1
|
Sharma S, Mahadevan A, Narayanappa G, Debnath M, Govindaraj P, Shivaram S, Seshagiri DV, Siram R, Shroti A, Bindu PS, Chickabasaviah YT, Taly AB, Nagappa M. Exploring the evidence for mitochondrial dysfunction and genetic abnormalities in the etiopathogenesis of tropical ataxic neuropathy. J Neurogenet 2024; 38:27-34. [PMID: 38975939 DOI: 10.1080/01677063.2024.2373363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Tropical ataxic neuropathy (TAN) is characterised by ataxic polyneuropathy, degeneration of the posterior columns and pyramidal tracts, optic atrophy, and sensorineural hearing loss. It has been attributed to nutritional/toxic etiologies, but evidence for the same has been equivocal. TAN shares common clinical features with inherited neuropathies and mitochondrial disorders, it may be hypothesised that genetic abnormalities may underlie the pathophysiology of TAN. This study aimed to establish evidence for mitochondrial dysfunction by adopting an integrated biochemical and multipronged genetic analysis. Patients (n = 65) with chronic progressive ataxic neuropathy with involvement of visual and/or auditory pathways underwent deep phenotyping, genetic studies including mitochondrial DNA (mtDNA) deletion analysis, mtDNA and clinical exome sequencing (CES), and respiratory chain complex (RCC) assay. The phenotypic characteristics included dysfunction of visual (n = 14), auditory (n = 12) and visual + auditory pathways (n = 29). Reduced RCC activity was present in 13 patients. Mitochondrial DNA deletions were noted in five patients. Sequencing of mtDNA (n = 45) identified a homoplasmic variant (MT-ND6) and a heteroplasmic variant (MT-COI) in one patient each. CES (n = 45) revealed 55 variants in nuclear genes that are associated with neuropathy (n = 27), deafness (n = 7), ataxia (n = 4), and mitochondrial phenotypes (n = 5) in 36 patients. This study provides preliminary evidence that TAN is associated with a spectrum of genetic abnormalities, including those associated with mitochondrial dysfunction, which is in contradistinction from the prevailing hypothesis that TAN is related to dietary toxins. Analysing the functional relevance of these genetic variants may improve the understanding of the pathogenesis of TAN.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sumanth Shivaram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Doniparthi V Seshagiri
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ramesh Siram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Akhilesh Shroti
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Parayil S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun B Taly
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
2
|
Du N, Wang X, Wang Z, Liu H, Liu H, Duan H, Zhao S, Banerjee S, Zhang X. Identification of a Novel Homozygous Mutation in MTMR2 Gene Causes Very Rare Charcot-Marie-Tooth Disease Type 4B1. Appl Clin Genet 2024; 17:71-84. [PMID: 38835974 PMCID: PMC11149649 DOI: 10.2147/tacg.s448084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Background Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders involving peripheral nervous system. Charcot-Marie-Tooth disease 4B1 (CMT4B1) is a rare subtype of CMT. CMT4B1 is an axonal demyelinating polyneuropathy with an autosomal recessive mode of inheritance. Patients with CMT4B1 usually manifested with dysfunction of the motor and sensory systems which leads to gradual and progressive muscular weakness and atrophy, starting from the peroneal muscles and finally affecting the distal muscles. Germline mutations in MTMR2 gene causes CMT4B1. Material and Methods In this study, we investigated a 4-year-old Chinese boy with gradual and progressive weakness and atrophy of both proximal and distal muscles. The proband's parents did not show any abnormalities. Whole-exome sequencing and Sanger sequencing were performed. Results Whole-exome sequencing identified a novel homozygous nonsense mutation (c.118A>T; p.Lys40*) in exon 2 of MTMR2 gene in the proband. This novel mutation leads to the formation of a truncated MTMR2 protein of 39 amino acids instead of the wild- type MTMR2 protein of 643 amino acids. This mutation is predicted to cause the complete loss of the PH-GRAM domain, phosphatase domain, coiled-coil domain, and PDZ-binding motif of the MTMR2 protein. Sanger sequencing revealed that the proband's parents carried the mutation in a heterozygous state. This mutation was absent in 100 healthy control individuals. Conclusion This study reports the first mutation in MTMR2 associated with CMT4B1 in a Chinese population. Our study also showed the importance of whole-exome sequencing in identifying candidate genes and disease-causing variants in patients with CMT4B1.
Collapse
Affiliation(s)
- Nan Du
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Xiaolei Wang
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Zhaohui Wang
- Center for Children Health Care, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Hongwei Liu
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Hui Liu
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Hongfang Duan
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Shaozhi Zhao
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xinwen Zhang
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| |
Collapse
|
3
|
Al-Saei O, Malka S, Owen N, Aliyev E, Vempalli FR, Ocieczek P, Al-Khathlan B, Fakhro K, Moosajee M. Increasing the diagnostic yield of childhood glaucoma cases recruited into the 100,000 Genomes Project. BMC Genomics 2024; 25:484. [PMID: 38755526 PMCID: PMC11097485 DOI: 10.1186/s12864-024-10353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.
Collapse
Affiliation(s)
- Omayma Al-Saei
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | - Paulina Ocieczek
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | | | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
4
|
Karakaya T, Turkyilmaz A, Sager G, Inan R, Yarali O, Cebi AH, Akin Y. Molecular characterization of Turkish patients with demyelinating Charcot-Marie-Tooth disease. Neurogenetics 2022; 23:213-221. [DOI: 10.1007/s10048-022-00693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
5
|
Mattei AM, Smailys JD, Hepworth EMW, Hinton SD. The Roles of Pseudophosphatases in Disease. Int J Mol Sci 2021; 22:ijms22136924. [PMID: 34203203 PMCID: PMC8269279 DOI: 10.3390/ijms22136924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets.
Collapse
|
6
|
Farré Mariné A, Granger N, Bertolani C, Mascort Boixeda J, Shelton GD, Luján Feliu‐Pascual A. Long-term outcome of Miniature Schnauzers with genetically confirmed demyelinating polyneuropathy: 12 cases. J Vet Intern Med 2020; 34:2005-2011. [PMID: 32738000 PMCID: PMC7517849 DOI: 10.1111/jvim.15861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A demyelinating polyneuropathy with focally folded myelin sheaths was reported in 3 Miniature Schnauzers in France in 2008 and was predicted to represent a naturally occurring canine homologue of Charcot-Marie-Tooth (CMT) disease. A genetic variant of MTRM13/SBF2 has been identified as causative in affected Miniature Schnauzers with this polyneuropathy. OBJECTIVE To provide data on the long-term progression in affected Miniature Schnauzers from Spain confirmed with the MTRM13/SBF2 genetic variant. ANIMALS Twelve Miniature Schnauzers presented between March 2013 and June 2019. METHODS Only dogs presented with consistent clinical signs and homozygous for the MTRM13/SBF2 genetic variant were included. Clinical signs, age of onset and presentation, time from onset to presentation, treatment, outcome, and time from diagnosis to final follow-up were retrospectively reviewed. RESULTS The hallmark clinical signs at the time of presentation were regurgitation with radiologically confirmed megaesophagus (11/12) and aphonic bark (11/12) with or without obvious neuromuscular weakness despite electrodiagnostic evidence of appendicular demyelinating polyneuropathy. Age of onset and clinical presentation were 3-18 and 4-96 months, respectively. Treatment was mostly symptomatic and consisted of head elevation during meals, antacids, prokinetics, bethanechol, sildenafil, mirtazapine, or some combination of these. During the follow-up period (7-73 months), clinical signs were unchanged in (11/12) cases with aspiration pneumonia developing occasionally (6/12) and being the cause of death in 1 dog. CONCLUSIONS AND CLINICAL IMPORTANCE Demyelinating polyneuropathy of Miniature Schnauzers tends to remain stable over the long term leading to a good prognosis with preventive feeding measures and symptomatic treatment to control aspiration pneumonia.
Collapse
Affiliation(s)
| | - Nicolas Granger
- CVS Referrals, Bristol Veterinary Specialists at HighcroftBristolUK
- The Royal Veterinary College, University of LondonHatfieldUK
| | | | | | - G. Diane Shelton
- Department of Pathology, School of MedicineUniversity of California and Comparative Neuromuscular LaboratorySan DiegoCaliforniaUSA
| | | |
Collapse
|
7
|
Granger N, Luján Feliu-Pascual A, Spicer C, Ricketts S, Hitti R, Forman O, Hersheson J, Houlden H. Charcot-Marie-Tooth type 4B2 demyelinating neuropathy in miniature Schnauzer dogs caused by a novel splicing SBF2 (MTMR13) genetic variant: a new spontaneous clinical model. PeerJ 2019; 7:e7983. [PMID: 31772832 PMCID: PMC6875392 DOI: 10.7717/peerj.7983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023] Open
Abstract
Background Charcot-Marie-Tooth (CMT) disease is the most common neuromuscular disorder in humans affecting 40 out of 100,000 individuals. In 2008, we described the clinical, electrophysiological and pathological findings of a demyelinating motor and sensory neuropathy in Miniature Schnauzer dogs, with a suspected autosomal recessive mode of inheritance based on pedigree analysis. The discovery of additional cases has followed this work and led to a genome-wide association mapping approach to search for the underlying genetic cause of the disease. Methods For genome wide association screening, genomic DNA samples from affected and unaffected dogs were genotyped using the Illumina CanineHD SNP genotyping array. SBF2 and its variant were sequenced using primers and PCRs. RNA was extracted from muscle of an unaffected and an affected dog and RT-PCR performed. Immunohistochemistry for myelin basic protein was performed on peripheral nerve section specimens. Results The genome-wide association study gave an indicative signal on canine chromosome 21. Although the signal was not of genome-wide significance due to the small number of cases, the SBF2 (also known as MTMR13) gene within the region of shared case homozygosity was a strong positional candidate, as 22 genetic variants in the gene have been associated with demyelinating forms of Charcot-Marie-Tooth disease in humans. Sequencing of SBF2 in cases revealed a splice donor site genetic variant, resulting in cryptic splicing and predicted early termination of the protein based on RNA sequencing results. Conclusions This study reports the first genetic variant in Miniature Schnauzer dogs responsible for the occurrence of a demyelinating peripheral neuropathy with abnormally folded myelin. This discovery establishes a genotype/phenotype correlation in affected Miniature Schnauzers that can be used for the diagnosis of these dogs. It further supports the dog as a natural model of a human disease; in this instance, Charcot-Marie-Tooth disease. It opens avenues to search the biological mechanisms responsible for the disease and to test new therapies in a non-rodent large animal model. In particular, recent gene editing methods that led to the restoration of dystrophin expression in a canine model of muscular dystrophy could be applied to other canine models such as this before translation to humans.
Collapse
Affiliation(s)
- Nicolas Granger
- Royal Veterinary College, University of London, Hatfield, United Kingdom.,Bristol Veterinary Specialists, CVS Referrals, Bristol, United Kingdom
| | | | - Charlotte Spicer
- Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
| | - Sally Ricketts
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Rebekkah Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Oliver Forman
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Joshua Hersheson
- Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
| |
Collapse
|
8
|
Pareyson D, Stojkovic T, Reilly MM, Leonard-Louis S, Laurà M, Blake J, Parman Y, Battaloglu E, Tazir M, Bellatache M, Bonello-Palot N, Lévy N, Sacconi S, Guimarães-Costa R, Attarian S, Latour P, Solé G, Megarbane A, Horvath R, Ricci G, Choi BO, Schenone A, Gemelli C, Geroldi A, Sabatelli M, Luigetti M, Santoro L, Manganelli F, Quattrone A, Valentino P, Murakami T, Scherer SS, Dankwa L, Shy ME, Bacon CJ, Herrmann DN, Zambon A, Tramacere I, Pisciotta C, Magri S, Previtali SC, Bolino A. A multicenter retrospective study of charcot-marie-tooth disease type 4B (CMT4B) associated with mutations in myotubularin-related proteins (MTMRs). Ann Neurol 2019; 86:55-67. [PMID: 31070812 DOI: 10.1002/ana.25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Charcot-Marie-Tooth (CMT) disease 4B1 and 4B2 (CMT4B1/B2) are characterized by recessive inheritance, early onset, severe course, slowed nerve conduction, and myelin outfoldings. CMT4B3 shows a more heterogeneous phenotype. All are associated with myotubularin-related protein (MTMR) mutations. We conducted a multicenter, retrospective study to better characterize CMT4B. METHODS We collected clinical and genetic data from CMT4B subjects in 18 centers using a predefined minimal data set including Medical Research Council (MRC) scores of nine muscle pairs and CMT Neuropathy Score. RESULTS There were 50 patients, 21 of whom never reported before, carrying 44 mutations, of which 21 were novel and six representing novel disease associations of known rare variants. CMT4B1 patients had significantly more-severe disease than CMT4B2, with earlier onset, more-frequent motor milestones delay, wheelchair use, and respiratory involvement as well as worse MRC scores and motor CMT Examination Score components despite younger age at examination. Vocal cord involvement was common in both subtypes, whereas glaucoma occurred in CMT4B2 only. Nerve conduction velocities were similarly slowed in both subtypes. Regression analyses showed that disease severity is significantly associated with age in CMT4B1. Slopes are steeper for CMT4B1, indicating faster disease progression. Almost none of the mutations in the MTMR2 and MTMR13 genes, responsible for CMT4B1 and B2, respectively, influence the correlation between disease severity and age, in agreement with the hypothesis of a complete loss of function of MTMR2/13 proteins for such mutations. INTERPRETATION This is the largest CMT4B series ever reported, demonstrating that CMT4B1 is significantly more severe than CMT4B2, and allowing an estimate of prognosis. ANN NEUROL 2019.
Collapse
Affiliation(s)
- Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tanya Stojkovic
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah Leonard-Louis
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Matilde Laurà
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Julian Blake
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norfolk, United Kingdom
| | - Yesim Parman
- Istanbul University, Istanbul Faculty of Medicine, Neurology Dep. Istanbul, Turkey
| | - Esra Battaloglu
- Bogazici University, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Meriem Tazir
- Laboratoire de Recherche en Neurosciences Service de Neurologie, CHU, Alger, Algeria
| | - Mounia Bellatache
- Laboratoire de Recherche en Neurosciences Service de Neurologie, CHU, Alger, Algeria
| | - Nathalie Bonello-Palot
- Department of Medical Genetics, Timone Hospital, Marseille, France.2, Aix-Marseille University, INSERM, MMG, U1251, Marseille, France
| | - Nicolas Lévy
- Department of Medical Genetics, Timone Hospital, Marseille, France.2, Aix-Marseille University, INSERM, MMG, U1251, Marseille, France
| | - Sabrina Sacconi
- Université Côte d'Azur, Service Système Nerveux Périphérique, Muscle et SLA, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Raquel Guimarães-Costa
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Sharham Attarian
- Reference center for neuromuscular disorders and ALS, CHU La Timone, Aix-Marseille University, Marseille, France
| | - Philippe Latour
- Center of Biology and Pathology Laboratory of Molecular Neurogenetics, Hospices Civils, Lyon, France
| | - Guilhem Solé
- Reference center for neuromuscular disorders AOC (Atlantique Occitanie Caraibes), CHU de Bordeaux, Bordeaux, France
| | - André Megarbane
- Institut Jérôme Lejeune, Paris, France.,INOVIE, Beirut, Lebanon
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Giulia Ricci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Alessandro Geroldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Mario Sabatelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS. Centro Clinico Nemo Adulti Rome, Rome, Italy.,Università Cattolica del Sacro Cuore. Sede di Roma, Rome, Italy
| | - Marco Luigetti
- Università Cattolica del Sacro Cuore. Sede di Roma, Rome, Italy.,UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Aldo Quattrone
- Department of Neurology, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Paola Valentino
- Department of Neurology, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | | | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lois Dankwa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA
| | - Chelsea J Bacon
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA
| | | | - Alberto Zambon
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano C Previtali
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Bolino
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
9
|
Murakami T, Sunada Y. Schwann Cell and the Pathogenesis of Charcot–Marie–Tooth Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:301-321. [DOI: 10.1007/978-981-32-9636-7_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Robinson DC, Mammel AE, Logan AM, Larson AA, Schmidt EJ, Condon AF, Robinson FL. An In Vitro Model of Charcot-Marie-Tooth Disease Type 4B2 Provides Insight Into the Roles of MTMR13 and MTMR2 in Schwann Cell Myelination. ASN Neuro 2018; 10:1759091418803282. [PMID: 30419760 PMCID: PMC6236487 DOI: 10.1177/1759091418803282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Charcot-Marie-Tooth Disorder Type 4B (CMT4B) is a demyelinating peripheral neuropathy caused by mutations in myotubularin-related (MTMR) proteins 2, 13, or 5 (CMT4B1/2/3), which regulate phosphoinositide turnover and endosomal trafficking. Although mouse models of CMT4B2 exist, an in vitro model would make possible pharmacological and reverse genetic experiments needed to clarify the role of MTMR13 in myelination. We have generated such a model using Schwann cell-dorsal root ganglion (SC-DRG) explants from Mtmr13-/- mice. Myelin sheaths in mutant cultures contain outfoldings highly reminiscent of those observed in the nerves of Mtmr13-/- mice and CMT4B2 patients. Mtmr13-/- SC-DRG explants also contain reduced Mtmr2, further supporting a role of Mtmr13 in stabilizing Mtmr2. Elevated PI(3,5)P2 has been implicated as a cause of myelin outfoldings in Mtmr2-/- models. In contrast, the role of elevated PI3P or PI(3,5)P2 in promoting outfoldings in Mtmr13-/- models is unclear. We found that over-expression of MTMR2 in Mtmr13-/- SC-DRGs moderately reduced the prevalence of myelin outfoldings. Thus, a manipulation predicted to lower PI3P and PI(3,5)P2 partially suppressed the phenotype caused by Mtmr13 deficiency. We also explored the relationship between CMT4B2-like myelin outfoldings and kinases that produce PI3P and PI(3,5)P2 by analyzing nerve pathology in mice lacking both Mtmr13 and one of two specific PI 3-kinases. Intriguingly, the loss of vacuolar protein sorting 34 or PI3K-C2β in Mtmr13-/- mice had no impact on the prevalence of myelin outfoldings. In aggregate, our findings suggest that the MTMR13 scaffold protein likely has critical functions other than stabilizing MTMR2 to achieve an adequate level of PI 3-phosphatase activity.
Collapse
Affiliation(s)
- Danielle C. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Anna E. Mammel
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Cell, Developmental & Cancer Biology Graduate
Program, Oregon Health & Science University, Portland, OR,
USA
| | - Anne M. Logan
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Aubree A. Larson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Eric J. Schmidt
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Alec F. Condon
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Fred L. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Vollum Institute, Oregon Health & Science
University, Portland, OR, USA
| |
Collapse
|
11
|
Manole A, Horga A, Gamez J, Raguer N, Salvado M, San Millán B, Navarro C, Pittmann A, Reilly MM, Houlden H. SBF1 mutations associated with autosomal recessive axonal neuropathy with cranial nerve involvement. Neurogenetics 2016; 18:63-67. [PMID: 28005197 DOI: 10.1007/s10048-016-0505-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
Abstract
Biallelic mutations in the SBF1 gene have been identified in one family with demyelinating Charcot-Marie-Tooth disease (CMT4B3) and two families with axonal neuropathy and additional neurological and skeletal features. Here we describe novel sequence variants in SBF1 (c.1168C>G and c.2209_2210del) as the potential causative mutations in two siblings with severe axonal neuropathy, hearing loss, facial weakness and bulbar features. Pathogenicity of these variants is supported by co-segregation and in silico analyses and evolutionary conservation. Our findings suggest that SBF1 mutations may cause a syndromic form of autosomal recessive axonal neuropathy (AR-CMT2) in addition to CMT4B3.
Collapse
Affiliation(s)
- Andreea Manole
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - Josep Gamez
- Neuromuscular Disorders Unit, Department of Neurology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona, VHIR, Passeig Vall d'Hebron, 119-135, 08035, Barcelona, Spain.
| | - Nuria Raguer
- Department of Neurophysiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona, VHIR, Barcelona, Spain
| | - Maria Salvado
- Neuromuscular Disorders Unit, Department of Neurology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona, VHIR, Passeig Vall d'Hebron, 119-135, 08035, Barcelona, Spain
| | - Beatriz San Millán
- Department of Neuropathology, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Carmen Navarro
- Department of Neuropathology, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Alan Pittmann
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
12
|
Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease. Mol Neurobiol 2016; 54:87-100. [PMID: 26732592 DOI: 10.1007/s12035-015-9668-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.
Collapse
|
13
|
Chen M, Wu J, Liang N, Tang L, Chen Y, Chen H, Wei W, Wei T, Huang H, Yi X, Qi M. Identification of a novel SBF2 frameshift mutation in charcot-marie-tooth disease type 4B2 using whole-exome sequencing. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:221-7. [PMID: 25462154 PMCID: PMC4411414 DOI: 10.1016/j.gpb.2014.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022]
Abstract
Charcot–Marie–Tooth disease type 4B2 with early-onset glaucoma (CMT4B2, OMIM 604563) is a genetically-heterogeneous childhood-onset neuromuscular disorder. Here, we report the case of a 15-year-old male adolescent with lower extremity weakness, gait abnormalities, foot deformities and early-onset glaucoma. Since clinical diagnosis alone was insufficient for providing pathogenetic evidence to indicate that the condition belonged to a consanguineous family, we applied whole-exome sequencing to samples from the patient, his parents and his younger brother, assuming that the patient’s condition is transmitted in an autosomal recessive pattern. A frame-shift mutation, c.4571delG (P.Gly1524Glufs∗42), was revealed in the CMT4B2-related gene SBF2 (also known as MTMR13, MIM 607697), and this mutation was found to be homozygous in the proband and heterozygous in his parents and younger brother. Together with the results of clinical diagnosis, this case was diagnosed as CMT4B2. Our finding further demonstrates the use of whole-exome sequencing in the diagnosis and treatment of rare diseases.
Collapse
Affiliation(s)
- Meiyan Chen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jing Wu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Ning Liang
- School of Life Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR 999077, China
| | - Lihui Tang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yanhua Chen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | | | - Wei Wei
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Tianying Wei
- Center for Genetic and Genomic Medicine, Zhejiang University School of Medicine, First Affiliated Hospital and James D. Watson Institute of Genome Sciences, Hangzhou 310006, China
| | - Hui Huang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xin Yi
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China.
| | - Ming Qi
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; Center for Genetic and Genomic Medicine, Zhejiang University School of Medicine, First Affiliated Hospital and James D. Watson Institute of Genome Sciences, Hangzhou 310006, China; Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
14
|
Schabhüttl M, Wieland T, Senderek J, Baets J, Timmerman V, De Jonghe P, Reilly MM, Stieglbauer K, Laich E, Windhager R, Erwa W, Trajanoski S, Strom TM, Auer-Grumbach M. Whole-exome sequencing in patients with inherited neuropathies: outcome and challenges. J Neurol 2014; 261:970-82. [PMID: 24627108 DOI: 10.1007/s00415-014-7289-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 01/20/2023]
Abstract
Inherited peripheral neuropathies (IPN) are one of the most frequent inherited causes of neurological disability characterized by considerable phenotypic and genetic heterogeneity. Based on clinical and electrophysiological properties, they can be subdivided into three main groups: HMSN, dHMN, and HSN. At present, more than 50 IPN genes have been identified. Still, many patients and families with IPN have not yet received a molecular genetic diagnosis because clinical genetic testing usually only covers a subset of IPN genes. Moreover, a considerable proportion of IPN genes has to be identified. Here we present results of WES in 27 IPN patients excluded for mutations in many known IPN genes. Eight of the patients received a definite diagnosis. While six of these patients carried bona fide pathogenic mutations in known IPN genes, two patients had mutations in genes known to be involved in other types of neuromuscular disorders. A further group of eight patients carried sequence variations in IPN genes that could not unequivocally be classified as pathogenic. In addition, combining data of WES and linkage analysis identified SH3BP4, ITPR3, and KLHL13 as novel IPN candidate genes. Moreover, there was evidence that particular mutations in PEX12, a gene known to cause Zellweger syndrome, could also lead to an IPN phenotype. We show that WES is a useful tool for diagnosing IPN and we suggest an expanded phenotypic spectrum of some genes involved in other neuromuscular and neurodegenerative disorders. Nevertheless, interpretation of variants in known and potential novel disease genes has remained challenging.
Collapse
Affiliation(s)
- Maria Schabhüttl
- Department of Orthopaedics, Medical University Vienna, Währingergürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Exonic duplication CNV of NDRG1 associated with autosomal-recessive HMSN-Lom/CMT4D. Genet Med 2013; 16:386-394. [PMID: 24136616 DOI: 10.1038/gim.2013.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/27/2013] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot-Marie-Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive disease has not been associated with copy-number variation as a mutational mechanism. METHODS We performed Agilent 8 × 60 K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation. RESULTS We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6-8 that caused decreased mRNA expression of NDRG1. CONCLUSION Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered.
Collapse
|
16
|
Tazir M, Bellatache M, Nouioua S, Vallat JM. Autosomal recessive Charcot-Marie-Tooth disease: from genes to phenotypes. J Peripher Nerv Syst 2013; 18:113-29. [DOI: 10.1111/jns5.12026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Meriem Tazir
- Service de Neurologie; University Hospital Mustapha Bacha; Alger Algeria
- Laboratoire de NeuroSciences; Université d'Alger 1; Alger Algeria
| | - Mounia Bellatache
- Service de Neurologie; University Hospital Mustapha Bacha; Alger Algeria
- Laboratoire de NeuroSciences; Université d'Alger 1; Alger Algeria
| | - Sonia Nouioua
- Service de Neurologie; University Hospital Mustapha Bacha; Alger Algeria
- Laboratoire de NeuroSciences; Université d'Alger 1; Alger Algeria
| | - Jean-Michel Vallat
- Centre de Référence ⟨Neuropathies Périphériques Rares⟩, Service et Laboratoire de Neurologie; University Hospital; Limoges France
| |
Collapse
|
17
|
Identification of a novel SBF2 missense mutation associated with a rare case of thrombocytopenia using whole-exome sequencing. J Thromb Thrombolysis 2013; 36:501-6. [DOI: 10.1007/s11239-012-0864-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Abstract
The prenatal and infantile neuropathies are an uncommon and complex group of conditions, most of which are genetic. Despite advances in diagnostic techniques, approximately half of children presenting in infancy remain without a specific diagnosis. This review focuses on inherited demyelinating neuropathies presenting in the first year of life. We clarify the nomenclature used in these disorders, review the clinical features of demyelinating forms of Charcot-Marie-Tooth disease with early onset, and discuss the demyelinating infantile neuropathies associated with central nervous system involvement. Useful clinical, neurophysiologic, and neuropathologic features in the diagnostic work-up of these conditions are also presented.
Collapse
Affiliation(s)
- Eppie M Yiu
- Children's Neuroscience Centre, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
| | | |
Collapse
|
19
|
Charcot–Marie–Tooth diseases. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Espinós C, Calpena E, Martínez-Rubio D, Lupo V. Autosomal Recessive Charcot-Marie-Tooth Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:61-75. [DOI: 10.1007/978-1-4614-0653-2_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Abstract
Phosphoinositides (PIs) are lipid second messengers implicated in signal transduction and membrane trafficking. Seven distinct PIs can be synthesized by phosphorylation of the inositol ring of phosphatidylinositol (PtdIns), and their metabolism is accurately regulated by PI kinases and phosphatases. Two of the PIs, PtdIns3P and PtdIns(3,5)P2, are present on intracellular endosomal compartments, and several studies suggest that they have a role in membrane remodeling and trafficking. We refer to them as ‘endosomal PIs’. An increasing number of human genetic diseases including myopathy and neuropathies are associated to mutations in enzymes regulating the turnover of these endosomal PIs. The PtdIns3P and PtdIns(3,5)P2 3-phosphatase myotubularin gene is mutated in X-linked centronuclear myopathy, whereas its homologs MTMR2 and MTMR13 and the PtdIns(3,5)P2 5-phosphatase SAC3/FIG4 are implicated in Charcot–Marie–Tooth peripheral neuropathies. Mutations in the gene encoding the PtdIns3P5-kinase PIP5K3/PIKfyve have been found in patients affected with François–Neetens fleck corneal dystrophy. This review presents the roles of the endosomal PIs and their regulators and proposes defects of membrane remodeling as a common pathological mechanism for the corresponding diseases.
Collapse
Affiliation(s)
- Anne-Sophie Nicot
- Department of Neurobiology and Genetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR 7104, Université Louis Pasteur de Strasbourg, Collège de France, 67404 Illkirch, France
| | | |
Collapse
|
22
|
Loss of the inactive myotubularin-related phosphatase Mtmr13 leads to a Charcot-Marie-Tooth 4B2-like peripheral neuropathy in mice. Proc Natl Acad Sci U S A 2008; 105:4916-21. [PMID: 18349142 DOI: 10.1073/pnas.0800742105] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Charcot-Marie-Tooth disease type 4B (CMT4B) is a severe, demyelinating peripheral neuropathy characterized by slowed nerve conduction velocity, axon loss, and distinctive myelin outfolding and infolding. CMT4B is caused by recessive mutations in either myotubularin-related protein 2 (MTMR2; CMT4B1) or MTMR13 (CMT4B2). Myotubularins are phosphoinositide (PI) 3-phosphatases that dephosphorylate phosphatidylinositol 3-phosphate (PtdIns3P) and PtdIns(3,5)P(2), two phosphoinositides that regulate endosomal-lysosomal membrane traffic. Interestingly, nearly half of the metazoan myotubularins are predicted to be catalytically inactive. Both active and inactive myotubularins have essential functions in mammals and in Caenorhabditis elegans. MTMR2 and MTMR13 are active and inactive PI 3-phosphatases, respectively, and the two proteins have been shown to directly associate, although the functional significance of this association is not well understood. To establish a mouse model of CMT4B2, we disrupted the Mtmr13 gene. Mtmr13-deficient mice develop a peripheral neuropathy characterized by reduced nerve conduction velocity and myelin outfoldings and infoldings. Dysmyelination is evident in Mtmr13-deficient nerves at 14 days and worsens throughout life. Thus, loss of Mtmr13 in mice leads to a peripheral neuropathy with many of the key features of CMT4B2. Although myelin outfoldings and infoldings occur most frequently at the paranode, our morphological analyses indicate that the ultrastructure of the node of Ranvier and paranode is intact in Mtmr13-deficient nerve fibers. We also found that Mtmr2 levels are decreased by approximately 50% in Mtmr13-deficient sciatic nerves, suggesting a mode of Mtmr2 regulation. Mtmr13-deficient mice will be an essential tool for studying how the loss of MTMR13 leads to CMT4B2.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to help neurologists understand new concepts in hereditary neuropathies, from the clinician's point of view, in the molecular era after the burst of information regarding peripheral nerve biology. RECENT FINDINGS Recent studies have focused on understanding the pathomechanisms involved in hereditary neuropathies. In the past year identification of new genes has slowed down since scientists have concentrated more on the function of genes causing Charcot-Marie-Tooth disease and Schwann cell-axon interactions to reveal the molecular cell biology of the disease. Animal models for the most common subtypes of human Charcot-Marie-Tooth disease are now available. SUMMARY Rapid advances in the molecular genetics and cell biology of hereditary neuropathies have highlighted the great genetic complexity of Charcot-Marie-Tooth disease. The evolution from a simple clinical classification to a complex molecular one has not facilitated our understanding of the disease. Moreover, the new molecular classification is not simple to use as different mutations of the same gene produce a range of phenotypes. The clinicians have to look for specific clinical and electrophysiological clues to direct the patient to appropriate genetic testing.
Collapse
Affiliation(s)
- Yesim Parman
- Istanbul Faculty of Medicine, Neurology Department, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
24
|
Previtali SC, Quattrini A, Bolino A. Charcot-Marie-Tooth type 4B demyelinating neuropathy: deciphering the role of MTMR phosphatases. Expert Rev Mol Med 2007; 9:1-16. [PMID: 17880751 DOI: 10.1017/s1462399407000439] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Charcot-Marie-Tooth type 4B (CMT4B) is a severe autosomal recessive neuropathy with demyelination and myelin outfoldings of the nerve. This disorder is genetically heterogeneous, but thus far, mutations in myotubularin-related 2 (MTMR2) and MTMR13 genes have been shown to underlie CMT4B1 and CMT4B2, respectively. MTMR2 and MTMR13 belong to a family of ubiquitously expressed proteins sharing homology with protein tyrosine phosphatases (PTPs). The MTMR family, which has 14 members in humans, comprises catalytically active proteins, such as MTMR2, and catalytically inactive proteins, such as MTMR13. Despite their homology with PTPs, catalytically active MTMR phosphatases dephosphorylate both PtdIns3P and PtdIns(3,5)P2 phosphoinositides. Thus, MTMR2 and MTMR13 may regulate vesicular trafficking in Schwann cells. Loss of these proteins could lead to uncontrolled folding of myelin and, ultimately, to CMT4B. In this review, we discuss recent findings on this interesting protein family with the main focus on MTMR2 and MTMR13 and their involvement in the biology of Schwann cell and CMT4B neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuropathology Unit, Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
25
|
Dubourg O, Azzedine H, Verny C, Durosier G, Birouk N, Gouider R, Salih M, Bouhouche A, Thiam A, Grid D, Mayer M, Ruberg M, Tazir M, Brice A, LeGuern E. Autosomal-recessive forms of demyelinating Charcot-Marie-Tooth disease. Neuromolecular Med 2007; 8:75-86. [PMID: 16775368 DOI: 10.1385/nmm:8:1-2:75] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 01/03/2006] [Accepted: 01/11/2006] [Indexed: 11/11/2022]
Abstract
Autosomal-recessive forms of Charcot-Marie-Tooth (ARCMT) account for less than 10% of the families in the European CMT population but are more frequent in the Mediterranean basin and the Middle East because of more widespread consanguinity. Until now, demyelinating ARCMT was more extensively studied at the genetic level than the axonal form. Since 1999, the number of localized or identified genes responsible for demyelinating ARCMT has greatly increased. Eight genes, EGR2, GDAP1, KIAA1985, MTMR2, MTMR13, NDRG1, PRX, and CTDP1, have been identified and two new loci mapped to chromosomes 10q23 and 12p11-q13. In this review, we will focus on the particular clinical and/or neuropathological features of the phenotype caused by mutations in each of these genes, which might guide molecular diagnosis.
Collapse
Affiliation(s)
- O Dubourg
- INSERM U679 (ex U289), la Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Szigeti K, Nelis E, Lupski JR. Molecular diagnostics of Charcot-Marie-Tooth disease and related peripheral neuropathies. Neuromolecular Med 2007; 8:243-54. [PMID: 16775379 DOI: 10.1385/nmm:8:1-2:243] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 01/13/2006] [Accepted: 01/13/2006] [Indexed: 12/20/2022]
Abstract
DNA diagnostics plays an important role in the characterization and management of patients manifesting inherited peripheral neuropathies. We describe the clinical integration of molecular diagnostics with medical history, physical examination, and electrophysiological studies. Molecular testing can help establish a secure diagnosis, enable genetic counseling regarding recurrence risk, potentially provide prognostic information, and in the near future may be important for the choice of therapies.
Collapse
Affiliation(s)
- Kinga Szigeti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Ouvrier R, Geevasingha N, Ryan MM. Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood. Muscle Nerve 2007; 36:131-43. [PMID: 17410579 DOI: 10.1002/mus.20776] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.
Collapse
Affiliation(s)
- Robert Ouvrier
- TY Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia.
| | | | | |
Collapse
|
28
|
Pareyson D, Scaioli V, Laurà M. Clinical and electrophysiological aspects of Charcot-Marie-Tooth disease. Neuromolecular Med 2006; 8:3-22. [PMID: 16775364 DOI: 10.1385/nmm:8:1-2:3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/06/2005] [Accepted: 12/15/2005] [Indexed: 11/11/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous group of disorders sharing the same clinical phenotype, characterized by distal limb muscle wasting and weakness, usually with skeletal deformities, distal sensory loss, and abnormalities of deep tendon reflexes. Mutations of genes involved in different functions eventually lead to a length-dependent axonal degeneration, which is the likely basis of the distal predominance of the CMT phenotype. Nerve conduction studies are important for classification, diagnosis, and understanding of pathophysiology. The subdivision into demyelinating CMT1 and axonal CMT2 types was a milestone and is still valid for the majority of patients. However, exceptions to this partition are increasing. Intermediate conduction velocities are often found in males with X-linked CMT (CMTX), and different intermediate CMT types have been identified. Moreover, for some genes, different mutations may result either in demyelinating CMT with slow conduction, or in axonal CMT. Nerve conduction slowing is uniform and diffuse in the most common CMT1A associated with the 17p12 duplication, whereas it is often asymmetric and nonhomogeneous in CMTX, sometimes rendering difficult the differential diagnosis with acquired inflammatory neuropathies. The demyelinating recessive forms, termed CMT4, usually have early onset and run a more severe course than the dominant types. Pure motor CMT types are now classified as distal hereditary motor neuronopathy. The diagnostic approach to the identification of the CMT subtype is complex and cannot be based on the clinical phenotype alone, as different forms are often clinically indistinguishable. However, there are features that may be of help in addressing molecular investigation in a single patient. Late onset, prominent or peculiar sensory manifestations, autonomic nervous system dysfunction, cranial nerve involvement, upper limb predominance, subclinical central nervous system abnormalities, severe scoliosis, early-onset glaucoma, neutropenia are findings helpful for diagnosis.
Collapse
Affiliation(s)
- D Pareyson
- Division of Biochemistry and Genetics, Carlo Besta National Neurological Institute, via Celoria, 11, 20133, Milan, Italy.
| | | | | |
Collapse
|
29
|
Robinson FL, Dixon JE. The Phosphoinositide-3-phosphatase MTMR2 Associates with MTMR13, a Membrane-associated Pseudophosphatase Also Mutated in Type 4B Charcot-Marie-Tooth Disease. J Biol Chem 2005; 280:31699-707. [PMID: 15998640 DOI: 10.1074/jbc.m505159200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Charcot-Marie-Tooth disease type 4B (CMT4B) is a severe, demyelinating peripheral neuropathy characterized by distinctive, focally folded myelin sheaths. CMT4B is caused by recessively inherited mutations in either myotubularin-related 2 (MTMR2) or MTMR13 (also called SET-binding factor 2). MTMR2 encodes a member of the myotubularin family of phosphoinositide-3-phosphatases, which dephosphorylate phosphatidylinositol 3-phosphate (PI(3)P) and bisphosphate PI(3,5)P2. MTMR13 encodes a large, uncharacterized member of the myotubularin family. The MTMR13 phosphatase domain is catalytically inactive because the essential Cys and Arg residues are absent. Given the genetic association of both MTMR2 and MTMR13 with CMT4B, we investigated the biochemical relationship between these two proteins. We found that the endogenous MTMR2 and MTMR13 proteins are associated in human embryonic kidney 293 cells. MTMR2-MTMR13 association is mediated by coiled-coil sequences present in each protein. We also examined the cellular localization of MTMR2 and MTMR13 using fluorescence microscopy and subcellular fractionation. We found that (i) MTMR13 is a predominantly membrane-associated protein; (ii) MTMR2 and MTMR13 cofractionate in both a light membrane fraction and a cytosolic fraction; and (iii) MTMR13 membrane association is mediated by the segment of the protein which contains the pseudophosphatase domain. This work, which describes the first cellular or biochemical investigation of the MTMR13 pseudophosphatase protein, suggests that MTMR13 functions in association with MTMR2. Loss of MTMR13 function in CMT4B2 patients may lead to alterations in MTMR2 function and subsequent alterations in 3-phosphoinositide signaling. Such a mechanism would explain the strikingly similar phenotypes of patients with recessive mutations in either MTMR2 or MTMR13.
Collapse
Affiliation(s)
- Fred L Robinson
- Department of Pharmacology, The University of California San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to assist neurologists, paediatricians and other interested readers in following the expanding volume of information relating to the hereditary peripheral neuropathies of childhood. RECENT FINDINGS During the last year, an exciting new potential therapy for hereditary sensory and motor neuropathy has been reported, and there has been a rapid expansion in our understanding of the genetic basis of a number of dominantly and recessively inherited neuropathies of childhood, most particularly in forms with pure motor or sensory and autonomic involvement. SUMMARY Advances in our understanding of the molecular basis of the inherited neuropathies of childhood may provide greater insight into the pathogenesis of these disorders, hopefully identifying new therapeutic strategies for these lifelong conditions.
Collapse
|
31
|
Vallat JM, Tazir M, Magdelaine C, Sturtz F, Grid D. Autosomal-Recessive Charcot-Marie-Tooth Diseases. J Neuropathol Exp Neurol 2005; 64:363-70. [PMID: 15892292 DOI: 10.1093/jnen/64.5.363] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In certain countries around the Mediterranean basin such as Algeria, which have a high prevalence of consanguineous marriages, autosomal-recessive (AR) inheritance may account for more than 50% of all forms of Charcot-Marie-Tooth (CMT) disease. Like with the dominant forms, it is usual to differentiate the demyelinating forms (CMT 4 corresponding to autosomal-recessive CMT 1 [AR-CMT 1] from the axonal forms [AR-CMT 2]). Genetic analysis of large families with recessive transmission has uncovered novel CMT genotypes (genes: GDAP 1, MTMR 2, MTMR 13, KIAA1985, NDGR1, periaxi, lamin). The clinical and especially the histologic phenotypes often indicate that a specific gene is implicated. We present and discuss microscopic lesions seen on nerve biopsies from patients in a number of consanguineous Algerian families, and we outline the characteristic lesions that would prompt a search for mutations in genes such as MTMR 2, MTMR 13, KIAA1985, periaxin for CMT 4, and lamin for AR-CMT 2. Like with the dominant forms, there are undoubtedly many more mutations of other genes to be discovered.
Collapse
Affiliation(s)
- Jean-Michel Vallat
- Neurology Department, University Hospital, 2 Avenue Martin Luther King, 87042 Limoges, France.
| | | | | | | | | |
Collapse
|