1
|
Jeyakumar N, Lerch M, Dale RC, Ramanathan S. MOG antibody-associated optic neuritis. Eye (Lond) 2024; 38:2289-2301. [PMID: 38783085 PMCID: PMC11306565 DOI: 10.1038/s41433-024-03108-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is a demyelinating disorder, distinct from multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). MOGAD most frequently presents with optic neuritis (MOG-ON), often with characteristic clinical and radiological features. Bilateral involvement, disc swelling clinically and radiologically, and longitudinally extensive optic nerve hyperintensity with associated optic perineuritis on MRI are key characteristics that can help distinguish MOG-ON from optic neuritis due to other aetiologies. The detection of serum MOG immunoglobulin G utilising a live cell-based assay in a patient with a compatible clinical phenotype is highly specific for the diagnosis of MOGAD. This review will highlight the key clinical and radiological features which expedite diagnosis, as well as ancillary investigations such as visual fields, visual evoked potentials and cerebrospinal fluid analysis, which may be less discriminatory. Optical coherence tomography can identify optic nerve swelling acutely, and atrophy chronically, and may transpire to have utility as a diagnostic and prognostic biomarker. MOG-ON appears to be largely responsive to corticosteroids, which are often the mainstay of acute management. However, relapses are common in patients in whom follow-up is prolonged, often in the context of early or rapid corticosteroid tapering. Establishing optimal acute therapy, the role of maintenance steroid-sparing immunotherapy for long-term relapse prevention, and identifying predictors of relapsing disease remain key research priorities in MOG-ON.
Collapse
Affiliation(s)
- Niroshan Jeyakumar
- Translational Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Magdalena Lerch
- Translational Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Clinical Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- TY Nelson Department of Neurology, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Department of Neurology, Concord Hospital, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Poppell M, Hammel G, Ren Y. Immune Regulatory Functions of Macrophages and Microglia in Central Nervous System Diseases. Int J Mol Sci 2023; 24:5925. [PMID: 36982999 PMCID: PMC10059890 DOI: 10.3390/ijms24065925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Macrophages can be characterized as a very multifunctional cell type with a spectrum of phenotypes and functions being observed spatially and temporally in various disease states. Ample studies have now demonstrated a possible causal link between macrophage activation and the development of autoimmune disorders. How these cells may be contributing to the adaptive immune response and potentially perpetuating the progression of neurodegenerative diseases and neural injuries is not fully understood. Within this review, we hope to illustrate the role that macrophages and microglia play as initiators of adaptive immune response in various CNS diseases by offering evidence of: (1) the types of immune responses and the processes of antigen presentation in each disease, (2) receptors involved in macrophage/microglial phagocytosis of disease-related cell debris or molecules, and, finally, (3) the implications of macrophages/microglia on the pathogenesis of the diseases.
Collapse
Affiliation(s)
| | | | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Longbrake E. Myelin Oligodendrocyte Glycoprotein-Associated Disorders. Continuum (Minneap Minn) 2022; 28:1171-1193. [PMID: 35938661 PMCID: PMC9523511 DOI: 10.1212/con.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Anti-myelin oligodendrocyte glycoprotein (MOG) autoantibodies have become a recognized cause of a pathophysiologically distinct group of central nervous system (CNS) autoimmune diseases. MOG-associated disorders can easily be confused with other CNS diseases such as multiple sclerosis or neuromyelitis optica, but they have a distinct clinical phenotype and prognosis. RECENT FINDINGS Most patients with MOG-associated disorders exhibit optic neuritis, myelitis, or acute disseminated encephalomyelitis (ADEM) alone, sequentially, or in combination; the disease may be either monophasic or relapsing. Recent case reports have continued to expand the clinical spectrum of disease, and increasingly larger cohort studies have helped clarify its pathophysiology and natural history. SUMMARY Anti-MOG-associated disorders comprise a substantial subset of patients previously thought to have other seronegative CNS diseases. Accurate diagnosis is important because the relapse patterns and prognosis for MOG-associated disorders are unique. Immunotherapy appears to successfully mitigate the disease, although not all agents are equally effective. The emerging large-scale data describing the clinical spectrum and natural history of MOG-associated disorders will be foundational for future therapeutic trials.
Collapse
|
4
|
Marignier R, Hacohen Y, Cobo-Calvo A, Pröbstel AK, Aktas O, Alexopoulos H, Amato MP, Asgari N, Banwell B, Bennett J, Brilot F, Capobianco M, Chitnis T, Ciccarelli O, Deiva K, De Sèze J, Fujihara K, Jacob A, Kim HJ, Kleiter I, Lassmann H, Leite MI, Linington C, Meinl E, Palace J, Paul F, Petzold A, Pittock S, Reindl M, Sato DK, Selmaj K, Siva A, Stankoff B, Tintore M, Traboulsee A, Waters P, Waubant E, Weinshenker B, Derfuss T, Vukusic S, Hemmer B. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol 2021; 20:762-772. [PMID: 34418402 DOI: 10.1016/s1474-4422(21)00218-0] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently identified autoimmune disorder that presents in both adults and children as CNS demyelination. Although there are clinical phenotypic overlaps between MOGAD, multiple sclerosis, and aquaporin-4 antibody-associated neuromyelitis optica spectrum disorder (NMOSD) cumulative biological, clinical, and pathological evidence discriminates between these conditions. Patients should not be diagnosed with multiple sclerosis or NMOSD if they have anti-MOG antibodies in their serum. However, many questions related to the clinical characterisation of MOGAD and pathogenetic role of MOG antibodies are still unanswered. Furthermore, therapy is mainly based on standard protocols for aquaporin-4 antibody-associated NMOSD and multiple sclerosis, and more evidence is needed regarding how and when to treat patients with MOGAD.
Collapse
Affiliation(s)
- Romain Marignier
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Bron, France; Centre des Neurosciences de Lyon, INSERM 1028 et CNRS UMR5292, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France.
| | - Yael Hacohen
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alvaro Cobo-Calvo
- Centre d'Esclerosi Múltiple de Catalunya, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anne-Katrin Pröbstel
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Orhan Aktas
- Medical Faculty, Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Pia Amato
- IRCCS Fondazione Don Carlo Gnocchi, University of Florence, Florence, Italy
| | - Nasrin Asgari
- Institute of Regional Health Research and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Bennett
- Department of Neurology and Department of Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marco Capobianco
- Regional Multiple Sclerosis Centre, Department of Neurology, University Hospital San Luigi, Orbassano, Italy
| | - Tanuja Chitnis
- Department of Pediatric Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Kumaran Deiva
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre, Pediatric Neurology Department, National Referral Center for Rare Inflammatory Brain and Spinal Diseases, Université Paris-Sud, and UMR 1184-CEA-IDMIT, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre, France
| | - Jérôme De Sèze
- Department of Neurology, Strasbourg University Hospital and Clinical Investigation Center, INSERM 1434, Strasbourg, France
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine Koriyama, Japan; Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| | - Anu Jacob
- Division of Multiple Sclerosis and Autoimmune Neurology, Neurological Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates; Walton Centre National Health Service Trust, Liverpool, UK
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ingo Kleiter
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany; Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Maria-Isabel Leite
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Germany
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Petzold
- Moorfields Eye Hospital and National Hospital for Neurology and Neurosurgery, London, UK; University College London Queen Square Institute of Neurology, London, UK; National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Sean Pittock
- Department of Neurology and Laboratory Medicine and Pathology, and Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Douglas Kazutoshi Sato
- Brain Institute of Rio Grande do Sul and School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Krzysztof Selmaj
- University of Warmia and Mazury, Olsztyn, Poland; Center of Neurology, Łódź, Poland
| | - Aksel Siva
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm, and Saint Antoine Hospital, APHP, Paris, France
| | - Mar Tintore
- Centre d'Esclerosi Múltiple de Catalunya, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anthony Traboulsee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Emmanuelle Waubant
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Brian Weinshenker
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tobias Derfuss
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Bron, France; Centre des Neurosciences de Lyon, INSERM 1028 et CNRS UMR5292, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
5
|
Neuromyelitis Optica Spectrum Disorder and Anti-MOG Syndromes. Biomedicines 2019; 7:biomedicines7020042. [PMID: 31212763 PMCID: PMC6631227 DOI: 10.3390/biomedicines7020042] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 01/24/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) and anti-myelin oligodendrocyte glycoprotein (anti-MOG) syndromes are immune-mediated inflammatory conditions of the central nervous system that frequently involve the optic nerves and the spinal cord. Because of their similar clinical manifestations and habitual relapsing course they are frequently confounded with multiple sclerosis (MS). Early and accurate diagnosis of these distinct conditions is relevant as they have different treatments. Some agents used for MS treatment may be deleterious to NMOSD. NMOSD is frequently associated with antibodies which target aquaporin-4 (AQP4), the most abundant water channel in the CNS, located in the astrocytic processes at the blood-brain barrier (BBB). On the other hand, anti-MOG syndromes result from damage to myelin oligodendrocyte glycoprotein (MOG), expressed on surfaces of oligodendrocytes and myelin sheaths. Acute transverse myelitis with longitudinally extensive lesion on spinal MRI is the most frequent inaugural manifestation of NMOSD, usually followed by optic neuritis. Other core clinical characteristics include area postrema syndrome, brainstem, diencephalic and cerebral symptoms that may be associated with typical MRI abnormalities. Acute disseminated encephalomyelitis and bilateral or recurrent optic neuritis are the most frequent anti-MOG syndromes in children and adults, respectively. Attacks are usually treated with steroids, and relapses prevention with immunosuppressive drugs. Promising emerging therapies for NMOSD include monoclonal antibodies and tolerization.
Collapse
|
6
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Bando Y, Hagiwara Y, Suzuki Y, Yoshida K, Aburakawa Y, Kimura T, Murakami C, Ono M, Tanaka T, Jiang YP, Mitrovi B, Bochimoto H, Yahara O, Yoshida S. Kallikrein 6 secreted by oligodendrocytes regulates the progression of experimental autoimmune encephalomyelitis. Glia 2017; 66:359-378. [PMID: 29086442 DOI: 10.1002/glia.23249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), and experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of the disease. Here, we examined the pathophysiological role of Kallikrein 6 (Klk6), a serine protease produced by oligodendrocytes (OLs), in EAE using Klk6 knockout (Klk6-/-) mice. Compared with Klk6+/+ (wild-type) mice, Klk6-/- mice showed milder EAE symptoms, including delayed onset and milder paralysis. Loss of Klk6 suppressed matrix metalloprotease-9 expression and diminished the infiltration of peripheral inflammatory cells into the CNS by decreasing blood-brain barrier (BBB) permeability and reducing expression levels of inflammatory cytokines, chemokines and their receptors. Scanning electron microscopic analysis revealed demyelination characterized by myelin detachment from the axons in the early phase of EAE progression (days 3-7) in Klk6+/+ mice but not in Klk6-/- mice. Interestingly, anti-MOG (myelin oligodendrocyte glycoprotein) autoantibody was also detected in the cerebrospinal fluid (CSF) and spinal cord on day 3 after MOG immunization. Furthermore, treatment of primary cultured OLs with anti-MOG autoantibody induced oligodendroglial morphological changes and increases in myelin basic protein and Klk6 expression. We also developed a novel enzyme-linked immunoabsorbent assay method for detecting activated KLK6 in human CSF. In human autopsy brain samples, expression of active KLK6 was detected in OLs using an antibody that specifically recognizes the protein's activated form. Taken together, our findings demonstrate that Klk6 secreted by OLs plays a critical role in the pathogenesis of EAE/MS and that it might serve as a potential therapeutic target for MS.
Collapse
Affiliation(s)
- Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | | | - Yasuhiro Suzuki
- Department of Neurology, Asahikawa Medical Center, Asahikawa, 070-8644, Japan
| | - Kosuke Yoshida
- Department of Neurology, Asahikawa Medical Center, Asahikawa, 070-8644, Japan
| | - Yoko Aburakawa
- Department of Neurology, Asahikawa Medical Center, Asahikawa, 070-8644, Japan
| | - Takashi Kimura
- Department of Neurology, Asahikawa Medical Center, Asahikawa, 070-8644, Japan
| | - Chisato Murakami
- Department of Neurology, Asahikawa Medical Center, Asahikawa, 070-8644, Japan
| | - Miyuki Ono
- Department of Neurology, Asahikawa Medical Center, Asahikawa, 070-8644, Japan
| | - Tatsuhide Tanaka
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Ying-Ping Jiang
- Department of Immunology, Berlex Biosciences, Richmond, California, 94804
| | - Branka Mitrovi
- Department of Immunology, Berlex Biosciences, Richmond, California, 94804
| | - Hiroki Bochimoto
- Department of Microscopic Anatomy and Cell biology, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Osamu Yahara
- Department of Neurology, Asahikawa Medical Center, Asahikawa, 070-8644, Japan
| | - Shigetaka Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| |
Collapse
|
8
|
Anti-MOG antibody: The history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun Rev 2016; 15:307-24. [DOI: 10.1016/j.autrev.2015.12.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022]
|
9
|
Riedhammer C, Weissert R. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple Sclerosis and Other Autoimmune Diseases. Front Immunol 2015; 6:322. [PMID: 26136751 PMCID: PMC4470263 DOI: 10.3389/fimmu.2015.00322] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
Antigen presentation is in the center of the immune system, both in host defense against pathogens, but also when the system is unbalanced and autoimmune diseases like multiple sclerosis (MS) develop. It is not just by chance that a major histocompatibility complex gene is the major genetic susceptibility locus in MS; a feature that MS shares with other autoimmune diseases. The exact etiology of the disease, however, has not been fully understood yet. T cells are regarded as the major players in the disease, but most probably a complex interplay of altered central and peripheral tolerance mechanisms, T-cell and B-cell functions, characteristics of putative autoantigens, and a possible interference of environmental factors like microorganisms are at work. In this review, new data on all these different aspects of antigen presentation and their role in MS will be discussed, probable autoantigens will be summarized, and comparisons to other autoimmune diseases will be drawn.
Collapse
Affiliation(s)
- Christine Riedhammer
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| | - Robert Weissert
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
10
|
Waters P, Woodhall M, O'Connor KC, Reindl M, Lang B, Sato DK, Juryńczyk M, Tackley G, Rocha J, Takahashi T, Misu T, Nakashima I, Palace J, Fujihara K, Leite MI, Vincent A. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e89. [PMID: 25821844 PMCID: PMC4370386 DOI: 10.1212/nxi.0000000000000089] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/20/2015] [Indexed: 11/29/2022]
Abstract
Objective: To optimize sensitivity and disease specificity of a myelin oligodendrocyte glycoprotein (MOG) antibody assay. Methods: Consecutive sera (n = 1,109) sent for aquaporin-4 (AQP4) antibody testing were screened for MOG antibodies (Abs) by cell-based assays using either full-length human MOG (FL-MOG) or the short-length form (SL-MOG). The Abs were initially detected by Alexa Fluor goat anti-human IgG (H + L) and subsequently by Alexa Fluor mouse antibodies to human IgG1. Results: When tested at 1:20 dilution, 40/1,109 sera were positive for AQP4-Abs, 21 for SL-MOG, and 180 for FL-MOG. Only one of the 40 AQP4-Ab–positive sera was positive for SL-MOG-Abs, but 10 (25%) were positive for FL-MOG-Abs (p = 0.0069). Of equal concern, 48% (42/88) of sera from controls (patients with epilepsy) were positive by FL-MOG assay. However, using an IgG1-specific secondary antibody, only 65/1,109 (5.8%) sera were positive on FL-MOG, and AQP4-Ab– positive and control sera were negative. IgM reactivity accounted for the remaining anti-human IgG (H + L) positivity toward FL-MOG. The clinical diagnoses were obtained in 33 FL-MOG–positive patients, blinded to the antibody data. IgG1-Abs to FL-MOG were associated with optic neuritis (n = 11), AQP4-seronegative neuromyelitis optica spectrum disorder (n = 4), and acute disseminated encephalomyelitis (n = 1). All 7 patients with probable multiple sclerosis (MS) were MOG-IgG1 negative. Conclusions: The limited disease specificity of FL-MOG-Abs identified using Alexa Fluor goat anti-human IgG (H + L) is due in part to detection of IgM-Abs. Use of the FL-MOG and restricting to IgG1-Abs substantially improves specificity for non-MS demyelinating diseases. Classification of evidence: This study provides Class II evidence that the presence of serum IgG1- MOG-Abs in AQP4-Ab–negative patients distinguishes non-MS CNS demyelinating disorders from MS (sensitivity 24%, 95% confidence interval [CI] 9%–45%; specificity 100%, 95% CI 88%–100%).
Collapse
Affiliation(s)
- Patrick Waters
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Mark Woodhall
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Kevin C O'Connor
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Markus Reindl
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Bethan Lang
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Douglas K Sato
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Maciej Juryńczyk
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - George Tackley
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Joao Rocha
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Toshiyuki Takahashi
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Tatsuro Misu
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Ichiro Nakashima
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Kazuo Fujihara
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences (P.W., M.W., B.L., M.J., G.T., J.R., J.P., M.I.L., A.V.), John Radcliffe Hospital, Oxford, UK; Department of Neurology (K.C.O.), Yale School of Medicine, New Haven, CT; Clinical Department of Neurology (M.R.), Innsbruck Medical University, Innsbruck, Austria; Department of Neurology (D.K.S., I.N.) and Department of Multiple Sclerosis Therapeutics (T.M., K.F.) Tohoku University School of Medicine, Sendai, Japan; and Department of Neurology (T.T.), Yonezawa National Hospital, Yonezawa, Japan
| |
Collapse
|
11
|
Fraussen J, Claes N, de Bock L, Somers V. Targets of the humoral autoimmune response in multiple sclerosis. Autoimmun Rev 2014; 13:1126-37. [DOI: 10.1016/j.autrev.2014.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 01/09/2023]
|
12
|
Lolli F, Rovero P, Chelli M, Papini AM. Toward biomarkers in multiple sclerosis: new advances. Expert Rev Neurother 2014; 6:781-94. [PMID: 16734525 DOI: 10.1586/14737175.6.5.781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiple sclerosis is an autoimmune disease that commonly affects young adults. If initially characterized by acute relapses, it is later followed by only incomplete remission. Over years, progressive disability and irreversible deficit lead to chronic neurological deficits in the majority of patients. The clinical course is protracted and unpredictable, and no biological marker is useful in predicting the evolution of autoaggression and disability. It is difficult to diagnose and to monitor disease progression after the initial symptoms or even during the major clinical manifestations, and it is difficult to treat. In this review, the authors report recent advances in the field, focusing on the search of new antigens as a marker of the disease, in their relevance to the pathophysiology and diagnosis of the disease.
Collapse
Affiliation(s)
- Francesco Lolli
- Laboratorio Interdipartimentale di Chimica & Biologia dei Peptidi & Proteine, Polo Scientifico e Tecnologico, Università degli Studi di Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy.
| | | | | | | |
Collapse
|
13
|
Swanton J, Fernando K, Miller D. Early prognosis of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:371-91. [DOI: 10.1016/b978-0-444-52001-2.00015-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Abstract
This review, focused on demyelination in multiple sclerosis, is divided in two parts. The first part addresses the many and not exclusive mechanisms leading to demyelination in the central nervous system. Although the hypothesis that a primary oligodendrocyte or myelin injury induces a secondary immune response in the central nervous system is still a matter of debate, most recent advances underline the influence of a primary immune response against myelin antigen(s), with a diversity of potential targets. Whereas multiple sclerosis was long considered as a T cell-mediated disease, the role of B lymphocytes is now increasingly recognized, and the influence of antibodies on tissue damage actively investigated. The second part of the review describes the axonal consequences of demyelination. Segmental demyelination results in conduction block or slowing of conduction through adaptative responses, notably related to modifications in the distribution of voltage gated sodium channels along the denuded axon. If demyelination persists, these changes, as well as the loss of trophic and metabolic support, will lead to irreversible axonal damage and loss. In this respect, favouring early myelin repair, during a window of time when axonal damage is still reversible, might pave the way for neuroprotection.
Collapse
Affiliation(s)
- Catherine Lubetzki
- Correspondence to: Professeur Catherine Lubetzki, CRICM, UPMC/Inserm UMR_S975, GH Pitié-Salpêtrière, Bâtiment ICM, 47 Bld de l'Hôpital, 75651 Paris cedex 13, France. Tel: + 33-01-57-27-44-65
| | | |
Collapse
|
15
|
Ksiazek-Winiarek DJ, Kacperska MJ, Glabinski A. MicroRNAs as novel regulators of neuroinflammation. Mediators Inflamm 2013; 2013:172351. [PMID: 23983402 PMCID: PMC3745967 DOI: 10.1155/2013/172351] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/07/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are relatively recently discovered class of small noncoding RNAs, which function as important regulators of gene expression. They fine-tune protein expression either by translational inhibition or mRNA degradation. MicroRNAs act as regulators of diverse cellular processes, such as cell differentiation, proliferation, and apoptosis. Their defective biogenesis or function has been identified in various pathological conditions, like inflammation, neurodegeneration, or autoimmunity. Multiple sclerosis is one of the predominated debilitating neurological diseases affecting mainly young adults. It is a multifactorial disorder of as yet unknown aetiology. As far, it is suggested that interplay between genetic and environmental factors is responsible for MS pathogenesis. The role of microRNAs in this pathology is now extensively studied. Here, we want to review the current knowledge of microRNAs role in multiple sclerosis.
Collapse
|
16
|
Bansal P, Khan T, Bussmeyer U, Challa DK, Swiercz R, Velmurugan R, Ober RJ, Ward ES. The Encephalitogenic, Human Myelin Oligodendrocyte Glycoprotein–Induced Antibody Repertoire Is Directed toward Multiple Epitopes in C57BL/6-Immunized Mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:1091-101. [DOI: 10.4049/jimmunol.1300019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Abstract
BACKGROUND Autoantibodies targeted against a variety of self-antigens are detected in autoimmune diseases and cancer. Emerging evidence has suggested the involvement of environmental factors such as infections and xenobiotics, and some dietary proteins and their antibodies in the pathogenesis of many autoimmune diseases. These antibodies appear in the blood years before presentation of symptoms in various disorders. Therefore, these antibodies may be used as biomarkers for early detection of various diseases. OBJECTIVE To provide an overview of antibody arrays that are measured against different human tissue antigens, crossreactive epitopes of infectious agents, dietary proteins, and haptenic chemicals in autoimmune diseases and cancer. METHOD Microarray analysis of antigen-antibody reaction. CONCLUSION The application of these antibody arrays to human autoimmune disease is expanding and is allowing for the identification of patterns or antibody signatures, thus establishing the premises for increased sensitivity and specificity of prediction, as well as positive predictive values. The presence of these antibodies would not necessarily mean that a patient would definitely become sick but may give a percentage of risk for different conditions that may develop over future months or years. Using this high-throughput microarray method, it is possible to screen rapidly for dozens of autoantibodies at low cost. This is an important factor in the implementation of autoantibody testing as a routine part of medical examinations.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 8693 Wilshire Blvd, Ste. 200, Beverly Hills, CA 90211, USA +1 310 657 1077 ; +1 310 657 1053 ;
| |
Collapse
|
18
|
Kuenz B, Deisenhammer F, Berger T, Reindl M. Diagnostic biomarkers in multiple sclerosis. ACTA ACUST UNITED AC 2013; 1:225-33. [PMID: 23489309 DOI: 10.1517/17530059.1.2.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the CNS and comprises a heterogeneous spectrum of disease subtypes. The distinctive variability of clinical presentations, histopathologic and immunologic patterns, as well as neuroradiologic phenotypes in MS poses a diagnostic challenge to the attending physician and claims a more differentiated typing of MS patients by diagnostic biomarkers in order to anticipate the expected disease course and to stratify patients for specifically tailored therapies. In this paper, the major biomarkers presently recommended in the diagnosis of MS are reviewed, including magnetic resonance imaging, the analysis of cerebrospinal fluid parameters and the diagnostic relevance of antibodies to aquaporin-4 water channels and myelin antigens.
Collapse
Affiliation(s)
- Bettina Kuenz
- Innsbruck Medical University, Clinical Department of Neurology, Anichstrasse 35, A-6020 Innsbruck, Austria +43 512/504 24363 ; +43 512/504 24266 ;
| | | | | | | |
Collapse
|
19
|
Mayer MC, Meinl E. Glycoproteins as targets of autoantibodies in CNS inflammation: MOG and more. Ther Adv Neurol Disord 2013; 5:147-59. [PMID: 22590479 DOI: 10.1177/1756285611433772] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
B cells and antibodies constitute an important element in different inflammatory diseases of the central nervous system (CNS). Autoantibodies can serve as a biomarker to identify disease subgroups and may in addition contribute to the pathogenic process. One candidate autoantigen for multiple sclerosis (MS) is myelin oligodendrocyte glycoprotein (MOG). MOG is localized at the outermost surface of myelin in the CNS and has been the focus of extensive research for more than 30 years. Its role as an important autoantigen for T cells and as a target of demyelinating autoantibodies has been established in several variants of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The literature regarding antibodies to MOG in MS patients is confusing and contradictory. Recent studies, however, have described high levels of antibodies to conformationally correct MOG in pediatric acquired demyelination, both acute disseminated encephalomyelitis (ADEM) and MS. In adult MS, such antibodies are rarely found and then only at low levels. In this review, we summarize key findings from animal models and patient studies, discuss challenges in detecting anti-MOG antibodies in patients and present recent approaches to identifying new autoantigens in MS.
Collapse
Affiliation(s)
- Marie Cathrin Mayer
- Max Planck Institute of Neurobiology, Department of Neuroimmunology, Martinsried, Germany and Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
20
|
Mayer MC, Hohlfeld R, Meinl E. Viability of autoantibody-targets: How to tackle pathogenetic heterogeneity as an obstacle for treatment of multiple sclerosis. J Neurol Sci 2012; 319:2-7. [DOI: 10.1016/j.jns.2012.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/20/2022]
|
21
|
Affiliation(s)
- Sarah Lawrie
- Neuroimmunology Unit; Montreal Neurological Institute; McGill University; Montreal; QC; Canada
| | | |
Collapse
|
22
|
Elliott C, Lindner M, Arthur A, Brennan K, Jarius S, Hussey J, Chan A, Stroet A, Olsson T, Willison H, Barnett SC, Meinl E, Linington C. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. ACTA ACUST UNITED AC 2012; 135:1819-33. [PMID: 22561643 PMCID: PMC3359756 DOI: 10.1093/brain/aws105] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pathological and clinical studies implicate antibody-dependent mechanisms in the immunopathogenesis of multiple sclerosis. We tested this hypothesis directly by investigating the ability of patient-derived immunoglobulins to mediate demyelination and axonal injury in vitro. Using a myelinating culture system, we developed a sensitive and reproducible bioassay to detect and quantify these effects and applied this to investigate the pathogenic potential of immunoglobulin G preparations obtained from patients with multiple sclerosis (n = 37), other neurological diseases (n = 10) and healthy control donors (n = 13). This identified complement-dependent demyelinating immunoglobulin G responses in approximately 30% of patients with multiple sclerosis, which in two cases was accompanied by significant complement-dependent antibody mediated axonal loss. No pathogenic immunoglobulin G responses were detected in patients with other neurological disease or healthy controls, indicating that the presence of these demyelinating/axopathic autoantibodies is specific for a subset of patients with multiple sclerosis. Immunofluorescence microscopy revealed immunoglobulin G preparations with demyelinating activity contained antibodies that specifically decorated the surface of myelinating oligodendrocytes and their contiguous myelin sheaths. No other binding was observed indicating that the response is restricted to autoantigens expressed by terminally differentiated myelinating oligodendrocytes. In conclusion, our study identifies axopathic and/or demyelinating autoantibody responses in a subset of patients with multiple sclerosis. This observation underlines the mechanistic heterogeneity of multiple sclerosis and provides a rational explanation why some patients benefit from antibody depleting treatments.
Collapse
Affiliation(s)
- Christina Elliott
- Institute of Immunology, Immunity and Infection, University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
de Graaf KL, Albert M, Weissert R. Autoantigen conformation influences both B- and T-cell responses and encephalitogenicity. J Biol Chem 2012; 287:17206-17213. [PMID: 22493449 DOI: 10.1074/jbc.m111.304246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has become increasingly clear that only antibodies recognizing conformation-dependent epitopes of myelin oligodendrocyte glycoprotein (MOG) have a demyelinating potential in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Nevertheless, for the induction of EAE, most studies to date have used MOG peptides or bacterially expressed MOG, neither of which contain the tertiary structure of the native antigen. Non-refolded recombinant human MOG does not induce EAE in DA rats. Therefore, we refolded this protein in order to assess the influence of MOG conformation on its pathogenicity in DA rats. DA rats immunized with refolded human MOG developed severe acute EAE. As expected, rats immunized with the refolded protein had a higher amount of conformational MOG antibodies present in serum. But in addition, a striking effect of MOG refolding on the generation of T-cell responses was found. Indeed, T-cell responses against the encephalitogenic MOG 91-108 epitope were greatly enhanced after refolding. Therefore, we conclude that refolding of MOG increases its pathogenicity both by generating conformation-dependent MOG antibodies and by enhancing its processing or/and presentation on MHC molecules. These data are important in regard to investigations of the pathogenic potential of many (auto)antigens.
Collapse
Affiliation(s)
- Katrien L de Graaf
- Experimental Neuroimmunology Laboratory, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Monika Albert
- Experimental Neuroimmunology Laboratory, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Robert Weissert
- Experimental Neuroimmunology Laboratory, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.
| |
Collapse
|
24
|
Selmi C, Maria Papini A, Pugliese P, Claudia Alcaro M, Gershwin ME. Environmental pathways to autoimmune diseases: the cases of primary biliary cirrhosis and multiple sclerosis. Arch Med Sci 2011; 7:368-80. [PMID: 22295019 PMCID: PMC3258751 DOI: 10.5114/aoms.2011.23398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/15/2011] [Accepted: 05/19/2011] [Indexed: 12/21/2022] Open
Abstract
The pathways leading to autoimmunity remain enigmatic despite numerous lines of experimental inquiry and epidemiological evidence. The mechanisms leading to the initiation and perpetuation of specific diseases such as primary biliary cirrhosis (PBC) or multiple sclerosis (MS) remain largely enigmatic, although it is established that a combination of genetic predisposition and environmental stimulation is required. The growing number of genome-wide association studies and the largely incomplete concordance for autoimmune diseases in monozygotic twins concur to support the role of the environment (including infectious agents and chemicals) in the breakdown of tolerance leading to autoimmunity through different mechanisms. In the present article we illustrate the current hypotheses related to an environmental impact on the onset of PBC and MS as two representative conditions investigated with complementary approaches. Indeed, while a role of post-translational antigen modifications has been proposed for MS, this field remain unexplored in PBC where, conversely, most evidence is gathered from geoepidemiology and experimental data on xenobiotics or infectious agents.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Medicine and Autoimmunity and Metabolism Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | | | |
Collapse
|
25
|
Gori F, Mulinacci B, Massai L, Avolio C, Caragnano M, Peroni E, Lori S, Chelli M, Papini AM, Rovero P, Lolli F. IgG and IgM antibodies to the refolded MOG1–125 extracellular domain in humans. J Neuroimmunol 2011; 233:216-20. [DOI: 10.1016/j.jneuroim.2010.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/20/2010] [Accepted: 11/29/2010] [Indexed: 11/30/2022]
|
26
|
Di Pauli F, Mader S, Rostasy K, Schanda K, Bajer-Kornek B, Ehling R, Deisenhammer F, Reindl M, Berger T. Temporal dynamics of anti-MOG antibodies in CNS demyelinating diseases. Clin Immunol 2011; 138:247-54. [DOI: 10.1016/j.clim.2010.11.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/18/2010] [Indexed: 01/21/2023]
|
27
|
Tufekci KU, Oner MG, Genc S, Genc K. MicroRNAs and Multiple Sclerosis. Autoimmune Dis 2010; 2011:807426. [PMID: 21188194 PMCID: PMC3003960 DOI: 10.4061/2011/807426] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 10/16/2010] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) have recently emerged as a new class of modulators of gene expression. miRNAs control protein synthesis by targeting mRNAs for translational repression or degradation at the posttranscriptional level. These noncoding RNAs are endogenous, single-stranded molecules approximately 22 nucleotides in length and have roles in multiple facets of immunity, from regulation of development of key cellular players to activation and function in immune responses. Recent studies have shown that dysregulation of miRNAs involved in immune responses leads to autoimmunity. Multiple sclerosis (MS) serves as an example of a chronic and organ-specific autoimmune disease in which miRNAs modulate immune responses in the peripheral immune compartment and the neuroinflammatory process in the brain. For MS, miRNAs have the potential to serve as modifying drugs. In this review, we summarize current knowledge of miRNA biogenesis and mode of action and the diverse roles of miRNAs in modulating the immune and inflammatory responses. We also review the role of miRNAs in autoimmunity, focusing on emerging data regarding miRNA expression patterns in MS. Finally, we discuss the potential of miRNAs as a disease marker and a novel therapeutic target in MS. Better understanding of the role of miRNAs in MS will improve our knowledge of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | | | | | | |
Collapse
|
28
|
Klawiter EC, Piccio L, Lyons JA, Mikesell R, O'Connor KC, Cross AH. Elevated intrathecal myelin oligodendrocyte glycoprotein antibodies in multiple sclerosis. ACTA ACUST UNITED AC 2010; 67:1102-8. [PMID: 20837855 DOI: 10.1001/archneurol.2010.197] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate antibodies to myelin oligodendrocyte glycoprotein (MOG) in the serum and cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) and control individuals. DESIGN Prospective case-control series. SETTING Academic referral center. PATIENTS Twenty-six controls with noninflammatory neurologic disease and 35 patients with MS donated serum and CSF for recombinant MOG (rMOG) antibody determination. MAIN OUTCOME MEASURES Serum and CSF rMOG antibody and albumin levels were used to calculate an rMOG index. Clinical disability, CSF markers, and magnetic resonance metrics were correlated with the rMOG index. RESULTS The rMOG index was elevated in MS patients compared with controls (P = .01). Patients with progressive MS exhibited elevated rMOG indexes compared with patients with relapsing-remitting MS (P = .04). The rMOG index was inferior to the IgG index in differentiating MS patients from controls. However, 7 of 16 patients with MS who had normal immunoglobulin G indexes had an elevated rMOG index. The rMOG index did not correlate with clinical disability, other CSF markers, or radiographic outcome measures. CONCLUSIONS The rMOG index, a marker of intrathecal MOG antibody production, may provide complementary information to routine CSF testing in the diagnosis of MS. Furthermore, intrathecal anti-MOG antibody production may be more pronounced in progressive than in relapsing forms of MS.
Collapse
Affiliation(s)
- Eric C Klawiter
- Department of Neurology, Washington University, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Increasing research activities on humoral immune responses involved in the immunopathogenesis of multiple sclerosis (MS) led to a revival of the importance of B cells and antibodies in MS. B cells seem now to play various immunopathogenetic roles in the initiation and propagation of inflammatory demyelinating processes at different disease stages of MS. The biological activities of antibodies in MS is, in general, still less known, although it emerges that antibodies are specifically involved in demyelination or, at least, mirror tissue destruction in the central nervous system. Finally, there is growing evidence that treatments, which specifically target B cells and/or antibodies, are effective in MS and its variants neuromyelitis optica (NMO). This chapter therefore aims to summarize the present knowledge and to outline future directions about the role of B cells and antibodies in research and therapy of MS and NMO.
Collapse
Affiliation(s)
- Markus Reindl
- Neuroimmunological and Multiple Sclerosis Clinic and Research Unit, Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
30
|
Update on inflammation, neurodegeneration, and immunoregulation in multiple sclerosis: therapeutic implications. Clin Neuropharmacol 2009; 32:121-32. [PMID: 19483479 DOI: 10.1097/wnf.0b013e3181880359] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system of uncertain etiology. There is consensus that a dysregulated immune system plays a critical role in the pathogenesis of MS; therefore, we aim to summarize current hypotheses concerning the complex cellular and molecular interactions involved in the immunopathology of MS. Although CD4+ T lymphocytes have long been implicated in the immunopathology of MS, the role of other T-cell subtypes has been recognized. CD4+ and CD8+ cells have been isolated from different locations within MS lesions and gamma/delta T cells have been isolated from early MS lesions. The prevalent dogma has been that CD4+ TH1 cells release cytokines and mediators of inflammation that may cause tissue damage, although CD4+ TH2 cells may be involved in modulation of these effects. Recent evidence, however, suggests that additional T-cell subsets play a prominent role in MS immunopathology: TH17 cells, CD8+ effector T cells, and CD4+CD25+ regulatory T cells. In addition, laboratory and clinical data are accumulating on the prominent role of B lymphocytes and antigen-presenting cells in MS pathogenesis. On the basis of these observations, new therapeutic approaches for MS will need to focus on resetting multiple components of the immune system.
Collapse
|
31
|
A double mutation of MBP(83-99) peptide induces IL-4 responses and antagonizes IFN-gamma responses. J Neuroimmunol 2008; 200:77-89. [PMID: 18675465 DOI: 10.1016/j.jneuroim.2008.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022]
Abstract
A number of treatment options are available to multiple sclerosis patients, however this needs to be improved. Herein, we designed and synthesized a number of peptides by mutating principal TCR contact residues based on MBP(83-99) peptide epitope. Immunization of SJL/J mice with MBP(83-99) and mutant [A(91)]MBP(83-99), [E(91)]MBP(83-99), [F(91)]MBP(83-99), [Y(91)]MBP(83-99), and [R(91), A(96)]MBP(83-99) peptides, induced IFN-gamma, and only [R(91), A(96)]MBP(83-99) mutant peptide was able to induce IL-4 secretion by T cells. T cells against the native MBP(83-99) peptide cross-reacted with all peptides except [Y(91)]MBP(83-99) and [R(91),A(96)]MBP(83-99). The double mutant [R(91), A(96)]MBP(83-99) was able to antagonize IFN-gamma production in vitro by T cells against the native MBP(83-99) peptide. Antibodies generated to [R(91), A(96)]MBP(83-99) did not cross-react with whole MBP protein. Molecular modeling between peptide analogs and H2 I-A(s) demonstrated novel interactions. The [R(91), A(96)]MBP(83-99) double mutant peptide analog is the most promising for further therapeutic studies.
Collapse
|
32
|
Wiendl H, Toyka KV, Rieckmann P, Gold R, Hartung HP, Hohlfeld R. Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J Neurol 2008; 255:1449-63. [PMID: 19005625 DOI: 10.1007/s00415-008-0061-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 07/10/2008] [Accepted: 07/10/2008] [Indexed: 02/28/2023]
Abstract
This review updates and extends earlier Consensus Reports related to current basic and escalating immunomodulatory treatments in multiple sclerosis (MS). The recent literature has been extracted for new evidence from randomized controlled trials, open treatment studies and reported expert opinion, both in original articles and reviews, and evaluates indications and safety issues based on published data. After data extraction from published full length publications and critically weighing the evidence and potential impact of the data, the review has been drafted and circulated within the National MS Societies and the European MS Platform to reach consensus within a very large group of European experts, combining evidence-based criteria and expert opinion where evidence is still incomplete. The review also outlines a few areas of controversy and delineates the need for future research.
Collapse
Affiliation(s)
-
- Department of Neurology and Clinical Research, Unit for MS and Neuroimmunology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Oh S, Cudrici C, Ito T, Rus H. B-cells and humoral immunity in multiple sclerosis. Implications for therapy. Immunol Res 2008; 40:224-34. [PMID: 17960498 DOI: 10.1007/s12026-007-8009-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B-cells and humoral immunity have been implicated in the pathogenesis of multiple sclerosis. The most common pattern of demyelinating pathology in multiple sclerosis is associated with the deposition of antibodies and the activation of complement, as well as T-cells and macrophages. Plasmapheresis has been found to be an efficient therapeutic approach in patients with this type of pathological lesion. Recent data have indicated that autoantibodies and complement C5b-9 may be involved in lesion formation and might also be beneficial for lesion repair. Thus, the role played by B-cells and humoral immunity is rather complex, and new strategies for targeting B-cell responses are continuing to emerge.
Collapse
Affiliation(s)
- Sangjin Oh
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
34
|
Breithaupt C, Schäfer B, Pellkofer H, Huber R, Linington C, Jacob U. Demyelinating Myelin Oligodendrocyte Glycoprotein-Specific Autoantibody Response Is Focused on One Dominant Conformational Epitope Region in Rodents. THE JOURNAL OF IMMUNOLOGY 2008; 181:1255-63. [DOI: 10.4049/jimmunol.181.2.1255] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Autoimmunity Against Myelin Oligodendrocyte Glycoprotein Is Dispensable for the Initiation Although Essential for the Progression of Chronic Encephalomyelitis in Common Marmosets. J Neuropathol Exp Neurol 2008; 67:326-40. [DOI: 10.1097/nen.0b013e31816a6851] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Ziemssen T, Ziemssen F. The role of the humoral immune system in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Autoimmun Rev 2008; 4:460-7. [PMID: 16137612 DOI: 10.1016/j.autrev.2005.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 03/26/2005] [Indexed: 01/18/2023]
Abstract
The pathogenic events in multiple sclerosis (MS) that result in immune cell infiltration, multifocal demyelination and axonal loss have been focused by the strong impact of the classical MS model experimental autoimmune encephalomyelitis (EAE) towards the hypothesis that MS is an entirely T cell-mediated disease. Although conspicuous humoral immune responses have been known since Kabal's seminal finding of elevated immunoglobulins (Igs) in the cerebrospinal fluid (CSF), only in the past few years evidence derived from recent studies of the MS lesion of anti-myelin antibodies (Abs) in patients with early MS and of MS animal models has led to a renewed interest in the role for B cells, plasma cells and their products in the pathogenesis of MS. This review surveys the actual data concerning the role of the humoral immune system in MS and EAE and explains potential modes of action and long-time persistence in the inflamed brain tissue as a B cell-supportive microenvironment in MS. These mechanisms include the modulation of antigen presentation and costimulation to T cells, increased myelin opsonisation und recruitment of inflammatory cells to the CNS, but also immunoregulatory influences on the remyelination by anti-myelin B cells and Abs. So, affecting the humoral immune system in MS would be a reasonable therapeutic option.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Neuroimmunological Lab, Department of Neurology, Neurological University Clinic Dresden Carl Gustav Carus, Fetscherstr. 74, D-01307 Dresden, Germany.
| | | |
Collapse
|
37
|
Menge T, von Büdingen HC, Lalive PH, Genain CP. Relevant antibody subsets against MOG recognize conformational epitopes exclusively exposed in solid-phase ELISA. Eur J Immunol 2007; 37:3229-39. [PMID: 17918203 DOI: 10.1002/eji.200737249] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A pathogenic role for circulating anti-myelin antibodies is difficult to establish in multiple sclerosis (MS). Here, we unravel a broad heterogeneity within the anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in humans and non-human primates, and demonstrate that detection of important epitopes of MOG within the pathogenic repertoire is exclusively dependent on presentation on a solid-phase MOG conformer. Results of ELISA and those of a liquid-phase assay were compared using a MOG protein with identical sequence but different conformations. We tested sera from 50 human subjects, plasma of Callithrix jacchus marmosets known to contain antibodies reactive to either conformational or linearized MOG, and monoclonal, conformation-dependent anti-MOG antibodies. We have found no antibody reactivity against the soluble MOG conformer in human serum, and show that this lack of detection is not due to technical artifacts. Rather, dominant epitopes of MOG are not displayed in soluble phase, as shown by a complete lack of binding of conformation-dependent mAb. In MP4-immune marmosets that exhibit demyelinating pathology due to spreading of antibody determinants to myelin-embedded MOG, only ELISA can detect pathogenic circulating anti-MOG antibodies. Thus, the accurate detection of important subsets of pathogenic anti-MOG antibodies requires methods in which MOG is displayed similarly to its natural conformation in myelin.
Collapse
Affiliation(s)
- Til Menge
- University of California San Francisco, Department of Neurology, San Francisco CA, USA
| | | | | | | |
Collapse
|
38
|
Greeve I, Sellner J, Lauterburg T, Walker U, Rösler KM, Mattle HP. Anti-myelin antibodies in clinically isolated syndrome indicate the risk of multiple sclerosis in a Swiss cohort. Acta Neurol Scand 2007; 116:207-10. [PMID: 17824895 DOI: 10.1111/j.1600-0404.2007.00872.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES In patients with a clinically isolated syndrome (CIS), the time interval to convert to clinically definite multiple sclerosis (CDMS) is highly variable. Individual and geographical prognostic factors remain to be determined. Whether anti-myelin antibodies may predict the risk of conversion to CDMS in Swiss CIS patients of the canton Berne was the subject of the study. METHODS Anti-myelin oligodendrocyte glycoprotein and anti-myelin basic protein antibodies were determined prospectively in patients admitted to our department. RESULTS After a mean follow-up of 12 months, none of nine antibody-negative, but 22 of 30 antibody-positive patients had progressed to CDMS. Beta-Interferon treatment delayed the time to conversion from a mean of 7.4 to 10.9 months. CONCLUSIONS In a Swiss cohort, antibody-negative CIS patients have a favorable short-term prognosis, and antibody-positive patients benefit from early treatment.
Collapse
Affiliation(s)
- I Greeve
- Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
39
|
Berger T, Reindl M. Multiple sclerosis: Disease biomarkers as indicated by pathophysiology. J Neurol Sci 2007; 259:21-6. [PMID: 17367811 DOI: 10.1016/j.jns.2006.05.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/25/2006] [Accepted: 05/01/2006] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS), the most important human inflammatory demyelinating disease of the central nervous system, is characterized by heterogenous genetic backgrounds and immunopathogenetic subtypes, various clinical disease courses, and inhomogeneous and unpredictable therapeutic effects. Because of this heterogeneity, subtyping of our MS patients by genetical, clinical, neuroradiological, and neuroimmunological parameters will be an urgent need in the near future. Therefore the importance of identifying biological markers for MS has evolved over the past years. Evidence for a possible role of antibodies as biological markers for MS comes from several studies indicating that intrathecal antibody production and the dominance of B-cells are associated with a more progressive disease course. This review summarizes the current status and potential applicability of antibodies as biological markers for the diagnosis, classification, disease activity and prediction of clinical courses in MS. Antibodies (and other molecules) serving as biomarkers will help to establish a differential therapeutic concept in MS, which should allow to treat individuals selectively according to their pathogenetic subtype and disease status.
Collapse
Affiliation(s)
- Thomas Berger
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
40
|
Kuhle J, Lindberg RLP, Regeniter A, Mehling M, Hoffmann F, Reindl M, Berger T, Radue EW, Leppert D, Kappos L. Antimyelin antibodies in clinically isolated syndromes correlate with inflammation in MRI and CSF. J Neurol 2007; 254:160-8. [PMID: 17334662 DOI: 10.1007/s00415-006-0299-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 05/11/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We investigated the correlation of antimyelin oligodendrocyte glycoprotein-(anti-MOG) and anti-myelin basic protein antibodies (anti-MBP) in serum of CIS patients with inflammatory signs in MRI and in CSF and, as previously suggested,the incidence of more frequent and rapid progression to clinically definite MS (CDMS). METHODS 133CIS patients were analysed for anti-MOG and anti-MBP (Western blot). Routine CSF and cranial MRI (quantitatively and qualitatively) measures were analyzed. 55 patients had a follow-up of at least 12 months or until conversion to CDMS. RESULTS Patients with anti-MOG and anti-MBP had an increased intrathecal IgG production and CSF white blood cell count(p = 0.048 and p = 0.036). When anti-MBP alone, or both antibodies were present the cranial MRI showed significantly more T2 lesions (p = 0.007 and p = 0.01,respectively). There was a trend for more lesion dissemination in anti-MBP positive patients (p = 0.076).Conversely, anti-MOG- and/or anti-MBP failed to predict conversion to CDMS in our follow-up group (n = 55). Only in female patients with at least one MRI lesion (n = 34) did the presence of anti-MOG correlate with more frequent (p = 0.028) and more rapid (p = 0.0209) transition to CDMS. CONCLUSIONS Presence of anti-MOG or anti-MBP or both was not significantly associated with conversion to CDMS in our CIS cohort. However, patients with anti-MOG and anti-MBP had higher lesion load and more disseminated lesions in cranial MRI as well as higher values for CSF leucocytes and intrathecal IgG production. Our data support a correlation of anti-MOG and anti-MBP to inflammatory signs in MRI and CSF. The prognostic value of these antibodies for CDMS, however, seems to be less pronounced than previously reported.
Collapse
Affiliation(s)
- Jens Kuhle
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pittock SJ, Reindl M, Achenbach S, Berger T, Bruck W, Konig F, Morales Y, Lassmann H, Bryant S, Moore SB, Keegan BM, Lucchinetti CF. Myelin oligodendrocyte glycoprotein antibodies in pathologically proven multiple sclerosis: frequency, stability and clinicopathologic correlations. Mult Scler 2007; 13:7-16. [PMID: 17294606 DOI: 10.1177/1352458506072189] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Controversy exists regarding the pathogenic or predictive role of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in patients with multiple sclerosis (MS). Four immunopathological patterns (IP) have been recognized in early active MS lesions, suggesting heterogeneous pathogenic mechanisms. Whether MOG antibodies contribute to this pathological heterogeneity and potentially serve as biomarkers to identify specific pathological patterns is unknown. Here we report the frequencies of antibodies to human recombinant MOG (identified by Western blot and enzyme-linked immunoabsorbent assay (ELISA)) in patients with pathologically proven demyelinating disease, and investigate whether antibody status is associated with clinical course, HLA-DR2-genotype, IP or treatment response to plasmapheresis. The biopsy cohort consisted of 72 patients: 12 pattern I, 43 pattern II and 17 pattern III. No association was found between MOG antibody status and conversion to clinically definite MS, DR-2 status, IP or response to plasmapheresis. There was poor agreement between Western blot and ELISA (kappa = 0.07 for MOG IgM). Fluctuations in antibody seropositivity were seen for 3/4 patients tested serially by Western blot. This study does not support a pathologic pattern-specific role for MOG-antibodies. Variable MOG-antibody status on serial measurements, coupled with the lack of Western blot and ELISA correlations, raises concern regarding the use of MOG-antibody as an MS biomarker and underscores the need for methodological consensus.
Collapse
Affiliation(s)
- S J Pittock
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kuhle J, Pohl C, Mehling M, Edan G, Freedman MS, Hartung HP, Polman CH, Miller DH, Montalban X, Barkhof F, Bauer L, Dahms S, Lindberg R, Kappos L, Sandbrink R. Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 2007; 356:371-8. [PMID: 17251533 DOI: 10.1056/nejmoa063602] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients with a single episode of neurologic dysfunction and brain magnetic resonance imaging (MRI) scans suggestive of multiple sclerosis are at high risk for clinically definite multiple sclerosis, but the outcome for individual patients is unpredictable. An increased risk of progression to clinically definite multiple sclerosis in patients with serum antibodies against myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP) has been reported. METHODS We measured serum anti-MOG and anti-MBP IgG and IgM antibodies in 462 patients with a first clinical event suggestive of multiple sclerosis and at least two clinically silent lesions on brain MRI. The patients were participating in a multicenter trial of treatment with interferon beta-1b. Antibodies were assessed by Western blot analysis at baseline, and the results compared with the time and rate of progression to clinically definite multiple sclerosis or a diagnosis of multiple sclerosis as defined by an international panel (the McDonald criteria). Regular visits were scheduled for the assessment of neurologic impairment and for MRI before treatment and at months 3, 6, 9, 12, 18, and 24. RESULTS No associations were found between the presence of anti-MOG and anti-MBP IgM and IgG antibodies and progression to clinically definite multiple sclerosis or a diagnosis of multiple sclerosis according to the McDonald criteria, either in the entire cohort or in any subgroups of the study population. CONCLUSIONS Serum antibodies against MOG and MBP, as detected by Western blot analysis, are not associated with an increased risk of progression to clinically definite multiple sclerosis in patients who have had a clinically isolated syndrome suggestive of multiple sclerosis.
Collapse
Affiliation(s)
- Jens Kuhle
- Department of Research, University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The updated recommendations presented here reflect new developments in the diagnostic work-up and immunotherapy of multiple sclerosis (MS) as well as optimization of medical care for MS patients. Monoclonal antibodies provide considerable improvement of treatment, but their use in basic therapy is restricted by their side effect profile. Thus, for the time being, natalizumab is only approved for monotherapy after basic treatment has failed or for rapidly progressive relapsing-remitting MS. In contrast, long-term data on recombinant beta-interferons and glatiramer acetate (Copaxone) show that even after several years no unexpected side effects occur and that a prolonged therapeutic effect can be assumed which correlates with the dose or frequency of treatment. Recently IFN-beta1b (Betaferon) was approved for prophylactic treatment after the first attack (clinically isolated syndrome, CIS). During treatment with beta-interferons, neutralizing antibodies can emerge with possible loss of effectivity. In contrast, antibodies play no role in treatment with glatiramer acetate. During or after therapy with mitoxantrone, serious side effects (cardiomyopathy, acute myeloid leukemia) appeared in 0.2-0.4% of cases. Plasmapheresis is limited to individual curative attempts in escalating therapy of a severe attack. According to the revised McDonald criteria, the diagnosis of MS can be made as early as the occurrence of the first attack (CIS). Recommendations for optimized care of MS patients are also new, thus implementing a resolution of the European Parliament.
Collapse
|
44
|
|
45
|
Mikol DD, Ditlow C, Usatin D, Biswas P, Kalbfleisch J, Milner A, Calenoff E. Serum IgE reactive against small myelin protein-derived peptides is increased in multiple sclerosis patients. J Neuroimmunol 2006; 180:40-9. [PMID: 16996143 DOI: 10.1016/j.jneuroim.2006.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 06/23/2006] [Indexed: 12/26/2022]
Abstract
Though independent findings suggest roles for the allergic arm of the immune system and myelin-reactive antibodies in MS, myelin-reactive IgE has not been investigated. We have developed a radioimmunoassay that measures reactive IgE, IgG and IgA against short (5-6-mers) myelin protein-derived peptides bearing little to no sequence identity with other human proteins, and which might therefore be targets of a CNS-specific autoimmune attack. Here we show that, irrespective of clinical subtype, MS patients' sera are characterized by a higher frequency of measurable IgE against the peptides. Moreover, in controls with measurable IgE reactive against test peptides, IgG or IgA reactive with the same peptide epitopes is almost always present in vastly greater quantities, whereas in MS subjects peptide-reactive IgA or IgG is often undetectable. The sensitivity of the full assay, when considering overall positive a serum sample that has detectable autoreactive IgE without other competing Igs, is 69% (S.E.: 5%), with a specificity of 87% (S.E.: 9%). We speculate that IgE reactive against CNS target antigens may have both diagnostic and pathogenic significance, particularly if other peptide-specific, potentially blocking Igs are absent.
Collapse
Affiliation(s)
- Daniel D Mikol
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Reindl M, Khalil M, Berger T. Antibodies as biological markers for pathophysiological processes in MS. J Neuroimmunol 2006; 180:50-62. [PMID: 16934337 DOI: 10.1016/j.jneuroim.2006.06.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/20/2006] [Accepted: 06/23/2006] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS), the most important human inflammatory demyelinating disease of the central nervous system, is characterized by various clinical disease courses, inhomogeneous and unpredictable therapeutic effects, heterogenous genetic backgrounds and immunopathogenetic subtypes as demonstrated by neuropathology. Because of this heterogeneity of MS, a subtyping of our patients by genetical, clinical, neuroradiological, and neuroimmunological parameters will be necessary in the future. Therefore the importance of identifying biological markers for MS has evolved over the past years. Evidence for a possible role of antibodies as biological markers for MS comes from several studies indicating that intrathecal antibody production and the dominance of B cells are associated with a more progressive disease course. In this review we will give an overview on the current status and potential applicability of antibodies as biological markers for the diagnosis, classification, disease activity and prediction of clinical courses in MS. We will therefore summarize the findings on autoantibodies to myelin and nonmyelin antigens and on viral antigens in MS. We believe that antibodies serving as biomarkers will help to establish a differential therapeutic concept in MS, which will allow to treat individuals selectively according to their pathogenetic subtype and disease status.
Collapse
Affiliation(s)
- Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
47
|
Breij ECW, Heijnen P, van der Goes A, Teunissen CE, Polman CH, Dijkstra CD. Myelin flow cytometry assay detects enhanced levels of antibodies to human whole myelin in a subpopulation of multiple sclerosis patients. J Neuroimmunol 2006; 176:106-14. [PMID: 16712958 DOI: 10.1016/j.jneuroim.2006.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/08/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
Antibodies directed against myelin components have been described in multiple sclerosis (MS). Accumulating evidence suggests that pathogenically relevant anti-myelin antibodies bind conformational and post-translationally modified epitopes. However, the current methods to detect anti-myelin antibodies often do not allow recognition of such epitopes. We developed a flow cytometry-based assay to detect antibodies to whole human myelin (including conformational and post-translationally modified epitopes). MS patients (n=152) showed enhanced serum levels of anti-myelin antibodies (total Ig, IgG and IgM) when compared to healthy donors (HD, n=40). Strikingly, approximately 50% of MS patients showed enhanced anti-myelin IgG levels. Anti-myelin IgG levels were not correlated with clinical parameters of disease. In the same population, serum antibody responses to recombinant myelin oligodendrocyte glycoprotein were comparable in MS patients and HD.
Collapse
Affiliation(s)
- Esther C W Breij
- Department of Molecular Cell Biology and Immunology, VU Medical center Amsterdam, FdG, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Khalil M, Reindl M, Lutterotti A, Kuenz B, Ehling R, Gneiss C, Lackner P, Deisenhammer F, Berger T. Epitope specificity of serum antibodies directed against the extracellular domain of myelin oligodendrocyte glycoprotein: Influence of relapses and immunomodulatory treatments. J Neuroimmunol 2006; 174:147-56. [PMID: 16516980 DOI: 10.1016/j.jneuroim.2006.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/18/2006] [Accepted: 01/20/2006] [Indexed: 11/21/2022]
Abstract
Only few reports are available on the epitope specificity of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in multiple sclerosis (MS). In the present study we provide a precise characterization of the epitope specificity of serum antibodies directed against the extracellular domain of MOG, including IgG, IgM and IgA immunoglobulin isotypes in 28 relapsing remitting MS patients and report that linear epitopes amino-acid (aa) 37-48 and aa42-53 are immunodominant. Recently experienced relapses intensified the anti-MOG peptide antibody response. Immunomodulatory treatment with interferon-beta or glatiramer-acetate had no major impact on the anti-MOG peptide immunoreactivity after 1 year of therapy.
Collapse
Affiliation(s)
- Michael Khalil
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lalive PH, Menge T, Delarasse C, Della Gaspera B, Pham-Dinh D, Villoslada P, von Büdingen HC, Genain CP. Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci U S A 2006; 103:2280-5. [PMID: 16461459 PMCID: PMC1413723 DOI: 10.1073/pnas.0510672103] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is an integral membrane protein expressed in CNS oligodendrocytes and outermost myelin lamellae. Anti-MOG Abs cause myelin destruction (demyelination) in animal models of multiple sclerosis (MS); however, such pathogenic Abs have not yet been characterized in humans. Here, a method that specifically detects IgG binding to human MOG in its native, membrane-embedded conformation on MOG-transfected mammalian cells was used to evaluate the significance of these auto Abs. Compared with healthy controls, native MOG-specific IgGs were most frequently found in serum of clinically isolated syndromes (P < 0.001) and relapsing-remitting MS (P < 0.01), only marginally in secondary progressive MS (P < 0.05), and not at all in primary progressive MS. We demonstrate that epitopes exposed in this cell-based assay are different from those exposed on the refolded, extracellular domain of human recombinant MOG tested by solid-phase ELISA. In marmoset monkeys induced to develop MS-like CNS inflammatory demyelination, IgG reactivity against the native membrane-bound MOG is always detected before clinical onset of disease (P < 0.0001), unlike that against other myelin constituents. We conclude that (i) epitopes displayed on native, glycosylated MOG expressed in vivo are early targets for pathogenic Abs; (ii) these Abs, which are not detected in solid-phase assays, might be the ones to play a pathogenic role in early MS with predominant inflammatory activity; and (iii) the cell-based assay provides a practical serologic marker for early detection of CNS autoimmune demyelination including its preclinical stage at least in the primate MS model.
Collapse
Affiliation(s)
- Patrice H. Lalive
- *Department of Neurology, University of California, San Francisco, CA 94143
| | - Til Menge
- *Department of Neurology, University of California, San Francisco, CA 94143
| | - Cecile Delarasse
- Institut National de la Santé et de la Recherche Médicale, U546, 105 Boulevard de l’Hôpital, 75013 Paris, France
| | - Bruno Della Gaspera
- Institut National de la Santé et de la Recherche Médicale, U546, 105 Boulevard de l’Hôpital, 75013 Paris, France
| | - Danielle Pham-Dinh
- Institut National de la Santé et de la Recherche Médicale, U546, 105 Boulevard de l’Hôpital, 75013 Paris, France
| | - Pablo Villoslada
- Department of Neurology, Clinica Universitaria de Navarra, Pio XII 36, 31008 Pamplona, NA, Spain; and
| | - H.-C. von Büdingen
- Department of Neurology, University Hospital, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Claude P. Genain
- *Department of Neurology, University of California, San Francisco, CA 94143
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Abstract
Rather than being a homogenous disease entity, multiple sclerosis (MS) represents a family of heterogenous inflammatory-demyelinating CNS diseases. The heterogeneity is demonstrated by various well known clinical disease courses and, more importantly, by inhomogenous and unpredictable therapeutic effects. Recent neuropathological evidence has initiated a process of re-evaluation of the immunopathogenetic concepts in MS. The heterogeneity of MS claims to subtype our patients more distinctively in the future by genetic, clinical, neuroradiological and neuroimmunological parameters. Therefore, the importance of identifiying biological markers in MS has evolved over the past few years. This review discusses the current status and potential applicability of antibodies as biological markers for the diagnosis, classification, disease activity and prediction of clinical courses in MS. Antibodies serving as biomarkers will create the future path for establishing a differential therapeutic concept in MS, which will allow the treatment of individuals selectively, according to their pathogenetic subtype and disease status.
Collapse
|