1
|
Chokas AL, Bickford JS, Barilovits SJ, Rogers RJ, Qiu X, Newsom KJ, Beachy DE, Nick HS. A TEAD1/p65 complex regulates the eutherian-conserved MnSOD intronic enhancer, eRNA transcription and the innate immune response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1205-16. [PMID: 24953189 DOI: 10.1016/j.bbagrm.2014.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022]
Abstract
Manganese superoxide dismutase (MnSOD), a critical anti-oxidant enzyme, detoxifies the mitochondrial-derived reactive oxygen species, superoxide, elicited through normal respiration or the inflammatory response. Proinflammatory stimuli induce MnSOD gene expression through a eutherian-conserved, intronic enhancer element. We identified two prototypic enhancer binding proteins, TEAD1 and p65, that when co-expressed induce MnSOD expression comparable to pro-inflammatory stimuli. TEAD1 causes the nuclear sequestration of p65 leading to a novel TEAD1/p65 complex that associates with the intronic enhancer and is necessary for cytokine induction of MnSOD. Unlike typical NF-κB-responsive genes, the induction of MnSOD does not involve p50. Beyond MnSOD, the TEAD1/p65 complex regulates a subset of genes controlling the innate immune response that were previously viewed as solely NF-κB-dependent. We also identified an enhancer-derived RNA (eRNA) that is induced by either proinflammatory stimuli or the TEAD1/p65 complex, potentially linking the intronic enhancer to intra- and interchromosomal gene regulation through the inducible eRNA.
Collapse
Affiliation(s)
- Ann L Chokas
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Justin S Bickford
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sarah J Barilovits
- Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Richard J Rogers
- Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xiaolei Qiu
- Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kimberly J Newsom
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dawn E Beachy
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Harry S Nick
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Hucl T, Brody JR, Gallmeier E, Iacobuzio-Donahue CA, Farrance IK, Kern SE. High Cancer-Specific Expression of Mesothelin (MSLN) Is Attributable to an Upstream Enhancer Containing a Transcription Enhancer Factor–Dependent MCAT Motif. Cancer Res 2007; 67:9055-65. [PMID: 17909009 DOI: 10.1158/0008-5472.can-07-0474] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identification of genes with cancer-specific overexpression offers the potential to efficiently discover cancer-specific activities in an unbiased manner. We apply this paradigm to study mesothelin (MSLN) overexpression, a nearly ubiquitous, diagnostically and therapeutically useful characteristic of pancreatic cancer. We identified an 18-bp upstream enhancer, termed CanScript, strongly activating transcription from an otherwise weak tissue-nonspecific promoter and operating selectively in cells having aberrantly elevated cancer-specific MSLN transcription. Introducing mutations into CanScript showed two functionally distinct sites: an Sp1-like site and an MCAT element. Gel retardation and chromatin immunoprecipitation assays showed the MCAT element to be bound by transcription enhancer factor (TEF)-1 (TEAD1) in vitro and in vivo. The presence of TEF-1 was required for MSLN protein overexpression as determined by TEF-1 knockdown experiments. The cancer specificity seemed to be provided by a putative limiting cofactor of TEF-1 that could be outcompeted by exogenous TEF-1 only in a MSLN-overexpressing cell line. A CanScript concatemer offered enhanced activity. These results identify a TEF family member as a major regulator of MSLN overexpression, a fundamental characteristic of pancreatic and other cancers, perhaps due to an upstream and highly frequent aberrant cellular activity. The CanScript sequence represents a modular element for cancer-specific targeting, potentially suitable for nearly a third of human malignancies.
Collapse
Affiliation(s)
- Tomas Hucl
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
3
|
Yamada K, Ogawa H, Honda S, Harada N, Okazaki T. A GCM motif protein is involved in placenta-specific expression of human aromatase gene. J Biol Chem 1999; 274:32279-86. [PMID: 10542267 DOI: 10.1074/jbc.274.45.32279] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A new cis-element, trophoblast-specific element 2 (TSE2) is located in the placenta-specific enhancer of the human aromatase gene that dictates its tissue-specific expression. In the minimum enhancer region, an element similar to the trophoblast-specific element (TSE), originally described for the human chorionic gonadotropin alpha-subunit gene, also exists (Yamada, K., Harada, N., Honda, S., and Takagi, Y. (1995) J. Biol. Chem. 270, 25064-25069). The co-presence of TSE and TSE2 is required to direct trophoblast-specific expression driven by a heterologous thymidine kinase promoter. A 2562-base pair cDNA clone encoding a 436-amino acid protein that binds to TSE2 was isolated from a human placental cDNA library using a yeast one-hybrid system with the TSE2 as a reporter sequence. The protein was revealed to be identical to hGCMa, a mammalian homologue of the Drosophila GCM (glia cells missing) protein. Expression of hGCMa is restricted to the placenta. The protein also binds to PLE1 in the leptin promoter among other cis-elements reported to confer placenta-specific expression, suggesting that hGCMa is a placenta-specific transcription regulator, possibly involved in the expression of multiple placenta-specific genes.
Collapse
Affiliation(s)
- K Yamada
- Institute for Comprehensive Medical Science, School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | |
Collapse
|
4
|
Rachubinski RA, Marcus SL, Capone JP. The p56(lck)-interacting protein p62 stimulates transcription via the SV40 enhancer. J Biol Chem 1999; 274:18278-84. [PMID: 10373430 DOI: 10.1074/jbc.274.26.18278] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p62 is a recently identified ubiquitin-binding, cytosolic phosphoprotein that interacts with several signal transduction molecules including the tyrosine kinase p56(lck) and the protein kinase C-zeta. p62 is therefore suggested to serve an important role in signal transduction in the cell, although the physiological function of p62 remains undefined. Here we demonstrate by transient transfection assays that p62 stimulates the transcription of reporter genes linked to the simian virus 40 (SV40) enhancer. A putative p62-responsive element was localized to the B domain of the distal 72-base pair repeat of the SV40 enhancer. p62 was unable to bind this element in vitro, nor was it able to activate transcription when directly tethered to a promoter, suggesting that p62 stimulates transcription via an indirect mechanism. Stimulation of transcription mediated by p62 was dependent on its amino-terminal region, which is also necessary for interaction with cell surface signaling molecules. These findings indicate that p62 may link extracellular signals directly to transcriptional responses, and identify the SV40 enhancer as a downstream target for signal transduction pathways in which p62 participates.
Collapse
Affiliation(s)
- R A Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
5
|
Jiang SW, Wu K, Eberhardt NL. Human placental TEF-5 transactivates the human chorionic somatomammotropin gene enhancer. Mol Endocrinol 1999; 13:879-89. [PMID: 10379887 DOI: 10.1210/mend.13.6.0288] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human chorionic somatomammotropin (hCS) gene expression in the placenta is controlled by an enhancer (CSEn) containing SV40-related GT-IIC and SphI/SphII enhansons. These enhancers are controlled by members of the transcription enhancer factor-1 (TEF-1) family. Recently TEF-5, whose mRNA is abundant in placenta, was shown to bind cooperatively to a unique, tandemly repeated element in CSEn2, suggesting that TEF-5 regulates CSEn activity. However, expression of TEF-5 using a cDNA lacking the 5'-untranslated region and containing a modified translation initiation site was not accompanied by CSEn activation. Using nested, degenerate PCR primers corresponding to conserved TEF domains, several novel TEF-1-related cDNAs have been cloned from a human placental cDNA library. The open reading frame of one 3033-bp clone was identical to TEF-5 and contained 300- and 1423-bp 5'- and 3'-untranslated regions, respectively. The in vitro generated approximately 53-kDa TEF-5 polypeptide binds specifically to GT-IIC and SphI/SphII oligonucleotides. Overexpression of TEF-5 in BeWo cells using the intact 3033-bp cDNA transactivates the hCS and SV40 enhancers and artificial enhancers comprised of tandemly repeated GT-IIC enhansons, but not OCT enhansons. The data demonstrate that TEF-5 is a transactivator that is likely involved in the transactivation of CSEn enhancer function. Further, the data suggest that elements within the untranslated regions, initiation site, or both control TEF-5 expression in ways that influence its transactivation function.
Collapse
Affiliation(s)
- S W Jiang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
6
|
Sun Y, Duckworth ML. Identification of a placental-specific enhancer in the rat placental lactogen II gene that contains binding sites for members of the Ets and AP-1 (activator protein 1) families of transcription factors. Mol Endocrinol 1999; 13:385-99. [PMID: 10076996 DOI: 10.1210/mend.13.3.0243] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously identified a 3-kb proximal 5'-flanking region of the rat placental lactogen (rPLII) gene that is important for reporter gene transcription in the rat trophoblast cell line, Rcho, and targets expression to the placentas of transgenic mice. In our current studies we have used further deletion analysis and transfection studies in Rcho and GC cells to map more precisely the locations of regulatory elements involved in this placental expression. We show that sequences between - 1435 and -765 are necessary for minimal expression in Rcho cells and that there are negative regulatory elements between -3031 to -2838 and -1729 to -1435. Most importantly, we have identified a fragment between -1793 to -1729 that is essential for expression levels characteristic of the complete 3-kb 5'-region. When linked to the herpes simplex thymidine kinase minimal promoter, this fragment acts as an enhancing element in Rcho but not GC cells. Deoxyribonuclease I (DNAse I) protection and electrophoretic mobility shift assays with nuclear extracts and in vitro translated proteins identify binding sites for members of the activator protein-1 (AP-1) and Ets families of transcription factors. Site-directed mutagenesis of the individual AP-1- and Ets-binding sites leads to a partial loss of the enhancing activity; a double AP-1/Ets mutation leads to a complete loss of activity, demonstrating the functional importance of these sites. By these criteria, putative GATA-binding sites located within the enhancing fragment are not active. These new data suggest an important role for this enhancing fragment in rPLII placental giant cell expression and are the first to implicate a member of the Ets family in the regulation of this gene family.
Collapse
Affiliation(s)
- Y Sun
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
7
|
Wang Z, Melmed S. Functional map of a placenta-specific enhancer of the human leukemia inhibitory factor receptor gene. J Biol Chem 1998; 273:26069-77. [PMID: 9748286 DOI: 10.1074/jbc.273.40.26069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported a placenta-specific enhancer in the human leukemia inhibitory factor receptor (LIFR) gene and now show detailed characterization of the 226-base pair enhancer (-4625/-4400 nucleotides). Four of twenty-two mutants in linker analysis showed reduced promoter activities to 45, 30, 10, and 10%, respectively. Specific binding of region A (-4617/-4602) with nuclear extract was competed by a known Oct-1 oligo and supershifted by Oct-1 antibody. Specific binding of region B (-4549/-4535) was competed by a GATA oligo, but could not be supershifted by four GATA antibodies. Nevertheless, mutagenesis showed that critical bases in region B were identical to the GATA core motif, indicating that region B may bind to a novel GATA family transcription factor. The other two adjacent regions designated as region C (-4464/-4445) showed no known consensus binding sites, and their specific placental JEG-3 nuclear extract binding was not evident in nonplacental nuclear extracts and was not competed by a trophoblast specific element (TSE), indicating that region C is a novel placenta-specific element (PSE, CATTTCCTGAACTAGTTTTT). Footprinting localized the binding boundary of PSE-binding protein (PSEB), and three Gs were found to be important for specific PSE binding. UV cross-linking showed that PSEB had a molecular mass of approximately 160 kDa, substituting the PSE with two previously reported placenta elements TSE or chorionic somatomammotropin enhancer factor 1 (CSEF-1) motifs resulted in markedly different promoter activities, indicating that PSEB is indeed different from TSE binding protein or CSEF-1. These results are the first demonstration that a novel PSE is the major element for placenta-specific enhancer activity in human LIFR gene.
Collapse
Affiliation(s)
- Z Wang
- Cedars-Sinai Research Institute, UCLA School of Medicine, Los Angeles, California 90048, USA
| | | |
Collapse
|