1
|
Chronis IB, Vistein R, Gokhale A, Faundez V, Puthenveedu MA. The β2 adrenergic receptor cross-linked interactome identifies 14-3-3 proteins as regulating the availability of signaling-competent receptors. Mol Pharmacol 2025; 107:100005. [PMID: 39919163 DOI: 10.1124/molpharm.124.000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The emerging picture of G protein-coupled receptor function suggests that the global signaling response is an integrated sum of a multitude of individual receptor responses, each regulated by their local protein environment. The β2 adrenergic receptor (B2AR) has long served as an example receptor in the development of this model. However, the mechanism and the identity of the protein-protein interactions that govern the availability of receptors competent for signaling remain incompletely characterized. To address this question, we characterized the interactome of agonist-stimulated B2AR in human embryonic kidney 293 cells using FLAG coimmunoprecipitation coupled to stable isotope labeling by amino acids in cell culture and mass spectrometry. Our B2AR cross-linked interactome identified 190 high-confidence proteins, including almost all known interacting proteins and 6 out of 7 isoforms of the 14-3-3 family of scaffolding proteins. Inhibiting 14-3-3 proteins with the peptide difopein enhanced isoproterenol-stimulated adrenergic signaling via cAMP approximately 3-fold and increased both miniGs and arrestin recruitment to B2AR more than 2-fold each, without noticeably changing EC50 with respect to cAMP signaling or effector recruitment upon stimulation. Our results show that 14-3-3 proteins negatively regulate downstream signaling by inhibiting access of B2AR to effector proteins. We propose that 14-3-3 proteins maintain a dynamic pool of B2AR that has reduced signaling efficacy in response to acute agonist stimulation, limiting the number of signaling-competent receptors at the plasma membrane. SIGNIFICANCE STATEMENT: This study presents a new interactome of the agonist-stimulated β2 adrenergic receptor, a paradigmatic G protein-coupled receptor that is both a model system for members of this class and an important signaling protein in respiratory, cardiovascular, and metabolic regulation. We identify 14-3-3 proteins as responsible for restricting β2 adrenergic receptor access to signaling effectors and maintaining a receptor population that is insensitive to acute stimulation by agonists.
Collapse
Affiliation(s)
- Ian B Chronis
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rachel Vistein
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Avanti Gokhale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|
2
|
Zhang Q, Tian H, Ge K, Wang F, Gao P, Chen AM, Wang L, Zhao Y, Lian C, Wang F. PGD2/PTGDR2 signaling pathway affects the self-renewal capacity of gastric cancer stem cells by regulating ATG4B ubiquitination. Front Oncol 2024; 14:1496050. [PMID: 39777337 PMCID: PMC11703842 DOI: 10.3389/fonc.2024.1496050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background Prostaglandin D2 (PGD2) inhibits the development of different malignant tumors; however, the underlying mechanism of inhibiting tumor development is not yet clear. This study aimed to elucidate how PGD2 inhibits the stemness of gastric cancer stem cells (GCSCs) via autophagy and its underlying molecular mechanism to provide a theoretical basis for the treatment of gastric cancer. Methods In this study, GCSCs were enriched in vitro by serum-free incubation. Furthermore, the effects of PGD2 and PGD2 receptor (PTGDR2) on autophagy were detected by Western blotting, immunofluorescence analysis, and transmission electron microscopy. Moreover, the ATG4B ubiquitination levels were assessed via immunoprecipitation and other methods. Results The results indicated that PGD2 induced LC3I/LC3II conversion in GCSCs to activate autophagy, while PGD2 promoted the expression of PTGDR2, thereby further activating autophagy. Furthermore, PTGDR2 competes with ATG4B for binding with E3 ligase RNF5 (also known as RMA1) to promote autophagy protein ATG4B expression. Moreover, PTGDR2 knockdown blocked the activation of autophagy by PGD2 and the level of ATG4B ubiquitination in GCSCs. Conclusions In summary, it was elucidated that the PGD2/PTGDR2 signaling cascade affects GCSCs stemness by regulating autophagy, suggesting that the PGD2/PTGDR2 signaling pathway could serve as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - HengJin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Kunpeng Ge
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - FeiFan Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - PeiYao Gao
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - AMin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lulu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - YanMing Zhao
- Department of Clinical Laboratory, The Second People’s Hospital of Bengbu, Bengbu, China
| | - Chaoqun Lian
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - FengChao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
3
|
Manolis D, Hasan S, Maraveyas A, O'Brien DP, Kessler BM, Kramer H, Nikitenko LL. Quantitative proteomics reveals CLR interactome in primary human cells. J Biol Chem 2024; 300:107399. [PMID: 38777147 PMCID: PMC11231609 DOI: 10.1016/j.jbc.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) mediates essential functions in several cell types and is implicated in cardiovascular pathologies, skin diseases, migraine, and cancer. To date, the network of proteins interacting with CLR ("CLR interactome") in primary cells, where this GPCR is expressed at endogenous (physiologically relevant) levels, remains unknown. To address this knowledge gap, we established a novel integrative methodological workflow/approach for conducting a comprehensive/proteome-wide analysis of Homo sapiens CLR interactome. We used primary human dermal lymphatic endothelial cells and combined immunoprecipitation utilizing anti-human CLR antibody with label-free quantitative nano LC-MS/MS and quantitative in situ proximity ligation assay. By using this workflow, we identified 37 proteins interacting with endogenously expressed CLR amongst 4902 detected members of the cellular proteome (by quantitative nano LC-MS/MS) and revealed direct interactions of two kinases and two transporters with this GPCR (by in situ proximity ligation assay). All identified interactors have not been previously reported as members of CLR interactome. Our approach and findings uncover the hitherto unrecognized compositional complexity of the interactome of endogenously expressed CLR and contribute to fundamental understanding of the biology of this GPCR. Collectively, our study provides a first-of-its-kind integrative methodological approach and datasets as valuable resources and robust platform/springboard for advancing the discovery and comprehensive characterization of physiologically relevant CLR interactome at a proteome-wide level in a range of cell types and diseases in future studies.
Collapse
Affiliation(s)
- Dimitrios Manolis
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Shirin Hasan
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Anthony Maraveyas
- Queens Centre for Oncology and Haematology, Castle Hill Hospital, Hull University Teaching Hospitals NHS Teaching Trust, Hull, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holger Kramer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Leonid L Nikitenko
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| |
Collapse
|
4
|
Maudsley S, Schrauwen C, Harputluoğlu İ, Walter D, Leysen H, McDonald P. GPR19 Coordinates Multiple Molecular Aspects of Stress Responses Associated with the Aging Process. Int J Mol Sci 2023; 24:ijms24108499. [PMID: 37239845 DOI: 10.3390/ijms24108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a significant role in controlling biological paradigms such as aging and aging-related disease. We have previously identified receptor signaling systems that are specifically associated with controlling molecular pathologies associated with the aging process. Here, we have identified a pseudo-orphan GPCR, G protein-coupled receptor 19 (GPR19), that is sensitive to many molecular aspects of the aging process. Through an in-depth molecular investigation process that involved proteomic, molecular biological, and advanced informatic experimentation, this study found that the functionality of GPR19 is specifically linked to sensory, protective, and remedial signaling systems associated with aging-related pathology. This study suggests that the activity of this receptor may play a role in mitigating the effects of aging-related pathology by promoting protective and remedial signaling systems. GPR19 expression variation demonstrates variability in the molecular activity in this larger process. At low expression levels in HEK293 cells, GPR19 expression regulates signaling paradigms linked with stress responses and metabolic responses to these. At higher expression levels, GPR19 expression co-regulates systems involved in sensing and repairing DNA damage, while at the highest levels of GPR19 expression, a functional link to processes of cellular senescence is seen. In this manner, GPR19 may function as a coordinator of aging-associated metabolic dysfunction, stress response, DNA integrity management, and eventual senescence.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Patricia McDonald
- Moffitt Cancer Center, Department of Metabolism & Physiology, 12902 Magnolia Drive, Tampa, FL 33612, USA
- Lexicon Pharmaceuticals Inc. Research & Development, 2445 Technology Forest, The Woodlands, TX 77381, USA
| |
Collapse
|
5
|
Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells 2022; 11:cells11050851. [PMID: 35269473 PMCID: PMC8909305 DOI: 10.3390/cells11050851] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
In response to environmental stimuli, cells make a series of adaptive changes to combat the injury, repair the damage, and increase the tolerance to the stress. However, once the damage is too serious to repair, the cells will undergo apoptosis to protect the overall cells through suicidal behavior. Upon external stimulation, some intracellular proteins turn into unfolded or misfolded protein, exposing their hydrophobic regions to form protein aggregation, which may ultimately produce serious damage to the cells. Ubiquitin plays an important role in the degradation of these unnatural proteins by tagging with ubiquitin chains in the ubiquitin-proteasome or autophagy system. If the two processes fail to eliminate the abnormal protein aggregates, the cells will move to apoptosis and death. Dysregulation of ubiquitin-proteasome system (UPS) and autophagy may result in the development of numerous diseases. This review focuses on the molecular mechanisms of UPS and autophagy in clearance of intracellular protein aggregates, and the relationship between dysregulation of ubiquitin network and diseases.
Collapse
|
6
|
Kumar T, Maitra S, Rahman A, Bhattacharjee S. A conserved guided entry of tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum. PLoS Pathog 2021; 17:e1009595. [PMID: 34780541 PMCID: PMC8629386 DOI: 10.1371/journal.ppat.1009595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/29/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
Tail-anchored (TA) proteins are defined by the absence of N-terminus signal sequence and the presence of a single transmembrane domain (TMD) proximal to their C-terminus. They play fundamental roles in cellular processes including vesicular trafficking, protein translocation and quality control. Some of the TA proteins are post-translationally integrated by the Guided Entry of TA (GET) pathway to the cellular membranes; with their N-terminus oriented towards the cytosol and C-terminus facing the organellar lumen. The TA repertoire and the GET machinery have been extensively characterized in the yeast and mammalian systems, however, they remain elusive in the human malaria parasite Plasmodium falciparum. In this study, we bioinformatically predicted a total of 63 TA proteins in the P. falciparum proteome and revealed the association of a subset with the P. falciparum homolog of Get3 (PfGet3). In addition, our proximity labelling studies either definitively identified or shortlisted the other eligible GET constituents, and our in vitro association studies validated associations between PfGet3 and the corresponding homologs of Get4 and Get2 in P. falciparum. Collectively, this study reveals the presence of proteins with hallmark TA signatures and the involvement of evolutionary conserved GET trafficking pathway for their targeted delivery within the parasite. Tail-anchored (TA) membrane proteins are known to play essential cellular functions in the eukaryotes. These proteins are trafficked to their respective destinations by post-translational translocation pathways that are evolutionarily conserved from yeast to human. However, they remain unidentified in the malaria parasite Plasmodium falciparum. We have used bioinformatic prediction algorithms in conjunction with functional validation studies to identify the candidate TA repertoire and some of the homologs of the trafficking machinery in P. falciparum. Initially, we predicted the presence of 63 putative TA proteins localized to distinct compartments within this parasite, including a few confirmed TA homologs in other eukaryotic systems. We then identified and characterized PfGet3 as a central component in the Guided-Entry of TA (GET) translocation machinery, and our bacterial co-expression and pulldown assays with two selected recombinant TA proteins, PfBOS1 and PfUSE1, showed co-association with PfGet3. We also identified PfGet2 and PfGet4 as the other two components of the GET machinery in P. falciparum using proximity biotinylation followed by mass spectrometry. Interestingly, we also found six TA proteins in the parasite enriched in this fraction. We further validated the direct interactions between a few TA candidates, PfGet4 and PfGet2 with PfGet3 using recombinant-based pulldown studies. In conclusion, this study classified a subset of membrane proteins with the TA nomenclature and implicated a previously unidentified GET pathway for their translocation in this apicomplexan parasite.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
7
|
Fréchette L, Degrandmaison J, Binda C, Boisvert M, Côté L, Michaud T, Lalumière MP, Gendron L, Parent JL. Identification of the interactome of the DP1 receptor for Prostaglandin D 2: Regulation of DP1 receptor signaling and trafficking by IQGAP1. Biochim Biophys Acta Gen Subj 2021; 1865:129969. [PMID: 34352343 DOI: 10.1016/j.bbagen.2021.129969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Mechanisms governing localization, trafficking and signaling of G protein-coupled receptors (GPCRs) are critical in cell function. Protein-protein interactions are determinant in these processes. However, there are very little interacting proteins known to date for the DP1 receptor for prostaglandin D2. METHODS We performed LC-MS/MS analyses of the DP1 receptor interactome in HEK293 cells. To functionally validate our LC-MS/MS data, we studied the implications of the interaction with the IQGAP1 scaffold protein in the trafficking and signaling of DP1. RESULTS In addition to expected interacting proteins such as heterotrimeric G protein subunits, we identified proteins involved in signaling, trafficking, and folding localized in various cell compartments. Endogenous DP1-IQGAP1 co-immunoprecipitation was observed in colon cancer HT-29 cells. The interaction was augmented by DP1 agonist activation in HEK293 cells and GST-pulldown assays showed that IQGAP1 binds to intracellular loops 2 and 3 of DP1. Co-localization of the two proteins was observed by confocal microscopy at the cell periphery and in intracellular vesicles in the basal state. PGD2 treatment resulted in the redistribution of the DP1-IQGAP1 co-localization in the perinuclear vicinity. DP1 receptor internalization was promoted by overexpression of IQGAP1, while it was diminished by IQGAP1 knockdown with DsiRNAs. DP1-mediated ERK1/2 activation was augmented and sustained overtime by overexpression of IQGAP1 when compared to DP1 expressed alone. IQGAP1 knockdown decreased ERK1/2 activation by DP1 stimulation. Interestingly, ERK1/2 signaling by DP1 was increased when IQGAP2 was silenced, while it was impaired by IQGAP3 knockdown. CONCLUSIONS Our findings define the putative DP1 interactome, a patho-physiologically important receptor, and validated the interaction with IQGAP1 in DP1 function. Our data also reveal that IQGAP proteins may differentially regulate GPCR signaling. GENERAL SIGNIFICANCE The identified putative DP1-interacting proteins open multiple lines of research in DP1 and GPCR biology in various cell compartments.
Collapse
Affiliation(s)
- Louis Fréchette
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jade Degrandmaison
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Chantal Binda
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marilou Boisvert
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Laurie Côté
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas Michaud
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Pier Lalumière
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Département d'Anesthésiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
8
|
Peng S, Shi S, Tao G, Li Y, Xiao D, Wang L, He Q, Cai X, Xiao J. JKAMP inhibits the osteogenic capacity of adipose-derived stem cells in diabetic osteoporosis by modulating the Wnt signaling pathway through intragenic DNA methylation. Stem Cell Res Ther 2021; 12:120. [PMID: 33579371 PMCID: PMC7881648 DOI: 10.1186/s13287-021-02163-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic osteoporosis (DOP) is a systemic metabolic bone disease caused by diabetes mellitus (DM). Adipose-derived stem cells (ASCs) play an important role in bone regeneration. Our previous study confirmed that ASCs from DOP mice (DOP-ASCs) have a lower osteogenesis potential compared with control ASCs (CON-ASCs). However, the cause of this poor osteogenesis has not been elucidated. Therefore, this study investigated the underlying mechanism of the decline in the osteogenic potential of DOP-ASCs from the perspective of epigenetics and explored methods to enhance their osteogenic capacity. Methods The expression level of JNK1-associated membrane protein (JKAMP) and degree of DNA methylation in CON-ASCs and DOP-ASCs were measured by mRNA expression profiling and MeDIP sequencing, respectively. JKAMP small interfering RNA (siRNA) and a Jkamp overexpression plasmid were used to assess the role of JKAMP in osteogenic differentiation of CON-ASCs and DOP-ASCs. Immunofluorescence, qPCR, and western blotting were used to measure changes in expression of Wnt signaling pathway-related genes and osteogenesis-related molecules after osteogenesis induction. Alizarin red and ALP staining was used to confirm the osteogenic potential of stem cells. Bisulfite-specific PCR (BSP) was used to detect JKAMP methylation degree. Results Expression of JKAMP and osteogenesis-related molecules (RUNX2 and OPN) in DOP-ASCs was decreased significantly in comparison with CON-ASCs. JKAMP silencing inhibited the Wnt signaling pathway and reduced the osteogenic ability of CON-ASCs. Overexpression of JKAMP in DOP-ASCs rescued the impaired osteogenic capacity caused by DOP. Moreover, JKAMP in DOP-ASCs contained intragenic DNA hypermethylated regions related to the downregulation of JKAMP expression. Conclusions Intragenic DNA methylation inhibits the osteogenic ability of DOP-ASCs by suppressing expression of JKAMP and the Wnt signaling pathway. This study shows an epigenetic explanation for the reduced osteogenic ability of DOP-ASCs and provides a potential therapeutic target to prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Shuanglin Peng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,National Key Clinical Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Gang Tao
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lang Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qing He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China. .,National Key Clinical Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Esteban PF, Molina-Holgado E. Tips and tricks for cannabinoid receptor 1 detection, interaction and interpretation. Neural Regen Res 2021; 16:1535-1536. [PMID: 33433470 PMCID: PMC8323698 DOI: 10.4103/1673-5374.300984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
10
|
Özcan GG, Lim S, Leighton PLA, Allison WT, Rihel J. Sleep is bi-directionally modified by amyloid beta oligomers. eLife 2020; 9:53995. [PMID: 32660691 PMCID: PMC7360368 DOI: 10.7554/elife.53995] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Disrupted sleep is a major feature of Alzheimer’s disease (AD), often arising years before symptoms of cognitive decline. Prolonged wakefulness exacerbates the production of amyloid-beta (Aβ) species, a major driver of AD progression, suggesting that sleep loss further accelerates AD through a vicious cycle. However, the mechanisms by which Aβ affects sleep are unknown. We demonstrate in zebrafish that Aβ acutely and reversibly enhances or suppresses sleep as a function of oligomer length. Genetic disruptions revealed that short Aβ oligomers induce acute wakefulness through Adrenergic receptor b2 (Adrb2) and Progesterone membrane receptor component 1 (Pgrmc1), while longer Aβ forms induce sleep through a pharmacologically tractable Prion Protein (PrP) signaling cascade. Our data indicate that Aβ can trigger a bi-directional sleep/wake switch. Alterations to the brain’s Aβ oligomeric milieu, such as during the progression of AD, may therefore disrupt sleep via changes in acute signaling events.
Collapse
Affiliation(s)
- Güliz Gürel Özcan
- Department of Cell and Developmental Biology, UCL, London, United Kingdom
| | - Sumi Lim
- Department of Cell and Developmental Biology, UCL, London, United Kingdom
| | - Patricia LA Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Jason Rihel
- Department of Cell and Developmental Biology, UCL, London, United Kingdom
| |
Collapse
|
11
|
Esteban PF, Garcia-Ovejero D, Paniagua-Torija B, Moreno-Luna R, Arredondo LF, Zimmer A, Arevalo-Martin A, Molina-Holgado E. Revisiting CB1 cannabinoid receptor detection and the exploration of its interacting partners. J Neurosci Methods 2020; 337:108680. [DOI: 10.1016/j.jneumeth.2020.108680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022]
|
12
|
Binda C, Génier S, Degrandmaison J, Picard S, Fréchette L, Jean S, Marsault E, Parent JL. L-type prostaglandin D synthase regulates the trafficking of the PGD 2 DP1 receptor by interacting with the GTPase Rab4. J Biol Chem 2019; 294:16865-16883. [PMID: 31575663 DOI: 10.1074/jbc.ra119.008233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates that G protein-coupled receptors (GPCRs) interact with Rab GTPases during their intracellular trafficking. How GPCRs recruit and activate the Rabs is unclear. Here, we report that depletion of endogenous L-type prostaglandin D synthase (L-PGDS) in HeLa cells inhibited recycling of the prostaglandin D2 (PGD2) DP1 receptor (DP1) to the cell surface after agonist-induced internalization and that L-PGDS overexpression had the opposite effect. Depletion of endogenous Rab4 prevented l-PGDS-mediated recycling of DP1, and l-PGDS depletion inhibited Rab4-dependent recycling of DP1, indicating that both proteins are mutually involved in this pathway. DP1 stimulation promoted its interaction through its intracellular C terminus with Rab4, which was increased by l-PGDS. Confocal microscopy revealed that DP1 activation induces l-PGDS/Rab4 co-localization. l-PGDS/Rab4 and DP1/Rab4 co-immunoprecipitation levels were increased by DP1 agonist treatment. Pulldown assays with purified GST-l-PGDS and His6-Rab4 indicated that both proteins interact directly. l-PGDS interacted preferentially with the inactive, GDP-locked Rab4S22N variant rather than with WT Rab4 or with constitutively active Rab4Q67L proteins. Overexpression and depletion experiments disclosed that l-PGDS partakes in Rab4 activation following DP1 stimulation. Experiments with deletion mutants and synthetic peptides revealed that amino acids 85-92 in l-PGDS are involved in its interaction with Rab4 and in its effect on DP1 recycling. Of note, GTPγS loading and time-resolved FRET assays with purified proteins suggested that l-PGDS enhances GDP-GTP exchange on Rab4. Our results reveal how l-PGDS, which produces the agonist for DP1, regulates DP1 recycling by participating in Rab4 recruitment and activation.
Collapse
Affiliation(s)
- Chantal Binda
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Génier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jade Degrandmaison
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Picard
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Fréchette
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Steve Jean
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eric Marsault
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada .,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
13
|
Zhang Q, Xiao K, Paredes JM, Mamonova T, Sneddon WB, Liu H, Wang D, Li S, McGarvey JC, Uehling D, Al-Awar R, Joseph B, Jean-Alphonse F, Orte A, Friedman PA. Parathyroid hormone initiates dynamic NHERF1 phosphorylation cycling and conformational changes that regulate NPT2A-dependent phosphate transport. J Biol Chem 2019; 294:4546-4571. [PMID: 30696771 PMCID: PMC6433080 DOI: 10.1074/jbc.ra119.007421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/25/2019] [Indexed: 12/30/2022] Open
Abstract
Na+-H+ exchanger regulatory factor-1 (NHERF1) is a PDZ protein that scaffolds membrane proteins, including sodium-phosphate co-transport protein 2A (NPT2A) at the plasma membrane. NHERF1 is a phosphoprotein with 40 Ser and Thr residues. Here, using tandem MS analysis, we characterized the sites of parathyroid hormone (PTH)-induced NHERF1 phosphorylation and identified 10 high-confidence phosphorylation sites. Ala replacement at Ser46, Ser162, Ser181, Ser269, Ser280, Ser291, Thr293, Ser299, and Ser302 did not affect phosphate uptake, but S290A substitution abolished PTH-dependent phosphate transport. Unexpectedly, Ser290 was rapidly dephosphorylated and rephosphorylated after PTH stimulation, and we found that protein phosphatase 1α (PP1α), which binds NHERF1 through a conserved VxF/W PP1 motif, dephosphorylates Ser290 Mutating 257VPF259 eliminated PP1 binding and blunted dephosphorylation. Tautomycetin blocked PP1 activity and abrogated PTH-sensitive phosphate transport. Using fluorescence lifetime imaging (FLIM), we observed that PTH paradoxically and transiently elevates intracellular phosphate. Added phosphate blocked PP1α-mediated Ser290 dephosphorylation of recombinant NHERF1. Hydrogen-deuterium exchange MS revealed that β-sheets in NHERF1's PDZ2 domain display lower deuterium uptake than those in the structurally similar PDZ1, implying that PDZ1 is more cloistered. Dephosphorylated NHERF1 exhibited faster exchange at C-terminal residues suggesting that NHERF1 dephosphorylation precedes Ser290 rephosphorylation. Our results show that PP1α and NHERF1 form a holoenzyme and that a multiprotein kinase cascade involving G protein-coupled receptor kinase 6A controls the Ser290 phosphorylation status of NHERF1 and regulates PTH-sensitive, NPT2A-mediated phosphate uptake. These findings reveal how reversible phosphorylation modifies protein conformation and function and the biochemical mechanisms underlying PTH control of phosphate transport.
Collapse
Affiliation(s)
- Qiangmin Zhang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Kunhong Xiao
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology.,Vascular Medicine Institute, and.,Biomedical Mass Spectrometry Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - José M Paredes
- the Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, 18071-Granada, Spain
| | - Tatyana Mamonova
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - W Bruce Sneddon
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Hongda Liu
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Dawei Wang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Sheng Li
- the Department of Medicine, University of California San Diego, La Jolla, California 92093, and
| | - Jennifer C McGarvey
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - David Uehling
- the Department of Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Rima Al-Awar
- the Department of Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Babu Joseph
- the Department of Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | | | - Angel Orte
- the Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, 18071-Granada, Spain
| | - Peter A Friedman
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, .,Department of Structural Biology
| |
Collapse
|
14
|
Zhang Q, Xiao K, Liu H, Song L, McGarvey JC, Sneddon WB, Bisello A, Friedman PA. Site-specific polyubiquitination differentially regulates parathyroid hormone receptor-initiated MAPK signaling and cell proliferation. J Biol Chem 2018; 293:5556-5571. [PMID: 29444827 DOI: 10.1074/jbc.ra118.001737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Indexed: 01/04/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling and trafficking are essential for cellular function and regulated by phosphorylation, β-arrestin, and ubiquitination. The GPCR parathyroid hormone receptor (PTHR) exhibits time-dependent reversible ubiquitination. The exact ubiquitination sites in PTHR are unknown, but they extend upstream of its intracellular tail. Here, using tandem MS, we identified Lys388 in the third loop and Lys484 in the C-terminal tail as primary ubiquitination sites in PTHR. We found that PTHR ubiquitination requires β-arrestin and does not display a preference for β-arrestin1 or -2. PTH stimulated PTHR phosphorylation at Thr387/Thr392 and within the Ser489-Ser493 region. Such phosphorylation events may recruit β-arrestin, and we observed that chemically or genetically blocking PTHR phosphorylation inhibits its ubiquitination. Specifically, Ala replacement at Thr387/Thr392 suppressed β-arrestin binding and inhibited PTHR ubiquitination, suggesting that PTHR phosphorylation and ubiquitination are interdependent. Of note, Lys-deficient PTHR mutants promoted normal cAMP formation, but exhibited differential mitogen-activated protein kinase (MAPK) signaling. Lys-deficient PTHR triggered early onset and delayed ERK1/2 signaling compared with wildtype PTHR. Moreover, ubiquitination of Lys388 and Lys484 in wildtype PTHR strongly decreased p38 signaling, whereas Lys-deficient PTHR retained signaling comparable to unstimulated wildtype PTHR. Lys-deficient, ubiquitination-refractory PTHR reduced cell proliferation and increased apoptosis. However, elimination of all 11 Lys residues in PTHR did not affect its internalization and recycling. These results pinpoint the ubiquitinated Lys residues in PTHR controlling MAPK signaling and cell proliferation and survival. Our findings suggest new opportunities for targeting PTHR ubiquitination to regulate MAPK signaling or manage PTHR-related disorders.
Collapse
Affiliation(s)
- Qiangmin Zhang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Kunhong Xiao
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Hongda Liu
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Lei Song
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Jennifer C McGarvey
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - W Bruce Sneddon
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Alessandro Bisello
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Peter A Friedman
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and .,the Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
15
|
Chang HS, Park JS, Lee HS, Lyu J, Son JH, Choi IS, Shin HD, Park CS. Association analysis of ILVBL gene polymorphisms with aspirin-exacerbated respiratory disease in asthma. BMC Pulm Med 2017; 17:210. [PMID: 29246216 PMCID: PMC5732499 DOI: 10.1186/s12890-017-0556-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/07/2017] [Indexed: 12/30/2022] Open
Abstract
Background We previously reported that the ILVBL gene on chromosome 19p13.1 was associated with the risk for aspirin-exacerbated respiratory disease (AERD) and the percent decline of forced expired volume in one second (FEV1) after an oral aspirin challenge test. In this study, we confirmed the association between polymorphisms and haplotypes of the ILVBL gene and the risk for AERD and its phenotype. Methods We recruited 141 AERD and 995 aspirin-tolerant asthmatic (ATA) subjects. All study subjects underwent an oral aspirin challenge (OAC). Nine single nucleotide polymorphisms (SNPs) with minor allele frequencies above 0.05, which were present in the region from 2 kb upstream to 0.5 kb downstream of ILVBL in Asian populations, were selected and genotyped. Results In an allelic association analysis, seven of nine SNPs were significantly associated with the risk for AERD after correction for multiple comparisons. In a codominant model, the five SNPs making up block2 (rs2240299, rs7507755, rs1468198, rs2074261, and rs13301) showed significant associations with the risk for AERD (corrected P = 0.001–0.004, OR = 0.59–0.64). Rs1468198 was also significantly associated with the percent decline in FEV1 in OAC tests after correction for multiple comparisons in the codominant model (corrected P = 0.033), but the other four SNPs in hapblock2 were not. Conclusion To the best of our knowledge, this is the first report of an association between SNPs on ILVBL and AERD. SNPs on ILVBL could be promising genetic markers of this condition. Electronic supplementary material The online version of this article (10.1186/s12890-017-0556-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hun Soo Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan, Chungcheongnam-do, 336-745, Republic of Korea.
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 1174, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do, 420-021, Republic of Korea
| | - Ho Sung Lee
- Division of Respiratory Medicine, Soonchunhyang University Chunan Hospital, Chunan-Si, Chungcheongnam-do, 336-745, Republic of Korea
| | - Jiwon Lyu
- Division of Respiratory Medicine, Soonchunhyang University Chunan Hospital, Chunan-Si, Chungcheongnam-do, 336-745, Republic of Korea
| | - Ji-Hye Son
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan, Chungcheongnam-do, 336-745, Republic of Korea
| | - Inseon S Choi
- Department of Allergy, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju, 61469, Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea.,Department of Genetic Epidemiology, SNP Genetics, Inc., 1407 14th Floor, Woolim-rall'ey B, Gasan-dong, Geumcheon-Gu, Seoul, 153-803, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 1174, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do, 420-021, Republic of Korea.
| |
Collapse
|
16
|
Ginguay A, Cynober L, Curis E, Nicolis I. Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways. BIOLOGY 2017; 6:biology6010018. [PMID: 28272331 PMCID: PMC5372011 DOI: 10.3390/biology6010018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
Abstract
Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme.
Collapse
Affiliation(s)
- Antonin Ginguay
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Luc Cynober
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, Université Paris Descartes, 75006 Paris, France.
- Service de biostatistiques et d'informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France.
| | - Ioannis Nicolis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- EA 4064 "Épidémiologie environnementale: Impact sanitaire des pollutions", Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
17
|
Ignatieva EV, Afonnikov DA, Saik OV, Rogaev EI, Kolchanov NA. A compendium of human genes regulating feeding behavior and body weight, its functional characterization and identification of GWAS genes involved in brain-specific PPI network. BMC Genet 2016; 17:158. [PMID: 28105929 PMCID: PMC5249002 DOI: 10.1186/s12863-016-0466-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Obesity is heritable. It predisposes to many diseases. The objectives of this study were to create a compendium of genes relevant to feeding behavior (FB) and/or body weight (BW) regulation; to construct and to analyze networks formed by associations between genes/proteins; and to identify the most significant genes, biological processes/pathways, and tissues/organs involved in BW regulation. Results The compendium of genes controlling FB or BW includes 578 human genes. Candidate genes were identified from various sources, including previously published original research and review articles, GWAS meta-analyses, and OMIM (Online Mendelian Inheritance in Man). All genes were ranked according to knowledge about their biological role in body weight regulation and classified according to expression patterns or functional characteristics. Substantial and overrepresented numbers of genes from the compendium encoded cell surface receptors, signaling molecules (hormones, neuropeptides, cytokines), transcription factors, signal transduction proteins, cilium and BBSome components, and lipid binding proteins or were present in the brain-specific list of tissue-enriched genes identified with TSEA tool. We identified 27 pathways from KEGG, REACTOME and BIOCARTA whose genes were overrepresented in the compendium. Networks formed by physical interactions or homological relationships between proteins or interactions between proteins involved in biochemical/signaling pathways were reconstructed and analyzed. Subnetworks and clusters identified by the MCODE tool included genes/proteins associated with cilium morphogenesis, signal transduction proteins (particularly, G protein–coupled receptors, kinases or proteins involved in response to insulin stimulus) and transcription regulation (particularly nuclear receptors). We ranked GWAS genes according to the number of neighbors in three networks and revealed 22 GWAS genes involved in the brain-specific PPI network. On the base of the most reliable PPIs functioning in the brain tissue, new regulatory schemes interpreting relevance to BW regulation are proposed for three GWAS genes (ETV5, LRP1B, and NDUFS3). Conclusions A compendium comprising 578 human genes controlling FB or BW was designed, and the most significant functional groups of genes, biological processes/pathways, and tissues/organs involved in BW regulation were revealed. We ranked genes from the GWAS meta-analysis set according to the number and quality of associations in the networks and then according to their involvement in the brain-specific PPI network and proposed new regulatory schemes involving three GWAS genes (ETV5, LRP1B, and NDUFS3) in BW regulation. The compendium is expected to be useful for pathology risk estimation and for design of new pharmacological approaches in the treatment of human obesity. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0466-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Center for Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia. .,Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Dmitry A Afonnikov
- Center for Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia.,Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga V Saik
- Center for Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Evgeny I Rogaev
- Center for Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,BNRI, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 15604, USA
| | - Nikolay A Kolchanov
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Department of Systems Biology, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
VCP/p97 regulates β 2AR quality control during receptor biosynthesis. Cell Signal 2016; 30:50-58. [PMID: 27887991 DOI: 10.1016/j.cellsig.2016.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022]
Abstract
GPCRs form signalling complexes with other receptors as part of dimers, G proteins and effector partners. A proteomic screen to identify proteins that associate with the β2-adrenergic receptor (β2AR) identified many of components of the Endoplasmic-Reticulum-Associated Degradation (ERAD) quality control system [1], including the valosin-containing protein (VCP/p97). Here, we validated the interaction of VCP with co-expressed FLAG-β2AR, demonstrating, using an inducible expression system, that the interaction of FLAG-β2AR and VCP is not an artifact of overexpression of the β2AR per se. We knocked down VCP and noted that levels of FLAG-β2AR were increased in cells with lower VCP levels. This increase in the level of FLAG-β2AR did not lead to an increase in the level of functional receptor observed at the cell surface. Similarly, inhibition of the proteasome lead to a dramatic increase in the abundance of TAP-β2AR, while cellular responses again remained unchanged. Taken together, our data suggests that a substantial proportion of the β2AR produced is non-functional and VCP plays a key role in the maturation and trafficking of the β2AR as part of the ERAD quality control process.
Collapse
|
19
|
Machkalyan G, Trieu P, Pétrin D, Hébert TE, Miller GJ. Mass spectrometry analysis of PPIP5K1 interactions and data on cell motility of PPIP5K1-deficient cells. Data Brief 2016; 7:1443-1446. [PMID: 27761507 PMCID: PMC5063796 DOI: 10.1016/j.dib.2016.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
Inositol pyrophosphates are cellular signals that are created by the actions of inositol kinases and are degraded by highly active inositol phosphatases. The potent actions of these phosphatases suggest these signals must be created near their sites of action. To identify sites where the inositol kinase, PPIP5K1 acts, we performed affinity purification of PPIP5K1 from HEK293 cells and analyzed these samples using mass spectrometry to identify the proteins pesent (10.1016/j.cellsig.2016.02.002) [1]. We further decreased PPIP5K1 levels in HeLa cells and treated these with PPIP5K1 siRNA. We then monitored the motility of these cells in Scratch assays.
Collapse
Affiliation(s)
- Gayane Machkalyan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Phan Trieu
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Gregory J. Miller
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- Department of Chemistry, The Catholic University of America, Washington, DC, USA
- Corresponding author at: Department of Chemistry, The Catholic University of America, Washington, DC, USA.Department of Chemistry, The Catholic University of AmericaWashington, DCUSA
| |
Collapse
|
20
|
Génier S, Degrandmaison J, Moreau P, Labrecque P, Hébert TE, Parent JL. Regulation of GPCR expression through an interaction with CCT7, a subunit of the CCT/TRiC complex. Mol Biol Cell 2016; 27:3800-3812. [PMID: 27708139 PMCID: PMC5170604 DOI: 10.1091/mbc.e16-04-0224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
A direct and functional interaction between a subunit of the CCT/TCP-1 ring complex (TRiC) chaperonin complex and G protein–coupled receptor (GPCRs) is shown. Evidence is provided that distinct nascent GPCRs can undergo alternative folding pathways and that CCT/TRiC is critical in preventing aggregation of some GPCRs and in promoting their proper maturation and expression. Mechanisms that prevent aggregation and promote folding of nascent G protein–coupled receptors (GPCRs) remain poorly understood. We identified chaperonin containing TCP-1 subunit eta (CCT7) as an interacting partner of the β-isoform of thromboxane A2 receptor (TPβ) by yeast two-hybrid screening. CCT7 coimmunoprecipitated with overexpressed TPβ and β2-adrenergic receptor (β2AR) in HEK 293 cells, but also with endogenous β2AR. CCT7 depletion by small interfering RNA reduced total and cell-surface expression of both receptors and caused redistribution of the receptors to juxtanuclear aggresomes, significantly more so for TPβ than β2AR. Interestingly, Hsp90 coimmunoprecipitated with β2AR but virtually not with TPβ, indicating that nascent GPCRs can adopt alternative folding pathways. In vitro pull-down assays showed that both receptors can interact directly with CCT7 through their third intracellular loops and C-termini. We demonstrate that Trp334 in the TPβ C-terminus is critical for the CCT7 interaction and plays an important role in TPβ maturation and cell-surface expression. Of note, introducing a tryptophan in the corresponding position of the TPα isoform confers the CCT7-binding and maturation properties of TPβ. We show that an interaction with a subunit of the CCT/TCP-1 ring complex (TRiC) chaperonin complex is involved in regulating aggregation of nascent GPCRs and in promoting their proper maturation and expression.
Collapse
Affiliation(s)
- Samuel Génier
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jade Degrandmaison
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierrick Moreau
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pascale Labrecque
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Jean-Luc Parent
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
21
|
Richens JL, Spencer HL, Butler M, Cantlay F, Vere KA, Bajaj N, Morgan K, O'Shea P. Rationalising the role of Keratin 9 as a biomarker for Alzheimer's disease. Sci Rep 2016; 6:22962. [PMID: 26973255 PMCID: PMC4789650 DOI: 10.1038/srep22962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
Keratin 9 was recently identified as an important component of a biomarker panel which demonstrated a high diagnostic accuracy (87%) for Alzheimer's disease (AD). Understanding how a protein which is predominantly expressed in palmoplantar epidermis is implicated in AD may shed new light on the mechanisms underlying the disease. Here we use immunoassays to examine blood plasma expression patterns of Keratin 9 and its relationship to other AD-associated proteins. We correlate this with the use of an in silico analysis tool VisANT to elucidate possible pathways through which the involvement of Keratin 9 may take place. We identify possible links with Dickkopf-1, a negative regulator of the wnt pathway, and propose that the abnormal expression of Keratin 9 in AD blood and cerebrospinal fluid may be a result of blood brain barrier dysregulation and disruption of the ubiquitin proteasome system. Our findings suggest that dysregulated Keratin 9 expression is a consequence of AD pathology but, as it interacts with a broad range of proteins, it may have other, as yet uncharacterized, downstream effects which could contribute to AD onset and progression.
Collapse
Affiliation(s)
- Joanna L Richens
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Hannah L Spencer
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Molly Butler
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Fiona Cantlay
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Kelly-Ann Vere
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Nin Bajaj
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kevin Morgan
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul O'Shea
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
22
|
PPIP5K1 interacts with the exocyst complex through a C-terminal intrinsically disordered domain and regulates cell motility. Cell Signal 2016; 28:401-411. [PMID: 26854614 DOI: 10.1016/j.cellsig.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022]
Abstract
Cellular signaling involves coordinated regulation of many events. Scaffolding proteins are crucial regulators of cellular signaling, because they are able to affect numerous events by coordinating specific interactions among multiple protein partners in the same pathway. Scaffolding proteins often contain intrinsically disordered regions (IDR) that facilitate the formation and function of distinct protein complexes. We show that PPIP5K1 contains an unusually long and evolutionarily conserved IDR. To investigate the biological role(s) of this domain, we identified interacting proteins using affinity purification coupled with mass spectrometry. Here, we report that PPIP5K1 is associated with a network of proteins that regulate vesicle-mediated transport. We further identified exocyst complex component 1 as a direct interactor with the IDR of PPIP5K1. Additionally, we report that knockdown of PPIP5K1 decreases motility of HeLa cells in a wound-healing assay. These results suggest that PPIP5K1 might play an important role in regulating function of exocyst complex in establishing cellular polarity and directional migration of cells.
Collapse
|
23
|
Tracking GPCR biosynthesis and degradation using a nonradioactive pulse chase methodology. Methods Cell Biol 2016; 132:217-31. [PMID: 26928546 DOI: 10.1016/bs.mcb.2015.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The β2-adrenergic receptor (β2AR) is a prototypical member of the G protein-coupled receptor (GPCR) superfamily of proteins and is one of the best-characterized GPCRs due to its role in several important physiological systems. Because of limited availability of high quality antibodies against GPCRs, much of the work done on β2AR took advantage of heterologous expression systems. Overexpressed proteins may overwhelm the cellular regulatory machinery leading potentially to responses distinct from the native protein. To address this issue we generated a stable cell line with a tetracycline-inducible β2AR tagged with a FLAG epitope, such that we are able to control the quantity of receptor produced. This allows us to induce a discrete pulse of FLAG-β2AR transcription and translation allowing us to follow the complete life cycle of the protein from synthesis as an immature protein to degradation. We show that such limited pulses of receptor expression lead to signaling phenotypes that more closely reflect endogenous signaling events.
Collapse
|
24
|
Mani I, Garg R, Pandey KN. Role of FQQI motif in the internalization, trafficking, and signaling of guanylyl-cyclase/natriuretic peptide receptor-A in cultured murine mesangial cells. Am J Physiol Renal Physiol 2016; 310:F68-84. [PMID: 26377794 PMCID: PMC4675805 DOI: 10.1152/ajprenal.00205.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/09/2015] [Indexed: 01/24/2023] Open
Abstract
Binding of the cardiac hormone atrial natriuretic peptide (ANP) to transmembrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), produces the intracellular second messenger cGMP in target cells. To delineate the critical role of an endocytic signal in intracellular sorting of the receptor, we have identified a FQQI (Phe(790), Gln(791), Gln(792), and Ile(793)) motif in the carboxyl-terminal region of NPRA. Mouse mesangial cells (MMCs) were transiently transfected with the enhanced green fluorescence protein (eGFP)-tagged wild-type (WT) and mutant constructs of eGFP-NPRA. The mutation FQQI/AAAA, in the eGFP-NPRA cDNA sequence, markedly attenuated the internalization of mutant receptors by almost 49% compared with the WT receptor. Interestingly, we show that the μ1B subunit of adaptor protein-1 binds directly to a phenylalanine-based FQQI motif in the cytoplasmic tail of the receptor. However, subcellular trafficking indicated that immunofluorescence colocalization of the mutated receptor with early endosome antigen-1 (EEA-1), lysosome-associated membrane protein-1 (LAMP-1), and Rab 11 marker was decreased by 57% in early endosomes, 48% in lysosomes, and 42% in recycling endosomes, respectively, compared with the WT receptor in MMCs. The receptor containing the mutated motif (FQQI/AAAA) also produced a significantly decreased level of intracellular cGMP during subcellular trafficking than the WT receptor. The coimmunoprecipitation assay confirmed a decreased level of colocalization of the mutant receptor with subcellular compartments during endocytic processes. The results suggest that the FQQI motif is essential for the internalization and subcellular trafficking of NPRA during the hormone signaling process in intact MMCs.
Collapse
Affiliation(s)
- Indra Mani
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, Louisiana
| | - Renu Garg
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, Louisiana
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, Louisiana
| |
Collapse
|
25
|
Chidiac P, Hébert TE. GPCR Retreat 2014: a good view leads to many discoveries! J Recept Signal Transduct Res 2015; 35:208-12. [PMID: 26366680 DOI: 10.3109/10799893.2015.1072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The GPCR gods smiled on us last year as the 15th Annual GPCR Retreat was held last October 2nd-4th in Bromont, Québec. The fall colors were at their peak and the meeting attendees were also in fine form. The program was one of the best we have seen at any GPCR-related meeting in years and there was a great deal of excitement about new methodological approaches to understanding receptor biology, new concepts in GPCR signaling and a continued emphasis on translation of these discoveries. This year was also the first year we opened the meeting with a short course on biased agonism and how to measure and analyze it.
Collapse
Affiliation(s)
- Peter Chidiac
- a Department of Physiology and Pharmacology , Schulich School of Medicine & Dentistry, University of Western Ontario , London , Ontario , Canada and
| | - Terence E Hébert
- b Department of Pharmacology and Therapeutics , McGill University , Montréal, Québec , Canada
| |
Collapse
|
26
|
Subcellular trafficking of guanylyl cyclase/natriuretic peptide receptor-A with concurrent generation of intracellular cGMP. Biosci Rep 2015; 35:BSR20150136. [PMID: 26374856 PMCID: PMC4626869 DOI: 10.1042/bsr20150136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/14/2015] [Indexed: 12/24/2022] Open
Abstract
Atrial natriuretic peptide (ANP) modulates blood pressure and fluid volume by activation of natriuretic peptide receptor-A (NPRA). Immunofluorescence (IF) studies reveal that NPRA is internalized and redistributed into subcellular compartments with concurrent production of cGMP. Atrial natriuretic peptide (ANP) activates guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which lowers blood pressure and blood volume. The objective of the present study was to visualize internalization and trafficking of enhanced GFP (eGFP)-tagged NPRA (eGFP–NPRA) in human embryonic kidney-293 (HEK-293) cells, using immunofluorescence (IF) and co-immunoprecipitation (co-IP) of eGFP–NPRA. Treatment of cells with ANP initiated rapid internalization and co-localization of the receptor with early endosome antigen-1 (EEA-1), which was highest at 5 min and gradually decreased within 30 min. Similarly, co-localization of the receptor was observed with lysosome-associated membrane protein-1 (LAMP-1); however, after treatment with lysosomotropic agents, intracellular accumulation of the receptor gradually increased within 30 min. Co-IP assays confirmed that the localization of internalized receptors occurred with subcellular organelles during the endocytosis of NPRA. Rab 11, which was used as a recycling endosome (Re) marker, indicated that ∼20% of receptors recycled back to the plasma membrane. ANP-treated cells showed a marked increase in the IF of cGMP, whereas receptor was still trafficking into the intracellular compartments. Thus, after ligand binding, NPRA is rapidly internalized and trafficked from the cell surface into endosomes, Res and lysosomes, with concurrent generation of intracellular cGMP.
Collapse
|
27
|
Tandem affinity purification to identify cytosolic and nuclear gβγ-interacting proteins. Methods Mol Biol 2015; 1234:161-84. [PMID: 25304356 DOI: 10.1007/978-1-4939-1755-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has become clear in recent years that the Gβγ subunits of heterotrimeric proteins serve broad roles in the regulation of cellular activity and interact with many proteins in different subcellular locations including the nucleus. Protein affinity purification is a common method to identify and confirm protein interactions. When used in conjugation with mass spectrometry it can be used to identify novel protein interactions with a given bait protein. The tandem affinity purification (TAP) technique identifies partner proteins bound to tagged protein bait. Combined with protocols to enrich the nuclear fraction of whole cell lysate through sucrose cushions, TAP allows for purification of interacting proteins found specifically in the nucleus. Here we describe the use of the TAP technique on cytosolic and nuclear lysates to identify candidate proteins, through mass spectrometry, that bind to Gβ1 subunits.
Collapse
|
28
|
Adamson RJ, Watts A. Kinetics of the early events of GPCR signalling. FEBS Lett 2014; 588:4701-7. [PMID: 25447525 PMCID: PMC4266533 DOI: 10.1016/j.febslet.2014.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/10/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
Little is known of the kinetics of interactions between GPCRs and their signalling partners. NTS1 binds Gαi1 and Gαs with affinities of 15 ± 6 nM and 31 ± 18 nM (SE), respectively. This SPR assay may be applicable to multiple partners in the signalling cascade. We provide the first direct evidence for GPCR-G protein coupling in nanodiscs.
Neurotensin receptor type 1 (NTS1) is a G protein-coupled receptor (GPCR) that affects cellular responses by initiating a cascade of interactions through G proteins. The kinetic details for these interactions are not well-known. Here, NTS1-nanodisc-Gαs and Gαi1 interactions were studied. The binding affinities of Gαi1 and Gαs to NTS1 were directly measured by surface plasmon resonance (SPR) and determined to be 15 ± 6 nM and 31 ± 18 nM, respectively. This SPR configuration permits the kinetics of early events in signalling pathways to be explored and can be used to initiate descriptions of the GPCR interactome.
Collapse
Affiliation(s)
- Roslin J Adamson
- Biomembrane Structure Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anthony Watts
- Biomembrane Structure Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
29
|
Binda C, Génier S, Cartier A, Larrivée JF, Stankova J, Young JC, Parent JL. A G protein-coupled receptor and the intracellular synthase of its agonist functionally cooperate. ACTA ACUST UNITED AC 2014; 204:377-93. [PMID: 24493589 PMCID: PMC3912537 DOI: 10.1083/jcb.201304015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The GPCR DP1 promotes the activity of L-PGDS, the enzyme that produces the DP1 agonist PGD2, while at the same time L-PGDS promotes the export and activity of DP1 in response to PGD2. Export of newly synthesized G protein–coupled receptors (GPCRs) remains poorly characterized. We show in this paper that lipocalin-type prostaglandin D2 (PGD2) synthase (L-PGDS) interacts intracellularly with the GPCR DP1 in an agonist-independent manner. L-PGDS promotes cell surface expression of DP1, but not of other GPCRs, in HEK293 and HeLa cells, independent of L-PGDS enzyme activity. In addition, formation of a DP1–Hsp90 complex necessary for DP1 export to the cell surface is dependent on the interaction between L-PGDS and the C-terminal MEEVD residues of Hsp90. Surprisingly, PGD2 synthesis by L-PGDS is promoted by coexpression of DP1, suggesting a possible intracrine/autocrine signaling mechanism. In this regard, L-PGDS increases the formation of a DP1–ERK1/2 complex and increases DP1-mediated ERK1/2 signaling. Our findings define a novel cooperative mechanism in which a GPCR (DP1) promotes the activity of the enzyme (L-PGDS) that produces its agonist (PGD2) and in which this enzyme in turn acts as a cofactor (of Hsp90) to promote export and agonist-dependent activity of the receptor.
Collapse
Affiliation(s)
- Chantal Binda
- Service de Rhumatologie, Département de Médecine, 2 Programme d'Immunologie, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, and 3 Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
30
|
Dimers of G-protein coupled receptors as versatile storage and response units. Int J Mol Sci 2014; 15:4856-77. [PMID: 24651459 PMCID: PMC3975428 DOI: 10.3390/ijms15034856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/17/2022] Open
Abstract
The status and use of transmembrane, extracellular and intracellular domains in oligomerization of heptahelical G-protein coupled receptors (GPCRs) are reviewed and for transmembrane assemblies also supplemented by new experimental evidence. The transmembrane-linked GPCR oligomers typically have as the minimal unit an asymmetric ~180 kDa pentamer consisting of receptor homodimer or heterodimer and a G-protein αβγ subunit heterotrimer. With neuropeptide Y (NPY) receptors, this assembly is converted to ~90 kDa receptor monomer-Gα complex by receptor and Gα agonists, and dimers/heteropentamers are depleted by neutralization of Gαi subunits by pertussis toxin. Employing gradient centrifugation, quantification and other characterization of GPCR dimers at the level of physically isolated and identified heteropentamers is feasible with labeled agonists that do not dissociate upon solubilization. This is demonstrated with three neuropeptide Y (NPY) receptors and could apply to many receptors that use large peptidic agonists.
Collapse
|