4 signaling including its upstream ligands/activators/suppressors, transcriptional coactivators/repressors, downstream targets, and their in vivo functions with potential impacts on TR4-related diseases. Importantly, TR4 shares similar ligands/activators with another key nuclear receptor, peroxisome proliferator-activated receptor γ, which raised several interesting questions about how these 2 nuclear receptors may collaborate with or counteract each other's function in their related diseases. Clear dissection of such molecular mechanisms and their differential roles in various diseases may help researchers to design new potential drugs with better efficacy and fewer side effects to battle TR4 and peroxisome proliferator-activated receptor γ involved diseases.
Collapse
Affiliation(s)
- Shin-Jen Lin
- George Whipple Laboratory for Cancer Research (S.-J.L., Y.Z., N.-C.L., C.C.), Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14646; Department of Urology (D.-R.Y.), the Second Affiliated Hospital of Suzhou University, Suzhou, 215004 China; Chawnshang Chang Liver Cancer Center and Department of Urology (G.L.), Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 China; and Sex Hormone Research Center (C.C.), China Medical University/Hospital, Taichung, 404 Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Lin SJ, Lee SO, Lee YF, Miyamoto H, Yang DR, Li G, Chang C. TR4 nuclear receptor functions as a tumor suppressor for prostate tumorigenesis via modulation of DNA damage/repair system. Carcinogenesis 2014; 35:1399-406. [PMID: 24583925 DOI: 10.1093/carcin/bgu052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Testicular nuclear receptor 4 (TR4), a member of the nuclear receptor superfamily, plays important roles in metabolism, fertility and aging. The linkage of TR4 functions in cancer progression, however, remains unclear. Using three different mouse models, we found TR4 could prevent or delay prostate cancer (PCa)/prostatic intraepithelial neoplasia development. Knocking down TR4 in human RWPE1 and mouse mPrE normal prostate cells promoted tumorigenesis under carcinogen challenge, suggesting TR4 may play a suppressor role in PCa initiation. Mechanism dissection in both in vitro cell lines and in vivo mice studies found that knocking down TR4 led to increased DNA damage with altered DNA repair system that involved the modulation of ATM expression at the transcriptional level, and addition of ATM partially interrupted the TR4 small interfering RNA-induced tumorigenesis in cell transformation assays. Immunohistochemical staining in human PCa tissue microarrays revealed ATM expression is highly correlated with TR4 expression. Together, these results suggest TR4 may function as a tumor suppressor to prevent or delay prostate tumorigenesis via regulating ATM expression at the transcriptional level.
Collapse
|
8
|
Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet. Biochem Biophys Res Commun 2013; 444:296-301. [PMID: 24380856 DOI: 10.1016/j.bbrc.2013.12.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
Abstract
Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1's role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.
Collapse
|
9
|
Lin SJ, Ho HC, Lee YF, Liu NC, Liu S, Li G, Shyr CR, Chang C. Reduced osteoblast activity in the mice lacking TR4 nuclear receptor leads to osteoporosis. Reprod Biol Endocrinol 2012; 10:43. [PMID: 22676849 PMCID: PMC3447707 DOI: 10.1186/1477-7827-10-43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/29/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Early studies suggested that TR4 nuclear receptor might play important roles in the skeletal development, yet its detailed mechanism remains unclear. METHODS We generated TR4 knockout mice and compared skeletal development with their wild type littermates. Primary bone marrow cells were cultured and we assayed bone differentiation by alkaline phosphatase and alizarin red staining. Primary calvaria were cultured and osteoblastic marker genes were detected by quantitative PCR. Luciferase reporter assays, chromatin immunoprecipitation (ChIP) assays, and electrophoretic mobility shift assays (EMSA) were performed to demonstrate TR4 can directly regulate bone differentiation marker osteocalcin. RESULTS We first found mice lacking TR4 might develop osteoporosis. We then found that osteoblast progenitor cells isolated from bone marrow of TR4 knockout mice displayed reduced osteoblast differentiation capacity and calcification. Osteoblast primary cultures from TR4 knockout mice calvaria also showed higher proliferation rates indicating lower osteoblast differentiation ability in mice after loss of TR4. Mechanism dissection found the expression of osteoblast markers genes, such as ALP, type I collagen alpha 1, osteocalcin, PTH, and PTHR was dramatically reduced in osteoblasts from TR4 knockout mice as compared to those from TR4 wild type mice. In vitro cell line studies with luciferase reporter assay, ChIP assay, and EMSA further demonstrated TR4 could bind directly to the promoter region of osteocalcin gene and induce its gene expression at the transcriptional level in a dose dependent manner. CONCLUSIONS Together, these results demonstrate TR4 may function as a novel transcriptional factor to play pathophysiological roles in maintaining normal osteoblast activity during the bone development and remodeling, and disruption of TR4 function may result in multiple skeletal abnormalities.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Bone Remodeling
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cell Differentiation
- Cells, Cultured
- Female
- Male
- Mice
- Mice, Knockout
- Osteoblasts/metabolism
- Osteoblasts/pathology
- Osteocalcin/biosynthesis
- Osteocalcin/genetics
- Osteocalcin/metabolism
- Osteogenesis
- Osteoporosis/metabolism
- Osteoporosis/pathology
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Shin-Jen Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hsin-Chiu Ho
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yi-Fen Lee
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ning-Chun Liu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Su Liu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Chih-Rong Shyr
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan
| |
Collapse
|
10
|
Collins LL, Lee YF, Ting HJ, Lin WJ, Liu NC, Meshul CK, Uno H, Bao BY, Chen YT, Chang C. The roles of testicular nuclear receptor 4 (TR4) in male fertility-priapism and sexual behavior defects in TR4 knockout mice. Reprod Biol Endocrinol 2011; 9:138. [PMID: 21995792 PMCID: PMC3212810 DOI: 10.1186/1477-7827-9-138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/13/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Successful reproductive efforts require the establishment of a situation favorable for reproduction that requires integration of both behavior and internal physiological events. TR4 nuclear receptor is known to be involved in male fertility via controlling spermatogenesis, yet its roles in regulating other biological events related to reproduction have not been completely revealed. METHODS Male TR4 knockout (TR4 -/-) and wild type mice were used for the sexual behavior and penile dysfunction studies. Mice were sacrificed for histological examination and corresponding genes profiles were analyzed by quantitative RT-PCR. Reporter gene assays were performed. RESULTS We describe an unexpected finding of priapism in TR4 -/- mice. As a transcriptional factor, we demonstrated that TR4 transcriptionally modulates a key enzyme regulating penis erection and neuronal nitric oxide synthese NOS (nNOS). Thereby, elimination of TR4 results in nNOS reduction in both mRNA and protein levels, consequently may lead to erectile dysfunction. In addition, male TR4 -/- mice display defects in sexual and social behavior, with increased fear or anxiety, as well as reduced mounting, intromission, and ejaculation. Reduction of ER alpha, ER beta, and oxytocin in the hypothalamus may contribute to defects in sexual behavior and stress response. CONCLUSIONS Together, these results provide in vivo evidence of important TR4 roles in penile physiology, as well as in male sexual behavior. In conjunction with previous finding, TR4 represents a key factor that controls male fertility via regulating behavior and internal physiological events.
Collapse
MESH Headings
- Animals
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Fertility
- Gene Expression Regulation, Enzymologic
- Genes, Reporter
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth/growth & development
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Nitric Oxide Synthase Type I/genetics
- Nitric Oxide Synthase Type I/metabolism
- Nuclear Receptor Subfamily 2, Group C, Member 2/genetics
- Nuclear Receptor Subfamily 2, Group C, Member 2/physiology
- Penis/growth & development
- Penis/metabolism
- Penis/pathology
- Penis/physiopathology
- Priapism/metabolism
- Priapism/pathology
- Priapism/physiopathology
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Recombinant Proteins/metabolism
- Response Elements
- Severity of Illness Index
- Sexual Behavior, Animal
- Transcriptional Activation
Collapse
Affiliation(s)
- Loretta L Collins
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Fen Lee
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Huei-Ju Ting
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wen-Jye Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ning-Chun Liu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Charles K Meshul
- Research Services, V.A. Medical Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hideo Uno
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53708, USA
| | - Bo-Ying Bao
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
- Sex Hormone Research Center and School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yen-Ta Chen
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, Chang Gung University, Kaohsiung 833, Taiwan
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
- Sex Hormone Research Center and School of Pharmacy, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Liu S, Yan SJ, Lee YF, Liu NC, Ting HJ, Li G, Wu Q, Chen LM, Chang C. Testicular nuclear receptor 4 (TR4) regulates UV light-induced responses via Cockayne syndrome B protein-mediated transcription-coupled DNA repair. J Biol Chem 2011; 286:38103-38108. [PMID: 21918225 DOI: 10.1074/jbc.m111.259523] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UV irradiation is one of the major external insults to cells and can cause skin aging and cancer. In response to UV light-induced DNA damage, the nucleotide excision repair (NER) pathways are activated to remove DNA lesions. We report here that testicular nuclear receptor 4 (TR4), a member of the nuclear receptor family, modulates DNA repair specifically through the transcription-coupled (TC) NER pathway but not the global genomic NER pathway. The level of Cockayne syndrome B protein (CSB), a member of the TC-NER pathway, is 10-fold reduced in TR4-deficient mouse tissues, and TR4 directly regulates CSB at the transcriptional level. Moreover, restored CSB expression rescues UV hypersensitivity of TR4-deficient cells. Together, these results indicate that TR4 modulates UV sensitivity by promoting the TC-NER DNA repair pathway through transcriptional regulation of CSB. These results may lead to the development of new treatments for UV light-sensitive syndromes, skin cancer, and aging.
Collapse
Affiliation(s)
- Su Liu
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Shian-Jang Yan
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Yi-Fen Lee
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Ning-Chun Liu
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Huei-Ju Ting
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Qiao Wu
- Key Lab of the Ministry of Education for Cell Biology and Tumor Cell Engineering, Xiamen University, Xiamen 361005, China
| | - Lu-Min Chen
- Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642; Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan.
| |
Collapse
|
12
|
Xie S, Ni J, Lee YF, Liu S, Li G, Shyr CR, Chang C. Increased acetylation in the DNA-binding domain of TR4 nuclear receptor by the coregulator ARA55 leads to suppression of TR4 transactivation. J Biol Chem 2011; 286:21129-36. [PMID: 21515881 DOI: 10.1074/jbc.m110.208181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The nuclear receptor TR4 is a key regulator for many physiological processes, including growth, development, and metabolism. However, how the transcriptional activity of TR4 is regulated in the absence of ligand(s) remains largely unknown. Here we found that an androgen receptor (AR) coactivator, ARA55, might function as a corepressor to suppress TR4 transactivation. Molecular mechanistic dissection with mutation analysis found that ARA55 could enhance TR4 acetylation at the conserved acetylation sites of lysine 175 and lysine 176 in the DNA-binding domain via recruiting proteins with histone acetyl transferase activity, which might then reduce significantly the TR4 DNA binding activity that resulted in the suppression of TR4 transactivation. These results are in contrast to the classic ARA55 coactivator function to enhance AR transactivation partially via increased AR acetylation in the hinge/ligand-binding domain. Together, these results not only provide a novel functional mechanism showing that acetylation of different nuclear receptors at different domains by coregulator may lead to differential receptor transactivation activity but also provide a new way for small molecules to control TR4 transactivation via altering TR4 acetylation levels, and such small molecules may have potential therapeutic applications in the future.
Collapse
Affiliation(s)
- Shaozhen Xie
- George Whipple Lab for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Kang HS, Okamoto K, Kim YS, Takeda Y, Bortner CD, Dang H, Wada T, Xie W, Yang XP, Liao G, Jetten AM. Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance. Diabetes 2011; 60:177-88. [PMID: 20864514 PMCID: PMC3012170 DOI: 10.2337/db10-0628] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/14/2010] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The nuclear receptor TAK1/TR4/NR2C2 is expressed in several tissues that are important in the control of energy homeostasis. In this study, we investigate whether TAK1 functions as a regulator of lipid and energy homeostasis and has a role in metabolic syndrome. RESEARCH DESIGN AND METHODS We generated TAK1-deficient (TAK1⁻(/)⁻) mice to study the function of TAK1 in the development of metabolic syndrome in aged mice and mice fed a high-fat diet (HFD). (Immuno)histochemical, biochemical, and gene expression profile analyses were performed to determine the effect of the loss of TAK1 expression on lipid homeostasis in liver and adipose tissues. In addition, insulin sensitivity, energy expenditure, and adipose-associated inflammation were compared in wild-type (WT) and TAK1⁻(/)⁻ mice fed a HFD. RESULTS TAK1-deficient (TAK1⁻(/)⁻) mice are resistant to the development of age- and HFD-induced metabolic syndrome. Histo- and biochemical analyses showed significantly lower hepatic triglyceride levels and reduced lipid accumulation in adipose tissue in TAK1⁻(/)⁻ mice compared with WT mice. Gene expression profiling analysis revealed that the expression of several genes encoding proteins involved in lipid uptake and triglyceride synthesis and storage, including Cidea, Cidec, Mogat1, and CD36, was greatly decreased in the liver and primary hepatocytes of TAK1⁻(/)⁻ mice. Restoration of TAK1 expression in TAK1⁻(/)⁻ hepatocytes induced expression of several lipogenic genes. Moreover, TAK1⁻(/)⁻ mice exhibited reduced infiltration of inflammatory cells and expression of inflammatory genes in white adipose tissue, and were resistant to the development of glucose intolerance and insulin resistance. TAK1⁻(/)⁻ mice consume more oxygen and produce more carbon dioxide than WT mice, suggesting increased energy expenditure. CONCLUSIONS Our data reveal that TAK1 plays a critical role in the regulation of energy and lipid homeostasis, and promotes the development of metabolic syndrome. TAK1 may provide a new therapeutic target in the management of obesity, diabetes, and liver steatosis.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Kyoko Okamoto
- Cell Biology Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yong-Sik Kim
- Cell Biology Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yukimasa Takeda
- Cell Biology Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Carl D. Bortner
- Laboratory of Signal Transduction, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Huaixin Dang
- Cell Biology Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Taira Wada
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiao-Ping Yang
- Cell Biology Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Grace Liao
- Cell Biology Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Anton M. Jetten
- Cell Biology Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
14
|
Kim YS, Harry GJ, Kang HS, Goulding D, Wine RN, Kissling GE, Liao G, Jetten AM. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia. CEREBELLUM (LONDON, ENGLAND) 2010; 9:310-23. [PMID: 20393820 PMCID: PMC2928415 DOI: 10.1007/s12311-010-0163-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.
Collapse
Affiliation(s)
- Yong-Sik Kim
- Laboratory of Respiratory Biology, Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - G. Jean Harry
- Laboratory of Molecular Toxicology, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Hong Soon Kang
- Laboratory of Respiratory Biology, Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - David Goulding
- Comparative Medicine Branch, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Rob N. Wine
- Laboratory of Molecular Toxicology, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Grace E. Kissling
- Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Grace Liao
- Laboratory of Respiratory Biology, Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Anton M. Jetten
- Laboratory of Respiratory Biology, Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
15
|
TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proc Natl Acad Sci U S A 2009; 106:13353-8. [PMID: 19666541 DOI: 10.1073/pnas.0905724106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular orphan nuclear receptor 4 (TR4) is an orphan member of the nuclear receptor superfamily with diverse physiological functions. Using TR4 knockout (TR4(-/-)) mice to study its function in cardiovascular diseases, we found reduced cluster of differentiation (CD)36 expression with reduced foam cell formation in TR4(-/-) mice. Mechanistic dissection suggests that TR4 induces CD36 protein and mRNA expression via a transcriptional regulation. Interestingly, we found this TR4-mediated CD36 transactivation can be further enhanced by polyunsaturated fatty acids (PUFAs), such as omega-3 and -6 fatty acids, and their metabolites such as 15-hydroxyeico-satetraonic acid (15-HETE) and 13-hydroxy octa-deca dieonic acid (13-HODE) and thiazolidinedione (TZD)-rosiglitazone. Both electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrate that TR4 binds to the TR4 response element located on the CD36 5'-promoter region for the induction of CD36 expression. Stably transfected TR4-siRNA or functional TR4 cDNA in the RAW264.7 macrophage cells resulted in either decreased or increased CD36 expression with decreased or increased foam cell formation. Restoring functional CD36 cDNA in the TR4 knockdown macrophage cells reversed the decreased foam cell formation. Together, these results reveal an important signaling pathway controlling CD36-mediated foam cell formation/cardiovascular diseases, and findings that TR4 transactivation can be activated via its ligands/activators, such as PUFA metabolites and TZD, may provide a platform to screen new drug(s) to battle the metabolism syndrome, diabetes, and cardiovascular diseases.
Collapse
|
16
|
Kim E, Ma WL, Lin DL, Inui S, Chen YL, Chang C. TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression. Biochem Biophys Res Commun 2007; 361:323-8. [PMID: 17655826 PMCID: PMC2121606 DOI: 10.1016/j.bbrc.2007.06.168] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/29/2007] [Indexed: 01/08/2023]
Abstract
While Bcl-2 plays an important role in cell apoptosis, its relationship to the orphan nuclear receptors remains unclear. Here we report that mouse embryonic fibroblast (MEF) cells prepared from TR4-deficient (TR4(-/-)) mice are more susceptible to UV-irradiation mediated apoptosis compared to TR4-Wildtype (TR4(+/+)) littermates. Substantial increasing TR4(-/-) MEF apoptosis to UV-irradiation was correlated to the down-regulation of Bcl-2 RNA and protein expression and collaterally increased caspase-3 activity. Furthermore, this TR4-induced Bcl-2 gene expression can be suppressed by co-transfection with TR4 coregulators, such as androgen receptor (AR) and receptor-interacting protein 140 (RIP140) in a dose-dependent manner. Together, our results demonstrate that TR4 might function as an apoptosis modulator through induction of Bcl-2 gene expression.
Collapse
Affiliation(s)
- Eungseok Kim
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
- Department of Biological Sciences, Chonnam National University, Gwangju, KOREA
| | - Wen-Lung Ma
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Din-Lii Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Shigeki Inui
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Yuh-Ling Chen
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
- Institute of Oral Medicine, National Cheng Kung University, Tainen, Taiwan
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|