1
|
Shin JH, Yang HJ, Ahn JH, Jo S, Chung SJ, Lee JY, Kim HS, Kim M. Evidence-Based Review on Symptomatic Management of Huntington's Disease. J Mov Disord 2024; 17:369-386. [PMID: 39117301 PMCID: PMC11540544 DOI: 10.14802/jmd.24140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, behavioral, and cognitive impairments and significant impacts on patient quality of life. This evidence-based review, conducted by the Korean Huntington Disease Society task force, systematically examines current pharmacological and nonpharmacological interventions for symptomatic management of HD. Following PRISMA guidelines, databases were searched for studies up to August 2022 that focused on 23 symptoms across four domains: motor, neuropsychological, cognition, and others. This review provides a comprehensive and systematic approach to the management of HD, highlighting the need for more high-quality clinical trials to develop robust evidence-based guidelines.
Collapse
Affiliation(s)
- Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hui-Jun Yang
- Department of Neurology, Ulsan University Hospital, Ulsan, Korea
| | - Jong Hyun Ahn
- Department of Neurology, Seoul Samsung Medical Center, Seoul, Korea
| | - Sungyang Jo
- Department of Neurology, Seoul Asan Medical Center, Seoul, Korea
| | - Seok Jong Chung
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Sook Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - on behalf of the Korean Huntington’s Disease Society
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Ulsan University Hospital, Ulsan, Korea
- Department of Neurology, Seoul Samsung Medical Center, Seoul, Korea
- Department of Neurology, Seoul Asan Medical Center, Seoul, Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
2
|
Motamedy S, Soltani B, Kameshki H, Kermani AA, Amleshi RS, Nazeri M, Shabani M. The Therapeutic Potential and Molecular Mechanisms Underlying the Neuroprotective Effects of Sativex ® - A Cannabis-derived Spray. Mini Rev Med Chem 2024; 24:1427-1448. [PMID: 38318827 DOI: 10.2174/0113895575285934240123110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Sativex is a cannabis-based medicine that comes in the form of an oromucosal spray. It contains equal amounts of Δ9-tetrahydrocannabinol and cannabidiol, two compounds derived from cannabis plants. Sativex has been shown to have positive effects on symptoms of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and sleep disorders. It also has analgesic, antiinflammatory, antitumoral, and neuroprotective properties, which make it a potential treatment option for other neurological disorders. The article reviews the results of recent preclinical and clinical studies that support the therapeutic potential of Sativex and the molecular mechanisms behind its neuroprotective benefits in various neurological disorders. The article also discusses the possible advantages and disadvantages of using Sativex as a neurotherapeutic agent, such as its safety, efficacy, availability, and legal status.
Collapse
Affiliation(s)
- Sina Motamedy
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahareh Soltani
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Halimeh Kameshki
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Reza Saboori Amleshi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Nazeri
- Department of Anesthesiology, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
4
|
Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022; 14:nu14050921. [PMID: 35267907 PMCID: PMC8912287 DOI: 10.3390/nu14050921] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
While the vast majority of research involving creatine supplementation has focused on skeletal muscle, there is a small body of accumulating research that has focused on creatine and the brain. Preliminary studies indicate that creatine supplementation (and guanidinoacetic acid; GAA) has the ability to increase brain creatine content in humans. Furthermore, creatine has shown some promise for attenuating symptoms of concussion, mild traumatic brain injury and depression but its effect on neurodegenerative diseases appears to be lacking. The purpose of this narrative review is to summarize the current body of research pertaining to creatine supplementation on total creatine and phophorylcreatine (PCr) content, explore GAA as an alternative or adjunct to creatine supplementation on brain creatine uptake, assess the impact of creatine on cognition with a focus on sleep deprivation, discuss the effects of creatine supplementation on a variety of neurological and mental health conditions, and outline recent advances on creatine supplementation as a neuroprotective supplement following traumatic brain injury or concussion.
Collapse
|
5
|
Dietary Intake, Mediterranean Diet Adherence and Caloric Intake in Huntington's Disease: A Review. Nutrients 2020; 12:nu12102946. [PMID: 32992896 PMCID: PMC7601299 DOI: 10.3390/nu12102946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
Decades of research and experimental studies have investigated Huntington’s disease (HD), a rare neurodegenerative disease. Similarly, several studies have investigated whether high/moderate adherence to the Mediterranean Diet and specific macro and micronutrients can decrease cognitive loss and provide a neuroprotective function to neurons. This review systematically identifies and examines studies that have investigated Mediterranean Diet adherence, micro- and macronutrients, supplementation and caloric intake in people with HD, in order to identify if dietary exposures resulted in improvement of disease symptoms, a delay in age of onset or if they contributed to an earlier age of onset in people with HD. A systematic search of PubMed, Directory of open access journal and HubMed was performed independently by two reviewers using specific search terms criteria for studies. The identified abstracts were screened and the studies were included in the review if they satisfied predetermined inclusion criteria. Reference screening of included studies was also performed. A total of 18 studies were included in the review. A few studies found that patients who had high/moderate adherence to Mediterranean Diet showed a slight improvement in their Unified Huntington’s Disease Rating Scale and Total Functional Capacity. In addition, people with HD who had high Mediterranean Diet adherence showed an improvement in both cognitive and motor scores and had a better quality of life compared to patients who had low Mediterranean Diet adherence. Furthermore, a few studies showed that supplementation with specific nutrients, such as triheaptanoin, L-acetyl-carnitine and creatine, had no beneficial effect on the patients’ Unified Huntington’s Disease Rating Scale score. A few studies suggest that the Mediterranean Diet may confer a motor and cognitive benefit to people with HD. Unfortunately, there was little consistency among study findings. It is important for more research to be conducted to have a better understanding of which dietary exposures are beneficial and may result delaying age of onset or disease progression in people with HD.
Collapse
|
6
|
Singh A, Debnath A, Cai K, Bagga P, Haris M, Hariharan H, Reddy R. Evaluating the feasibility of creatine-weighted CEST MRI in human brain at 7 T using a Z-spectral fitting approach. NMR IN BIOMEDICINE 2019; 32:e4176. [PMID: 31608510 PMCID: PMC11463199 DOI: 10.1002/nbm.4176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
The current study aims to evaluate the feasibility of creatine (Cr) chemical exchange saturation transfer (CEST)-weighted MRI at 7 T in the human brain by optimizing the saturation pulse parameters and computing contrast using a Z-spectral fitting approach. The Cr-weighted (Cr-w) CEST contrast was computed from phantoms data. Simulations were carried out to obtain the optimum saturation parameters for Cr-w CEST with lower contribution from other brain metabolites. CEST-w images were acquired from the brains of four human subjects at different saturation parameters. The Cr-w CEST contrast was computed using both asymmetry analysis and Z-spectra fitting approaches (models 1 and 2, respectively) based on Lorentzian functions. For broad magnetization transfer (MT) effect, Gaussian and Super-Lorentzian line shapes were also evaluated. In the phantom study, the Cr-w CEST contrast showed a linear dependence on concentration in physiological range and a nonlinear dependence on saturation parameters. The in vivo Cr-w CEST map generated using asymmetry analysis from the brain represents mixed contrast with contribution from other metabolites as well and relayed nuclear Overhauser effect (rNOE). Simulations provided an estimate for the optimum range of saturation parameters to be used for acquiring brain CEST data. The optimum saturation parameters for Cr-w CEST to be used for brain data were around B1rms = 1.45 μT and duration = 2 seconds. The Z-spectral fitting approach enabled computation of individual components. This also resulted in mitigating the contribution from MT and rNOE to Cr-w CEST contrast, which is a major source of underestimation in asymmetry analysis. The proposed modified z-spectra fitting approach (model 2) is more stable to noise compared with model 1. Cr-w CEST contrast obtained using fitting was 6.98 ± 0.31% in gray matter and 5.45 ± 0.16% in white matter. Optimal saturation parameters reduced the contribution from other CEST effects to Cr-w CEST contrast, and the proposed Z-spectral fitting approach enabled computation of individual components in Z-spectra of the brain. Therefore, it is feasible to compute Cr-w CEST contrast with a lower contribution from other CEST and rNOE.
Collapse
Affiliation(s)
- Anup Singh
- CBME, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, AIIMS, Delhi, India
| | - Ayan Debnath
- CBME, Indian Institute of Technology Delhi, New Delhi, India
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kejia Cai
- Radiology, University of Illinois at Chicago, Chicago, Illinois
| | - Puneet Bagga
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mohammad Haris
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Hari Hariharan
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravinder Reddy
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review. Neurotox Res 2019; 35:739-774. [DOI: 10.1007/s12640-018-9989-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
|
8
|
Hersch SM, Schifitto G, Oakes D, Bredlau AL, Meyers CM, Nahin R, Rosas HD. The CREST-E study of creatine for Huntington disease: A randomized controlled trial. Neurology 2017; 89:594-601. [PMID: 28701493 PMCID: PMC5562960 DOI: 10.1212/wnl.0000000000004209] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate whether creatine administration could slow progressive functional decline in adults with early symptoms of Huntington disease. Methods: We conducted a multicenter, randomized, double-blind, placebo-controlled study of up to 40 g daily of creatine monohydrate in participants with stage I and II HD treated for up to 48 months. The primary outcome measure was the rate of change in total functional capacity (TFC) between baseline and end of follow-up. Secondary outcome measures included changes in additional clinical scores, tolerability, and quality of life. Safety was assessed by adverse events and laboratory studies. Results: At 46 sites in North America, Australia, and New Zealand, 553 participants were randomized to creatine (275) or placebo (278). The trial was designed to enroll 650 patients, but was halted for futility after the first interim analysis. The estimated rates of decline in the primary outcome measure (TFC) were 0.82 points per year for participants on creatine, 0.70 points per year for participants on placebo, favoring placebo (nominal 95% confidence limits −0.11 to 0.35). Adverse events, mainly gastrointestinal, were significantly more common in participants on creatine. Serious adverse events, including deaths, were more frequent in the placebo group. Subgroup analysis suggested that men and women may respond differently to creatine treatment. Conclusions: Our data do not support the use of creatine treatment for delaying functional decline in early manifest HD. Clinicaltrials.gov identifier: NCT00712426. Classification of evidence: This study provides Class II evidence that for patients with early symptomatic HD, creatine monohydrate is not beneficial for slowing functional decline.
Collapse
Affiliation(s)
- Steven M Hersch
- From the Department of Neurology (S.M.H., H.D.R.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Neurology and Biostatistics (G.S., D.O.), University of Rochester Medical Center, NY; Department of Pediatrics (A.-L.B.), Medical University of South Carolina, Charleston; and NIH (C.M.M., R.N.), National Center for Complementary and Integrative Health, Bethesda, MD.
| | - Giovanni Schifitto
- From the Department of Neurology (S.M.H., H.D.R.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Neurology and Biostatistics (G.S., D.O.), University of Rochester Medical Center, NY; Department of Pediatrics (A.-L.B.), Medical University of South Carolina, Charleston; and NIH (C.M.M., R.N.), National Center for Complementary and Integrative Health, Bethesda, MD
| | - David Oakes
- From the Department of Neurology (S.M.H., H.D.R.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Neurology and Biostatistics (G.S., D.O.), University of Rochester Medical Center, NY; Department of Pediatrics (A.-L.B.), Medical University of South Carolina, Charleston; and NIH (C.M.M., R.N.), National Center for Complementary and Integrative Health, Bethesda, MD
| | - Amy-Lee Bredlau
- From the Department of Neurology (S.M.H., H.D.R.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Neurology and Biostatistics (G.S., D.O.), University of Rochester Medical Center, NY; Department of Pediatrics (A.-L.B.), Medical University of South Carolina, Charleston; and NIH (C.M.M., R.N.), National Center for Complementary and Integrative Health, Bethesda, MD
| | - Catherine M Meyers
- From the Department of Neurology (S.M.H., H.D.R.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Neurology and Biostatistics (G.S., D.O.), University of Rochester Medical Center, NY; Department of Pediatrics (A.-L.B.), Medical University of South Carolina, Charleston; and NIH (C.M.M., R.N.), National Center for Complementary and Integrative Health, Bethesda, MD
| | - Richard Nahin
- From the Department of Neurology (S.M.H., H.D.R.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Neurology and Biostatistics (G.S., D.O.), University of Rochester Medical Center, NY; Department of Pediatrics (A.-L.B.), Medical University of South Carolina, Charleston; and NIH (C.M.M., R.N.), National Center for Complementary and Integrative Health, Bethesda, MD
| | - Herminia Diana Rosas
- From the Department of Neurology (S.M.H., H.D.R.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Neurology and Biostatistics (G.S., D.O.), University of Rochester Medical Center, NY; Department of Pediatrics (A.-L.B.), Medical University of South Carolina, Charleston; and NIH (C.M.M., R.N.), National Center for Complementary and Integrative Health, Bethesda, MD
| | | |
Collapse
|
9
|
Ramaswamy S, Shannon KM, Kordower JH. Huntington's Disease: Pathological Mechanisms and Therapeutic Strategies. Cell Transplant 2017; 16:301-12. [PMID: 17503740 DOI: 10.3727/000000007783464687] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that occurs in patients with a mutation in the huntingtin or IT15 gene. Patients are plagued by early cognitive signs, motor deficits, and psychiatric disturbances. Symptoms are attributed to cell death in the striatum and disruption of cortical–striatal circuitry. Mechanisms of cell death are unclear, but processes involving mitochondrial abnormalities, excitotoxicity, and abnormal protein degradation have been implicated. Many factors likely contribute to neuron death and dysfunction, and this has made it difficult to systematically address the pathology in HD. Pharmaceutical therapies are commonly used in patients to treat disease symptoms. These have limited benefit and do not address the inexorable disease progression. Several neuroprotective therapies are being evaluated in animal models of HD as well as in clinical trials. Similarly, cell replacement strategies such as fetal transplantation have been used in the clinic with minimal success, making future cell replacement strategies such as stem cell therapy uncertain. This review describes the disease pathology in HD and addresses many of the past and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Shilpa Ramaswamy
- Department of Neuroscience, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|
10
|
Valdeolivas S, Sagredo O, Delgado M, Pozo MA, Fernández-Ruiz J. Effects of a Sativex-Like Combination of Phytocannabinoids on Disease Progression in R6/2 Mice, an Experimental Model of Huntington's Disease. Int J Mol Sci 2017; 18:ijms18040684. [PMID: 28333097 PMCID: PMC5412270 DOI: 10.3390/ijms18040684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/16/2022] Open
Abstract
Several cannabinoids afforded neuroprotection in experimental models of Huntington’s disease (HD). We investigated whether a 1:1 combination of botanical extracts enriched in either ∆9-tetrahydrocannabinol (∆9-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex®, is beneficial in R6/2 mice (a transgenic model of HD), as it was previously shown to have positive effects in neurotoxin-based models of HD. We recorded the progression of neurological deficits and the extent of striatal deterioration, using behavioral, in vivo imaging, and biochemical methods in R6/2 mice and their corresponding wild-type mice. The mice were daily treated, starting at 4 weeks after birth, with a Sativex-like combination of phytocannabinoids (equivalent to 3 mg/kg weight of pure CBD + ∆9-THC) or vehicle. R6/2 mice exhibited the characteristic deterioration in rotarod performance that initiated at 6 weeks and progressed up to 10 weeks, and elevated clasping behavior reflecting dystonia. Treatment with the Sativex-like combination of phytocannabinoids did not recover rotarod performance, but markedly attenuated clasping behavior. The in vivo positron emission tomography (PET) analysis of R6/2 animals at 10 weeks revealed a reduced metabolic activity in the basal ganglia, which was partially attenuated by treatment with the Sativex-like combination of phytocannabinoids. Proton nuclear magnetic resonance spectroscopy (H+-MRS) analysis of the ex vivo striatum of R6/2 mice at 12 weeks revealed changes in various prognostic markers reflecting events typically found in HD patients and animal models, such as energy failure, mitochondrial dysfunction, and excitotoxicity. Some of these changes (taurine/creatine, taurine/N-acetylaspartate, and N-acetylaspartate/choline ratios) were completely reversed by treatment with the Sativex-like combination of phytocannabinoids. A Sativex-like combination of phytocannabinoids administered to R6/2 mice at the onset of motor symptoms produced certain benefits on the progression of striatal deterioration in these mice, which supports the interest of this cannabinoid-based medicine for the treatment of disease progression in HD patients.
Collapse
Affiliation(s)
- Sara Valdeolivas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain.
| | - Onintza Sagredo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain.
| | - Mercedes Delgado
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, 28040 Madrid, Spain.
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, 28040 Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain.
| |
Collapse
|
11
|
Bryan MR, Bowman AB. Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders. ADVANCES IN NEUROBIOLOGY 2017; 18:113-142. [PMID: 28889265 PMCID: PMC6559248 DOI: 10.1007/978-3-319-60189-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease resulting in motor impairment and death in patients. Recently, several studies have demonstrated insulin or insulin-like growth factor (IGF) treatment in models of HD, resulting in potent amelioration of HD phenotypes via modulation of the PI3K/AKT/mTOR pathways. Administration of IGF and insulin can rescue microtubule transport, metabolic function, and autophagy defects, resulting in clearance of Huntingtin (HTT) aggregates, restoration of mitochondrial function, amelioration of motor abnormalities, and enhanced survival. Manganese (Mn) is an essential metal to all biological systems but, in excess, can be toxic. Interestingly, several studies have revealed the insulin-mimetic effects of Mn-demonstrating Mn can activate several of the same metabolic kinases and increase peripheral and neuronal insulin and IGF-1 levels in rodent models. Separate studies have shown mouse and human striatal neuroprogenitor cell (NPC) models exhibit a deficit in cellular Mn uptake, indicative of a Mn deficiency. Furthermore, evidence from the literature reveals a striking overlap between cellular consequences of Mn deficiency (i.e., impaired function of Mn-dependent enzymes) and known HD endophenotypes including excitotoxicity, increased reactive oxygen species (ROS) accumulation, and decreased mitochondrial function. Here we review published evidence supporting a hypothesis that (1) the potent effect of IGF or insulin treatment on HD models, (2) the insulin-mimetic effects of Mn, and (3) the newly discovered Mn-dependent perturbations in HD may all be functionally related. Together, this review will present the intriguing possibility that intricate regulatory cross-talk exists between Mn biology and/or toxicology and the insulin/IGF signaling pathways which may be deeply connected to HD pathology and, perhaps, other neurodegenerative diseases (NDDs) and other neuropathological conditions.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
12
|
Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond muscles: The untapped potential of creatine. Int Immunopharmacol 2016; 37:31-42. [PMID: 26778152 PMCID: PMC4915971 DOI: 10.1016/j.intimp.2015.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Creatine is widely used by both elite and recreational athletes as an ergogenic aid to enhance anaerobic exercise performance. Older individuals also use creatine to prevent sarcopenia and, accordingly, may have therapeutic benefits for muscle wasting diseases. Although the effect of creatine on the musculoskeletal system has been extensively studied, less attention has been paid to its potential effects on other physiological systems. Because there is a significant pool of creatine in the brain, the utility of creatine supplementation has been examined in vitro as well as in vivo in both animal models of neurological disorders and in humans. While the data are preliminary, there is evidence to suggest that individuals with certain neurological conditions may benefit from exogenous creatine supplementation if treatment protocols can be optimized. A small number of studies that have examined the impact of creatine on the immune system have shown an alteration in soluble mediator production and the expression of molecules involved in recognizing infections, specifically toll-like receptors. Future investigations evaluating the total impact of creatine supplementation are required to better understand the benefits and risks of creatine use, particularly since there is increasing evidence that creatine may have a regulatory impact on the immune system.
Collapse
Affiliation(s)
- Lisa A Riesberg
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Stephanie A Weed
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Thomas L McDonald
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495, Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Joan M Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
13
|
Graham SF, Kumar P, Bahado-Singh RO, Robinson A, Mann D, Green BD. Novel Metabolite Biomarkers of Huntington's Disease As Detected by High-Resolution Mass Spectrometry. J Proteome Res 2016; 15:1592-601. [PMID: 27018767 DOI: 10.1021/acs.jproteome.6b00049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Huntington's disease (HD) is a fatal autosomal-dominant neurodegenerative disorder that affects approximately 3-10 people per 100 000 in the Western world. The median age of onset is 40 years, with death typically following 15-20 years later. In this study, we biochemically profiled post-mortem frontal lobe and striatum from HD sufferers (n = 14) and compared their profiles with controls (n = 14). LC-LTQ-Orbitrap-MS detected a total of 5579 and 5880 features for frontal lobe and striatum, respectively. An ROC curve combining two spectral features from frontal lobe had an AUC value of 0.916 (0.794 to 1.000) and following statistical cross-validation had an 83% predictive accuracy for HD. Similarly, two striatum biomarkers gave an ROC AUC of 0.935 (0.806 to 1.000) and after statistical cross-validation predicted HD with 91.8% accuracy. A range of metabolite disturbances were evident including but-2-enoic acid and uric acid, which were altered in both frontal lobe and striatum. A total of seven biochemical pathways (three in frontal lobe and four in striatum) were significantly altered as a result of HD. This study highlights the utility of high-resolution metabolomics for the study of HD. Further characterization of the brain metabolome could lead to the identification of new biomarkers and novel treatment strategies for HD.
Collapse
Affiliation(s)
- Stewart F Graham
- Beaumont Health System, Beaumont Research Institute , 3811 West 13 Mile Road, Royal Oak, Michigan 48073, United States
| | - Praveen Kumar
- Beaumont Health System, Beaumont Research Institute , 3811 West 13 Mile Road, Royal Oak, Michigan 48073, United States
| | - Ray O Bahado-Singh
- Beaumont Health System, Beaumont Research Institute , 3811 West 13 Mile Road, Royal Oak, Michigan 48073, United States
| | - Andrew Robinson
- Institute of Brain Behavior and Mental Health, University of Manchester , Salford M6 8HD, United Kingdom
| | - David Mann
- Institute of Brain Behavior and Mental Health, University of Manchester , Salford M6 8HD, United Kingdom
| | - Brian D Green
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast , Belfast BT9 5BN, United Kingdom
| |
Collapse
|
14
|
Scano P, Rosa A, Incani A, Maestrale C, Santucciu C, Perra D, Vascellari S, Pani A, Ligios C. (1)H NMR brain metabonomics of scrapie exposed sheep. MOLECULAR BIOSYSTEMS 2016; 11:2008-16. [PMID: 25959287 DOI: 10.1039/c5mb00138b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
While neurochemical metabolite modifications, determined by different techniques, have been diffusely reported in human and mice brains affected by transmissible spongiform encephalopathies (TSEs), this aspect has been little studied in the natural animal hosts with the same pathological conditions so far. Herein, we investigated, by high resolution (1)H NMR spectroscopy and multivariate statistical data analysis, the brain metabolite profile of sheep exposed to a scrapie agent in a naturally affected flock. On the basis of clinical examinations and western blotting analysis for the pathological prion protein (PrP(Sc)) in brain tissues, sheep were catalogued as not infected (H), infected with clinical signs (S), and infected without clinical signs (A). By discriminant analysis of spectral data, comparing S vs. H, we found a different metabolite distribution, with inosine, cytosine, creatine, and lactate being higher in S than in H brains, while the branched chain amino acids (leucine, isoleucine, and valine), phenylalanine, uracil, tyrosine, gamma-amino butyric acid, total aspartate (aspartate + N-acetyl aspartate) being lower in S. By a soft independent modelling of class analogy approach, 1 out of 3 A samples was assigned to class H. Furthermore, A brains were found to be higher in choline and choline-containing compounds. By means of partial least squares regression, an excellent correlation was found between the PrP(Sc) amount and the (1)H NMR metabolite profile of infected (S and A) sheep, and the metabolite mostly correlated with PrP(Sc) was alanine. The overall results, obtained using different chemometric tools, were able to describe a brain metabolite profile of infected sheep with and without clinical signs, compared to healthy ones, and indicated alanine as a biomarker for PrP(Sc) amounts in scrapie brains.
Collapse
Affiliation(s)
- Paola Scano
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mason SL, Barker RA. Advancing pharmacotherapy for treating Huntington's disease: a review of the existing literature. Expert Opin Pharmacother 2015; 17:41-52. [PMID: 26536068 DOI: 10.1517/14656566.2016.1109630] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is an incurable chronic neurodegenerative disorder that typically presents in mid-life with a range of motor, cognitive and affective problems. Patients are currently managed using a combination of drug treatments and non-pharmacological therapies but at present there is no "gold standard" treatment for any aspect of the disease. AREAS COVERED In this review the empirical evidence supporting the use of drugs commonly used to treat HD was discussed. In particular, we focus on therapeutics that have either reached phase 3 clinical trials or are already in clinical use. EXPERT OPINION The results confirmed that there is a striking lack of evidence to support the efficacy of the drugs currently used in the management of HD. In fact, many drugs are prescribed on the basis of case reports, open label studies, small double blind placebo control trials of limited duration, or personal clinical experience. However of late, the establishment of large international databases, capturing all patients and their clinical details regardless of stage or geographical location has led to an increase in the number of clinical trials conducted on new therapies. Unfortunately, the same is not true for the existing therapies which look set to remain untested for the foreseeable future.
Collapse
Affiliation(s)
- Sarah L Mason
- a John Van Geest Centre for Brain Repair , University of Cambridge , Cambridge CB2 0PY , UK
| | - Roger A Barker
- a John Van Geest Centre for Brain Repair , University of Cambridge , Cambridge CB2 0PY , UK.,b Department of Clinical Neuroscience , University of Cambridge , Cambridge CB2 0PY , UK
| |
Collapse
|
16
|
Rae CD, Bröer S. Creatine as a booster for human brain function. How might it work? Neurochem Int 2015; 89:249-59. [PMID: 26297632 DOI: 10.1016/j.neuint.2015.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/04/2015] [Accepted: 08/15/2015] [Indexed: 01/19/2023]
Abstract
Creatine, a naturally occurring nitrogenous organic acid found in animal tissues, has been found to play key roles in the brain including buffering energy supply, improving mitochondrial efficiency, directly acting as an anti-oxidant and acting as a neuroprotectant. Much of the evidence for these roles has been established in vitro or in pre-clinical studies. Here, we examine the roles of creatine and explore the current status of translation of this research into use in humans and the clinic. Some further possibilities for use of creatine in humans are also discussed.
Collapse
Affiliation(s)
- Caroline D Rae
- Neuroscience Research Australia, Barker St Randwick, NSW 2031, Australia; School of Medical Sciences, UNSW, High Street, Randwick, NSW 2052, Australia.
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
17
|
Turner CE, Russell BR, Gant N. Comparative quantification of dietary supplemented neural creatine concentrations with (1)H-MRS peak fitting and basis spectrum methods. Magn Reson Imaging 2015; 33:1163-1167. [PMID: 26117698 DOI: 10.1016/j.mri.2015.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/21/2015] [Indexed: 10/23/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is an analytical procedure that can be used to non-invasively measure the concentration of a range of neural metabolites. Creatine is an important neurometabolite with dietary supplementation offering therapeutic potential for neurological disorders with dysfunctional energetic processes. Neural creatine concentrations can be probed using proton MRS and quantified using a range of software packages based on different analytical methods. This experiment examines the differences in quantification performance of two commonly used analysis packages following a creatine supplementation strategy with potential therapeutic application. Human participants followed a seven day dietary supplementation regime in a placebo-controlled, cross-over design interspersed with a five week wash-out period. Spectroscopy data were acquired the day immediately following supplementation and analyzed with two commonly-used software packages which employ vastly different quantification methods. Results demonstrate that neural creatine concentration was augmented following creatine supplementation when analyzed using the peak fitting method of quantification (105.9%±10.1). In contrast, no change in neural creatine levels were detected with supplementation when analysis was conducted using the basis spectrum method of quantification (102.6%±8.6). Results suggest that software packages that employ the peak fitting procedure for spectral quantification are possibly more sensitive to subtle changes in neural creatine concentrations. The relative simplicity of the spectroscopy sequence and the data analysis procedure suggest that peak fitting procedures may be the most effective means of metabolite quantification when detection of subtle alterations in neural metabolites is necessary. The straightforward technique can be used on a clinical magnetic resonance imaging system.
Collapse
Affiliation(s)
- Clare E Turner
- Exercise Neurometabolism Laboratory, Centre for Brain Research, The University of Auckland, New Zealand
| | - Bruce R Russell
- School of Pharmacy, Centre for Brain Research, The University of Auckland, New Zealand
| | - Nicholas Gant
- Exercise Neurometabolism Laboratory, Centre for Brain Research, The University of Auckland, New Zealand.
| |
Collapse
|
18
|
Sturrock A, Laule C, Wyper K, Milner RA, Decolongon J, Dar Santos R, Coleman AJ, Carter K, Creighton S, Bechtel N, Bohlen S, Reilmann R, Johnson HJ, Hayden MR, Tabrizi SJ, Mackay AL, Leavitt BR. A longitudinal study of magnetic resonance spectroscopy Huntington's disease biomarkers. Mov Disord 2015; 30:393-401. [PMID: 25690257 DOI: 10.1002/mds.26118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 10/06/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
Putaminal metabolites examined using cross-sectional magnetic resonance spectroscopy (MRS) can distinguish pre-manifest and early Huntington's Disease (HD) individuals from controls. An ideal biomarker, however, will demonstrate longitudinal change over short durations. The objective here was to evaluate longitudinal in vivo brain metabolite profiles in HD over 24 months. Eighty-four participants (30 controls, 25 pre-manifest HD, 29 early HD) recruited as part of TRACK-HD were imaged at baseline, 12 months, and 24 months using 3T MRS of left putamen. Automated putaminal volume measurement was performed simultaneously. To quantify partial volume effects, spectroscopy was performed in a second, white matter voxel adjacent to putamen in six subjects. Subjects underwent TRACK-HD motor assessment. Statistical analyses included linear regression and one-way analysis of variance (ANOVA). At all time-points N-acetyl aspartate and total N-acetyl aspartate (NAA), neuronal integrity markers, were lower in early HD than in controls. Total NAA was lower in pre-manifest HD than in controls, whereas the gliosis marker myo-inositol (MI) was robustly elevated in early HD. Metabolites were stable over 24 months with no longitudinal change. Total NAA was not markedly different in adjacent white matter than putamen, arguing against partial volume confounding effects in cross-sectional group differences. Total NAA correlations with disease burden score suggest that this metabolite may be useful in identifying neurochemical responses to therapeutic agents. We demonstrate almost consistent group differences in putaminal metabolites in HD-affected individuals compared with controls over 24 months. Future work establishing spectroscopy as an HD biomarker should include multi-site assessments in large, pathologically diverse cohorts.
Collapse
Affiliation(s)
- Aaron Sturrock
- Centre for Molecular Medicine & Therapeutics, Vancouver, Canada; Centre for Huntington Disease, University of British Columbia (UBC) Hospital, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin YS, Cheng TH, Chang CP, Chen HM, Chern Y. Enhancement of brain-type creatine kinase activity ameliorates neuronal deficits in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:742-53. [DOI: 10.1016/j.bbadis.2013.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 12/27/2022]
|
20
|
Mrzljak L, Munoz-Sanjuan I. Therapeutic Strategies for Huntington's Disease. Curr Top Behav Neurosci 2013; 22:161-201. [PMID: 24277342 DOI: 10.1007/7854_2013_250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease, caused by expansion of the CAG repeat in the huntingtin (HTT) gene and characterized pathologically by the loss of pyramidal neurons in several cortical areas, of striatal medium spiny neurons, and of hypothalamic neurons. Clinically, a distinguishing feature of the disease is uncontrolled involuntary movements (chorea, dyskensias) accompanied by progressive cognitive, motor, and psychiatric impairment. This review focuses on the current state of therapeutic development for the treatment of HD, including the preclinical and clinical development of small molecules and molecular therapies.
Collapse
|
21
|
Nucleic Acid-Based Therapy Approaches for Huntington's Disease. Neurol Res Int 2012; 2012:358370. [PMID: 22288011 PMCID: PMC3263636 DOI: 10.1155/2012/358370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/28/2011] [Accepted: 10/05/2011] [Indexed: 01/30/2023] Open
Abstract
Huntington's disease (HD) is caused by a dominant mutation that results in an unstable expansion of a CAG repeat in the huntingtin gene leading to a toxic gain of function in huntingtin protein which causes massive neurodegeneration mainly in the striatum and clinical symptoms associated with the disease. Since the mutation has multiple effects in the cell and the precise mechanism of the disease remains to be elucidated, gene therapy approaches have been developed that intervene in different aspects of the condition. These approaches include increasing expression of growth factors, decreasing levels of mutant huntingtin, and restoring cell metabolism and transcriptional balance. The aim of this paper is to outline the nucleic acid-based therapeutic strategies that have been tested to date.
Collapse
|
22
|
|
23
|
Perlman SL. Treatment and management issues in ataxic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:635-54. [PMID: 21827924 DOI: 10.1016/b978-0-444-51892-7.00046-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at the University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Perasso L, Spallarossa P, Gandolfo C, Ruggeri P, Balestrino M. Therapeutic Use of Creatine in Brain or Heart Ischemia: Available Data and Future Perspectives. Med Res Rev 2011; 33:336-63. [DOI: 10.1002/med.20255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luisa Perasso
- Department of Neuroscience, Opthalmology and Genetics; University of Genova; Genova Italy
- Department of Experimental Medicine, Section of Human Physiology; University of Genova; Genova Italy
| | - Paolo Spallarossa
- Department of Internal Medicine and Cardionephrology; University of Genova; Genova Italy
| | - Carlo Gandolfo
- Department of Neuroscience, Opthalmology and Genetics; University of Genova; Genova Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology; University of Genova; Genova Italy
| | - Maurizio Balestrino
- Department of Neuroscience, Opthalmology and Genetics; University of Genova; Genova Italy
| |
Collapse
|
25
|
Gualano B, Roschel H, Lancha AH, Brightbill CE, Rawson ES. In sickness and in health: the widespread application of creatine supplementation. Amino Acids 2011; 43:519-29. [DOI: 10.1007/s00726-011-1132-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/20/2011] [Indexed: 12/12/2022]
|
26
|
Venuto CS, McGarry A, Ma Q, Kieburtz K. Pharmacologic approaches to the treatment of Huntington's disease. Mov Disord 2011; 27:31-41. [DOI: 10.1002/mds.23953] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/29/2011] [Accepted: 08/14/2011] [Indexed: 01/01/2023] Open
|
27
|
Zádori D, Klivényi P, Plangár I, Toldi J, Vécsei L. Endogenous neuroprotection in chronic neurodegenerative disorders: with particular regard to the kynurenines. J Cell Mol Med 2011; 15:701-17. [PMID: 21155972 PMCID: PMC3922661 DOI: 10.1111/j.1582-4934.2010.01237.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) and Huntington's disease (HD) are progressive chronic neurodegenerative disorders that are accompanied by a considerable impairment of the motor functions. PD may develop for familial or sporadic reasons, whereas HD is based on a definite genetic mutation. Nevertheless, the pathological processes involve oxidative stress and glutamate excitotoxicity in both cases. A number of metabolic routes are affected in these disorders. The decrease in antioxidant capacity and alterations in the kynurenine pathway, the main pathway of the tryptophan metabolism, are features that deserve particular interest, because the changes in levels of neuroactive kynurenine pathway compounds appear to be strongly related to the oxidative stress and glutamate excitotoxicity involved in the disease pathogenesis. Increase of the antioxidant capacity and pharmacological manipulation of the kynurenine pathway are therefore promising therapeutic targets in these devastating disorders.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
28
|
Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington's disease provides in vivo evidence for impaired energy metabolism. J Neurol 2011; 258:2230-9. [PMID: 21614431 PMCID: PMC3225625 DOI: 10.1007/s00415-011-6099-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/05/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (p = 0.009) and lower creatine concentration (p = 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (p = 0.024), lower creatine concentration (p = 0.027), and lower glutamate (p = 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes.
Collapse
|
29
|
Klopstock T, Elstner M, Bender A. Creatine in mouse models of neurodegeneration and aging. Amino Acids 2011; 40:1297-303. [PMID: 21390530 DOI: 10.1007/s00726-011-0850-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/18/2010] [Indexed: 12/12/2022]
Abstract
The supplementation of creatine has shown a marked neuroprotective effect in mouse models of neurodegenerative diseases (Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). This has been assigned to the known bioenergetic, anti-apoptotic, anti-excitotoxic and anti-oxidant properties of creatine. As aging and neurodegeneration share pathophysiological pathways, we investigated the effect of oral creatine supplementation on aging in 162 aged wild-type C57Bl/6J mice. The median healthy life span of creatine-fed mice was 9% higher than in their control littermates, and they performed significantly better in neurobehavioral tests. In brains of creatine-treated mice, there was a trend toward a reduction of reactive oxygen species and significantly lower accumulation of the "aging pigment" lipofuscin. Expression profiling showed an upregulation of genes implicated in neuronal growth, neuroprotection, and learning. These data showed that creatine improves health and longevity in mice. Creatine may, therefore, be a promising food supplement to promote healthy human aging. However, the strong neuroprotective effects in animal studies of creatine have not been reproduced in human clinical trials (that have been conducted in Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis). The reasons for this translational gap are discussed. One obvious cause seems to be that all previous human studies may have been underpowered. Large phase III trials over long time periods are currently being conducted for Parkinson's disease and Huntington's disease, and will possibly solve this issue.
Collapse
Affiliation(s)
- T Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University of Munich, Ziemssenstrasse 1, Munich, Germany.
| | | | | |
Collapse
|
30
|
Experimental Models of HD and Reflection on Therapeutic Strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:419-81. [DOI: 10.1016/b978-0-12-381328-2.00016-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Atassi N, Ratai EM, Greenblatt DJ, Pulley D, Zhao Y, Bombardier J, Wallace S, Eckenrode J, Cudkowicz M, Dibernardo A. A phase I, pharmacokinetic, dosage escalation study of creatine monohydrate in subjects with amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2010; 11:508-13. [PMID: 20698808 DOI: 10.3109/17482961003797130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Creatine monohydrate (creatine) has potential neuroprotective properties and is a commonly used supplement in amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Minimum therapeutic and maximum tolerated dosages of creatine are not yet known, nor is it known what systemic plasma concentrations result from specific dosage regimens. The objectives of this study were to establish steady-state plasma pharmacokinetics of creatine at several dosages, and to evaluate the effects of creatine on brain metabolites using proton magnetic resonance spectroscopy ((1)H-MRS). Six participants with ALS received creatine at three weekly escalating oral dosages (5, 10, and 15 g b.i.d.). Plasma creatine levels and MR spectra were obtained at baseline and with each dosage increase. Mean pre-dose steady-state creatine plasma concentrations were 20.3, 39.3, and 61.5 ug/ml at 5, 10, and 15 g b.i.d., respectively. Creatine spectra increased by 8% (p = 0.06) and glutamate + glutamine signals decreased by 17% (p = 0.039) at higher dosages. There were no safety concerns at any of the dosages. In conclusion, creatine plasma concentrations increased in a dose-dependent manner. Creatine appears to cross the blood-brain barrier, and oral administration of 15 g b.i.d. is associated with increased in vivo brain creatine concentrations and decreased glutamate concentrations.
Collapse
Affiliation(s)
- Nazem Atassi
- Neurology Clinical Trials Unit (NCTU), Massachusetts General Hospital, 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Huntington's disease (HD) is a relentless neurodegenerative disease that results in profound disability through a triad of motor, cognitive and neuropsychiatric symptoms. At present, there are very few therapeutic interventions available with the exception of a limited number of drugs that offer mild symptomatic relief. Although the genetic basis of the disease has been identified, the mechanisms behind the cellular pathogenesis are still not clear and as a result no candidate drugs with the potential for disease modification have been found clinically until now. One of the major limitations in assessing the usefulness of drug treatments in HD is the lack of well-designed, double-blind, placebo-controlled clinical trials. Most studies have been open-label, using a small number of patients and tend to concentrate on the motor features of the disease, primarily the chorea. This review discusses the treatments now used for HD before evaluating the newer drugs at present being explored in both the clinic and in the laboratory in mouse models of the disease.
Collapse
Affiliation(s)
- Sarah L Mason
- Cambridge Centre for Brain Repair, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB20PY, UK.
| | | |
Collapse
|
33
|
Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C. Therapeutic interventions for disease progression in Huntington's disease. Cochrane Database Syst Rev 2009; 2009:CD006455. [PMID: 19588392 PMCID: PMC7390161 DOI: 10.1002/14651858.cd006455.pub2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with an average onset between the fourth and fifth decade of life; it leads to death 15 to 20 years after the onset of symptoms. Although several drugs seem effective in controlling the incapacitating manifestations of HD, no specific therapy is known. The present review aims at analysing the best available data on therapeutic interventions investigated with the goal of modifying the progression of the disease as measured in terms of survival, disability or progression of HD core symptoms. OBJECTIVES Evaluate the effectiveness of therapeutic interventions aimed at modifying disease progression in HD. SEARCH STRATEGY The search strategy developed for the Movement Disorders Group was undertaken. The Cochrane Controlled Trials Register, Medline, EMBASE and Clinical Trials Database of the United States National Institute of Health were thoroughly searched until December 2007. SELECTION CRITERIA All randomised, double-blinded, placebo-controlled clinical trials of therapeutics investigated with the goal of modifying disease progression in HD were included. Participants should have genetically confirmed diagnosis of HD or compatible symptoms and a family history. Trials had a follow-up duration of more than three months and at least ten participants. All pharmacological and non-pharmacological interventions were included. DATA COLLECTION AND ANALYSIS Two reviewers independently assessed the eligibility of identified trials. The methodological quality was assessed and eligible data were registered onto standardised forms. An intention-to-treat analysis was conducted, when feasible. If data were not available in the original publication, the principal investigator of the trial was contacted for further information. A meta-analysis was to be conducted when possible; otherwise, a descriptive summary of the results was provided. The software Revman 5.0.15 was used for statistical analysis. MAIN RESULTS Eight trials were included involving a total of 1366 HD patients. The duration of the studies ranged between 30 and 144 weeks (median: 52 weeks). The following interventions were selected: vitamin E, Idebenone, Baclofen, Lamotrigine, creatine, coenzyme Q10 + Remacemide, ethyl-eicosapentanoic acid and Riluzole. No trials produced positive results for the selected efficacy outcome measures. A descriptive summary of the trials is provided. The selected interventions were found to be generally safe and well tolerated. AUTHORS' CONCLUSIONS Only pharmacological interventions were included and none proved to be effective as a disease-modifying therapy for HD. Further trials with greater methodological quality should be conducted using more sensitive biological markers. Pre-symptomatic mutation carriers should be included in future studies.
Collapse
Affiliation(s)
- Tiago Mestre
- Institute of Molecular MedicineNeurological Clinical Research UnitHospital de Santa MariaAv. Prof. Egas MonizLisboaPortugal1649‐028
| | - Joaquim Ferreira
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaHospital de Santa MariaAv. Prof. Egas MonizLisboaPortugal1649‐028
| | - Miguel M Coelho
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaHospital de Santa MariaAv. Prof. Egas MonizLisboaPortugal1649‐028
| | - Mário Rosa
- Institute of Molecular MedicineNeurological Clinical Research UnitHospital de Santa MariaAv. Prof. Egas MonizLisboaPortugal1649‐028
| | - Cristina Sampaio
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaHospital de Santa MariaAv. Prof. Egas MonizLisboaPortugal1649‐028
| | | |
Collapse
|
34
|
Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH. Exploring the therapeutic role of creatine supplementation. Amino Acids 2009; 38:31-44. [PMID: 19253023 DOI: 10.1007/s00726-009-0263-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/11/2009] [Indexed: 12/12/2022]
Abstract
Creatine (Cr) plays a central role in energy provision through a reaction catalyzed by phosphorylcreatine kinase. Furthermore, this amine enhances both gene expression and satellite cell activation involved in hypertrophic response. Recent findings have indicated that Cr supplementation has a therapeutic role in several diseases characterized by atrophic conditions, weakness, and metabolic disturbances (i.e., in the muscle, bone, lung, and brain). Accordingly, there has been an evidence indicating that Cr supplementation is capable of attenuating the degenerative state in some muscle disorders (i.e., Duchenne and inflammatory myopathies), central nervous diseases (i.e., Parkinson's, Huntington's, and Alzheimer's), and bone and metabolic disturbances (i.e., osteoporosis and type II diabetes). In light of this, Cr supplementation could be used as a therapeutic tool for the elderly. The aim of this review is to summarize the main studies conducted in this field and to highlight the scientific and clinical perspectives of this promising therapeutic supplement.
Collapse
Affiliation(s)
- Bruno Gualano
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
35
|
Stack EC, Matson WR, Ferrante RJ. Evidence of Oxidant Damage in Huntington's Disease: Translational Strategies Using Antioxidants. Ann N Y Acad Sci 2008; 1147:79-92. [DOI: 10.1196/annals.1427.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Functions and effects of creatine in the central nervous system. Brain Res Bull 2008; 76:329-43. [DOI: 10.1016/j.brainresbull.2008.02.035] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/15/2008] [Accepted: 02/25/2008] [Indexed: 12/12/2022]
|
37
|
Martin B, Golden E, Keselman A, Stone M, Mattson MP, Egan JM, Maudsley S. Therapeutic perspectives for the treatment of Huntington's disease: treating the whole body. Histol Histopathol 2008; 23:237-50. [PMID: 17999380 PMCID: PMC2657556 DOI: 10.14670/hh-23.237] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huntington's disease (HD) is a tremendously debilitating disorder that strikes relatively young individuals and progresses rapidly over the next ten to fifteen years inducing a loss of cognitive and motor skills and eventually death occurs. The primary locus of the disorder is a polyglutamine expansion of the protein product of the huntingtin (htt) gene. The htt protein appears to be a scaffolding protein that orchestrates the complex assembly of multiple intracellular proteins involved in multiple processes, including vesicular movement and cell metabolism. The htt protein is ubiquitously expressed in human tissues but the predominance of the interest in the pathology lies in its effects on the central nervous system (CNS). Most of the current therapeutics for HD thus have been targeted at preventing neuronal damage in the CNS, however, a considerable body of evidence has been accumulating to suggest that the maintenance of a healthy nervous system is tightly linked with peripheral physiological health. Therefore treatment of both the peripheral and central pathophysiologies of HD could form the basis of a more effective HD therapeutic strategy.
Collapse
Affiliation(s)
- Bronwen Martin
- National Institute on Aging, NIH, Gerontology Research Center, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Stack EC, Ferrante RJ. Huntington's disease: progress and potential in the field. Expert Opin Investig Drugs 2007; 16:1933-53. [DOI: 10.1517/13543784.16.12.1933] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Abstract
Significant progress has been made in identifying neuroprotective agents and their translation to patients with neurological disorders. While the direct causative pathways of neurodegeneration remain unclear, they are under great clinical and experimental investigation. There are a number of interrelated pathogenic mechanisms triggering molecular events that lead to neuronal death. One putative mechanism reported to play a prominent role in the pathogenesis of neurological diseases is impaired energy metabolism. If reduced energy stores play a role in neuronal loss, then therapeutic strategies that buffer intracellular energy levels may prevent or impede the neurodegenerative process. Recent studies suggest that impaired energy production promotes neurological disease onset and progression. Sustained ATP levels are critical to cellular homeostasis and may have both direct and indirect influence on pathogenic mechanisms associated with neurological disorders. Creatine is a critical component in maintaining cellular energy homeostasis, and its administration has been reported to be neuroprotective in a wide number of both acute and chronic experimental models of neurological disease. In the context of this chapter, we will review the experimental evidence for creatine supplementation as a neurotherapeutic strategy in patients with neurological disorders, including Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease, as well as in ischemic stroke, brain and spinal cord trauma, and epilepsy.
Collapse
|
40
|
Bonelli RM, Hofmann P. A systematic review of the treatment studies in Huntington's disease since 1990. Expert Opin Pharmacother 2007; 8:141-53. [PMID: 17257085 DOI: 10.1517/14656566.8.2.141] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, inherited, neuropsychiatric disease that gives rise to progressive motor, cognitive and behavioural symptoms. Current drug therapy has no effect on the progression of disability, and the need for any pharmacological treatment should be carefully considered. Hyperkinesias and psychiatric symptoms may respond well to pharmacotherapy, but neuropsychological deficits and dementia remain untreatable. Pharmacological intervention in the treatment of the movement disorder of HD is aimed at restoring the balance of neurotransmitters in the basal ganglia. A surprising amount of current drug therapy of HD in clinical practice is based on studies published before 1990. The authors conducted a systematic review of pharmacological therapy in HD using the available papers that were published between 1990 and 2006.
Collapse
Affiliation(s)
- Raphael M Bonelli
- University Clinic of Psychiatry, Graz Medical University, Auenbruggerplatz 31, A-8036 Graz, Austria.
| | | |
Collapse
|
41
|
Mihm MJ, Amann DM, Schanbacher BL, Altschuld RA, Bauer JA, Hoyt KR. Cardiac dysfunction in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2006; 25:297-308. [PMID: 17126554 PMCID: PMC1850107 DOI: 10.1016/j.nbd.2006.09.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/14/2006] [Accepted: 09/21/2006] [Indexed: 11/19/2022] Open
Abstract
Recent evidence suggests that mutant huntingtin protein-induced energetic perturbations contribute to neuronal dysfunction in Huntington's disease (HD). Given the ubiquitous expression of huntingtin, other cell types with high energetic burden may be at risk for HD-related dysfunction. Early-onset cardiovascular disease is the second leading cause of death in HD patients; a direct role for mutant huntingtin in this phenomenon remains unevaluated. Here we tested the hypothesis that expression of mutant huntingtin is sufficient to induce cardiac dysfunction, using a well-described transgenic model of HD (line R6/2). R6/2 mice developed cardiac dysfunction by 8 weeks of age, progressing to severe failure at 12 weeks, assessed by echocardiography. Limited evidence of cardiac remodeling (e.g. hypertrophy, fibrosis, apoptosis, beta(1) adrenergic receptor downregulation) was observed. Immunogold electron microscopy demonstrated significant elevations in nuclear and mitochondrial polyglutamine presence in the R6/2 myocyte. Significant alterations in mitochondrial ultrastructure were seen, consistent with metabolic stress. Increased cardiac lysine acetylation and protein nitration were observed and were each significantly associated with impairments in cardiac performance. These data demonstrate that mutant huntingtin expression has potent cardiotoxic effects; cardiac failure may be a significant complication of this important experimental model of HD. Investigation of the potential cardiotropic effects of mutant huntingtin in humans may be warranted.
Collapse
Affiliation(s)
- Michael J. Mihm
- Center for Cardiovascular Medicine, Columbus Children’s Research Institute, 700 Children’s Drive, Columbus, Ohio 43205
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Deborah M. Amann
- Center for Cardiovascular Medicine, Columbus Children’s Research Institute, 700 Children’s Drive, Columbus, Ohio 43205
| | - Brandon L. Schanbacher
- Center for Cardiovascular Medicine, Columbus Children’s Research Institute, 700 Children’s Drive, Columbus, Ohio 43205
| | - Ruth A. Altschuld
- The Ohio State University Biophysics Program and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - John Anthony Bauer
- Center for Cardiovascular Medicine, Columbus Children’s Research Institute, 700 Children’s Drive, Columbus, Ohio 43205
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43210
- * Corresponding Authors: Division of Pharmacology, College of Pharmacy, The Ohio State University, 412 Riffe Building, 496 West 12 Avenue, Columbus, OH 43221, Phone: (614) 292-6636, e-mail: (J.A.B) and (K.R.H)
| | - Kari R. Hoyt
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
- * Corresponding Authors: Division of Pharmacology, College of Pharmacy, The Ohio State University, 412 Riffe Building, 496 West 12 Avenue, Columbus, OH 43221, Phone: (614) 292-6636, e-mail: (J.A.B) and (K.R.H)
| |
Collapse
|
42
|
Abstract
Advances in postgenomic technologies have radically changed the information output from complex biological systems, generating vast amounts of high complexity data that can be interpreted by means of chemometric and bioinformatic methods to achieve disease diagnosis and prognosis. High-resolution nuclear magnetic resonance (NMR) spectroscopy of biofluids such as plasma, cerebrospinal fluid (CSF), and urine can generate robust, interpretable metabolic fingerprints that contain latent information relating to physiological or pathological status. This technology has been successfully applied to both preclinical and clinical studies of neurodegenerative diseases such as Huntington's disease, muscular dystrophy, and cerebellar ataxia. An extension of this technology, (1)H magic-angle-spinning (HRMAS) NMR spectroscopy, can be used to generate metabolic information on small intact tissue samples, providing a metabolic link between metabolic profiling of biofluids and histology. In this review we provide a summary of high-resolution NMR studies in neurodegenerative disease and explore the potential of metabonomics in evaluating disease progression with respect to therapeutic intervention.
Collapse
Affiliation(s)
- Elaine Holmes
- Biological Chemistry, Biomedical Sciences Division, Faculty of Natural Science, Imperial College London, South Kensington, UK.
| | | | | |
Collapse
|
43
|
Smith KM, Matson S, Matson WR, Cormier K, Del Signore SJ, Hagerty SW, Stack EC, Ryu H, Ferrante RJ. Dose ranging and efficacy study of high-dose coenzyme Q10 formulations in Huntington's disease mice. Biochim Biophys Acta Mol Basis Dis 2006; 1762:616-26. [PMID: 16647250 DOI: 10.1016/j.bbadis.2006.03.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 01/23/2023]
Abstract
There is substantial evidence that a bioenergetic defect may play a role in the pathogenesis of Huntington's Disease (HD). A potential therapy for remediating defective energy metabolism is the mitochondrial cofactor, coenzyme Q10 (CoQ10). We have reported that CoQ10 is neuroprotective in the R6/2 transgenic mouse model of HD. Based upon the encouraging results of the CARE-HD trial and recent evidence that high-dose CoQ10 slows the progressive functional decline in Parkinson's disease, we performed a dose ranging study administering high levels of CoQ10 from two commercial sources in R6/2 mice to determine enhanced efficacy. High dose CoQ10 significantly extended survival in R6/2 mice, the degree of which was dose- and source-dependent. CoQ10 resulted in a marked improvement in motor performance and grip strength, with a reduction in weight loss, brain atrophy, and huntingtin inclusions in treated R6/2 mice. Brain levels of CoQ10 and CoQ9 were significantly lower in R6/2 mice, in comparison to wild type littermate control mice. Oral administration of CoQ10 elevated CoQ10 plasma levels and significantly increased brain levels of CoQ9, CoQ10, and ATP in R6/2 mice, while reducing 8-hydroxy-2-deoxyguanosine concentrations, a marker of oxidative damage. We demonstrate that high-dose administration of CoQ10 exerts a greater therapeutic benefit in a dose dependent manner in R6/2 mice than previously reported and suggest that clinical trials using high dose CoQ10 in HD patients are warranted.
Collapse
Affiliation(s)
- Karen M Smith
- Geriatric Research Education and Clinical Center, Bedford VA Medical Center, Bedford 01730, and Neurology Department, Boston University School of Medicine, MA 02180, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Huntington's disease (HD) is a progressive and fatal neurological disorder caused by an expanded CAG repeat in the gene coding for the protein, huntingtin. There is no clinically proven treatment for HD. Although the exact cause of neuronal death in HD remains unknown, it has been postulated that the abnormal aggregation of the mutant huntingtin protein may cause toxic effects in neurons, leading to a cascade of pathogenic mechanisms associated with transcriptional dysfunction, oxidative stress, mitochondrial alterations, apoptosis, bioenergetic defects and subsequent excitotoxicity. Understanding how these processes interrelate has become important in identifying a pharmacotherapy in HD and in the design of clinical trials. A number of drug compounds that separately target these mechanisms have significantly improved the clinical and neuropathological phenotype of HD transgenic mice and, as such, are immediate candidates for human clinical trials in HD patients. These compounds are discussed herein.
Collapse
Affiliation(s)
- Hoon Ryu
- Boston University School of Medicine, Edith Nourse Rogers Veterans Administration Medical Center, Bedford, Massachusetts 01730, USA
| | | |
Collapse
|
45
|
Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer ANM. Exocytotic release of creatine in rat brain. Synapse 2006; 60:118-23. [PMID: 16715490 DOI: 10.1002/syn.20280] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The guanidino compound creatine has been shown to occur throughout the brain affecting energy metabolism and mental performance and to act at central GABAA receptors as a partial agonist. Therefore, we examined the possibility that creatine may in fact represent a neuromodulator that is released in the brain in an action-potential dependent manner. To that end, we studied the uptake of [3H]creatine and its electrically evoked release from superfused rat brain slices as well as the evoked release of endogenously synthesized creatine. [3H]creatine was accumulated in neocortex slices in a Na+-dependent manner, consistent with the involvement of the Na+-dependent SLC6A8 creatine transporter. Most importantly, the electrically evoked release of [3H]creatine from neocortex slices (like that from caudate putamen and hippocampus slices) as well as the evoked release of endogenous (unlabeled) creatine was abolished when Ca2+ was omitted from the superfusion medium or in the presence of the Na+-channel blocker tetrodotoxin (TTX). Moreover, blockade of K+-channels by 4-aminopyridine (4-AP) strongly enhanced the electrically evoked release of [3H]creatine as well as that of endogenous creatine. These in vitro data indicate that creatine is not only synthesized and taken up by central neurons, but also released in an action-potential dependent (exocytotic) manner, providing strong evidence for its role as a neuromodulator in the brain.
Collapse
Affiliation(s)
- Ligia S Almeida
- Department of Clinical Chemistry, Metabolic Unit, VU medical center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Handley OJ, Naji JJ, Dunnett SB, Rosser AE. Pharmaceutical, cellular and genetic therapies for Huntington's disease. Clin Sci (Lond) 2005; 110:73-88. [PMID: 16336206 DOI: 10.1042/cs20050148] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HD (Huntington's disease) is a devastating neurodegenerative disorder caused by a polyglutamine expansion in the gene encoding the huntingtin protein. Presently, there is no known cure for HD and existing symptomatic treatments are limited. However, recent advances have identified multiple pathological mechanisms involved in HD, some of which have now become the focus of therapeutic intervention. In this review, we consider progress made towards developing safe and effective pharmaceutical-, cell- and genetic-based therapies, and discuss the extent to which some of these therapies have been successfully translated into clinical trials. These new prospects offer hope for delaying and possibly halting this debilitating disease.
Collapse
Affiliation(s)
- Olivia J Handley
- The Brain Repair Group, School of Biosciences, Cardiff University, Cardiff CF10 3US, UK.
| | | | | | | |
Collapse
|
47
|
Ryu H, Rosas HD, Hersch SM, Ferrante RJ. The therapeutic role of creatine in Huntington's disease. Pharmacol Ther 2005; 108:193-207. [PMID: 16055197 DOI: 10.1016/j.pharmthera.2005.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant and fatal neurological disorder characterized by a clinical triad of progressive choreiform movements, psychiatric symptoms, and cognitive decline. HD is caused by an expanded trinucleotide CAG repeat in the gene coding for the protein huntingtin. No proven treatment to prevent the onset or to delay the progression of HD currently exists. While a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear, it has been hypothesized that interactions of the mutant huntingtin protein or its fragments may result in a number of interrelated pathogenic mechanisms triggering a cascade of molecular events that lead to the untimely neuronal death observed in HD. One putative pathological mechanism reported to play a prominent role in the pathogenesis of HD is mitochondrial dysfunction and the subsequent reduction of cellular energy. Indeed, if mitochondrial impairment and reduced energy stores play roles in the neuronal loss in HD, then a therapeutic strategy that buffers intracellular energy levels may ameliorate the neurodegenerative process. Sustained ATP levels may have both direct and indirect importance in ameliorating the severity of many of the pathogenic mechanisms associated with HD. Creatine, a guanidino compound produced endogenously and acquired exogenously through diet, is a critical component in maintaining much needed cellular energy. As such, creatine is one of a number of ergogens that may provide a relatively safe and immediately available therapeutic strategy to HD patients that may be the cornerstone of a combined treatment necessary to delay the relentless progression of HD.
Collapse
Affiliation(s)
- Hoon Ryu
- Experimental Neuropathology Unit and Translational Therapeutics Laboratory, Geriatric Research Education Clinical Center, Bedford VA Medical Center, MA 01730, USA
| | | | | | | |
Collapse
|
48
|
Derave W, Eijnde BO, Ramaekers M, Hespel P. No effects of lifelong creatine supplementation on sarcopenia in senescence-accelerated mice (SAMP8). Am J Physiol Endocrinol Metab 2005; 289:E272-7. [PMID: 15727953 DOI: 10.1152/ajpendo.00039.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral creatine supplementation can acutely ameliorate skeletal muscle function in older humans, but its value in the prevention of sarcopenia remains unknown. We evaluated the effects of lifelong creatine supplementation on muscle mass and morphology, contractility, and metabolic properties in a mouse model of muscle senescence. Male senescence-accelerated mice (SAMP8) were fed control or creatine-supplemented (2% of food intake) diet from the age of 10 to 60 wk. Soleus and extensor digitorum longus muscles were tested for in vitro contractile properties, creatine content, and morphology at weeks 25 and 60. Both muscle types showed reduced phosphocreatine content at week 60 that could not be prevented by creatine. Accordingly, age-associated decline in muscle mass and contractility was not influenced by treatment. Aged soleus muscles had fewer and smaller fast-twitch glycolytic fibers irrespective of treatment received. It is concluded that lifelong creatine supplementation is no effective strategy to prevent sarcopenia in senescence-accelerated mice.
Collapse
Affiliation(s)
- Wim Derave
- Exercise Physiology and Biomechanics Laboratory, Faculty of Kinesiology and Rehabilitation Sciences, Tervuursevest 101, B-3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
49
|
Disorders of the mitochondrial respiratory chain. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
50
|
Baker SK, Tarnopolsky MA. Targeting cellular energy production in neurological disorders. Expert Opin Investig Drugs 2005; 12:1655-79. [PMID: 14519086 DOI: 10.1517/13543784.12.10.1655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concepts of energy dysregulation and oxidative stress and their complicated interdependence have rapidly evolved to assume primary importance in understanding the pathophysiology of numerous neurological disorders. Therefore, neuroprotective strategies addressing specific bioenergetic defects hold particular promise in the treatment of these conditions (i.e., amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, Friedreich's ataxia, mitochondrial cytopathies and other neuromuscular diseases), all of which, to some extent, share 'the final common pathway' leading to cell death through either necrosis or apoptosis. Compounds such as creatine monohydrate and coenzyme Q(10) offer substantial neuroprotection against ischaemia, trauma, oxidative damage and neurotoxins. Miscellaneous agents, including alpha-lipoic acid, beta-OH-beta-methylbutyrate, riboflavin and nicotinamide, have also been shown to improve various metabolic parameters in brain and/or muscle. This review will highlight the biological function of each of the above mentioned compounds followed by a discussion of their utility in animal models and human neurological disease. The balance of this work will be comprised of discussions on the therapeutic applications of creatine and coenzyme Q(10).
Collapse
Affiliation(s)
- Steven K Baker
- Neurology and Rehabilitation, Room 4U4, Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|