1
|
Eisen A, Vucic S, Kiernan MC. Amyotrophic lateral sclerosis represents corticomotoneuronal system failure. Muscle Nerve 2025; 71:499-511. [PMID: 39511939 PMCID: PMC11887532 DOI: 10.1002/mus.28290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Several decades have passed since the anterograde corticomotoneuronal hypothesis for amyotrophic lateral sclerosis (ALS) was proposed. The intervening years have witnessed its emergent support based on anatomical, pathological, physiological, neuroimaging, and molecular biological studies. The evolution of an extensive corticomotoneuronal system appears restricted to the human species, with ALS representing a uniquely human disease. While some, very select non-human primates have limited corticomotoneuronal projections, these tend to be absent in all other animals. From a general perspective, the early clinical features of ALS may be considered to reflect failure of the corticomotoneuronal system. The characteristic loss of skilled motor dexterity involving the limbs, and speech impairment through progressive bulbar dysfunction specifically involve those motor units having the strongest corticomotoneuronal projections. A similar explanation likely underlies the unique "split phenotypes" that have now been well characterized in ALS. Large Betz cells and other pyramidal corticomotoneuronal projecting neurons, with their extensive dendritic arborization, are particularly vulnerable to the elements of the ALS exposome such as aging, environmental stress and lifestyle changes. Progressive failure of the proteosome impairs nucleocytoplasmic shuffling and induces toxic but soluble TDP-43 to aggregate in corticomotoneurons. Betz cell failure is further accentuated through dysfunction of its profuse dendritic arborizations. Clarification of system specific genomes and neural networks will likely promote the initiation of precision medicine approaches directed to support the key structure that underlies the neurological manifestations of ALS, the corticomotoneuronal system.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Steve Vucic
- Brain and Nerve Research CenterConcord Clinical School, University of SydneySydneyNew South WalesAustralia
| | - Matthew C. Kiernan
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- NeuroscienceUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
2
|
Kleinerova J, Chipika RH, Tan EL, Yunusova Y, Marchand-Pauvert V, Kassubek J, Pradat PF, Bede P. Sensory Dysfunction in ALS and Other Motor Neuron Diseases: Clinical Relevance, Histopathology, Neurophysiology, and Insights from Neuroimaging. Biomedicines 2025; 13:559. [PMID: 40149536 PMCID: PMC11940395 DOI: 10.3390/biomedicines13030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The clinical profiles of MNDs are dominated by inexorable motor decline, but subclinical proprioceptive, nociceptive and somatosensory deficits may also exacerbate mobility, dexterity, and bulbar function. While extra-motor pathology and frontotemporal involvement are widely recognised in motor neuron diseases (MNDs), reports of sensory involvement are conflicting. The potential contribution of sensory deficits to clinical disability is not firmly established and the spectrum of sensory manifestations is poorly characterised. Methods: A systematic review was conducted to examine the clinical, neuroimaging, electrophysiology and neuropathology evidence for sensory dysfunction in MND phenotypes. Results: In ALS, paraesthesia, pain, proprioceptive deficits and taste alterations are sporadically reported and there is also compelling electrophysiological, histological and imaging evidence of sensory network alterations. Gait impairment, impaired dexterity, and poor balance in ALS are likely to be multifactorial, with extrapyramidal, cerebellar, proprioceptive and vestibular deficits at play. Human imaging studies and animal models also confirm dorsal column-medial lemniscus pathway involvement as part of the disease process. Sensory symptoms are relatively common in spinal and bulbar muscular atrophy (SBMA) and Hereditary Spastic Paraplegia (HSP), but are inconsistently reported in primary lateral sclerosis (PLS) and in post-poliomyelitis syndrome (PPS). Conclusions: Establishing the prevalence and nature of sensory dysfunction across the spectrum of MNDs has a dual clinical and academic relevance. From a clinical perspective, subtle sensory deficits are likely to impact the disability profile and care needs of patients with MND. From an academic standpoint, sensory networks may be ideally suited to evaluate propagation patterns and the involvement of subcortical grey matter structures. Our review suggests that sensory dysfunction is an important albeit under-recognised facet of MND.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Rangariroyashe H. Chipika
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yana Yunusova
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany;
| | - Pierre-Francois Pradat
- Laboratoire d’Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, 75013 Paris, France
- Department of Neurology, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Neurology, St James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| |
Collapse
|
3
|
Matsuda C, Nakayama Y, Haraguchi M, Morishima R, Itagaki Y, Bokuda K, Kimura H, Takahashi K, Shimizu T. Patients' choices regarding ventilatory support affect opioid use in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2025:1-8. [PMID: 39850989 DOI: 10.1080/21678421.2025.2453463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025]
Abstract
OBJECTIVE To investigate the impact of different ventilatory support options on opioid use among patients with amyotrophic lateral sclerosis (ALS). METHODS We retrospectively reviewed 889 consecutive patients with ALS and enrolled 399 eligible patients. All patients were followed until death or tracheostomy. Clinical characteristics of patients and the timing of initial opioid administration were evaluated. Patients were categorized into four subgroups: (1) 160 patients who never used a ventilator, (2) 120 patients who used only noninvasive ventilation (NIV), (3) 61 patients who transitioned from NIV to tracheostomy and invasive ventilation (TIV), and (4) 58 patients who underwent TIV without prior NIV. We compared the prevalence of opioid use across these groups and assessed its relationship with ventilatory support options using multivariate logistic analysis. RESULTS A total of 130 patients (32.6%) used opioids. The number of patients who used opioids in each group was as follows: 55 (34.4%) in Group 1, 69 (57.5%) in Group 2, 5 (8.2%) in Group 3, and 1 (1.7%) in Group 4 (p < 0.0001). Multivariate logistic analysis revealed that, compared to Group 1, the use of NIV only was positively associated with opioid use (p = 0.002). In contrast, transitioning from NIV to TIV (Group 3) and using TIV only (Group 4) were negatively associated with opioid use (p = 0.0001 and 0.001, respectively). CONCLUSIONS The choice of ventilatory support significantly influences opioid use in patients with ALS. Patients who opted against TIV required opioids to relieve distress more commonly than those who chose TIV.
Collapse
Affiliation(s)
- Chiharu Matsuda
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan and
| | - Yuki Nakayama
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan and
| | - Michiko Haraguchi
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan and
| | - Ryo Morishima
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yumi Itagaki
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan and
| | - Kota Bokuda
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Hideki Kimura
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Ferullo L, Risi B, Caria F, Olivieri E, Poli L, Gazzina S, Leggio U, Bertella E, Giovanelli G, Labella B, Padovani A, Filosto M. Gold Coast Criteria in ALS Diagnosis: A Real-World Experience. Brain Sci 2024; 14:1055. [PMID: 39595818 PMCID: PMC11592046 DOI: 10.3390/brainsci14111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Revised El Escorial (rEEC) and Awaji criteria are currently used for diagnosing and categorizing amyotrophic lateral sclerosis (ALS). However, they are complex; their sensitivity is still not optimal for research purposes, and they present high inter-rater variability in clinical practice. To address these points, in 2019, a new set of diagnostic criteria was proposed, namely the Gold Coast criteria (GCC), characterized by a dichotomous diagnostic categorization, i.e., ALS or not ALS. Methods: In order to investigate the sensitivity, specificity, and clinical usefulness of GCC in a practical clinical setting, we retrospectively evaluated 131 patients diagnosed with ALS and 104 control subjects. ALSFRS-R score, electrophysiological tests, neuroradiological investigations, and CSF analysis were obtained. rEEC, Awaji, and GCC were applied at the first and last evaluations. Results: The sensitivity of GCC (93.1%; 96.1%) was greater than rEEC (71.8%; 87%) and Awaji criteria (77.8%; 89.3%) both at the first visit and last follow-up. The GCC's specificity (28.8%) is lower than that of the other two criteria (rEEC 45.2%; Awaji 43.3%). Conclusions: Our study suggests that in a real-world setting, the GCC are more sensitive and have substantially lower risk of false negative diagnoses than rEEC and Awaji criteria. Although rEEC had the highest specificity, they may delay the diagnosis. Systematically using the GCC could help to achieve an earlier diagnosis and quickly refer patients to the correct management. The low specificity of GCC is likely to not significantly impact patient recruitment in clinical trials; therefore, its use might allow a faster and earlier enrollment.
Collapse
Affiliation(s)
- Lucia Ferullo
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (L.F.); (E.O.); (B.L.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25123 Brescia, Italy; (L.P.); (S.G.); (U.L.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (E.B.); (G.G.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (E.B.); (G.G.)
| | - Emanuele Olivieri
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (L.F.); (E.O.); (B.L.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25123 Brescia, Italy; (L.P.); (S.G.); (U.L.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25123 Brescia, Italy; (L.P.); (S.G.); (U.L.)
| | - Stefano Gazzina
- Unit of Neurology, ASST Spedali Civili, 25123 Brescia, Italy; (L.P.); (S.G.); (U.L.)
| | - Ugo Leggio
- Unit of Neurology, ASST Spedali Civili, 25123 Brescia, Italy; (L.P.); (S.G.); (U.L.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (E.B.); (G.G.)
| | - Giorgia Giovanelli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (E.B.); (G.G.)
| | - Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (L.F.); (E.O.); (B.L.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25123 Brescia, Italy; (L.P.); (S.G.); (U.L.)
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (L.F.); (E.O.); (B.L.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25123 Brescia, Italy; (L.P.); (S.G.); (U.L.)
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (L.F.); (E.O.); (B.L.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (E.B.); (G.G.)
| |
Collapse
|
5
|
Vucic S, de Carvalho M, Bashford J, Alix JJP. Contribution of neurophysiology to the diagnosis and monitoring of ALS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:87-118. [PMID: 38802184 DOI: 10.1016/bs.irn.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This chapter describes the role of neurophysiological techniques in diagnosing and monitoring amyotrophic lateral sclerosis (ALS). Despite many advances, electromyography (EMG) remains a keystone investigation from which to build support for a diagnosis of ALS, demonstrating the pathophysiological processes of motor unit hyperexcitability, denervation and reinnervation. We consider development of the different diagnostic criteria and the role of EMG therein. While not formally recognised by established diagnostic criteria, we discuss the pioneering studies that have demonstrated the diagnostic potential of transcranial magnetic stimulation (TMS) of the motor cortex and highlight the growing evidence for TMS in the diagnostic process. Finally, accurately monitoring disease progression is crucial for the successful implementation of clinical trials. Neurophysiological measures of disease state have been incorporated into clinical trials for over 20 years and we review prominent techniques for assessing disease progression.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School and Department of Neurology, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Mamede de Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal; Department of Neurosciences, CHULN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - James Bashford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James J P Alix
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
6
|
Lemon R. The Corticospinal System and Amyotrophic Lateral Sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 160:56-67. [PMID: 38401191 DOI: 10.1016/j.clinph.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/23/2023] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
Corticospinal neurons located in motor areas of the cerebral neocortex project corticospinal axons which synapse with the spinal network; a parallel corticobulbar system projects to the cranial motor network and to brainstem motor pathways. The primate corticospinal system has a widespread cortical origin and an extensive range of different fibre diameters, including thick, fast-conducting axons. Direct cortico-motoneuronal (CM) projections from the motor cortex to arm and hand alpha motoneurons are a recent evolutionary feature, that is well developed in dexterous primates and particularly in humans. Many of these projections originate from the caudal subdivision of area 4 ('new' M1: primary motor cortex). They arise from corticospinal neurons of varied soma size, including those with fast- and relatively slow-conducting axons. This CM system has been shown to be involved in the control of skilled movements, carried out with fractionation of the distal extremities and at low force levels. During movement, corticospinal neurons are activated quite differently from 'lower' motoneurons, and there is no simple or fixed functional relationship between a so-called 'upper' motoneuron and its target lower motoneuron. There are key differences in the organisation and function of the corticospinal and CM system in primates versus non-primates, such as rodents. These differences need to be recognized when making the choice of animal model for understanding disorders such as amyotrophic lateral sclerosis (ALS). In this neurodegenerative brain disease there is a selective loss of fast-conducting corticospinal axons, and their synaptic connections, and this is reflected in responses to non-invasive cortical stimuli and measures of cortico-muscular coherence. The loss of CM connections influencing distal limb muscles results in a differential loss of muscle strength or 'split-hand' phenotype. Importantly, there is also a unique impairment in the coordination of skilled hand tasks that require fractionation of digit movement. Scores on validated tests of skilled hand function could be used to assess disease progression.
Collapse
Affiliation(s)
- Roger Lemon
- Department of Clinical and Movement Sciences, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK.
| |
Collapse
|
7
|
de Carvalho M, Swash M. Diagnosis and differential diagnosis of MND/ALS: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:27-38. [PMID: 38249779 PMCID: PMC10796809 DOI: 10.1016/j.cnp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
•Accurate and rapid diagnosis of amyotrophic lateral sclerosis (ALS) is important to prevent erroneous interventions. •The recent Gold Coast criteria are easily applicable and have high sensitivity and specificity. •Future developments will help to distinguish ALS as a specific clinical-pathologic entity. Accurate and rapid diagnosis of amyotrophic lateral sclerosis (ALS) is essential in order to provide accurate information for patient and family, to avoid time-consuming investigations and to permit an appropriate management plan. ALS is variable regarding presentation, disease progression, genetic profile and patient reaction to the diagnosis. It is obviously important to exclude treatable conditions but, in most patients, for experienced neurologists the diagnosis is clear-cut, depending on the presence of progressive upper and lower motor neuron signs. Patients with signs of restricted lower motor neuron (LMN) or upper motor neuron (UMN) dysfunction may present diagnostic difficulty, but electromyography (EMG) is often a determinant diagnostic test since it may exclude other disorders. Transcranial magnetic stimulation may aid detection of UMN dysfunction, and brain and spinal cord MRI, ultrasound and blood neurofilament measurements, have begun to have clinical impact, although none are themselves diagnostic tests. Several sets of diagnostic criteria have been proposed in the past; all rely on clinical LMN and UMN signs in different anatomic territories, EMG changes, exclusion of other disorders, and disease progression, in particular evidence of spreading to other anatomic territories. Fasciculations are a characteristic clinical feature and increased importance is now attached to fasciculation potentials detected by EMG, when associated with classical signs of denervation and reinnervation. The Gold Coast diagnostic criteria rely on the presence of UMN and LMN signs in one (or more) anatomic territory, or LMN signs in two (or more) anatomic territories, recognizing the fundamental clinical requirements of disease progression and exclusion of other diseases. Recent studies confirm a high sensitivity without loss of specificity using these Gold Coast criteria. In considering the diagnosis of ALS a critical question for future understanding is whether ALS should be considered a syndrome or a specific clinico-pathologic entity; this can only be addressed in the light of more complete knowledge.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Faculdade de Medicina- Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa-Norte, Lisbon, Portugal
| | - Michael Swash
- Faculdade de Medicina- Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal
- Departments of Neurology and Neurosciences, Barts and the London School of Medicine, Queen Mary University of London and Royal London Hospital, UK
| |
Collapse
|
8
|
Vacchiano V, Palombo F, Ormanbekova D, Fiorini C, Fiorentino A, Caporali L, Mastrangelo A, Valentino ML, Capellari S, Liguori R, Carelli V. The genetic puzzle of a SOD1-patient with ocular ptosis and a motor neuron disease: a case report. Front Genet 2023; 14:1322067. [PMID: 38152653 PMCID: PMC10751346 DOI: 10.3389/fgene.2023.1322067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a complex genetic architecture, showing monogenic, oligogenic, and polygenic inheritance. In this study, we describe the case of a 71 years-old man diagnosed with ALS with atypical clinical features consisting in progressive ocular ptosis and sensorineural deafness. Genetic analyses revealed two heterozygous variants, in the SOD1 (OMIM*147450) and the TBK1 (OMIM*604834) genes respectively, and furthermore mitochondrial DNA (mtDNA) sequencing identified the homoplasmic m.14484T>C variant usually associated with Leber's Hereditary Optic Neuropathy (LHON). We discuss how all these variants may synergically impinge on mitochondrial function, possibly contributing to the pathogenic mechanisms which might ultimately lead to the neurodegenerative process, shaping the clinical ALS phenotype enriched by adjunctive clinical features.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Alessia Fiorentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Shimizu T, Nakayama Y, Bokuda K, Takahashi K. Sensory Gating during Voluntary Finger Movement in Amyotrophic Lateral Sclerosis with Sensory Cortex Hyperexcitability. Brain Sci 2023; 13:1325. [PMID: 37759926 PMCID: PMC10526384 DOI: 10.3390/brainsci13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cortical responses in somatosensory evoked potentials (SEP) are enhanced in patients with amyotrophic lateral sclerosis (ALS). This study investigated whether sensory gating is involved in the pathophysiology of sensory cortical hyperactivity in ALS patients. The median nerve SEP was recorded at rest and during voluntary finger movements in 14 ALS patients and 13 healthy control subjects. The parietal N20, P25, and frontal N30 were analyzed, and sensory gating was assessed by measuring the amplitude of each component during finger movement. The amplitudes of the N20 onset-peak, N20 peak-P25 peak, and N30 onset-peak were higher in ALS patients than in controls. Nonetheless, there were no significant differences in the amplitude reduction ratio of SEPs between patients and controls. There was a significant correlation between the baseline amplitudes of the N20 onset-peak or N20 peak-P25 peak and their gating ratios in patients with ALS. Our findings indicate that the excitability of the primary sensory cortex and secondary motor cortex is enhanced in ALS, while sensory gating is preserved in the early stages of ALS. This result suggests that enhanced SEP is caused by the hyperexcitability of the primary sensory and secondary motor cortices but not by the dysfunction of inhibitory mechanisms during voluntary movements.
Collapse
Affiliation(s)
- Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183-0042, Japan; (K.B.); (K.T.)
| | - Yuki Nakayama
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kota Bokuda
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183-0042, Japan; (K.B.); (K.T.)
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183-0042, Japan; (K.B.); (K.T.)
| |
Collapse
|
10
|
Castro J, Swash M, de Carvalho M. The cutaneous silent period as a measure of upper motor neuron dysfunction in amyotrophic lateral sclerosis. Neurophysiol Clin 2023; 53:102843. [PMID: 36716610 DOI: 10.1016/j.neucli.2022.102843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES We investigated the cutaneous silent period (CutSP) as a measure of upper motor neuron (UMN) dysfunction in amyotrophic lateral sclerosis. METHODS The onset latency, duration, and amount of EMG suppression of the CutSP were compared with clinical UMN signs in 24 patients with amyotrophic lateral sclerosis (ALS). UMN signs were quantified using a clinical index and transcranial magnetic stimulation (TMS). Central motor conduction time (CMCT), cortical motor threshold and motor evoked potential amplitudes were assessed as measures of UMN dysfunction. CutSP was studied in abductor digit minimi (ADM) and tibialis anterior (TA) EMG recordings following stimulation of the 5th finger and sural nerves respectively. Non-parametric tests and binomial logistic regression were applied to evaluate the data. RESULTS CutSP onset latency was increased in ALS patients, compared to healthy controls, both for ADM and TA muscles. In limbs with clinical UMN signs or abnormal TMS findings, the CutSP onset latency was particularly increased. There was a significant positive correlation between CutSP onset latency and the UMN score in both upper and lower limbs. In TA muscles there was also a negative correlation between CutSP onset latency and EMG suppression. The logistic regression model based on CutSP parameters correctly classified more than 70% of the cases regarding the presence of clinical signs of UMN lesion, in both upper and lower limbs. The results were not significant for TMS. CONCLUSION We conclude that upper limb CutSP changes associates with UMN lesion in ALS. This neurophysiological measurement merits further investigation in ALS.
Collapse
Affiliation(s)
- José Castro
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal.
| | - Michael Swash
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
11
|
McCluskey G, Morrison KE, Donaghy C, McConville J, McCarron MO, McVerry F, Duddy W, Duguez S. Serum Neurofilaments in Motor Neuron Disease and Their Utility in Differentiating ALS, PMA and PLS. Life (Basel) 2023; 13:1301. [PMID: 37374084 DOI: 10.3390/life13061301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Neurofilament levels are elevated in many neurodegenerative diseases and have shown promise as diagnostic and prognostic biomarkers in Amyotrophic Lateral Sclerosis (ALS), the most common form of Motor Neuron Disease (MND). This study assesses serum neurofilament light (NFL) and neurofilament heavy (NFH) chain concentrations in patients with ALS, other variants of motor neuron disease such as Progressive Muscular Atrophy (PMA) and Primary Lateral Sclerosis (PLS), and a range of other neurological diseases. It aims to evaluate the use of NFL and NFH to differentiate these conditions and for the prognosis of MND disease progression. NFL and NFH levels were quantified using electrochemiluminescence immunoassays (ECLIA). Both were elevated in 47 patients with MND compared to 34 patients with other neurological diseases and 33 healthy controls. NFL was able to differentiate patients with MND from the other groups with a Receiver Operating Characteristic (ROC) curve area under the curve (AUC) of 0.90 (p < 0.001). NFL correlated with the rate of disease progression in MND (rho 0.758, p < 0.001) and with the ALS Functional Rating Scale (rho -0.335, p = 0.021). NFL levels were higher in patients with ALS compared to both PMA (p = 0.032) and PLS (p = 0.012) and were able to distinguish ALS from both PMA and PLS with a ROC curve AUC of 0.767 (p = 0.005). These findings support the use of serum NFL to help diagnose and differentiate types of MND, in addition to providing prognostic information to patients and their families.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Karen E Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen's University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - John McConville
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Ulster Hospital, Belfast BT16 1RH, UK
| | - Mark O McCarron
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Ferghal McVerry
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| |
Collapse
|
12
|
Younger DS. Critical illness-associated weakness and related motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:707-777. [PMID: 37562893 DOI: 10.1016/b978-0-323-98818-6.00031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Weakness of limb and respiratory muscles that occurs in the course of critical illness has become an increasingly common and serious complication of adult and pediatric intensive care unit patients and a cause of prolonged ventilatory support, morbidity, and prolonged hospitalization. Two motor disorders that occur singly or together, namely critical illness polyneuropathy and critical illness myopathy, cause weakness of limb and of breathing muscles, making it difficult to be weaned from ventilatory support, commencing rehabilitation, and extending the length of stay in the intensive care unit, with higher rates of morbidity and mortality. Recovery can take weeks or months and in severe cases, and may be incomplete or absent. Recent findings suggest an improved prognosis of critical illness myopathy compared to polyneuropathy. Prevention and treatment are therefore very important. Its management requires an integrated team approach commencing with neurologic consultation, creatine kinase (CK) measurement, detailed electrodiagnostic, respiratory and neuroimaging studies, and potentially muscle biopsy to elucidate the etiopathogenesis of the weakness in the peripheral and/or central nervous system, for which there may be a variety of causes. These tenets of care are being applied to new cases and survivors of the coronavirus-2 disease pandemic of 2019. This chapter provides an update to the understanding and approach to critical illness motor disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
13
|
Viader F. La sclérose latérale amyotrophique : une maladie neurodégénérative emblématique. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Younger DS. Spinal cord motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:3-42. [PMID: 37620076 DOI: 10.1016/b978-0-323-98817-9.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Spinal cord diseases are frequently devastating due to the precipitous and often permanently debilitating nature of the deficits. Spastic or flaccid paraparesis accompanied by dermatomal and myotomal signatures complementary to the incurred deficits facilitates localization of the insult within the cord. However, laboratory studies often employing disease-specific serology, neuroradiology, neurophysiology, and cerebrospinal fluid analysis aid in the etiologic diagnosis. While many spinal cord diseases are reversible and treatable, especially when recognized early, more than ever, neuroscientists are being called to investigate endogenous mechanisms of neural plasticity. This chapter is a review of the embryology, neuroanatomy, clinical localization, evaluation, and management of adult and childhood spinal cord motor disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
15
|
Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232415521. [PMID: 36555161 PMCID: PMC9779879 DOI: 10.3390/ijms232415521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is pre-eminently a motor disease, the existence of non-motor manifestations, including sensory involvement, has been described in the last few years. Although from a clinical perspective, sensory symptoms are overshadowed by their motor manifestations, this does not mean that their pathological significance is not relevant. In this review, we have made an extensive description of the involvement of sensory and autonomic systems described to date in ALS, from clinical, neurophysiological, neuroimaging, neuropathological, functional, and molecular perspectives.
Collapse
|
16
|
Strong MJ, Swash M. Finding Common Ground on the Site of Onset of Amyotrophic Lateral Sclerosis. Neurology 2022; 99:1042-1048. [PMID: 36261296 PMCID: PMC9754652 DOI: 10.1212/wnl.0000000000201387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The fundamental origin of amyotrophic lateral sclerosis (ALS) has remained an enigma since its earliest description as a relentlessly progressive degeneration with prominent neuromuscular manifestations that are associated with upper and lower motor neuron dysfunction. Although this remains the hallmark of ALS, a significant proportion of patients will also demonstrate one or more features of frontotemporal dysfunction, including a frontotemporal dementia (FTD). Understanding whether these 2 seemingly disparate syndromes are simply reflective of the co-occurrence of 2 distinct pathologic processes or the clinical manifestations of a common pathophysiologic derangement involving the brain more widely has gripped contemporary ALS researchers. Supporting a commonality of causation, both ALS and FTD show an alteration in the metabolism of TAR DNA-binding protein 43, marked by a shift in nucleocytoplasmic localization alongside a broad range of neuronal cytoplasmic inclusions consisting of pathologic aggregates of RNA-binding proteins. Similarly, several disease-associated or disease-modifying genetic variants that are shared between the 2 disorders suggest shared underlying mechanisms. In both, a prominent glial response has been postulated to contribute to non-cell-autonomous spread. A more contemporary hypothesis, however, suggests that syndromes of cortical and subcortical dysfunction are driven by impairments in discrete neural networks. This postulates that such networks, including networks subserving motor or cognitive function, possess unique and selective vulnerabilities to either single molecular toxicities or combinations thereof. The co-occurrence of one or more network dysfunctions in ALS and FTD is thus a reflection not of unique neuroanatomic correlates but rather of shared molecular vulnerabilities. The basis of such shared vulnerabilities becomes the fulcrum around which the next advances in our understanding of ALS and its possible therapy will develop.
Collapse
Affiliation(s)
- Michael J Strong
- From the Department of Clinical Neurological Sciences (M.J.S.), Western University, London, Canada; Department of Neurology (M.S.), Barts and the London School of Medicine QMUL, United Kingdom; and Institute of Neuroscience (M.S.), University of Lisbon, Portugal.
| | - Michael Swash
- From the Department of Clinical Neurological Sciences (M.J.S.), Western University, London, Canada; Department of Neurology (M.S.), Barts and the London School of Medicine QMUL, United Kingdom; and Institute of Neuroscience (M.S.), University of Lisbon, Portugal
| |
Collapse
|
17
|
Shirota Y, Otsuka J, Toda T, Hamada M. Neurophysiological differentiation of upper motor neuron damage in neurodegenerative disorders. Clin Neurophysiol Pract 2022; 7:273-278. [PMID: 36263296 PMCID: PMC9574772 DOI: 10.1016/j.cnp.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 12/04/2022] Open
Abstract
ALS and MSA presented with similar profiles of upper motor neuron signs. Central motor conduction time was more abnormal in ALS than in MSA. Different structures may be involved in ALS and MSA along the corticospinal tract.
Objective Using transcranial magnetic stimulation (TMS) to delineate upper motor neuron (UMN) signs of two neurodegenerative disorders: amyotrophic lateral sclerosis (ALS) and multiple system atrophy (MSA). Methods Medical records including clinical signs for UMN damage and TMS results were reviewed retrospectively. The UMN signs were classified into none, mild, and severe based on neurological examination of various reflexes. Then TMS-elicited motor evoked potentials (MEPs) were recorded from a hand and a leg muscle to calculate the central motor conduction time (CMCT), which represents fast, mono-synaptic conduction along the corticospinal tract. Relations between the UMN signs and CMCT were analysed for the two diseases. Results Prevalence and severity of the UMN signs for ALS and MSA were comparable for both upper and lower limbs. However, abnormality in CMCT was found more frequently in ALS: CMCT abnormalities were found in upper limbs for 44% in ALS patients but only for 7% in MSA patients; CMCT abnormalities in lower limbs were 55% in ALS and 20% in MSA. Some ALS patients showed abnormal CMCT in limbs without UMN signs, which was not true for most MSA patients. Conclusions The abnormalities of CMCT were different in ALS and MSA, even for those who clinically had similar UMN signs. Sometimes, CMCT can reveal UMN damage in the absence of clinical UMN signs. Differences presumably derive from selective degeneration of different fibres in the motor descending pathways. Longitudinal studies must be conducted to accumulate neuroimaging and pathological findings. Significance CMCT can be useful to differentiate ALS and MSA.
Collapse
|
18
|
Jewett G, Khayambashi S, Frost GS, Beland B, Lee A, Hodgkinson V, Korngut L, Chhibber S. Gold Coast criteria expand clinical trial eligibility in amyotrophic lateral sclerosis. Muscle Nerve 2022; 66:397-403. [PMID: 35673968 DOI: 10.1002/mus.27660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 01/03/2023]
Abstract
INTRODUCTION/AIMS Consensus criteria to formalize the diagnosis of amyotrophic lateral sclerosis (ALS) and refine clinical trial populations have evolved. The recently proposed Gold Coast consensus criteria are intended to simplify use and increase sensitivity. We aimed to evaluate the potential impact of these criteria on clinical trial eligibility. METHODS We performed a single-center, retrospective study of people diagnosed with ALS between 2016 and 2021 to determine the numbers of those meeting Gold Coast, revised El Escorial (rEEC) criteria, and Awaji criteria. We identified the proportion of those who would have been eligible for participation in three major ALS clinical trials if Gold Coast were used in place of rEEC definite/probable criteria. (rEEC D/P). RESULTS Two hundred six people with ALS were included in our study. 48.5% met Gold Coast criteria but not rEEC D/P. Using the Gold Coast criteria would result in higher rates of clinical trial eligibility after other inclusion criteria were met: 95.2% vs 42.5% (P < .001) in a phase III study of riluzole; 100% vs 31.0% (P = .002) in a phase III study of edaravone; and 95.6% vs 45.3% (P < .001) in an ongoing phase III study of sodium phenylbutyrate and taurursodiol. The sensitivity of the Gold Coast criteria (96.1%; 95% confidence interval [CI], 92.2%-98.2%) was significantly higher than that of rEEC D/P (47.6%; 95% CI, 40.6%-54.6%; for difference, χ2 = 117.6; P < .001). DISCUSSION Until robust biomarkers are available to diagnose ALS, consensus diagnostic criteria remain necessary. Gold Coast criteria would expand research and clinical trial eligibility and improve external validity of clinical trial results.
Collapse
Affiliation(s)
- Gordon Jewett
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shahin Khayambashi
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Geoffrey S Frost
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Benjamin Beland
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angela Lee
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Victoria Hodgkinson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lawrence Korngut
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sameer Chhibber
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Watanabe S, Sekiguchi K, Noda Y, Matsumoto R. Clinical Utility of Repetitive Nerve Stimulation Test in Differentiating Multifocal Motor Neuropathy From Progressive Muscular Atrophy. J Clin Neuromuscul Dis 2022; 23:175-182. [PMID: 35608640 PMCID: PMC9126258 DOI: 10.1097/cnd.0000000000000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVES To evaluate the utility of repetitive nerve stimulation test (RNS) for differentiating multifocal motor neuropathy (MMN) and progressive muscular atrophy (PMA). METHODS We retrospectively enrolled 20 patients with MMN or PMA. We extracted the results of the initial 3-Hz RNS in the ulnar and accessory nerves and compared the percentage and frequency of abnormal decremental responses between both groups. RESULTS RNS was performed in 8 ulnar and 9 accessory nerves in patients with MMN, and in 8 ulnar and 10 accessory nerves in patients with PMA. Patients with MMN had a significantly lower decrement percentage (0.6 ± 4.0% in MMN vs. 10.3 ± 6.5% in PMA, P < 0.01) and frequency of abnormal decremental response (0 of 9 in MMN vs. 6 of 10 in PMA, P = 0.01) than patients with PMA in the accessory nerve. CONCLUSIONS The RNS has clinical utility for differentiating MMN from PMA.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshikatsu Noda
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
20
|
Iron-sensitive MR imaging of the primary motor cortex to differentiate hereditary spastic paraplegia from other motor neuron diseases. Eur Radiol 2022; 32:8058-8064. [PMID: 35593959 DOI: 10.1007/s00330-022-08865-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Hereditary spastic paraplegia (HSP) is a group of genetic neurodegenerative diseases characterised by upper motor neuron (UMN) impairment of the lower limbs. The differential diagnosis with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) can be challenging. As microglial iron accumulation was reported in the primary motor cortex (PMC) of ALS cases, here we assessed the radiological appearance of the PMC in a cohort of HSP patients using iron-sensitive MR imaging and compared the PMC findings among HSP, PLS, and ALS patients. METHODS We included 3-T MRI scans of 23 HSP patients, 7 PLS patients with lower limb onset, 8 ALS patients with lower limb and prevalent UMN onset (UMN-ALS), and 84 ALS patients with any other clinical picture. The PMC was visually rated on 3D T2*-weighted images as having normal signal intensity, mild hypointensity, or marked hypointensity, and differences in the frequency distribution of signal intensity among the diseases were investigated. RESULTS The marked hypointensity in the PMC was visible in 3/22 HSP patients (14%), 7/7 PLS patients (100%), 6/8 UMN-ALS patients (75%), and 35/84 ALS patients (42%). The frequency distribution of normal signal intensity, mild hypointensity, and marked hypointensity in HSP patients was different than that in PLS, UMN-ALS, and ALS patients (p < 0.01 in all cases). CONCLUSIONS Iron-sensitive imaging of the PMC could provide useful information in the diagnostic work - up of adult patients with a lower limb onset UMN syndrome, as the cortical hypointensity often seen in PLS and ALS cases is apparently rare in HSP patients. KEY POINTS • The T2* signal intensity of the primary motor cortex was investigated in patients with HSP, PLS with lower limb onset, and ALS with lower limb and prevalent UMN onset (UMN-ALS) using a clinical 3-T MRI sequence. • Most HSP patients had normal signal intensity in the primary motor cortex (86%); on the contrary, all the PLS and the majority of UMN-ALS patients (75%) had marked cortical hypointensity. • The T2*-weighted imaging of the primary motor cortex could provide useful information in the differential diagnosis of sporadic adult-onset UMN syndromes.
Collapse
|
21
|
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford Medical Sciences Division, Oxford OX3 9DU, UK
| | | |
Collapse
|
22
|
Zakharova MN, Abramova AA. Lower and upper motor neuron involvement and their impact on disease prognosis in amyotrophic lateral sclerosis. Neural Regen Res 2022; 17:65-73. [PMID: 34100429 PMCID: PMC8451581 DOI: 10.4103/1673-5374.314289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive muscle wasting, breathing and swallowing difficulties resulting in patient’s death in two to five years after disease onset. In amyotrophic lateral sclerosis, both upper and lower motor neurons of the corticospinal tracts are involved in the process of neurodegeneration, accounting for great clinical heterogeneity of the disease. Clinical phenotype has great impact on the pattern and rate of amyotrophic lateral sclerosis progression and overall survival prognosis. Creating more homogenous patient groups in order to study the effects of drug agents on specific manifestations of the disease is a challenging issue in amyotrophic lateral sclerosis clinical trials. Since amyotrophic lateral sclerosis has low incidence rates, conduction of multicenter trials requires certain standardized approaches to disease diagnosis and staging. This review focuses on the current approaches in amyotrophic lateral sclerosis classification and staging system based on clinical examination and additional instrumental methods, highlighting the role of upper and lower motor neuron involvement in different phenotypes of the disease. We demonstrate that both clinical and instrumental findings can be useful in evaluating severity of upper motor neuron and lower motor neuron involvement and predicting the following course of the disease. Addressing disease heterogeneity in amyotrophic lateral sclerosis clinical trials could lead to study designs that will assess drug efficacy in specific patient groups, based on the disease pathophysiology and spatiotemporal pattern. Although clinical evaluation can be a sufficient screening method for dividing amyotrophic lateral sclerosis patients into clinical subgroups, we provide proof that instrumental studies could provide valuable insights in the disease pathology.
Collapse
|
23
|
Riku Y, Yoshida M, Tamura T, Kamijo M, Yasui K, Kameyama T, Katsuno M, Sobue G, Iwasaki Y. Unexpected postmortem diagnoses in cases of clinically diagnosed amyotrophic lateral sclerosis. Neuropathology 2021; 41:457-467. [PMID: 34783101 DOI: 10.1111/neup.12744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 01/04/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that is clinically and pathologically characterized by impairment of the upper and lower motor neurons. The clinical diagnosis of ALS is not always straightforward because of the lack of specific biomarkers and clinical heterogeneity. This review presents the clinical and pathological findings of four autopsied cases that had been diagnosed with ALS before death. These cases had demonstrated definite and progressive motor neuron signs and symptoms, whereas postmortem assessment revealed miscellaneous disorders, including fungal infection, paraneoplastic syndrome, and amyloidosis. Importantly, nonmotor neuron signs and symptoms, including seizures, extra-pyramidal signs, ocular movement disorders, sensory disturbance, and dysautonomia, had also been documented during the disease course of the cases in the present study. The ALS-unlike symptoms were indicative of the "true" diagnosis in each case when those symptoms were isolated from motor neuron signs/symptoms.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University, Nagoya, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Takuya Tamura
- Department of Neurology, Higashi Nagoya National Hospital, Nagoya, Japan
| | - Mikiko Kamijo
- Department of Neurology, Chubu Rosai Hospital, Nagoya, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | | | | | - Gen Sobue
- Aichi Medical University, Nagakute, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
24
|
Rosenbohm A, Del Tredici K, Braak H, Huppertz HJ, Ludolph AC, Müller HP, Kassubek J. Involvement of cortico-efferent tracts in flail arm syndrome: a tract-of-interest-based DTI study. J Neurol 2021; 269:2619-2626. [PMID: 34676447 PMCID: PMC9021061 DOI: 10.1007/s00415-021-10854-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023]
Abstract
Background Flail arm syndrome is a restricted phenotype of motor neuron disease that is characterized by progressive, predominantly proximal weakness and atrophy of the upper limbs. Objective The study was designed to investigate specific white matter alterations in diffusion tensor imaging (DTI) data from flail arm syndrome patients using a hypothesis-guided tract-of-interest-based approach to identify in vivo microstructural changes according to a neuropathologically defined amyotrophic lateral sclerosis (ALS)-related pathology of the cortico-efferent tracts. Methods DTI-based white matter mapping was performed both by an unbiased voxel-wise statistical comparison and by a hypothesis-guided tract-wise analysis of fractional anisotropy (FA) maps according to the neuropathological ALS-propagation pattern for 43 flail arm syndrome patients vs 43 ‘classical’ ALS patients vs 40 matched controls. Results The analysis of white matter integrity demonstrated regional FA reductions for the flail arm syndrome group predominantly along the CST. In the tract-specific analysis according to the proposed sequential cerebral pathology pattern of ALS, the flail arm syndrome patients showed significant alterations of the specific tract systems that were identical to ‘classical’ ALS if compared to controls. Conclusions The DTI study including the tract-of-interest-based analysis showed a microstructural involvement pattern in the brains of flail arm syndrome patients, supporting the hypothesis that flail arm syndrome is a phenotypical variant of ALS. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10854-6.
Collapse
Affiliation(s)
- Angela Rosenbohm
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Kelly Del Tredici
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Heiko Braak
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany. .,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany.
| |
Collapse
|
25
|
Tahedl M, Li Hi Shing S, Finegan E, Chipika RH, Lope J, Hardiman O, Bede P. Propagation patterns in motor neuron diseases: Individual and phenotype-associated disease-burden trajectories across the UMN-LMN spectrum of MNDs. Neurobiol Aging 2021; 109:78-87. [PMID: 34656922 DOI: 10.1016/j.neurobiolaging.2021.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023]
Abstract
Motor neuron diseases encompass a divergent group of conditions with considerable differences in clinical manifestations, survival, and genetic vulnerability. One of the key aspects of clinical heterogeneity is the preferential involvement of upper (UMN) and lower motor neurons (LMN). While longitudinal imaging patters are relatively well characterized in ALS, progressive cortical changes in UMN,- and LMN-predominant conditions are seldom evaluated. Accordingly, the objective of this study is the juxtaposition of longitudinal trajectories in 3 motor neuron phenotypes; a UMN-predominant syndrome (PLS), a mixed UMN-LMN condition (ALS), and a lower motor neuron condition (poliomyelitis survivors). A standardized imaging protocol was implemented in a prospective, multi-timepoint longitudinal study with a uniform follow-up interval of 4 months. Forty-five poliomyelitis survivors, 61 patients with amyotrophic lateral sclerosis (ALS), and 23 patients with primary lateral sclerosis (PLS) were included. Cortical thickness alterations were evaluated in a dual analysis pipeline, using standard cortical thickness analyses, and a z-score-based individualized approach. Our results indicate that PLS patients exhibit rapidly progressive cortical thinning primarily in motor regions; ALS patients show cortical atrophy in both motor and extra-motor regions, while poliomyelitis survivors exhibit cortical thickness gains in a number of cerebral regions. Our findings suggest that dynamic cortical changes in motor neuron diseases may depend on relative UMN and/or LMN involvement, and increased cortical thickness in LMN-predominant conditions may represent compensatory, adaptive processes.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Psychiatry and Psychotherapy and Institute for Psychology, University of Regensburg, 93053 Regensburg, Germany
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
26
|
Kang X, Quan D. Electrodiagnostic Assessment of Motor Neuron Disease. Neurol Clin 2021; 39:1071-1081. [PMID: 34602215 DOI: 10.1016/j.ncl.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Motor neuron diseases involve degeneration of motor neurons in the brain (upper motor neurons), brain stem, and spinal cord (lower motor neurons). Symptoms vary depending on the degree of upper and lower neuron involvement, but progressive painless weakness is the predominant complaint. Motor neuron disease includes numerous specific disorders, including amyotrophic lateral sclerosis, spinal muscular atrophy, spinal bulbar muscular atrophy, and other inherited and acquired conditions. Abnormalities on nerve conduction studies, repetitive nerve stimulation, needle electromyography, and other electrodiagnostic techniques help to distinguish these disorders from each other, and from other disorders with progressive weakness.
Collapse
Affiliation(s)
- Xuan Kang
- Department of Neurology, University of Colorado Denver, Academic Office 1, 12631 East 17th Avenue, Mailstop B185, Aurora, CO 80045, USA
| | - Dianna Quan
- Department of Neurology, University of Colorado Denver, Academic Office 1, 12631 East 17th Avenue, Mailstop B185, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Pugdahl K, Camdessanché JP, Cengiz B, de Carvalho M, Liguori R, Rossatto C, Oliveira Santos M, Vacchiano V, Johnsen B. Gold Coast diagnostic criteria increase sensitivity in amyotrophic lateral sclerosis. Clin Neurophysiol 2021; 132:3183-3189. [PMID: 34544646 DOI: 10.1016/j.clinph.2021.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study evaluates diagnostic accuracy of the proposed 'Gold Coast' (GC) diagnostic criteria for amyotrophic lateral sclerosis (ALS). METHODS Five European centres retrospectively sampled consecutive patients referred for electromyography on suspicion of ALS. Patients were classified according to the GC criteria, the revised El Escorial (rEE) criteria and the Awaji (AW) criteria without and with the 'Possible' category (+ Poss). Reference standard was ALS confirmed by disease progression at follow-up. RESULTS Of 404 eligible patients 272 were diagnosed as ALS, 94 had mimicking disorders, 35 were lost for follow-up, and three had insufficient data. Sensitivity for the GC criteria was 88.2% (95% CI: 83.8-91.8%), which was higher than for previous criteria, of which the AW + Poss criteria reached the highest sensitivity of 77.6% (95% CI: 72.2-82.4%) (p < 0.001). Specificity was high for all criteria. The increase in sensitivity for the GC criteria was mainly due to the inclusion of 28 patients with progressive muscular atrophy (PMA). CONCLUSIONS The simpler GC criteria increase the sensitivity, primarily due to considering PMA as a form of ALS with high specificity preserved. SIGNIFICANCE This validation study supports that GC criteria should be used in clinical practice and may be used for inclusion in trials.
Collapse
Affiliation(s)
- Kirsten Pugdahl
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, 06500 Ankara, Turkey
| | - Mamede de Carvalho
- Institute of Physiology-Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Department of Neurosciences, Hospital de Santa Maria-CHULN, Lisbon, Portugal
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Céline Rossatto
- Department of Neurology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Miguel Oliveira Santos
- Institute of Physiology-Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Department of Neurosciences, Hospital de Santa Maria-CHULN, Lisbon, Portugal
| | - Veria Vacchiano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Birger Johnsen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
28
|
McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Front Neurol 2021; 12:723450. [PMID: 34484106 PMCID: PMC8415268 DOI: 10.3389/fneur.2021.723450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Philippe Corcia
- Department of Neurology-Neurophysiology, CRMR ALS, Tours, France.,UMR 1253 iBrain, University of Tours, Tours, France.,LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France
| | - Philippe Couratier
- LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France.,ALS Centre, Limoges University Hospital (CHU de Limoges), Limoges, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
29
|
Grapperon AM, Verschueren A, Jouve E, Morizot-Koutlidis R, Lenglet T, Pradat PF, Salachas F, Bernard E, Delstanche S, Maertens de Noordhout A, Guy N, Danel V, Delval A, Delmont E, Rolland AS, Pulse Study Group, Jomir L, Devos D, Wang F, Attarian S. Assessing the upper motor neuron in amyotrophic lateral sclerosis using the triple stimulation technique: A multicenter prospective study. Clin Neurophysiol 2021; 132:2551-2557. [PMID: 34455313 DOI: 10.1016/j.clinph.2021.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate the relevance of transcranial magnetic stimulation (TMS) using triple stimulation technique (TST) to assess corticospinal function in amyotrophic lateral sclerosis (ALS) in a large-scale multicenter study. METHODS Six ALS centers performed TST and conventional TMS in upper limbs in 98 ALS patients during their first visit to the center. Clinical evaluation of patients included the revised ALS Functional Rating Scale (ALSFRS-R) and upper motor neuron (UMN) score. RESULTS TST amplitude ratio was decreased in 62% of patients whereas conventional TMS amplitude ratio was decreased in 25% of patients and central motor conduction time was increased in 16% of patients. TST amplitude ratio was correlated with ALSFRS-R and UMN score. TST amplitude ratio results were not different between the centers. CONCLUSIONS TST is a TMS technique applicable in daily clinical practice in ALS centers for the detection of UMN dysfunction, more sensitive than conventional TMS and related to the clinical condition of the patients. SIGNIFICANCE This multicenter study shows that TST can be a routine clinical tool to evaluate UMN dysfunction at the diagnostic assessment of ALS patients.
Collapse
Affiliation(s)
- Aude-Marie Grapperon
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Annie Verschueren
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Elisabeth Jouve
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, Department of Clinical Pharmacology and Pharmacovigilance, CIC-CPCET, Marseille, France
| | | | - Timothée Lenglet
- Department of Neurophysiology, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - François Salachas
- Referral Center for ALS, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emilien Bernard
- Service des pathologies neuromusculaires et du motoneurone, Hospices Civils de Lyon, France
| | - Stéphanie Delstanche
- University of Liège, Centre Hospitalier Régional de la Citadelle, Department of Neurology, Liège, Belgium
| | | | - Nathalie Guy
- CRC SLA et maladie du neurone moteur, U1107-neurodol-UCA, CHU de Clermont-Ferrand, France
| | - Véronique Danel
- University of Lille, Expert center for ALS, CHU-Lille, Lille Neuroscience & Cognition, INSERM, UMR-S1172, LICEND, ACT4ALS-MND network, France
| | - Arnaud Delval
- Department of Clinical Neurophysiology, CHU-Lille, U1172 Lille Neuroscience & Cognition, University of Lille, France
| | - Emilien Delmont
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Anne-Sophie Rolland
- University of Lille, Expert center for ALS, CHU-Lille, Lille Neuroscience & Cognition, INSERM, UMR-S1172, LICEND, ACT4ALS-MND network, France
| | | | - Laurent Jomir
- Service des pathologies neuromusculaires et du motoneurone, Hospices Civils de Lyon, France
| | - David Devos
- University of Lille, Expert center for ALS, CHU-Lille, Lille Neuroscience & Cognition, INSERM, UMR-S1172, LICEND, ACT4ALS-MND network, France
| | - François Wang
- CHU de Liège, Department of Clinical Neurophysiology, Liège, Belgium
| | - Shahram Attarian
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France.
| |
Collapse
|
30
|
Vucic S, Ferguson TA, Cummings C, Hotchkin MT, Genge A, Glanzman R, Roet KCD, Cudkowicz M, Kiernan MC. Gold Coast diagnostic criteria: Implications for ALS diagnosis and clinical trial enrollment. Muscle Nerve 2021; 64:532-537. [PMID: 34378224 DOI: 10.1002/mus.27392] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 11/10/2022]
Abstract
Diagnostic criteria for amyotrophic lateral sclerosis (ALS) are complex, incorporating multiple levels of certainty from possible through to definite, and are thereby prone to error. Specifically, interrater variability was previously established to be poor, thereby limiting utility as diagnostic enrollment criteria for clinical trials. In addition, the different levels of diagnostic certainty do not necessarily reflect disease progression, adding confusion to the diagnostic algorithm. Realizing these inherent limitations, the World Federation of Neurology, the International Federation of Clinical Neurophysiology, the International Alliance of ALS/MND Associations, the ALS Association (United States), and the Motor Neuron Disease Association convened a consensus meeting (Gold Coast, Australia, 2019) to consider the development of simpler criteria that better reflect clinical practice, and that could merge diagnostic categories into a single entity. The diagnostic accuracy of the novel Gold Coast criteria was subsequently interrogated through a large cross-sectional study, which established an increased sensitivity for ALS diagnosis when compared with previous criteria. Diagnostic accuracy was maintained irrespective of disease duration, functional status, or site of disease onset. Importantly, the Gold Coast criteria differentiated atypical phenotypes, such as primary lateral sclerosis, from the more typical ALS phenotype. It is proposed that the Gold Coast criteria should be incorporated into routine practice and clinical trial settings.
Collapse
Affiliation(s)
- Steve Vucic
- Westmead Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | - Angela Genge
- The Neuro, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | | | | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney & Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Shen D, Yang X, Wang Y, He D, Sun X, Cai Z, Li J, Liu M, Cui L. The Gold Coast criteria increases the diagnostic sensitivity for amyotrophic lateral sclerosis in a Chinese population. Transl Neurodegener 2021; 10:28. [PMID: 34372918 PMCID: PMC8351337 DOI: 10.1186/s40035-021-00253-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The aim of this study was to assess and compare the diagnostic utility of a new diagnostic criteria for amyotrophic lateral sclerosis (ALS), abbreviated as the 'Gold Coast Criteria', with the revised El Escorial (rEEC) and Awaji criteria. METHODS Clinical and electrophysiological data of 1185 patients from January 2014 to December 2019 in the Peking Union Medical College Hospital ALS database were reviewed. The sensitivity of the Gold Coast criteria was compared to that of the possible rEEC and Awaji criteria (defined by the proportion of patients categorized as definite, probable, or possible ALS). RESULTS A final diagnosis of ALS was recorded in 1162 patients. The sensitivity of the Gold Coast criteria (96.6%, 95% confidence interval [CI] = 95.3%-97.5%) was greater than that of the rEEC (85.1%, 95%CI = 82.9%-87.1%) and Awaji (85.3%, 95%CI = 83.2%-87.3%). In addition, the sensitivity of the novel criteria maintained robust across subgroups, and the advantage was more prominent in limb-onset ALS patients and those who completed electromyographic tests. In those who did not achieve any of the rEEC diagnostic categories, the sensitivity of Gold Coast criteria was 84.4%. CONCLUSIONS The current study demonstrated that the Gold Coast criteria exhibited greater diagnostic sensitivity than the rEEC and Awaji criteria in a Chinese ALS population. The application of the Gold Coast criteria should be considered in clinical practice and future therapeutic trials.
Collapse
Affiliation(s)
- Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yanying Wang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Di He
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xiaohan Sun
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zhengyi Cai
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jinyue Li
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China.
- Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
32
|
Norioka R, Shimizu T, Bokuda K, Morishima R, Kawazoe T, Kimura H, Asano Y, Nakayama Y, Takahashi K. Enlarged high frequency oscillations of the median nerve somatosensory evoked potential and survival in amyotrophic lateral sclerosis. Clin Neurophysiol 2021; 132:2003-2011. [PMID: 34284234 DOI: 10.1016/j.clinph.2021.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/26/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE A large N20 and P25 of the median nerve somatosensory evoked potential (SEP) predicts short survival in amyotrophic lateral sclerosis (ALS). We investigated whether high frequency oscillations (HFOs) over N20 are enlarged and associated with survival in ALS. METHODS A total of 145 patients with ALS and 57 healthy subjects were studied. We recorded the median nerve SEP and measured the onset-to-peak amplitude of N20 (N20o-p), and peak-to-peak amplitude between N20 and P25 (N20p-P25p). We obtained early and late HFO potentials by filtering SEP between 500 and 1 kHz, and measured the peak-to-peak amplitude. We followed up patients until endpoints (death or tracheostomy) and analyzed the relationship between SEP or HFO amplitudes and survival using a Cox analysis. RESULTS Patients showed larger N20o-p, N20p-P25p, and early and late HFO amplitudes than the control values. N20p-P25p was associated with survival periods (p = 0.0004), while early and late HFO amplitudes showed no significant association with survival (p = 0.4307, and p = 0.6858, respectively). CONCLUSIONS The HFO amplitude in ALS is increased, but does not predict survival. SIGNIFICANCE The enlarged HFOs in ALS might be a compensatory phenomenon to the hyperexcitability of the sensory cortex pyramidal neurons.
Collapse
Affiliation(s)
- Ryohei Norioka
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.
| | - Kota Bokuda
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ryo Morishima
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tomoya Kawazoe
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Hideki Kimura
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yuri Asano
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yuki Nakayama
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
33
|
Bos JW, Groen EJN, Wadman RI, Curial CAD, Molleman NN, Zegers M, van Vught PWJ, Snetselaar R, Vijzelaar R, van der Pol WL, van den Berg LH. SMN1 Duplications Are Associated With Progressive Muscular Atrophy, but Not With Multifocal Motor Neuropathy and Primary Lateral Sclerosis. NEUROLOGY-GENETICS 2021; 7:e598. [PMID: 34169148 PMCID: PMC8220964 DOI: 10.1212/nxg.0000000000000598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/02/2021] [Indexed: 11/30/2022]
Abstract
Objective To assess the association between copy number (CN) variation in the survival motor neuron (SMN) locus and multifocal motor neuropathy (MMN), progressive muscular atrophy (PMA), and primary lateral sclerosis (PLS) susceptibility and to determine the association of SMN1 and SMN2 CN with MMN, PMA, and PLS disease course. Methods In this monocenter study, we used multiplex ligation-dependent probe amplification to determine SMN1 and SMN2 CN in Dutch patients with MMN, PMA, and PLS and controls. We stratified clinical parameters for SMN1 and SMN2 CN. We analyzed SMN1 and SMN2 exons 1–6, intron 6, and exon 8 CN to study the genetic architecture of SMN1 duplications. Results SMN1 and SMN2 CN were determined in 132 patients with MMN, 150 patients with PMA, 104 patients with PLS, and 956 control subjects. MMN and PLS were not associated with CN variation in SMN1 or SMN2. By contrast, patients with PMA more often than controls carried SMN1 duplications (≥3 SMN1 copies, 12.0% vs 5.0%, odds ratio 2.69 (1.43–4.91), p 0.0020). SMN1 and SMN2 CN status was not associated with MMN, PLS, or PMA disease course. In case of SMN1 exon 7 duplications, exons 1–6, exon 8, and introns 6 and 7 were also duplicated, suggesting full SMN1 duplications. Conclusions SMN1 duplications are associated with PMA, but not with PLS and MMN. SMN1 duplications in PMA are balanced duplications. The results of this study highlight the primary effect of altered SMN CN on lower motor neurons.
Collapse
Affiliation(s)
- Jeroen W Bos
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - Renske I Wadman
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - Chantall A D Curial
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - Naomi N Molleman
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - Marinka Zegers
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - Paul W J van Vught
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - Reinier Snetselaar
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - Raymon Vijzelaar
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery (J.W.B., E.J.N.G., R.I.W., C.A.D.C., W.L.v.d.P., L.H.v.d.B.), UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; and MRC Holland (N.N.M., M.Z., P.W.J.v.V., R.S., R.V.), Amsterdam, the Netherlands
| |
Collapse
|
34
|
Dharmadasa T. Cortical Excitability across the ALS Clinical Motor Phenotypes. Brain Sci 2021; 11:brainsci11060715. [PMID: 34071187 PMCID: PMC8230203 DOI: 10.3390/brainsci11060715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by its marked clinical heterogeneity. Although the coexistence of upper and lower motor neuron signs is a common clinical feature for most patients, there is a wide range of atypical motor presentations and clinical trajectories, implying a heterogeneity of underlying pathogenic mechanisms. Corticomotoneuronal dysfunction is increasingly postulated as the harbinger of clinical disease, and neurophysiological exploration of the motor cortex in vivo using transcranial magnetic stimulation (TMS) has suggested that motor cortical hyperexcitability may be a critical pathogenic factor linked to clinical features and survival. Region-specific selective vulnerability at the level of the motor cortex may drive the observed differences of clinical presentation across the ALS motor phenotypes, and thus, further understanding of phenotypic variability in relation to cortical dysfunction may serve as an important guide to underlying disease mechanisms. This review article analyses the cortical excitability profiles across the clinical motor phenotypes, as assessed using TMS, and explores this relationship to clinical patterns and survival. This understanding will remain essential to unravelling central disease pathophysiology and for the development of specific treatment targets across the ALS clinical motor phenotypes.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK;
- Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
35
|
Couratier P, Lautrette G, Luna JA, Corcia P. Phenotypic variability in amyotrophic lateral sclerosis. Rev Neurol (Paris) 2021; 177:536-543. [PMID: 33902945 DOI: 10.1016/j.neurol.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Clinically, ALS phenotypes depend on the areas of the body that are affected, the different degrees of involvement of upper and lower motor neurons, the degrees of involvement of other systems, particularly cognition and behavior, and rates of progression. Phenotypic variability of ALS is characteristic and can be declined on the distribution of motor manifestations but also on the presence of extra-motor signs present in a variable manner in ALS patients. Neuropathologically, ALS is defined by the loss of UMN and LMN and the presence of two representative motor neuronal cytoplasmic inclusions, Bunina bodies and 43kDa Transactivation Response DNA Binding Protein (TDP-43) - positive cytoplasmic inclusions. The distribution of cytopathology and neuronal loss in patients is variable and this variability is directly related to phenotypic variability. Key regulators of phenotypic variability in ALS have not been determined. The functional decrement of TDP-43, and region-specific neuronal susceptibility to ALS, may be involved. Due to the selective vulnerability among different neuronal systems, lesions are multicentric, region-oriented, and progress at different rates. They may vary from patient to patient, which may be linked to the clinicopathological variability across patients.
Collapse
Affiliation(s)
- P Couratier
- Service de neurologie, centre de référence maladies rares SLA et autres maladies du neurone moteur, CHU de Limoges, Limoges, France; Inserm, IRD, U1094 Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, université de Limoges, CHU de Limoges, Limoges, France; Fédération des Centres SLA de Limoges et Tours, Litorals, Limoges, France.
| | - G Lautrette
- Service de neurologie, centre de référence maladies rares SLA et autres maladies du neurone moteur, CHU de Limoges, Limoges, France; Fédération des Centres SLA de Limoges et Tours, Litorals, Limoges, France
| | - J A Luna
- Inserm, IRD, U1094 Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, université de Limoges, CHU de Limoges, Limoges, France
| | - P Corcia
- Fédération des Centres SLA de Limoges et Tours, Litorals, Limoges, France; Centre de référence maladies rares SLA et autres maladies du neurone moteur, CHU Bretonneau, Tours, France
| |
Collapse
|
36
|
Bhattarai A, Egan GF, Talman P, Chua P, Chen Z. Magnetic Resonance Iron Imaging in Amyotrophic Lateral Sclerosis. J Magn Reson Imaging 2021; 55:1283-1300. [PMID: 33586315 DOI: 10.1002/jmri.27530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) results in progressive impairment of upper and lower motor neurons. Increasing evidence from both in vivo and ex vivo studies suggest that iron accumulation in the motor cortex is a neuropathological hallmark in ALS. An in vivo neuroimaging marker of iron dysregulation in ALS would be useful in disease diagnosis and prognosis. Magnetic resonance imaging (MRI), with its unique capability to generate a variety of soft tissue contrasts, provides opportunities to image iron distribution in the human brain with millimeter to sub-millimeter anatomical resolution. Conventionally, MRI T1-weighted, T2-weighted, and T2*-weighted images have been used to investigate iron dysregulation in the brain in vivo. Susceptibility weighted imaging has enhanced contrast for para-magnetic materials that provides superior sensitivity to iron in vivo. Recently, the development of quantitative susceptibility mapping (QSM) has realized the possibility of using quantitative assessments of magnetic susceptibility measures in brain tissues as a surrogate measurement of in vivo brain iron. In this review, we provide an overview of MRI techniques that have been used to investigate iron dysregulation in ALS in vivo. The potential uses, strengths, and limitations of these techniques in clinical trials, disease diagnosis, and prognosis are presented and discussed. We recommend further longitudinal studies with appropriate cohort characterization to validate the efficacy of these techniques. We conclude that quantitative iron assessment using recent advances in MRI including QSM holds great potential to be a sensitive diagnostic and prognostic marker in ALS. The use of multimodal neuroimaging markers in combination with iron imaging may also offer improved sensitivity in ALS diagnosis and prognosis that could make a major contribution to clinical care and treatment trials. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Anjan Bhattarai
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Paul Talman
- Department of Neuroscience, Barwon Health, Geelong, Victoria, Australia
| | - Phyllis Chua
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Statewide Progressive Neurological Services, Calvary Health Care Bethlehem, Melbourne, Victoria, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Upper motor neuron involvement in amyotrophic lateral sclerosis. Do we have a new diagnostic tool? Clin Neurophysiol 2021; 132:618-619. [PMID: 33414084 DOI: 10.1016/j.clinph.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 11/21/2022]
|
38
|
Conte G, Contarino VE, Casale S, Morelli C, Sbaraini S, Scola E, Trogu F, Siggillino S, Cinnante CM, Caschera L, Lo Russo FM, Triulzi FM, Silani V. Amyotrophic lateral sclerosis phenotypes significantly differ in terms of magnetic susceptibility properties of the precentral cortex. Eur Radiol 2021; 31:5272-5280. [PMID: 33399906 DOI: 10.1007/s00330-020-07547-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The aim of our study was to investigate whether the magnetic susceptibility varies according to the amyotrophic lateral sclerosis (ALS) phenotypes based on the predominance of upper motor neuron (UMN)/lower motor neuron (LMN) impairment. METHODS We retrospectively collected imaging and clinical data of 47 ALS patients (12 with UMN predominance (UMN-ALS), 16 with LMN predominance (LMN-ALS), and 19 with no clinically defined predominance (Np-ALS)). We further enrolled 23 healthy controls (HC) and 15 ALS mimics (ALS-Mim). These participants underwent brain 3-T magnetic resonance imaging (3-T MRI) with T1-weighted and gradient-echo multi-echo sequences. Automatic segmentation and quantitative susceptibility mapping (QSM) were performed. The skewness of the susceptibility values in the precentral cortex (SuscSKEW) was automatically computed, compared among the groups, and correlated to the clinical variables. RESULTS The Kruskal-Wallis test showed significant differences in terms of SuscSKEW among groups (χ2(3) = 24.2, p < 0.001), and pairwise tests showed that SuscSKEW was higher in UMN-ALS compared to those in LMN-ALS (p < 0.001), HC (p < 0.001), Np-ALS (p = 0.012), and ALS-Mim (p < 0.001). SuscSKEW was highly correlated with the Penn UMN score (Spearman's rho 0.612, p < 0.001). CONCLUSION This study demonstrates that the clinical ALS phenotypes based on UMN/LMN sign predominance significantly differ in terms of magnetic susceptibility properties of the precentral cortex. Combined MRI-histopathology investigations are strongly encouraged to confirm whether this evidence is due to iron overload in UMN-ALS, unlike in LMN-ALS. KEY POINTS • Magnetic susceptibility in the precentral cortex reflects the prevalence of UMN/LMN impairment in the clinical ALS phenotypes. • The degree of UMN/LMN impairment might be well described by the automatically derived measure of SuscSKEW in the precentral cortex. • Increased SuscSKEW in the precentral cortex is more relevant in UMN-ALS patients compared to those in Np-ALS and LMN-ALS patients.
Collapse
Affiliation(s)
- Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Valeria Elisa Contarino
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Silvia Casale
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy.
| | - Claudia Morelli
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, piazzale Brescia 20, Milan, Italy
| | - Sara Sbaraini
- Neuroradiology Unit, ASST Santi Paolo e Carlo, San Carlo Borromeo Hospital, Via Pio II 3, Milan, Italy
| | - Elisa Scola
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Francesca Trogu
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, piazzale Brescia 20, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| | - Silvia Siggillino
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Claudia Maria Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Luca Caschera
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Francesco Maria Lo Russo
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Fabio Maria Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, piazzale Brescia 20, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| |
Collapse
|
39
|
Castro J, Swash M, de Carvalho M. The cutaneous silent period in motor neuron disease. Clin Neurophysiol 2020; 132:660-665. [PMID: 33358125 DOI: 10.1016/j.clinph.2020.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the cutaneous silent period (CSP) by measuring its onset latency, duration and amount signal suppression in patients with motor neuron disease (MND) grouped according to the intensity of upper motor neuron involvement (UMN), and to test the effect of contralateral hand contraction. METHODS Painful stimulation was applied at the V finger, and contraction recorded from the abductor digiti minimi (ADM) muscle (baseline condition). Afterwards, CSP was studied during strong contralateral ADM contraction (test condition). 10-15 consecutive traces were recorded for each condition, signals were rectified, averaged, and analyzed offline. RESULTS 46 patients were investigated, 15 with progressive muscular atrophy (PMA), 16 with typical amyotrophic lateral sclerosis (ALS), 15 with primary lateral sclerosis/predominant UMN-ALS (PLS+UMN-ALS), and 28 controls. In the baseline condition, all MND groups showed delayed onset latencies (p = 0.001). There was no significant difference in the CSP duration. Suppression was lower in the PLS + UMN-ALS group (p = 0.004). In the control group, contralateral contraction did not change CSP, but onset latency shortened significantly in the PMA group. CONCLUSIONS CSP onset latency is delayed in all investigated groups of MND, including in PMA, indicating subclinical UMN involvement. Changes in CSP can indicate UMN lesion in MND. SIGNIFICANCE CSP should be explored to identify UMN involvement in MND.
Collapse
Affiliation(s)
- José Castro
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Michael Swash
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal.
| |
Collapse
|
40
|
Gunes T, Sirin NG, Sahin S, Kose E, Isak B. Use of CMAP, MScan fit-MUNE, and MUNIX in understanding neurodegeneration pattern of ALS and detection of early motor neuron loss in daily practice. Neurosci Lett 2020; 741:135488. [PMID: 33217503 DOI: 10.1016/j.neulet.2020.135488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The pattern of lower motor neuron (LMN) degeneration in amyotrophic lateral sclerosis (ALS), i.e., dying-back (from the nerve ending to cell body) or dying-forward (from the cell body to nerve ending), has been widely discussed. In this study, we aimed to evaluate LMN loss using compound muscle action potential (CMAP), motor unit number index (MUNIX), and MScan-fit-based motor unit number estimation (MUNE) to understand the pattern of neurodegeneration in ALS. METHODS Twenty-five patients were compared with 25 controls using CMAP amplitude and area, MUNIX, and MScan-fit MUNE in three proximal and distal muscles innervated by the ulnar nerve. RESULTS Unlike the controls, the CMAP area, MScan-fit MUNE, and MUNIX recorded in ALS patients showed more neurodegeneration in distal muscles than proximal muscles. In ALS patients with unaffected CMAP amplitudes (n = 13), the CMAP area, MScan-fit MUNE, and MUNIX showed subtle motor unit loss of 30.7 %, 53.8 %, and 38.4 %, respectively. CONCLUSION The CMAP area, MScan-fit MUNE, and MUNIX showed neurodegeneration earlier than the reduction in CMAP amplitude. These tests confirmed dying-back neurodegeneration, while only MUSIX showed re-innervation in ALS.
Collapse
Affiliation(s)
- Taskin Gunes
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey; VM Maltepe Medicalpark Hospital, Istanbul, Turkey.
| | | | - Sevki Sahin
- Department of Neurology, Maltepe University Hospital, Istanbul, Turkey.
| | - Ercan Kose
- Department of Neurology, Sultan 2. Abdulhamit Han Training and Research Hospital, Istanbul, Turkey.
| | - Baris Isak
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey.
| |
Collapse
|
41
|
Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol Neurodegener 2020; 15:58. [PMID: 33059698 PMCID: PMC7559190 DOI: 10.1186/s13024-020-00406-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today's MND research agenda.In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neurosciences, University of Padova, Padua, Italy.,Clinica Neurologica, Azienda Ospedaliera di Padova, Padua, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy.
| |
Collapse
|
42
|
Quinn C, Elman L. Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases. Continuum (Minneap Minn) 2020; 26:1323-1347. [DOI: 10.1212/con.0000000000000911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Ludolph AC, Emilian S, Dreyhaupt J, Rosenbohm A, Kraskov A, Lemon RN, Del Tredici K, Braak H. Pattern of paresis in ALS is consistent with the physiology of the corticomotoneuronal projections to different muscle groups. J Neurol Neurosurg Psychiatry 2020; 91:991-998. [PMID: 32665323 DOI: 10.1136/jnnp-2020-323331] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE A recent neuroanatomical staging scheme of amyotrophic lateral sclerosis (ALS) indicates that a cortical lesion may spread, as a network disorder, both at the cortical level and via corticofugal tracts, including corticospinal projections providing direct monosynaptic input to α-motoneurons. These projections are involved preferentially and early in ALS. If these findings are clinically relevant, the pattern of paresis in ALS should primarily involve those muscle groups that receive the strongest direct corticomotoneuronal (CM) innervation. METHODS In a large cohort (N=436), we analysed retrospectively the pattern of muscle paresis in patients with ALS using the UK Medical Research Council (MRC) scoring system; we subsequently carried out two independent prospective studies in two smaller groups (N=92 and N=54). RESULTS The results indicated that a characteristic pattern of paresis exists. When pairs of muscle groups were compared within patients, the group known to receive the more pronounced CM connections was significantly weaker. Within patients, there was greater relative weakness (lower MRC score) in thumb abductors versus elbow extensors, for hand extensors versus hand flexors and for elbow flexors versus elbow extensors. In the lower limb, knee flexors were relatively weaker than extensors, and plantar extensors were weaker than plantar flexors. CONCLUSIONS These findings were mostly significant (p<0.01) for all six pairs of muscles tested and provide indirect support for the concept that ALS may specifically affect muscle groups with strong CM connections. This specific pattern could help to refine clinical and electrophysiological ALS diagnostic criteria and complement prospective clinicopathological correlation studies.
Collapse
Affiliation(s)
- Albert C Ludolph
- Department of Neurology, University of Ulm, 89081 Ulm, Germany .,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Susanne Emilian
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | - Alexander Kraskov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Roger N Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Kelly Del Tredici
- Department of Neurology, Clinical Neuroanatomy (Center for Biomedical Research), Ulm, Germany
| | - Heiko Braak
- Department of Neurology, Clinical Neuroanatomy (Center for Biomedical Research), Ulm, Germany
| |
Collapse
|
44
|
Shellikeri S, Keith J, Black SE, Zinman L, Yunusova Y. Neuropathology of Speech Network Distinguishes Bulbar From Nonbulbar Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2020; 79:284-295. [PMID: 31951003 DOI: 10.1093/jnen/nlz130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Bulbar amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative subtype affecting speech and swallowing motor functions as well as associated with the burden of cognitive deficits. The neuroanatomical underpinnings of bulbar ALS are not well understood. The aim of this study was to compare neuropathology of the speech network (SpN) between 3 cases of bulbar-onset ALS (bALS), 3 cases of spinal-onset ALS (sALS) with antemortem bulbar ALS (sALSwB) against 3 sALS without antemortem bulbar ALS (sALSnoB) and 3 controls. Regional distribution and severity of neuronal loss, TDP-43 (transactive response DNA-binding protein of 43 kDa), and tau proteinopathy were examined. All 3 bALS cases showed marked neuronal loss and severe proteinopathy across most SpN regions; sALSwB cases showed no neuronal loss but mild and variable TDP-43 pathology in focal regions; sALSnoB cases demonstrated an absence of pathology. Two bALS cases had coexisting tauopathy in SpN regions, which was not noted in any sALS cases. The findings suggested that bALS may have a distinct neuropathological signature characterized by marked neuronal loss and polypathology in the SpN. Milder TDP-43 pathology in the SpN for sALSwB cases suggested a link between severity of bulbar ALS and SpN damage. Findings support a clinicopathologic link between bulbar symptoms and pathology in the SpN.
Collapse
Affiliation(s)
- Sanjana Shellikeri
- Department of Speech-Language Pathology & Rehabilitation Sciences Institute, University of Toronto.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute
| | - Julia Keith
- Laboratory Medicine and Molecular Diagnostics, Anatomic Pathology, Sunnybrook Health Sciences Centre, and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre.,L.C. Campbell Cognitive Neurology Research Unit, Cognitive Neurology, Sunnybrook Research Institute, University of Toronto.,Rotman Research Institute, Baycrest
| | - Lorne Zinman
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre.,L.C. Campbell Cognitive Neurology Research Unit, Cognitive Neurology, Sunnybrook Research Institute, University of Toronto
| | - Yana Yunusova
- Department of Speech-Language Pathology & Rehabilitation Sciences Institute, University of Toronto.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute.,University Health Network - Toronto Rehabilitation Institute (YY), Toronto, Ontario, Canada
| |
Collapse
|
45
|
Electrodiagnosis of Amyotrophic Lateral Sclerosis: A Review of Existing Guidelines. J Clin Neurophysiol 2020; 37:294-298. [DOI: 10.1097/wnp.0000000000000682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
46
|
Gromicho M, Figueiral M, Uysal H, Grosskreutz J, Kuzma-Kozakiewicz M, Pinto S, Petri S, Madeira S, Swash M, de Carvalho M. Spreading in ALS: The relative impact of upper and lower motor neuron involvement. Ann Clin Transl Neurol 2020; 7:1181-1192. [PMID: 32558369 PMCID: PMC7359118 DOI: 10.1002/acn3.51098] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
Objective To investigate disease spread in amyotrophic lateral sclerosis (ALS), and determine the influence of lower (LMN) and upper motor neuron (UMN) involvement. Methods We assessed disease spread in ALS in 1376 consecutively studied patients, from five European centers, applying an agreed proforma to assess LMN and UMN signs. We defined the pattern of disease onset and progression from predominant UMN or lower motor neuron (LMN) dysfunction in bulbar, upper limbs, lower limbs, and thoracic regions Non‐linear regression analysis was applied to fit the data to a model that described the relation between two random variables, graphically represented by an inverse exponential curve. We analyzed the probability, rate of spread, and both combined (area under the curve). Results We found that progression was more likely and quicker to or from the region of onset to close spinal regions. When the disease had a limb onset, bulbar motor neurons were more resistant. Furthermore, in the same time frame more patients progressed from bulbar to lower limbs than vice‐versa, whether predominantly UMN or LMN involvement. Patients with initial thoracic involvement had a higher probability for rapid change. The presence of predominant UMN signs was associated with a faster caudal progression. Interpretation Contiguous progression was leading pattern, and predominant UMN involvement is important in shortening the time for cranial‐caudal spread. Our results can best be fitted to a model of independent LMN and UMN degeneration, with regional progression of LMN degeneration mostly by contiguity. UMN lesion causes an acceleration of rostral‐caudal LMN loss.
Collapse
Affiliation(s)
- Marta Gromicho
- Institute of Physiology, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel Figueiral
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Hilmi Uysal
- Department of Neurology and Clinical Neurophysiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | - Magdalena Kuzma-Kozakiewicz
- Neurodegenerative Disease Research Group and Neurodegenerative Disease Research Group, Medical University of Warsaw, Warsaw, Poland
| | - Susana Pinto
- Institute of Physiology, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sara Madeira
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Michael Swash
- Institute of Physiology, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa-Norte, Lisbon, Portugal
| |
Collapse
|
47
|
Johnsen B. Diagnostic criteria for amyotrophic lateral sclerosis from El Escorial to Gold Coast. Clin Neurophysiol 2020; 131:1962-1963. [PMID: 32418823 DOI: 10.1016/j.clinph.2020.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Birger Johnsen
- Department of Clinical Neurophysiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
48
|
Swash M, Burke D, Turner MR, Grosskreutz J, Leigh PN, deCarvalho M, Kiernan MC. Occasional essay: Upper motor neuron syndrome in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2020; 91:227-234. [PMID: 32054724 DOI: 10.1136/jnnp-2019-321938] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/04/2022]
Affiliation(s)
- Michael Swash
- Barts and the London School of Medicine, QMUL, Instituto de Medicina Molecular, Faculdade de Medicina, Univeridade de Lisboa, London, UK
| | - David Burke
- University of Sydney and Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Julian Grosskreutz
- Universitätsklinikum Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - P Nigel Leigh
- Trafford Centre for Biomedical Research, Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Mamede deCarvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Univeridade de Lisboa, and Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Matthew C Kiernan
- University of Sydney and Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
49
|
Takeda T, Kitagawa K, Arai K. Phenotypic variability and its pathological basis in amyotrophic lateral sclerosis. Neuropathology 2019; 40:40-56. [PMID: 31802540 DOI: 10.1111/neup.12606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by its inherent clinicopathological variability. The concurrence of upper and lower motor neuron signs is a common feature in the majority of patients with ALS. However, some patients manifest an atypical clinical course, with only upper or lower motor neuron signs, or various extra-motor symptoms including cognitive dysfunction, parkinsonism, autonomic dysfunction, or ophthalmoparesis. This variability indicates different manifestations of ALS and is reflected by ALS pathology spreading into the central nervous system. The presence of cytoplasmic inclusions positive for transactivation response DNA-binding protein 43 kDa (TDP-43) is a key feature in ALS. Loss of TDP-43 from the nucleus and its subsequent aggregation in the cytoplasm may occur in susceptible regions and may be associated with neuronal loss. However, in some regions, there is no apparent neuronal loss while TDP-43 accumulation is evident; in contrast, in other regions, neuronal loss is apparent without any evidence of TDP-43 accumulation. Therefore, in addition to TDP-43 dysfunction, underlying region-specific cellular vulnerability may exist in the upper and lower motor neurons and frontotemporal system in patients with ALS. The microscopic discrepancy and selective vulnerability may be linked to the macroscopic propensities of the sites of onset, and may also determine the direction and rate of progression of the lesions. Thus, there may be multicentric sites of onset, region-oriented disease development, and different speeds of disease progression across patients with ALS. ALS lesions occur in motor-related areas but may spread to neighboring areas. However, since lesions may spread in a discontinuous manner, and the dynamics of disease propagation have not been able to be identified, it remains controversial whether the stepwise appearance of TDP-43-positive inclusions is based on direct cell-to-cell protein propagation. Further understanding of the phenotypic variability of ALS and its pathological basis may serve as a guide for investigating the underlying pathogenesis of ALS.
Collapse
Affiliation(s)
- Takahiro Takeda
- Department of Neurology, National Hospital Organization Chibahigashi National Hospital, Chiba, Japan.,Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kimihito Arai
- Department of Neurology, National Hospital Organization Chibahigashi National Hospital, Chiba, Japan
| |
Collapse
|
50
|
Qiu T, Zhang Y, Tang X, Liu X, Wang Y, Zhou C, Luo C, Zhang J. Precentral degeneration and cerebellar compensation in amyotrophic lateral sclerosis: A multimodal MRI analysis. Hum Brain Mapp 2019; 40:3464-3474. [PMID: 31020731 PMCID: PMC6865414 DOI: 10.1002/hbm.24609] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and intractable neurodegenerative disease of human motor system characterized by progressive muscular weakness and atrophy. A considerable body of research has demonstrated significant structural and functional abnormalities of the primary motor cortex in patients with ALS. In contrast, much less attention has been paid to the abnormalities of cerebellum in this disease. Using multimodal magnetic resonance imagining data of 60 patients with ALS and 60 healthy controls, we examined changes in gray matter volume (GMV), white matter (WM) fractional anisotropy (FA), and functional connectivity (FC) in patients with ALS. Compared with healthy controls, patients with ALS showed decreased GMV in the left precentral gyrus and increased GMV in bilateral cerebellum, decreased FA in the left corticospinal tract and body of corpus callosum, and decreased FC in multiple brain regions, involving bilateral postcentral gyrus, precentral gyrus and cerebellum anterior lobe, among others. Meanwhile, we found significant intermodal correlations among GMV of left precentral gyrus, FA of altered WM tracts, and FC of left precentral gyrus, and that WM microstructural alterations seem to play important roles in mediating the relationship between GMV and FC of the precentral gyrus, as well as the relationship between GMVs of the precentral gyrus and cerebellum. These findings provided evidence for the precentral degeneration and cerebellar compensation in ALS, and the involvement of WM alterations in mediating the relationship between pathologies of the primary motor cortex and cerebellum, which may contribute to a better understanding of the pathophysiology of ALS.
Collapse
Affiliation(s)
- Ting Qiu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xie Tang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xiaoping Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Yue Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Chaoyang Zhou
- Department of RadiologySouthwest Hospital, Third Military Medical UniversityChongqingPeople's Republic of China
| | - Chunxia Luo
- Department of NeurologySouthwest Hospital, Third Military Medical UniversityChongqingPeople's Republic of China
| | - Jiuquan Zhang
- Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingPeople's Republic of China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingPeople's Republic of China
| |
Collapse
|