1
|
Zhao S, Wu S, Ji S, Han Y, Yang Z, Gao Y. Melatonin modulated GPX5 and PTGDS expression in Bactrian camel epididymis mainly via receptor MT1†. Biol Reprod 2025; 112:895-905. [PMID: 39951496 DOI: 10.1093/biolre/ioaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/26/2024] [Accepted: 02/14/2025] [Indexed: 02/16/2025] Open
Abstract
Melatonin (Mel), an important mediator of photoperiodic annual rhythm regulation and seasonal reproduction in animals, directly modulates the expression of specific genes in the epididymis and protects sperm from oxidative damage. Bactrian camel is a dominant species in desert and semi-desert areas, exhibiting the unique reproductive regulation patterns. However, the underlying regulation mechanism of Mel on Bactrian camel is still unclear. This study isolated the epididymal caput epithelial cells of Bactrian camels and investigated the expression of specific genes involving sperm protection after Mel treatment and overexpression/knockdown of Mel receptor MT1/MT2 using real-time quantitative PCR assay (qPCR), ELISA, and western blotting assay. The results showed that MT1, MT2, clock genes cryptochrome 1/2 (Cry1/Cry2) were all positively expressed in the epididymal lumen epithelial cells, peritubular myoid cells, and luminal spermatozoa. Intriguingly, Mel treatment activated receptor MT1 in epididymal caput epithelial cells, indicating that Mel treatment regulated genes expression mainly via MT1-dependent manner. Mel treatment or overexpression of MT1 both increased secretion of glutathione peroxidase 5 (GPX5) and prostaglandin D2 synthase (PTGDS), and MT1 silencing induced downregulation of GPX5 and PTGDS expression, indicating that the expression of GPX5 and PTGDS were regulated by Mel-MT1. Overexpression of MT1 or MT2 promoted Cry2 expression, and overexpression of Cry2 also activated the MT1/MT2 expression by feedback regulation. Finally, the double luciferase reports assay showed that the activation of MT1 by Cry2 occurred during transcription. These results help to understand the regulatory effect of Mel on the epididymis in Bactrian camels.
Collapse
Affiliation(s)
- Shuqin Zhao
- Laboratory and Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Shipeng Wu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuai Ji
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxuan Han
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Hazlerigg DG, Simonneaux V, Dardente H. Melatonin and Seasonal Synchrony in Mammals. J Pineal Res 2024; 76:e12996. [PMID: 39129720 DOI: 10.1111/jpi.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.
Collapse
Affiliation(s)
- David G Hazlerigg
- Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, Arctic Seasonal Timekeeping Initiative (ASTI), UiT-The Arctic University of Norway, Tromsø, Norway
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
3
|
Kulsoom K, Ali W, Saba Z, Hussain S, Zahra S, Irshad M, Ramzan MS. Revealing Melatonin's Mysteries: Receptors, Signaling Pathways, and Therapeutics Applications. Horm Metab Res 2024; 56:405-418. [PMID: 38081221 DOI: 10.1055/a-2226-3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Melatonin (5-methoxy-acetyl tryptamine) is a sleep-inducing hormone, and the pineal gland produces it in response to the circadian clock of darkness. In the body, MT1 and MT2 receptors are mostly found, having an orthosteric pocket and ligand binding determinants. Melatonin acts by binding on melatonin receptors, intracellular proteins, and orphan nuclear receptors. It inhibits adenyl cyclase and activates phospholipase C, resulting in gene expression and an intracellular alteration environment. Melatonin signaling pathways are also associated with other intracellular signaling pathways, i. e., cAMP/PKA and MAPK/ERK pathways. Relative expression of different proteins depends on the coupling profile of G protein, accounting pharmacology of the melatonin receptor bias system, and mediates action in a Gi-dependent manner. It shows antioxidant, antitumor, antiproliferative, and neuroprotective activity. Different types of melatonin agonists have been synthesized for the treatment of sleeping disorders. Researchers have developed therapeutics that target melatonin signaling, which could benefit a wide range of medical conditions. This review focuses on melatonin receptors, pharmacology, and signaling cascades; it aims to provide basic mechanical aspects of the receptor's pharmacology, melatonin's functions in cancer and neurodegenerative diseases, and any treatments and drugs designed for these diseases. This will allow a basic comparison between the receptors in question, highlighting any parallels and differences that may exist and providing fundamental knowledge about these receptors to future researchers.
Collapse
Affiliation(s)
- Kulsoom Kulsoom
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Wajahat Ali
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xian, China
| | - Zainab Saba
- Department of Optometry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Shabab Hussain
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Universita degli studi di Messina, Messina, Italy
| | - Samra Zahra
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Maria Irshad
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Muhammad Saeed Ramzan
- Department of Pharmacology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
4
|
Furtado A, Costa D, Lemos MC, Cavaco JE, Santos CRA, Quintela T. The impact of biological clock and sex hormones on the risk of disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:39-81. [PMID: 37709381 DOI: 10.1016/bs.apcsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Diana Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - J Eduardo Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal; UDI-IPG, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
5
|
Zhao SQ, Gao Y, Zhang Y, Yang XP, Yang Z. cAMP/PKA/CREB signaling pathway-mediated effects of melatonin receptor genes on clock gene expression in Bactrian camel ovarian granulosa cells. Domest Anim Endocrinol 2021; 76:106609. [PMID: 33636446 DOI: 10.1016/j.domaniend.2021.106609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/12/2023]
Abstract
The cAMP/PKA/CREB pathway is involved in the regulation of melatonin during important physiological activities in mammals. However, the regulation of circadian clock genes in ovarian granulosa cells remains unclear. Herein, we determined the relationship between melatonin and biological clock genes using cultured Bactrian camel ovarian granulosa cells. The enzyme-linked immunosorbent assays showed that the cAMP content was reduced when melatonin receptor (MT) genes or cryptochrome (Cry) genes were overexpressed; the quantitative polymerase chain reaction and western blot analyses revealed that the expression levels of all circadian clock genes (GNB2, PKA, CREB, Per1/2/3, and Clock) except Cry1/2 decreased significantly at 24 h. Cellular immunolocalization analysis showed that melatonin receptors were localized in the cell membrane and cytoplasm; the CRY protein was mainly localized in the nucleus. Overall, our findings indicated that the rhythmic regulation of ovarian granulosa cells was consistent with the regulatory action of the central circadian clock.
Collapse
Affiliation(s)
- S-Q Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Gao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China.
| | - X-P Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Z Yang
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Lakhssassi K, Lahoz B, Sarto P, Iguácel LP, Folch J, Alabart JL, Serrano M, Calvo JH. Genome-Wide Association Study Demonstrates the Role Played by the CD226 Gene in Rasa Aragonesa Sheep Reproductive Seasonality. Animals (Basel) 2021; 11:ani11041171. [PMID: 33921837 PMCID: PMC8074133 DOI: 10.3390/ani11041171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary To elucidate the genetic basis of reproductive seasonality in Rasa Aragonesa sheep breed, we performed a genome-wide association study (GWAS) in order to detect single nucleotide polymorphisms (SNPs) or regions associated with traits related to ovarian function and behavioural signs of estrous. The GWAS included 205 ewes with genotypes for 583882 SNPs. Only one SNP overcame the genome-wide significance level. Nine potential SNPs overcame the chromosome-wise significance level (FDR 10%). Gene annotation demonstrated that CD226molecule (CD226) and neuropeptide Y (NPY) genes that could be involved in reproductive seasonality were close to the significant SNPs. To validate the results, we sequenced the entire coding region of the NPY gene and four exons of the CD226 gene to search for polymorphisms that could be involved in the phenotypes studied. Two synonymous and two nonsynonymous SNPs in the NPY and CD226 genes, respectively, were genotyped in the whole population. We demonstrated that the AA genotype of the SNP rs404360094 located in exon 3 of the CD226 gene was associated with higher and lower total days of anoestrus and oestrous cycling months, respectively. Therefore, this SNP could be utilized as a genetic marker for assisted selection marker to reduce seasonality. Abstract A genome-wide association study (GWAS) was used to identify genomic regions influencing seasonality reproduction traits in Rasa Aragonesa sheep. Three traits associated with either ovarian function based on blood progesterone levels (total days of anoestrus and progesterone cycling months) or behavioral signs of oestrous (oestrous cycling months) were studied. The GWAS included 205 ewes genotyped using the 50k and 680k Illumina Ovine Beadchips. Only one SNP associated with the progesterone cycling months overcame the genome-wide significance level (rs404991855). Nine SNPs exhibited significant associations at the chromosome level, being the SNPs rs404991855 and rs418191944, that are located in the CD226 molecule (CD226) gene, associated with the three traits. This gene is related to reproductive diseases. Two other SNPs were located close to the neuropeptide Y (NPY) gene, which is involved in circadian rhythms. To validate the GWAS, partial characterization of both genes by Sanger sequencing, and genotyping of two synonymous and two nonsynonymous SNPs in the NPY and CD226 genes, respectively, were performed. SNP association analysis showed that only SNP rs404360094 in the exon 3 of the CD226 gene, which produces an amino acid substitution from asparagine (uncharged polar) to aspartic acid (acidic), was associated with the three seasonality traits. Our results suggest that the CD226 gene may be involved in the reproductive seasonality in Rasa Aragonesa.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
- INRA, Instituts Morocco, 6356 Rabat, Morocco
| | - Belén Lahoz
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Pilar Sarto
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Laura Pilar Iguácel
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - José Folch
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - José Luis Alabart
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Malena Serrano
- Departamento de Mejora Genética Animal INIA, 28040 Madrid, Spain;
| | - Jorge Hugo Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
- The Aragonese Foundation for Research and Development (ARAID), 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34976716471
| |
Collapse
|
7
|
Mirczuk SM, Scudder CJ, Read JE, Crossley VJ, Regan JT, Richardson KM, Simbi B, McArdle CA, Church DB, Fenn J, Kenny PJ, Volk HA, Wheeler-Jones CP, Korbonits M, Niessen SJ, McGonnell IM, Fowkes RC. Natriuretic Peptide Expression and Function in GH3 Somatolactotropes and Feline Somatotrope Pituitary Tumours. Int J Mol Sci 2021; 22:ijms22031076. [PMID: 33499110 PMCID: PMC7865297 DOI: 10.3390/ijms22031076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes.
Collapse
Affiliation(s)
- Samantha M. Mirczuk
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Christopher J. Scudder
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Jordan E. Read
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Victoria J. Crossley
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Jacob T. Regan
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
| | - Karen M. Richardson
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
| | - Bigboy Simbi
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Craig A. McArdle
- Department of Translational Science, Bristol Medical School, University of Bristol, Whitson Street, Bristol BS1 3NY, UK;
| | - David B. Church
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Joseph Fenn
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Patrick J. Kenny
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
- Small Animal Specialist Hospital, 1 Richardson Place, North Ryde, 2113 NSW, Australia
| | - Holger A. Volk
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover, Germany
| | - Caroline P. Wheeler-Jones
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Stijn J. Niessen
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Imelda M. McGonnell
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Robert C. Fowkes
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
- Correspondence: ; Tel.: +11-44-207-468-1215
| |
Collapse
|
8
|
Shu-Qin Z, Yong Z, Yuan G, Xiao-Pu Y, Zhen Y, Zhi-Jie Y. The in vitro effects of melatonin and Cry gene on the secretion of estradiol from camel ovarian granulosa cells. Domest Anim Endocrinol 2021; 74:106497. [PMID: 32799039 DOI: 10.1016/j.domaniend.2020.106497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/30/2020] [Accepted: 05/10/2020] [Indexed: 10/23/2022]
Abstract
Bactrian camel as endemic economic species to the Northwest of China, its seasonal reproduction severely limits litter rates. In addition to melatonin, seasonal reproduction of animals is also regulated by the biological clock, but the specific molecular mechanism is not clear. To investigate the effects of melatonin and Cryptochrome (Cry) genes on seasonal reproduction, they were placed in ovarian granulosa cells, and their effects on reproduction were determined by measuring the concentrations of estradiol. Immunohistochemistry revealed that melatonin receptor protein (MT) was expressed in the cytosol and membrane of the ovarian granulosa cells, and the highest levels of CRY were expressed in the nuclei. The concentrations of estradiol in the cell culture supernatant were increased after the addition of exogenous melatonin or overexpression of MT, but these were decreased after MT was over expressed, and exogenous melatonin was added to the cells. In addition, there was a significant increase in the concentrations of estradiol after the Cry genes were overexpressed; however, the estradiol concentrations were decreased after the Cry genes were silenced. Our findings demonstrate that the MT and Cry genes play important roles in ovarian granulosa cell production of estradiol in a seasonally breeding species.
Collapse
Affiliation(s)
- Zhao Shu-Qin
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhang Yong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Gao Yuan
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Xiao-Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Zhen
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Zhi-Jie
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Wood SH, Hindle MM, Mizoro Y, Cheng Y, Saer BRC, Miedzinska K, Christian HC, Begley N, McNeilly J, McNeilly AS, Meddle SL, Burt DW, Loudon ASI. Circadian clock mechanism driving mammalian photoperiodism. Nat Commun 2020; 11:4291. [PMID: 32855407 PMCID: PMC7453030 DOI: 10.1038/s41467-020-18061-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
The annual photoperiod cycle provides the critical environmental cue synchronizing rhythms of life in seasonal habitats. In 1936, Bünning proposed a circadian-based coincidence timer for photoperiodic synchronization in plants. Formal studies support the universality of this so-called coincidence timer, but we lack understanding of the mechanisms involved. Here we show in mammals that long photoperiods induce the circadian transcription factor BMAL2, in the pars tuberalis of the pituitary, and triggers summer biology through the eyes absent/thyrotrophin (EYA3/TSH) pathway. Conversely, long-duration melatonin signals on short photoperiods induce circadian repressors including DEC1, suppressing BMAL2 and the EYA3/TSH pathway, triggering winter biology. These actions are associated with progressive genome-wide changes in chromatin state, elaborating the effect of the circadian coincidence timer. Hence, circadian clock-pituitary epigenetic pathway interactions form the basis of the mammalian coincidence timer mechanism. Our results constitute a blueprint for circadian-based seasonal timekeeping in vertebrates.
Collapse
Affiliation(s)
- S H Wood
- Centre for Biological Timing, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
- Arctic Chronobiology and Physiology Research Group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, 9037, Norway
| | - M M Hindle
- The Roslin Institute, and Royal (Dick) School of Veterinary Studies University of Edinburgh, Roslin, Midlothian, EH25 9PRG, UK
| | - Y Mizoro
- Centre for Biological Timing, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Y Cheng
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - B R C Saer
- Centre for Biological Timing, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - K Miedzinska
- The Roslin Institute, and Royal (Dick) School of Veterinary Studies University of Edinburgh, Roslin, Midlothian, EH25 9PRG, UK
| | - H C Christian
- University of Oxford, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| | - N Begley
- Centre for Biological Timing, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - J McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - A S McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - S L Meddle
- The Roslin Institute, and Royal (Dick) School of Veterinary Studies University of Edinburgh, Roslin, Midlothian, EH25 9PRG, UK
| | - D W Burt
- The Roslin Institute, and Royal (Dick) School of Veterinary Studies University of Edinburgh, Roslin, Midlothian, EH25 9PRG, UK
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - A S I Loudon
- Centre for Biological Timing, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
10
|
Chapman EC, Bonsor BJ, Parsons DR, Rotchell JM. Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104960. [PMID: 32250881 DOI: 10.1016/j.marenvres.2020.104960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Clock genes and environmental cues regulate essential biological rhythms. The blue mussel, Mytilus edulis, is an ecologically and economically important intertidal bivalve undergoing seasonal reproductive rhythms. We previously identified seasonal expression differences in M. edulis clock genes. Herein, the effects of light/dark cycles, constant darkness, and daily temperature cycles on the circadian expression patterns of such genes are characterised. Clock genes Clk, Cry1, ROR/HR3, Per and Rev-erb/NR1D1, and Timeout-like, show significant mRNA expression variation, persisting in darkness indicating endogenous control. Rhythmic expression was apparent under diurnal temperature cycles in darkness for all except Rev-erb. Temperature cycles induced a significant expression difference in the non-circadian clock-associated gene aaNAT. Furthermore, Suppression Subtractive Hybridisation (SSH) was used to identify seasonal genes with potential links to molecular clock function and revealed numerous genes meriting further investigation. Understanding the relationship between environmental cues and molecular clocks is crucial in predicting the outcomes of environmental change on fundamental rhythmic processes.
Collapse
Affiliation(s)
- Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Brodie J Bonsor
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Daniel R Parsons
- Department of Geography, Geology and Environment, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
11
|
Pool KR, Rickard JP, de Graaf SP. Overcoming neuroendocrine and metabolic barriers to puberty: the role of melatonin in advancing puberty in ewe lambs. Domest Anim Endocrinol 2020; 72:106457. [PMID: 32361422 DOI: 10.1016/j.domaniend.2020.106457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023]
Abstract
Pubertal onset in the ewe is subject to a multitude of physiological and environmental constraints. As seasonal breeders, sheep rely on decreasing photoperiod to enter puberty and the subsequent breeding periods, hindering production. The initiation of puberty defines the reproductive yield of the ewe, and as such is a critical factor influencing production outcomes. Currently, the misconception that ovine puberty is reliant on age results in ewes being bred at over a year old, leading to a substantial unproductive period between birth and first conception. As such, transcending pubertal barriers to allow for earlier initiation of reproductive competency has significant commercial merit. The primary candidate to achieve this is the neurohormone melatonin, a key factor that naturally signals photoperiodic change that facilitates seasonal remodeling of the ovine hypothalamic-hypophyseal-gonadal axis. Despite being known to modulate reproductive seasonality in both the mature ewe and ram, the ability of melatonin to advance ewe puberty remains underutilized in industry. To optimize melatonin application and shape perceptions of breeding ewe lambs, a greater understanding of pubertal impediments and the natural role of melatonin is warranted. This review examines the physiological role and applications of melatonin to advance ewe puberty, and how this may act in conjunction with other physiological and metabolic cues.
Collapse
Affiliation(s)
- K R Pool
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia.
| | - J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Flôres DEFL, Oda GA. Quantitative Study of Dual Circadian Oscillator Models under Different Skeleton Photoperiods. J Biol Rhythms 2020; 35:302-316. [DOI: 10.1177/0748730420901939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The daily proportion of light and dark hours (photoperiod) changes annually and plays an important role in the synchronization of seasonal biological phenomena, such as reproduction, hibernation, and migration. In mammals, the first step of photoperiod transduction occurs in the suprachiasmatic nuclei (SCN), the circadian pacemaker that also coordinates 24-h activity rhythms. Thus, in parallel with its role in annual synchronization, photoperiod variation acutely shapes day/night activity patterns, which vary throughout the year. Systematic studies of this behavioral modulation help understand the mechanisms behind its transduction at the SCN level. To explain how entrainment mechanisms could account for daily activity patterns under different photoperiods, Colin Pittendrigh and Serge Daan proposed a conceptual model in which the pacemaker would be composed of 2 coupled, evening (E) and morning (M), oscillators. Although the E-M model has existed for more than 40 years now, its physiological bases are still not fully resolved, and it has not been tested quantitatively under different photoperiods. To better explore the implications of the E-M model, we performed computer simulations of 2 coupled limit-cycle oscillators. Four model configurations were exposed to systematic variation of skeleton photoperiods, and the resulting daily activity patterns were assessed. The criterion for evaluating different model configurations was the successful reproduction of 2 key behavioral phenomena observed experimentally: activity psi-jumps and photoperiod-induced changes in activity phase duration. We compared configurations with either separate light inputs to E and M or the same light inputs to both oscillators. The former replicated experimental results closely, indicating that the configuration with separate E and M light inputs is the mechanism that best reproduces the effects of different skeleton photoperiods on day/night activity patterns. We hope this model can contribute to the search for E and M and their light input organization in the SCN.
Collapse
Affiliation(s)
| | - Gisele A. Oda
- Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
Brigidi GS, Hayes MGB, Delos Santos NP, Hartzell AL, Texari L, Lin PA, Bartlett A, Ecker JR, Benner C, Heinz S, Bloodgood BL. Genomic Decoding of Neuronal Depolarization by Stimulus-Specific NPAS4 Heterodimers. Cell 2019; 179:373-391.e27. [PMID: 31585079 PMCID: PMC6800120 DOI: 10.1016/j.cell.2019.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Cells regulate gene expression in response to salient external stimuli. In neurons, depolarization leads to the expression of inducible transcription factors (ITFs) that direct subsequent gene regulation. Depolarization encodes both a neuron's action potential (AP) output and synaptic inputs, via excitatory postsynaptic potentials (EPSPs). However, it is unclear if distinct types of electrical activity can be transformed by an ITF into distinct modes of genomic regulation. Here, we show that APs and EPSPs in mouse hippocampal neurons trigger two spatially segregated and molecularly distinct induction mechanisms that lead to the expression of the ITF NPAS4. These two pathways culminate in the formation of stimulus-specific NPAS4 heterodimers that exhibit distinct DNA binding patterns. Thus, NPAS4 differentially communicates increases in a neuron's spiking output and synaptic inputs to the nucleus, enabling gene regulation to be tailored to the type of depolarizing activity along the somato-dendritic axis of a neuron.
Collapse
Affiliation(s)
- G Stefano Brigidi
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Michael G B Hayes
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Nathaniel P Delos Santos
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA; Department of Biomedical Informatics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Andrea L Hartzell
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA; Neuroscience Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Lorane Texari
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Pei-Ann Lin
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA; Neuroscience Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, La Jolla, CA 92093, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Brenda L Bloodgood
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
14
|
Dardente H, Wood S, Ebling F, Sáenz de Miera C. An integrative view of mammalian seasonal neuroendocrinology. J Neuroendocrinol 2019; 31:e12729. [PMID: 31059174 DOI: 10.1111/jne.12729] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022]
Abstract
Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid-stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF-amide neuropeptides kisspeptin and RFRP3 (RF-amide related peptide 3), are plausible relays between TH and the gonadotrophin-releasing hormone-pituitary-gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Shona Wood
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Francis Ebling
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
15
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 2018; 175:3263-3280. [PMID: 28707298 PMCID: PMC6057902 DOI: 10.1111/bph.13950] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, an evolutionally old molecule, is produced by the pineal gland in vertebrates, and it binds with high affinity to melatonin receptors, which are members of the GPCR family. Among the multiple effects attributed to melatonin, we will focus here on those that are dependent on the activation of the two mammalian MT1 and MT2 melatonin receptors. We briefly summarize the latest developments on synthetic melatonin receptor ligands, including multi-target-directed ligands, and the characterization of signalling-biased ligands. We discuss signalling pathways activated by melatonin receptors that appear to be highly cell- and tissue-dependent, emphasizing the impact of system bias on the functional outcome. Different proteins have been demonstrated to interact with melatonin receptors, and thus, we postulate that part of this system bias has its molecular basis in differences of the expression of receptor-associated proteins including heterodimerization partners. Finally, bias at the level of the receptor, by the expression of genetic receptor variants, will be discussed to show how a modified receptor function can have an effect on the risk for common diseases like type 2 diabetes in humans. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Erika Cecon
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Atsuro Oishi
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ralf Jockers
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
17
|
Celichowski P, Jopek K, Milecka P, Szyszka M, Tyczewska M, Malendowicz LK, Ruciński M. Nicotinamide phosphoribosyltransferase and the hypothalamic-pituitary-adrenal axis of the rat. Mol Med Rep 2018; 17:6163-6173. [PMID: 29436637 DOI: 10.3892/mmr.2018.8569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/13/2017] [Indexed: 11/06/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (Nampt), also termed visfatin, catalyses the rate‑limiting step in the nicotinamide adenine dinucleotide (NAD) salvage pathway. In addition to its intracellular function (iNampt), extracellular Nampt (eNampt) also affects numerous intracellular signalling pathways. The current study investigated the role of Nampt in the regulation of the hypothalamic‑pituitary‑adrenal (HPA) axis in rats. At 1 h after intraperitoneal administration of eNampt (4 µg/100 g) in adult male rats, serum adrenocorticotropic hormone(ACTH) and aldosterone levels remained unchanged, while corticosterone levels were notably elevated compared with the control group, as determined by ELISA. The results of reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) demonstrated that, in the hypothalami of eNampt‑treated rats, the mRNA expression levels of Fos proto‑oncogene, which is also termed c‑Fos, were not significantly different compared with the control group; however, the mRNA expression levels of proopiomelanocortin (POMC) were markedly increased in the pituitary gland of eNampt‑treated rats compared with the control group. Furthermore, in hypothalamic explants, ELISA results demonstrated that the addition of the eNampt protein exhibited no effect on corticotropin‑releasing hormone (CRH) release into the incubation medium and prevented potassium ion‑induced CRH release. Additionally, the eNampt‑induced increase in ACTH output by pituitary gland explants was not statistically significant, compared with the control group. However, RT‑qPCR indicated that exposure of pituitary gland explants to eNampt and CRH increased the levels of POMC mRNA expression; the effect of eNampt, but not CRH, was inhibited by FK866, which is a specific Nampt inhibitor. In primary rat adrenocortical cell cultures, eNampt exhibited no effect on basal aldosterone or corticosterone secretion, while increases in aldosterone and corticosterone levels in response to ACTH were retained. To assess the potential role of iNampt in the regulation of adrenal steroidogenesis, experiments involving a specific Nampt inhibitor, FK866, were performed. Exposure of cultured cells to FK866 notably lowered basal aldosterone and corticosterone output compared with the control group, and completely eliminated the response of cultured cells to ACTH. The results of the present study indicated that the injected eNampt may have increased the corticosterone serum levels by acting at the pituitary level. In addition, iNampt may exert a tonic stimulating effect on the secretion of aldosterone and corticosterone from rat adrenocortical cells, as normal iNampt levels were required to retain the response of cultured rat adrenocortical cells to ACTH. Thus, these data suggest an important physiological role of both iNampt and eNampt in the regulation of the HPA axis activity in the rat.
Collapse
Affiliation(s)
- Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Paulina Milecka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Ludwik K Malendowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| |
Collapse
|
18
|
Chapman EC, O’Dell AR, Meligi NM, Parsons DR, Rotchell JM. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol Int 2017; 34:1300-1314. [DOI: 10.1080/07420528.2017.1363224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emma C. Chapman
- School of Environmental Sciences, University of Hull, Hull, UK
| | | | - Noha M. Meligi
- Zoology Department, Faculty of Science, Minia University, Minia, Egypt
| | | | | |
Collapse
|
19
|
Martinez-Royo A, Alabart JL, Sarto P, Serrano M, Lahoz B, Folch J, Calvo JH. Genome-wide association studies for reproductive seasonality traits in Rasa Aragonesa sheep breed. Theriogenology 2017; 99:21-29. [DOI: 10.1016/j.theriogenology.2017.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/27/2017] [Accepted: 05/13/2017] [Indexed: 01/06/2023]
|
20
|
Zubidat AE, Haim A. Artificial light-at-night - a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J Basic Clin Physiol Pharmacol 2017; 28:295-313. [PMID: 28682785 DOI: 10.1515/jbcpp-2016-0116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Both obesity and breast cancer are already recognized worldwide as the most common syndromes in our modern society. Currently, there is accumulating evidence from epidemiological and experimental studies suggesting that these syndromes are closely associated with circadian disruption. It has been suggested that melatonin (MLT) and the circadian clock genes both play an important role in the development of these syndromes. However, we still poorly understand the molecular mechanism underlying the association between circadian disruption and the modern health syndromes. One promising candidate is epigenetic modifications of various genes, including clock genes, circadian-related genes, oncogenes, and metabolic genes. DNA methylation is the most prominent epigenetic signaling tool for gene expression regulation induced by environmental exposures, such as artificial light-at-night (ALAN). In this review, we first provide an overview on the molecular feedback loops that generate the circadian regulation and how circadian disruption by ALAN can impose adverse impacts on public health, particularly metabolic disorders and breast cancer development. We then focus on the relation between ALAN-induced circadian disruption and both global DNA methylation and specific loci methylation in relation to obesity and breast cancer morbidities. DNA hypo-methylation and DNA hyper-methylation, are suggested as the most studied epigenetic tools for the activation and silencing of genes that regulate metabolic and monostatic responses. Finally, we discuss the potential clinical and therapeutic roles of MLT suppression and DNA methylation patterns as novel biomarkers for the early detection of metabolic disorders and breast cancer development.
Collapse
|
21
|
Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP, Li HB. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017; 9:E367. [PMID: 28387721 PMCID: PMC5409706 DOI: 10.3390/nu9040367] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Abstract
The testis provides not just one but several models of temporal organization. The complexity of its rhythmic function arises in part from its compartmentalization and diversity of cell types: not only does the testis produce gametes, but it also serves as the major source of circulating androgens. Within the seminiferous tubules, the germ cells divide and differentiate while in intimate contact with Sertoli cells. The tubule is highly periodic: a spermatogenic wave travels along its length to determine the timing of the commitment of spermatogonia to differentiate, the phases of meiotic division, and the rate of differentiation of the postmeiotic germ cells. Recent evidence indicates that oscillations of retinoic acid play a major role in determining periodicity of the seminiferous epithelium. In the interstitial space, Leydig cells produce the steroid hormones required both for the completion of spermatogenesis and the development and maintenance of male sexual characteristics throughout the body. This endocrine output also oscillates; although the pulse generator lies outside the gonad, the steroidogenic function of Leydig cells is tuned to a regular episodic input. While the oscillations of the intratubular and interstitial cells have multihour (ultradian) and multiday (infradian) periodicities, respectively, the functions of both compartments also display dramatic seasonal rhythms. Furthermore, circadian rhythms are evident in some of the cell types, although their amplitude and pervasiveness are not as great as in many other tissues of the same organism, and their detection may require methods that recognize the heterogeneity of the testis. This review examines the periodicity of testicular function along multiple time scales.
Collapse
Affiliation(s)
- Eric L Bittman
- Department of Biology and Program in Neuroscience, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
23
|
Wood SH, Christian HC, Miedzinska K, Saer BRC, Johnson M, Paton B, Yu L, McNeilly J, Davis JRE, McNeilly AS, Burt DW, Loudon ASI. Binary Switching of Calendar Cells in the Pituitary Defines the Phase of the Circannual Cycle in Mammals. Curr Biol 2015; 25:2651-62. [PMID: 26412130 PMCID: PMC4612467 DOI: 10.1016/j.cub.2015.09.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022]
Abstract
Persistent free-running circannual (approximately year-long) rhythms have evolved in animals to regulate hormone cycles, drive metabolic rhythms (including hibernation), and time annual reproduction. Recent studies have defined the photoperiodic input to this rhythm, wherein melatonin acts on thyrotroph cells of the pituitary pars tuberalis (PT), leading to seasonal changes in the control of thyroid hormone metabolism in the hypothalamus. However, seasonal rhythms persist in constant conditions in many species in the absence of a changing photoperiod signal, leading to the generation of circannual cycles. It is not known which cells, tissues, and pathways generate these remarkable long-term rhythmic processes. We show that individual PT thyrotrophs can be in one of two binary states reflecting either a long (EYA3(+)) or short (CHGA(+)) photoperiod, with the relative proportion in each state defining the phase of the circannual cycle. We also show that a morphogenic cycle driven by the PT leads to extensive re-modeling of the PT and hypothalamus over the circannual cycle. We propose that the PT may employ a recapitulated developmental pathway to drive changes in morphology of tissues and cells. Our data are consistent with the hypothesis that the circannual timer may reside within the PT thyrotroph and is encoded by a binary switch timing mechanism, which may regulate the generation of circannual neuroendocrine rhythms, leading to dynamic re-modeling of the hypothalamic interface. In summary, the PT-ventral hypothalamus now appears to be a prime structure involved in long-term rhythm generation.
Collapse
Affiliation(s)
- Shona H Wood
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Helen C Christian
- Department of Physiology, Anatomy, and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK
| | - Ben R C Saer
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Mark Johnson
- Department of Physiology, Anatomy, and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Bob Paton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK
| | - Le Yu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK
| | - Judith McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Julian R E Davis
- Faculty of Medical and Human Science, University of Manchester, Manchester, M13 9PT, UK
| | - Alan S McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK.
| | - Andrew S I Loudon
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
24
|
Tsukamoto-Yamauchi N, Terasaka T, Iwasaki Y, Otsuka F. Interaction of pituitary hormones and expression of clock genes modulated by bone morphogenetic protein-4 and melatonin. Biochem Biophys Res Commun 2015; 459:172-7. [PMID: 25727018 DOI: 10.1016/j.bbrc.2015.02.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 11/29/2022]
Abstract
Functional interaction of clock genes and pituitary hormones was investigated by focusing on bone morphogenetic protein (BMP)-4 and melatonin actions in anterior pituitary cells. A significant correlation between the mRNA expression of proopiomelanocortin (POMC) and Per2 was revealed in serial cultures of corticotrope AtT20 cells. Knockdown of Per2 expression by siRNA in AtT20 cells resulted in a significant reduction of POMC mRNA level with or without corticotropin-releasing hormone (CRH) stimulation. Treatments with BMP-4 and melatonin, both of which suppress POMC expression, reduced Per2 mRNA as well as protein levels in AtT20 cells. On the other hand, in lactosomatotrope GH3 cells, an expressional correlation was found between prolactin (PRL) and Clock mRNA levels, which was attenuated in the presence of forskolin treatment. The siRNA-mediated knockdown of Clock expression, but not that of Bmal1, significantly reduced PRL mRNA levels in GH3 cells. Interestingly, Clock mRNA and protein levels did not fluctuate with melatonin, BMP-4 or forskolin treatment, although Bmal1 expression was significantly increased by forskolin treatment. Collectively, a significant correlation between the expression of POMC and Per2 and that between PRL and Clock were uncovered in corticotrope and lactosomatotrope cells, respectively. Per2 expression was inhibited by POMC modulators including melatonin and BMP-4, while Clock expression was steadily maintained. Thus, the effects of melatonin and BMP-4 on clock gene expression may imply differential stability of circadian rhythms of adrenocorticotropin (ACTH) and PRL secreted from the anterior pituitary.
Collapse
Affiliation(s)
- Naoko Tsukamoto-Yamauchi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Tomohiro Terasaka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Yasumasa Iwasaki
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
25
|
Vriend J, Reiter RJ. Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 2015; 58:1-11. [PMID: 25369242 DOI: 10.1111/jpi.12189] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
The expression of 'clock' genes occurs in all tissues, but especially in the suprachiasmatic nuclei (SCN) of the hypothalamus, groups of neurons in the brain that regulate circadian rhythms. Melatonin is secreted by the pineal gland in a circadian manner as influenced by the SCN. There is also considerable evidence that melatonin, in turn, acts on the SCN directly influencing the circadian 'clock' mechanisms. The most direct route by which melatonin could reach the SCN would be via the cerebrospinal fluid of the third ventricle. Melatonin could also reach the pars tuberalis (PT) of the pituitary, another melatonin-sensitive tissue, via this route. The major 'clock' genes include the period genes, Per1 and Per2, the cryptochrome genes, Cry1 and Cry2, the clock (circadian locomotor output cycles kaput) gene, and the Bmal1 (aryl hydrocarbon receptor nuclear translocator-like) gene. Clock and Bmal1 heterodimers act on E-box components of the promoters of the Per and Cry genes to stimulate transcription. A negative feedback loop between the cryptochrome proteins and the nucleus allows the Cry and Per proteins to regulate their own transcription. A cycle of ubiquitination and deubiquitination controls the levels of CRY protein degraded by the proteasome and, hence, the amount of protein available for feedback. Thus, it provides a post-translational component to the circadian clock mechanism. BMAL1 also stimulates transcription of REV-ERBα and, in turn, is also partially regulated by negative feedback by REV-ERBα. In the 'black widow' model of transcription, proteasomes destroy transcription factors that are needed only for a particular period of time. In the model proposed herein, the interaction of melatonin and the proteasome is required to adjust the SCN clock to changes in the environmental photoperiod. In particular, we predict that melatonin inhibition of the proteasome interferes with negative feedback loops (CRY/PER and REV-ERBα) on Bmal1 transcription genes in both the SCN and PT. Melatonin inhibition of the proteasome would also tend to stabilize BMAL1 protein itself in the SCN, particularly at night when melatonin is naturally elevated. Melatonin inhibition of the proteasome could account for the effects of melatonin on circadian rhythms associated with molecular timing genes. The interaction of melatonin with the proteasome in the hypothalamus also provides a model for explaining the dramatic 'time of day' effect of melatonin injections on reproductive status of seasonal breeders. Finally, the model predicts that a proteasome inhibitor such as bortezomib would modify circadian rhythms in a manner similar to melatonin.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
26
|
Wood S, Loudon A. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary. J Endocrinol 2014; 222:R39-59. [PMID: 24891434 PMCID: PMC4104039 DOI: 10.1530/joe-14-0141] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptation to the environment is essential for survival, in all wild animal species seasonal variation in temperature and food availability needs to be anticipated. This has led to the evolution of deep-rooted physiological cycles, driven by internal clocks, which can track seasonal time with remarkable precision. Evidence has now accumulated that a seasonal change in thyroid hormone (TH) availability within the brain is a crucial element. This is mediated by local control of TH-metabolising enzymes within specialised ependymal cells lining the third ventricle of the hypothalamus. Within these cells, deiodinase type 2 enzyme is activated in response to summer day lengths, converting metabolically inactive thyroxine (T4) to tri-iodothyronine (T3). The availability of TH in the hypothalamus appears to be an important factor in driving the physiological changes that occur with season. Remarkably, in both birds and mammals, the pars tuberalis (PT) of the pituitary gland plays an essential role. A specialised endocrine thyrotroph cell (TSH-expressing) is regulated by the changing day-length signal, leading to activation of TSH by long days. This acts on adjacent TSH-receptors expressed in the hypothalamic ependymal cells, causing local regulation of deiodinase enzymes and conversion of TH to the metabolically active T3. In mammals, the PT is regulated by the nocturnal melatonin signal. Summer-like melatonin signals activate a PT-expressed clock-regulated transcription regulator (EYA3), which in turn drives the expression of the TSHβ sub-unit, leading to a sustained increase in TSH expression. In this manner, a local pituitary timer, driven by melatonin, initiates a cascade of molecular events, led by EYA3, which translates to seasonal changes of neuroendocrine activity in the hypothalamus. There are remarkable parallels between this PT circuit and the photoperiodic timing system used in plants, and while plants use different molecular signals (constans vs EYA3) it appears that widely divergent organisms probably obey a common set of design principles.
Collapse
Affiliation(s)
- Shona Wood
- Faculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK
| | - Andrew Loudon
- Faculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
27
|
Dardente H, Hazlerigg DG, Ebling FJP. Thyroid hormone and seasonal rhythmicity. Front Endocrinol (Lausanne) 2014; 5:19. [PMID: 24616714 PMCID: PMC3935485 DOI: 10.3389/fendo.2014.00019] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/10/2014] [Indexed: 12/15/2022] Open
Abstract
Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, UMR085, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut français du cheval et de l’équitation, Nouzilly, France
- *Correspondence: Hugues Dardente, INRA, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, UMR7247, Université François Rabelais de Tours, IFCE, F-37380 Nouzilly, France e-mail:
| | - David G. Hazlerigg
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | | |
Collapse
|