1
|
Ornello R, Caponnetto V, Ahmed F, Al-Khazali HM, Ambrosini A, Ashina S, Baraldi C, Bellotti A, Brighina F, Calabresi P, Casillo F, Cevoli S, Cheng S, Chiang CC, Chiarugi A, Christensen RH, Chu MK, Coppola G, Corbelli I, Crema S, De Icco R, de Tommaso M, Di Lorenzo C, Di Stefano V, Diener HC, Ekizoğlu E, Fallacara A, Favoni V, Garces KN, Geppetti P, Goicochea MT, Granato A, Granella F, Guerzoni S, Ha WS, Hassan A, Hirata K, Hoffmann J, Hüssler EM, Hussein M, Iannone LF, Jenkins B, Labastida-Ramirez A, Laporta A, Levin M, Lupica A, Mampreso E, Martinelli D, Monteith TS, Orologio I, Özge A, Pan LLH, Panneerchelvam LL, Peres MFP, Souza MNP, Pozo-Rosich P, Prudenzano MP, Quattrocchi S, Rainero I, Romanenko V, Romozzi M, Russo A, Sances G, Sarchielli P, Schwedt TJ, Silvestro M, Swerts DB, Tassorelli C, Tessitore A, Togha M, Vaghi G, Wang SJ, Ashina M, Sacco S. Evidence-based guidelines for the pharmacological treatment of migraine. Cephalalgia 2025; 45:3331024241305381. [PMID: 40277319 DOI: 10.1177/03331024241305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
We here present evidence-based guidelines for the pharmacological treatment of migraine. These guidelines, created by the Italian Society for the Study of Headache and the International Headache Society, aim to offer clear, actionable recommendations to healthcare professionals. They incorporate evidence-based recommendations from randomized controlled trials and expert-based opinions. The guidelines follow the Grading of Recommendations, Assessment, Development and Evaluation approach for assessing the quality of evidence. The guideline development involved a systematic review of literature across multiple databases, adherence to Cochrane review methods, and a structured framework for data extraction and interpretation. Although the guidelines provide a robust foundation for migraine treatment, they also highlight gaps in current research, such as the paucity of head-to-head drug comparisons and the need for long-term outcome studies. These guidelines serve as a resource to standardize migraine treatment and promote high-quality care across different healthcare settings.
Collapse
Affiliation(s)
- Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Caponnetto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fayyaz Ahmed
- Hull University Teaching Hospitals NHS Trust., Hull, UK
| | - Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Sait Ashina
- Department of Neurology and Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Baraldi
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology -Headache Center and Drug Abuse - Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU of Modena, Modena, Italy
| | - Alessia Bellotti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Sabina Cevoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Shuli Cheng
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | | | - Alberto Chiarugi
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University, Republic of Korea
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Ilenia Corbelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Santiago Crema
- Headache Clinic, Neurology Department, Fleni, Buenos Aires, Argentina
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Marina de Tommaso
- DiBrain Department, Neurophysiopathology Unit, Bari Aldo Moro University, Bari, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | - Hans-Christoph Diener
- Department of Neuroepidemiology, Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Esme Ekizoğlu
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Adriana Fallacara
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Valentina Favoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Kimberly N Garces
- Department of Neurology-Headache Division, University of Miami, Miller School of Medicine, Miami, USA
| | - Pierangelo Geppetti
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
- Department of Molecular Pathobiology and Pain Research Center, College of Dentistry, New York University, New York, USA
| | | | - Antonio Granato
- Clinical Unit of Neurology, Headache Center, Department of Medical, Surgical and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Trieste, Italy
| | - Franco Granella
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Guerzoni
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology -Headache Center and Drug Abuse - Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU of Modena, Modena, Italy
| | - Woo-Seok Ha
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Amr Hassan
- Department of Neurology, Kasr Al Ainy Hospitals, Faculty of Medicine, Cairo University, Egypt
| | | | - Jan Hoffmann
- Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eva-Maria Hüssler
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Mona Hussein
- Department of Neurology, Beni-Suef University, Beni-Suef, Egypt
| | - Luigi Francesco Iannone
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
| | | | - Alejandro Labastida-Ramirez
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Anna Laporta
- DiBrain Department, Neurophysiopathology Unit, Bari Aldo Moro University, Bari, Italy
| | - Morris Levin
- Headache Center, University of California, San Francisco, CA, USA
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | | | - Daniele Martinelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Teshamae S Monteith
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Ilaria Orologio
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Aynur Özge
- Department of Neurology, Mersin University Medical School, Mersin, Turkey
| | | | | | - Mario F P Peres
- Department of Neurology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Patricia Pozo-Rosich
- Headache Clinic, Neurology Department, Vall d'Hebron Hospital, Barcelona, Spain; Headache and Neurological Pain Research Group, VHIR, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Prudenzano
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Silvia Quattrocchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Innocenzo Rainero
- Headache Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | | | - Marina Romozzi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Russo
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Grazia Sances
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paola Sarchielli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Marcello Silvestro
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | | | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Alessandro Tessitore
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Headache Department, Neurology Ward, Sina Hospital, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Shuu-Jiun Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei
- College of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Severance Hospital, Yonsei University, Republic of Korea
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Zhu Z, Tang Y, Li L, Ni H, Liu M, Chen Z, Wang Z. The efficacy and safety of zavegepant nasal inhalation versus oral calcitonin-gene related peptide receptor antagonists in the acute treatment of migraine: a systematic review and network meta-analysis of the literature. J Headache Pain 2025; 26:48. [PMID: 40065213 PMCID: PMC11892237 DOI: 10.1186/s10194-025-01984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The latest randomized controlled trial (RCT) revealed that zavegepant, a new nasal inhalation calcitonin gene-related peptide (CGRP) receptor antagonist, has a clear efficacy in the acute treatment of migraine. However, whether the efficacy of this new nasal inhalation drug is better than other oral CGRP receptor antagonists remained to be confirmed. Therefore, we designed this network meta-analysis (NMA) to provide a reference for the clinical application of zavegepant. METHODS We systematically searched PubMed, EMBASE, The Cochrane Register of Controlled Trials, Scopus, and Web of Science up to December 1, 2024. RCTs using CGRP receptor antagonists (excluding non-randomized, non-English or no extractable data trials) to treat adult patients suffering from acute migraine were included. STATA 18.0 and R STUDIO were used for the statistical analysis. RESULTS A total of 15 randomized clinical trials with 11,179 patients were included. Compared with the placebo, zavegepant 10 mg demonstrated a significantly higher efficiency for pain freedom at 2 h (relative risk (RR) = 1.54, 95% CI: 1.28-1.82, I2 = 0.0%, P < 0.001) and most bothersome symptom (MBS) freedom at 2 h (RR = 1.26, 95% CI: 1.13-1.42, I2 = 0.0%, P < 0.001), but did not show significant superiority over oral CGRP receptor antagonists. In terms of safety, zavegepant 10 mg was significantly inferior to placebo but not inferior to oral CGRP receptor antagonists. CONCLUSION Zavegepant 10 mg can quickly relieve symptoms and has no significant difference in safety compared with oral drugs, which can provide rapid and safe efficacy in the acute treatment of migraine. However, compared with other oral CGRP receptor antagonists, zavegepant 10 mg by nasal inhalation has no obvious advantage in long-term symptom relief rate.
Collapse
Affiliation(s)
- Zixiang Zhu
- Suzhou Medical College of Soochow University, Jiangsu Province, Suzhou, Jiangsu Province, 215002, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China
| | - Yanbing Tang
- Suzhou Medical College of Soochow University, Jiangsu Province, Suzhou, Jiangsu Province, 215002, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China
| | - Hanyu Ni
- Suzhou Medical College of Soochow University, Jiangsu Province, Suzhou, Jiangsu Province, 215002, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China
| | - Meirong Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China.
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
3
|
Bhardwaj R, Collins J, Madonia J, Matschke K, Bertz R, Liu J. Effects of multiple-dose administration of zavegepant nasal spray on the single-dose pharmacokinetics of ethinyl estradiol-levonorgestrel. Headache 2025; 65:14-23. [PMID: 39501702 PMCID: PMC11725995 DOI: 10.1111/head.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 01/14/2025]
Abstract
OBJECTIVE The potential for drug-drug interaction of multiple-dose intranasal zavegepant on the single-dose oral contraceptive ethinyl estradiol and levonorgestrel (EE-LNG) was evaluated. BACKGROUND Zavegepant (as a nasal spray) is a calcitonin gene-related peptide receptor antagonist approved in the United States for treatment of acute migraine in adults. METHODS This single-center, Phase 1, open-label, fixed-sequence study included healthy, nonsmoking females (18-45 years old). In treatment Period 1, a single oral dose of EE-LNG 0.02-0.10 mg was administered on Day 1. In treatment Period 2, intranasal zavegepant (20 mg daily; 10 mg per nostril separated by 1 h) was administered on Days 1-5; 1 oral dose of EE-LNG 0.02-0.10 mg was administered immediately after first 10 mg intranasal zavegepant dose on Day 2. Blood samples for EE-LNG concentrations were collected on Day 1, treatment Period 1, and Day 2, treatment Period 2, and zavegepant concentrations on Day 2, treatment Period 2. Noncompartmental pharmacokinetic parameters included maximum observed concentration (Cmax), area under the concentration-time curve (AUC) from Time 0 to last non-zero concentration (AUC0-t), and AUC from Time 0 to infinity (AUC0-inf). The safety and pharmacokinetic sample sizes were 26 and 23, respectively. RESULTS Statistical comparisons of pharmacokinetic exposure parameters after co-administration of zavegepant and EE-LNG versus EE-LNG alone showed small, but statistically insignificant, changes in either EE or LNG exposure. EE comparison ratios (90% confidence intervals [CIs]) were 109.9% (105.3%, 114.8%) for AUC0-inf and 110.2% (104.6%, 116.1%) for Cmax. LNG comparison ratios (90% CIs) were 107.0% (100.2%, 114.3%) for AUC0-inf and 108.8% (99.9%, 118.4%) for Cmax. Frequently reported treatment-emergent adverse events included dysgeusia (n = 25, 96%), throat irritation (n = 11, 42%), headache (n = 10, 39%), nasal discomfort (n = 7, 27%), pharyngeal paresthesia (n = 5, 19%), and nausea (n = 4, 15%). CONCLUSION Co-administration of zavegepant nasal spray with a single dose of an oral contraceptive resulted in no clinically meaningful changes (<12% increase) in EE-LNG exposure.
Collapse
|
4
|
González-Hernández A, Villalón CM. The influence of pharmacodynamics and pharmacokinetics on the antimigraine efficacy and safety of novel anti-CGRPergic pharmacotherapies: a narrative review. Expert Opin Drug Metab Toxicol 2025; 21:41-52. [PMID: 39319681 DOI: 10.1080/17425255.2024.2409253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Migraine is a complex disorder, and its etiology is not yet fully understood. In the last 40 years, calcitonin gene-related peptide (CGRP) has been central to the understanding of migraine pathophysiology, leading to the development of new molecules targeting the CGRPergic system. These new molecules, such as gepants and monoclonal antibodies, are effective, well-tolerated, and safe, and are approved for clinical use. AREAS COVERED By searching multiple electronic scientific databases, this narrative review examined: (i) the role of CGRP in migraine; and (ii) the current knowledge on the effects of CGRPergic antimigraine pharmacotherapies, including a brief analysis of their pharmacodynamic and pharmacokinetic characteristics. EXPERT OPINION Current anti-CGRPergic medications, although effective, have limitations, such as side effects and lack of antimigraine efficacy in some patients. The existence of patients with medication-resistant migraine may be due to the: (i) complex migraine pathophysiology, in which several systems appear to be deregulated before, during, and after a migraine attack; and (ii) pharmacodynamic and pharmacokinetic properties of antimigraine medications. As envisioned here, although seminal studies support the notion that CGRP plays a key role in migraine headache, the dysfunction of CGRPergic transmission does not seem to be relevant in all cases.
Collapse
Affiliation(s)
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
5
|
Greco G, Monteith T. Intranasal zavegepant for the acute treatment of migraine. Expert Rev Neurother 2024; 24:1131-1140. [PMID: 39314003 DOI: 10.1080/14737175.2024.2405741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Migraine is a highly prevalent chronic, inherited neurological condition of the brain which carries a significant level of disability. Despite advances, there is an unmet need for more effective therapies. AREAS COVERED Zavegepant nasal spray is a recent therapeutic option which acts as a calcitonin gene-related peptide receptor antagonist. The objective is to review the efficacy, safety, and additional results of the most recent trials investigating intranasal zavegepant for the acute treatment of migraine with or without aura. The authors searched PubMed using the keywords 'zavegepant,' 'Zavzpret,' 'migraine,' 'calcitonin gene-related peptide,' 'CGRP receptor antagonists.' This article covers Phase 1, Phase 2/3, and Phase 3 randomized, double-blind, placebo-controlled trials to evaluate the efficacy of intranasal zavegepant for treatment of acute migraine attacks. EXPERT OPINION Intranasal zavegepant is an efficacious, safe, and tolerable anti-migraine drug based on clinical trials and clinical experience. It is especially useful for patients who experience attacks of sudden onset, those with nausea or vomiting, or a high cardiovascular risk burden. Dysgeusia was common; future studies are needed to better characterize this adverse event. Head-to-head studies are lacking with other migraine-specific therapies; the decision to treat should be patient-centered, with attack-specific characteristics in mind.
Collapse
Affiliation(s)
- Guy Greco
- Department of Neurology, Headache Division, Miami, FL, USA
| | | |
Collapse
|
6
|
Baraldi C, Beier D, Martelletti P, Pellesi L. The preclinical discovery and development of atogepant for migraine prophylaxis. Expert Opin Drug Discov 2024; 19:783-788. [PMID: 38856039 DOI: 10.1080/17460441.2024.2365379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Atogepant is a selective calcitonin gene-related peptide (CGRP) receptor antagonist that is utilized in adults for the prevention of episodic and chronic migraine. Cumulative findings support the involvement of CGRP in migraine pathophysiology, and atogepant functions by competitively antagonizing CGRP receptors, which results in the inhibition of trigeminovascular nociception. The mechanism of action addresses the cause of migraine pain, providing an effective preventive treatment option. AREAS COVERED The key milestones in its development, including preclinical achievements, phase I, II, and III clinical trials, and regulatory approvals are reviewed. Additionally, clinical efficacy, safety profile, and tolerability of atogepant are discussed. The literature review is based on a comprehensive search of English peer-reviewed articles from various electronic databases, including PubMed and ClinicalTrials.gov. EXPERT OPINION The development of atogepant represents a significant breakthrough in migraine prevention, particularly due to its improved safety profile that reduces the risk of liver injury, which was a major limitation of first-generation gepants. Drug-drug interaction studies with atogepant highlight the necessity for more inclusive study populations. Given that migraine disproportionately affects females, future clinical development programs should include diverse patient demographics to ensure the findings are generalizable to all individuals suffering from migraine.
Collapse
Affiliation(s)
- Carlo Baraldi
- Azienda Unità Sanitaria Locale di Modena, Modena, Italy
| | - Dagmar Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Lanfranco Pellesi
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Wang L, Wang Q, Diao H, Liu X, Zhao Y. The evolving landscape and research trend of calcitonin gene-related peptide in migraine: A bibliometric analysis and visualization. Front Neurol 2024; 15:1415760. [PMID: 38978815 PMCID: PMC11228313 DOI: 10.3389/fneur.2024.1415760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Background Migraine is a global public health concern, affecting both social and individual well-being. Calcitonin gene-related peptide (CGRP), a crucial neuropeptide, holds important research value in understanding migraine pathogenesis. CGRP receptor antagonists and monoclonal antibodies that target CGRP or its receptors have shown efficacy in reducing migraine frequency and severity, presenting a promising therapeutic approach. This study aimed to conduct a comprehensive bibliometric analysis to analyze the current state, research trends, and future directions of CGRP in migraine. Methods Bibliometric tools including CiteSpace, VOSviewer, etc., were utilized to extract and summarize publications related to CGRP in migraine from the Web of Science Core Collection Database (WOSCC) between 2004 and 2023, as of December 31, 2023. The analysis focused on trends in annual publications, leading countries/regions and institutions, prominent journals and references, influential authors, and high-frequency keywords in the field. Results A total of 1,821 articles and reviews involving 5,180 authors from 1,315 organizations across 64 countries were included in the study. These publications were distributed across 362 journals and accumulated 56,999 citations by December 31, 2023. An increasing trend was observed in annual publications on CGRP in migraine. The United States emerged as the leading nation in both publications and citations, with academic Peter Goadsby contributing the highest number of publications. The University of Copenhagen stood out as the institution with the most publications, and Cephalalgia emerged as the most influential journal. The most cited paper identified was "Calcitonin gene-related peptide receptor antagonist BIBN4096BS for the acute treatment of migraine" by Jes Olesen, published in the New Engl Med. Keyword frequency analysis revealed prevalent terms such as "migraine," "CGRP," and "episodic migraine," along with emerging topics represented by keywords including "trial," "monoclonal antibodies," "preventive treatment," and "safety." Conclusion CGRP is pivotal in migraine pathogenesis, and there is a robust research foundation exploring its role. The US leads in research output on CGRP in migraine. Investigating the mechanism of CGRP and its receptor in migraine remains a key area of interest, particularly focusing on signaling pathways. Future research should target identifying critical therapeutic targets in CGRP antagonist pathways for migraine treatment.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Neurology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Qing Wang
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Huaqiong Diao
- Department of Neurology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xueying Liu
- Department of Neurology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
8
|
Özge A, Baykan B, Bıçakçı Ş, Ertaş M, Atalar AÇ, Gümrü S, Karlı N. Revolutionizing migraine management: advances and challenges in CGRP-targeted therapies and their clinical implications. Front Neurol 2024; 15:1402569. [PMID: 38938785 PMCID: PMC11210524 DOI: 10.3389/fneur.2024.1402569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Migraine, a prevalent neurological disorder, affects approximately 14.1% of the global population and disproportionately impacts females. This debilitating condition significantly compromises quality of life, productivity, and incurs high healthcare costs, presenting a challenge not only to individuals but to societal structures as a whole. Despite advances in our understanding of migraine pathophysiology, treatment options remain limited, necessitating ongoing research into effective therapies. This review delves into the complexity of migraine management, examining the roles of genetic predisposition, environmental influences, personalized treatment approaches, comorbidities, efficacy and safety of existing acute and preventive treatments. It further explores the continuum between migraine and tension-type headaches and discusses the intricacies of treating various migraine subtypes, including those with and without aura. We emphasize the recent paradigm shift toward trigeminovascular activation and the release of vasoactive substances, such as calcitonin gene-related peptide (CGRP), which offer novel therapeutic targets. We assess groundbreaking clinical trials, pharmacokinetic and pharmacodynamic perspectives, safety, tolerability, and the real-world application of CGRP monoclonal antibodies and gepants. In the face of persisting treatment barriers such as misdiagnosis, medication overuse headaches, and limited access to specialist care, we discuss innovative CGRP-targeted strategies, the high cost and scarcity of long-term efficacy data, and suggest comprehensive solutions tailored to Turkiye and developing countries. The review offers strategic recommendations including the formulation of primary care guidelines, establishment of specialized outpatient clinics, updating physicians on novel treatments, enhancing global accessibility to advanced therapies, and fostering patient education. Emphasizing the importance of lifestyle modifications and holistic approaches, the review underscores the potential of mass media and patient groups in disseminating critical health information and shaping the future of migraine management.
Collapse
Affiliation(s)
- A. Özge
- Department of Neurology, Algology and Clinical Neurophysiology, Mersin University School of Medicine, Mersin, Türkiye
| | - B. Baykan
- Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Ş. Bıçakçı
- Department of Neurology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - M. Ertaş
- Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - A. Ç. Atalar
- Department of Neurology, University Health Sciences, Istanbul Physical Medicine and Rehabilitation Training and Research Hospital, Istanbul, Türkiye
| | - S. Gümrü
- Pfizer Pharmaceuticals, Istanbul, Türkiye
| | - N. Karlı
- Department of Neurology, Faculty of Medicine, Uludag University, Bursa, Türkiye
| |
Collapse
|
9
|
Zhang F, Wei Y, Weng R, Xu Q, Li R, Yu Y, Xu G. Paraventricular thalamus-insular cortex circuit mediates colorectal visceral pain induced by neonatal colonic inflammation in mice. CNS Neurosci Ther 2024; 30:e14534. [PMID: 37994678 PMCID: PMC11017444 DOI: 10.1111/cns.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
AIMS Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, but its pathogenesis remains incompletely understood, particularly the involvements of central nervous system sensitization in colorectal visceral pain. Our study was to investigate whether the paraventricular thalamus (PVT) projected to the insular cortex (IC) to regulate colorectal visceral pain in neonatal colonic inflammation (NCI) mice and underlying mechanisms. METHODS We applied optogenetic, chemogenetic, or pharmacological approaches to manipulate the glutamatergicPVT-IC pathway. Fiber photometry was used to assess neuronal activity. Electromyography activities in response to colorectal distension (CRD) were measured to evaluate the colorectal visceral pain. RESULTS NCI enhanced c-Fos expression and calcium activity upon CRD in the ICGlu, and optogenetic manipulation of them altered colorectal visceral pain responses accordingly. Viral tracing indicated that the PVTGlu projected to the ICGlu. Optogenetic manipulation of PVTGlu changed colorectal visceral pain responses. Furthermore, selective optogenetic modulation of PVT projections in the IC influenced colorectal visceral pain, which was reversed by chemogenetic manipulation of downstream ICGlu. CONCLUSIONS This study identified a novel PVT-IC neural circuit playing a critical role in colorectal visceral pain in a mouse model of IBS.
Collapse
Affiliation(s)
- Fu‐Chao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuP. R. China
| | - Ying‐Xue Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuP. R. China
| | - Rui‐Xia Weng
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| | - Qi‐Ya Xu
- Department of AnesthesiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| | - Rui Li
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| | - Yang Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuP. R. China
| | - Guang‐Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
10
|
Aoh Y, Hou TW, Yang CC, Chang CM, Chen SP, Tsai IJ, Cheng CW, Yang CP. Update on gepants for the treatment of chronic migraine. J Chin Med Assoc 2024; 87:350-356. [PMID: 38349136 DOI: 10.1097/jcma.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Chronic migraine (CM) is a profoundly debilitating condition that has detrimental clinical and social outcomes. Over the past two decades, novel small-molecule calcitonin gene-related peptide (CGRP) receptor antagonists, known as gepants, and CGRP monoclonal antibodies (mAbs) have been developed, ushering in a new era of migraine-specific treatment. In this review, we discuss the literature investigating the role of gepants for the treatment of CM. Numerous completed and ongoing clinical studies have conclusively demonstrated the safety, tolerability, and efficacy of several gepants for the acute treatment of migraine. However, preventive trials involving gepants have focused on patients with episodic migraine, with atogepant being the only gepant approved for CM prevention by the US Food and Drug Administration at the time of writing. Although some preliminary positive results have been reported, further research is still required to achieve additional advancements in the future. In summary, the effectiveness of gepants for treating individuals with CM are highly expected. This review highlights the development and current progress of gepants for the treatment of CM, focusing both on their role as acute abortive agents and preventive measures and on their concomitant use with other antimigraine medications, such as CGRP mAbs or triptans.
Collapse
Affiliation(s)
- Yu Aoh
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Tsung-Wei Hou
- Department of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan, ROC
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Brain Research Center & School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - I-Ju Tsai
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan, ROC
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Chin-Wen Cheng
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan, ROC
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan, ROC
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
11
|
Moore E, Bell IM, Fraley ME, Burgey CS, White RB, Li CC, Regan CP, Danziger A, McGaraughty SP, Naseri Kouzehgarani G, Salvatore C, Banerjee P. Pharmacologic characterization of atogepant: A potent and selective calcitonin gene-related peptide receptor antagonist. Cephalalgia 2024; 44:3331024231226186. [PMID: 38215228 DOI: 10.1177/03331024231226186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
BACKGROUND The trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) is identified as an essential element in migraine pathogenesis. METHODS In vitro and in vivo studies evaluated pharmacologic properties of the CGRP receptor antagonist atogepant. Radioligand binding using 125I-CGRP and cyclic adenosine monophosphate (cAMP) accumulation assays were conducted in human embryonic kidney 293 cells to assess affinity, functional potency and selectivity. Atogepant in vivo potency was assessed in the rat nitroglycerine model of facial allodynia and primate capsaicin-induced dermal vasodilation (CIDV) pharmacodynamic model. Cerebrospinal fluid/brain penetration and behavioral effects of chronic dosing and upon withdrawal were evaluated in rats. RESULTS Atogepant exhibited high human CGRP receptor-binding affinity and potently inhibited human α-CGRP-stimulated cAMP responses. Atogepant exhibited significant affinity for the amylin1 receptor but lacked appreciable affinities for adrenomedullin, calcitonin and other known neurotransmitter receptor targets. Atogepant dose-dependently inhibited facial allodynia in the rat nitroglycerine model and produced significant CIDV inhibition in primates. Brain penetration and behavioral/physical signs during chronic dosing and abrupt withdrawal were minimal in rats. CONCLUSIONS Atogepant is a competitive antagonist with high affinity, potency and selectivity for the human CGRP receptor. Atogepant demonstrated a potent, concentration-dependent exposure/efficacy relationship between atogepant plasma concentrations and inhibition of CGRP-dependent effects.
Collapse
|
12
|
Labastida-Ramírez A, Caronna E, Gollion C, Stanyer E, Dapkute A, Braniste D, Naghshineh H, Meksa L, Chkhitunidze N, Gudadze T, Pozo-Rosich P, Burstein R, Hoffmann J. Mode and site of action of therapies targeting CGRP signaling. J Headache Pain 2023; 24:125. [PMID: 37691118 PMCID: PMC10494408 DOI: 10.1186/s10194-023-01644-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Targeting CGRP has proved to be efficacious, tolerable, and safe to treat migraine; however, many patients with migraine do not benefit from drugs that antagonize the CGRPergic system. Therefore, this review focuses on summarizing the general pharmacology of the different types of treatments currently available, which target directly or indirectly the CGRP receptor or its ligand. Moreover, the latest evidence regarding the selectivity and site of action of CGRP small molecule antagonists (gepants) and monoclonal antibodies is critically discussed. Finally, the reasons behind non-responders to anti-CGRP drugs and rationale for combining and/or switching between these therapies are addressed.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Edoardo Caronna
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | | | - Diana Braniste
- Institute of Neurology and Neurosurgery, Diomid Gherman, Chișinău, Moldova
- State University of Medicine and Pharmacy, Nicolae Testemițanu, Moldova
| | - Hoda Naghshineh
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Liga Meksa
- Headache Unit, Neurology and Neurosurgery Department, Riga East University Hospital Gailezers, Riga, Latvia
| | | | - Tamari Gudadze
- Department of Neurology, Christian Hospital Unna, Unna, Germany
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
- Center for Life Science, Room 649, 3 Blackfan Circle, Boston, MA, 02215, USA
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK.
- NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK.
| |
Collapse
|
13
|
Li D, Abreu J, Tepper SJ. A Brief Review of Gepants. Curr Pain Headache Rep 2023; 27:479-488. [PMID: 37531032 DOI: 10.1007/s11916-023-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Gepants are small molecules that antagonize calcitonin gene-related peptide (CGRP) receptors. Due to their favorable side effect profile and versatility in treating headaches acutely and preventively, gepants are preferred over triptans. We will cover the indications for the four FDA-approved gepants in adults: rimegepant, atogepant, ubrogepant, and zavegepant. This review will illustrate how gepants will continue to revolutionize the acute and preventive treatment of headaches. RECENT FINDINGS Gepants are now available in oral tablet, dissolving tablet, and intra-nasal spray formulations. Recent studies have shown promising utility in treating the pre-headache or prodromal phase. They have favorable tolerability, no evidence for association with medication overuse, and remain a safer alternative in those who have cerebrovascular risk factors. Additional research is needed to explore occurrence of Raynaud's phenomenon in participants treated with gepants, as it has been associated with CGRP monoclonal antibodies, but are not extensively studied in gepants. Gepants are expected to play a significant role in the next generation of migraine treatments.
Collapse
Affiliation(s)
- Diana Li
- Dartmouth Headache Center, Neurology Department, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, 03756, USA.
| | - Jessica Abreu
- Dartmouth Headache Center, Neurology Department, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Stewart J Tepper
- Dartmouth Headache Center, Neurology Department, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| |
Collapse
|
14
|
Sangalli L, Eli B, Mehrotra S, Sabagh S, Fricton J. Calcitonin Gene-Related Peptide-Mediated Trigeminal Ganglionitis: The Biomolecular Link between Temporomandibular Disorders and Chronic Headaches. Int J Mol Sci 2023; 24:12200. [PMID: 37569575 PMCID: PMC10418780 DOI: 10.3390/ijms241512200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A bidirectional causal relationship has been established between temporomandibular disorders (TMDs) and chronic headaches. Recent advances in the neurobiology of chronic pain offer a framework for understanding the comorbidity between these two conditions that might reside in the shared biomolecular mechanisms of peripheral and central sensitization. The initiation of these processes is inflammatory in nature and is most likely mediated by key molecules, including calcitonin gene-related peptide (CGRP). This scoping review proposes that CGRP-mediated neuroinflammation in the trigeminal ganglion may partly explain the biomolecular bidirectional link between TMDs and chronic headaches. Finally, clinical implications of this neuropathologic process are briefly discussed.
Collapse
Affiliation(s)
- Linda Sangalli
- College of Dental Medicine—Illinois, Midwestern University, Downers Grove, IL 60515, USA
| | - Bradley Eli
- Facial Pain Specialists, San Diego, CA 92121,USA; (B.E.); (S.M.); (S.S.)
| | - Sachi Mehrotra
- Facial Pain Specialists, San Diego, CA 92121,USA; (B.E.); (S.M.); (S.S.)
| | - Suzan Sabagh
- Facial Pain Specialists, San Diego, CA 92121,USA; (B.E.); (S.M.); (S.S.)
| | - James Fricton
- Division of TMD and Orofacial Pain, University of Minnesota Schoof of Dentistry, Minneapolis, MN 55455, USA
- Minnesota Head and Neck Pain Clinic, Plymouth, MN 55447, USA
| |
Collapse
|
15
|
Andreou AP, Pereira AD. Migraine headache pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:61-69. [PMID: 38043971 DOI: 10.1016/b978-0-12-823356-6.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In both episodic and chronic migraine, headache is the most disabling symptom that requires medical care. The migraine headache is the most well-studied symptom of migraine pathophysiology. The trigeminal system and the central processing of sensory information transmitted by the trigeminal system are of considerable importance in the pathophysiology of migraine headache. Glutamate is the main neurotransmitter that drives activation of the ascending trigeminal and trigeminothalamic pathways. The neuropeptide, calcitonin gene-related peptide (CGRP) that is released by the trigeminal system, plays a crucial role in the neurobiology of headache. Peripheral and central sensitizations associated with trigeminal sensory processing are neurobiologic states that contribute to both the development of headache during a migraine attack and the maintenance of chronic migraine.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Research-Wolfson Centre for Age-Related Diseases (CARD), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Headache Centre, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| | - Ana D Pereira
- Headache Research-Wolfson Centre for Age-Related Diseases (CARD), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Rissardo JP, Caprara ALF. Gepants for Acute and Preventive Migraine Treatment: A Narrative Review. Brain Sci 2022; 12:1612. [PMID: 36552072 PMCID: PMC9775271 DOI: 10.3390/brainsci12121612] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) antagonists are a class of medications that act as antagonists of the CGRP receptor or ligand. They can be divided into monoclonal antibodies and non-peptide small molecules, also known as gepants. CGRP antagonists were the first oral agents specifically designed to prevent migraines. The second generation of gepants includes rimegepant (BHV-3000, BMS-927711), ubrogepant (MK-1602), and atogepant (AGN-241689, MK-8031). Zavegepant (BHV-3500, BMS-742413) belongs to the third generation of gepants characterized by different administration routes. The chemical and pharmacological properties of this new generation of gepants were calculated. The clinical trials showed that the new generation of CGRP antagonists is effective for the acute and/or preventive treatment of migraines. No increased mortality risks were observed to be associated with the second- and third-generation gepants. Moreover, the majority of the serious adverse events reported probably occurred unrelated to the medications. Interesting facts about gepants were highlighted, such as potency, hepatotoxicity, concomitant use with monoclonal antibodies targeting the CGRP, comparative analysis with triptans, and the "acute and preventive" treatment of migraine. Further studies should include an elderly population and compare the medications inside this class and with triptans. There are still concerns regarding the long-term side effects of these medications, such as chronic vascular hemodynamic impairment. Meanwhile, careful pharmacovigilance and safety monitoring should be performed in the clinical practice use of gepants.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | |
Collapse
|
17
|
Alterations in metabolic flux in migraine and the translational relevance. J Headache Pain 2022; 23:127. [PMID: 36175833 PMCID: PMC9523955 DOI: 10.1186/s10194-022-01494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a highly prevalent disorder with significant economical and personal burden. Despite the development of effective therapeutics, the causes which precipitate migraine attacks remain elusive. Clinical studies have highlighted altered metabolic flux and mitochondrial function in patients. In vivo animal experiments can allude to the metabolic mechanisms which may underlie migraine susceptibility. Understanding the translational relevance of these studies are important to identifying triggers, biomarkers and therapeutic targets in migraine. MAIN BODY Functional imaging studies have suggested that migraineurs feature metabolic syndrome, exhibiting hallmark features including upregulated oxidative phosphorylation yet depleted available free energy. Glucose hypometabolism is also evident in migraine patients and can lead to altered neuronal hyperexcitability such as the incidence of cortical spreading depression (CSD). The association between obesity and increased risk, frequency and worse prognosis of migraine also highlights lipid dysregulation in migraine pathology. Calcitonin gene related peptide (CGRP) has demonstrated an important role in sensitisation and nociception in headache, however its role in metabolic regulation in connection with migraine has not been thoroughly explored. Whether impaired metabolic function leads to increased release of peptides such as CGRP or excessive nociception leads to altered flux is yet unknown. CONCLUSION Migraine susceptibility may be underpinned by impaired metabolism resulting in depleted energy stores and altered neuronal function. This review discusses both clinical and in vivo studies which provide evidence of altered metabolic flux which contribute toward pathophysiology. It also reviews the translational relevance of animal studies in identifying targets of biomarker or therapeutic development.
Collapse
|
18
|
Altamura C, Brunelli N, Marcosano M, Fofi L, Vernieri F. Gepants - a long way to cure: a narrative review. Neurol Sci 2022; 43:5697-5708. [PMID: 35650458 PMCID: PMC9159895 DOI: 10.1007/s10072-022-06184-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 01/01/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is probably the most potent vasodilator in cerebral circulation. Forty years after its discovery, the new CGRP-targeted therapy monoclonal antibodies, and the small molecule gepants, are now available for clinical practice. While randomized controlled trials and real-world experience consistently demonstrated the high efficacy and tolerability of monoclonal antibodies, limited evidence is available to characterize gepants fully. Depending on pharmacokinetics, these CGRP receptor antagonists can be used for acute (ubrogepant, rimegepant, and the not yet approved zavegepant) or preventive (atogepant and rimegepant) migraine treatment. Randomized placebo-controlled trials demonstrated gepants efficacy in treating acute attacks to obtain 2 h pain freedom in about 20% of patients and pain relief in about 60%, while up to 60% of treated patients with episodic migraine may experience a 50% reduction in monthly migraine days. The most common treatment-related emergent adverse events were gastrointestinal (nausea, constipation) for the acute or preventive use. No vascular or hepatic concerns have emerged so far. More studies are ongoing to investigate gepant tolerability and safety also if associated with monoclonal antibodies targeting CGRP and other therapeutic classes. Gepants are also under investigation to treat other painful and non-painful conditions. Real-life studies are necessary to confirm the trials’ findings and investigate more practical clinical aspects.
Collapse
Affiliation(s)
- Claudia Altamura
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy.
| | - Nicoletta Brunelli
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy
| | - Marilena Marcosano
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy
| | - Luisa Fofi
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy
| | - Fabrizio Vernieri
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy
| |
Collapse
|
19
|
Safety evaluation of oral calcitonin-gene-related peptide receptor antagonists in patients with acute migraine: a systematic review and meta-analysis. Eur J Clin Pharmacol 2022; 78:1365-1376. [PMID: 35729340 DOI: 10.1007/s00228-022-03347-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/29/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Calcitonin gene-related peptide (CGRP) receptor antagonists have been suggested as novel treatments for acute migraine. This study aimed to use meta-analysis to compare the safety and tolerability of five existing oral CGRP receptor antagonists (BI44370TA, MK-3207, rimegepant, telcagepant, and ubrogepant) with that of a placebo or triptans against acute migraine. METHODS Five prominent databases were searched to identify randomized controlled trials on this topic. The primary safety outcomes of interest were any adverse events (AEs) and treatment-related adverse events (TRAEs), and secondary outcomes were individual events, namely diarrhea, dizziness, dry mouth, fatigue, nausea, paresthesia, somnolence, upper abdominal pain, and vomiting. RESULTS Fifteen studies met the eligibility criteria and were examined in detail. Although, compared to placebo, oral CGRP receptor antagonists significantly increased the incidence of any AEs (risk ratio [RR] = 1.15; 95% confidence interval [CI] = 1.07-1.23), there was no difference in the incidence of TRAEs (RR = 1.18; 95% CI = 1.00-1.38). Moreover, CGRP receptor antagonists were safer than triptans with respect to primary safety outcomes, such as any AEs (RR = 0.78; 95% CI = 0.63-0.98) and TRAEs (RR = 0.68; 95% CI = 0.58-0.79). CONCLUSION Despite oral CGRP receptor antagonists posing a significantly higher risk of AEs when compared to placebo, CGRP receptor antagonists have a favorable safety profile compared to triptans. Our findings inform strategies to enhance safety and tolerability in the treatment of acute migraine.
Collapse
|
20
|
Argyriou AA, Mantovani E, Mitsikostas DD, Vikelis M, Tamburin S. A systematic review with expert opinion on the role of gepants for the preventive and abortive treatment of migraine. Expert Rev Neurother 2022; 22:469-488. [PMID: 35707907 DOI: 10.1080/14737175.2022.2091435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Gepants are small molecules targeting the calcitonin gene-related peptide (CGRP) that have been recently introduced and are under additional clinical development as preventive and abortive treatment options for migraine. AREAS COVERED After providing a narrative overview of current preventive and acute treatment options for migraine and summarizing the pathophysiology of migraine attack and the role of CGRP, we performed a systematic review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations, on trials on gepants in preventive and acute treatment of migraine. Studies and results were reviewed and discussed, and expert opinion was presented. We also collected data on relevant ongoing trials. EXPERT OPINION Whether direct targeting CGRP pathways within the central nervous system or indirectly modulating them from the peripheral nervous system is more effective and safer in migraine remains still unclear. The available data on the efficacy and safety of gepants suggest they may represent an abortive, and to some extent, preventive treatment option for migraine, in patients who do not respond or have adverse effects to first/second line treatments or at high risk for medication overuse headache; thus opening new therapeutic horizons.
Collapse
Affiliation(s)
- Andreas A Argyriou
- Headache Outpatient Clinic, Department of Neurology, 'Agios Andreas' State General Hospital of Patras, Patras, Greece
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dimos-Dimitrios Mitsikostas
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Wang YF, Wang SJ. CGRP Targeting Therapy for Chronic Migraine-Evidence from Clinical Trials and Real-world Studies. Curr Pain Headache Rep 2022; 26:543-554. [PMID: 35567661 DOI: 10.1007/s11916-022-01056-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor have become part of the standard treatment for migraine in clinical practice. The current review focuses on the clinical evidence of CGRP monoclonal antibodies in patients with chronic migraine (CM), including more challenging cases. RECENT FINDINGS CGRP monoclonal antibodies were more effective than placebo in reducing the number of monthly migraine days (MMDs), and the change relative to placebo in the treatment group was between - 1.2 and - 2.7 days at 3 months. CGRP monoclonal antibodies resulted in ≥ 50% response in 27.5 to 61.4% of patients, and doubled the odds for having ≥ 50% response. The findings were generally consistent in patients with coexisting medication overuse or with treatment failures to multiple preventive medications, including onabotulinumtoxinA. The results from real-world studies (RWS) were similar to those seen in clinical trials, and the changes from baseline in the number of MMDs and the response rates largely fell within the ranges of those reported in the treatment group in pivotal trials. The therapeutic effects typically started within a few days, and remained steady after regular treatment for up to 1 year. These agents were generally well tolerated, and the discontinuation rates due to adverse events in clinical trials and in many RWS were < 4.5%. CGRP monoclonal antibodies are effective and safe in the treatment of patients with CM, including clinical challenging cases. However, the role of CGRP monoclonal antibodies in a number of conditions, such as cardiovascular or cerebrovascular diseases, pregnancy, and overuse of opioids or barbiturates, needs to be further clarified.
Collapse
Affiliation(s)
- Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Road, Bei-Tou District, Taipei, 11217, Taiwan. .,College of Medicine National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Road, Bei-Tou District, Taipei, 11217, Taiwan.,College of Medicine National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
22
|
Cohen F, Yuan H, Silberstein SD. Calcitonin Gene-Related Peptide (CGRP)-Targeted Monoclonal Antibodies and Antagonists in Migraine: Current Evidence and Rationale. BioDrugs 2022; 36:341-358. [PMID: 35476215 PMCID: PMC9043885 DOI: 10.1007/s40259-022-00530-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP), a 37 amino-acid neuropeptide found mostly in peptidergic sensory C-fibers, has been suggested to be implicated in the pathogenesis of migraine, which is one of the most common neurological disorders seen in medical practice, affecting almost 16% of the US population. While previously thought to be a vascular condition, migraine attacks are the result of neurogenic inflammation and peripheral/central sensitization through dysfunctional activation of the trigeminovascular system. To date, two classes of therapeutic agents have been developed to interrupt the function of CGRP: CGRP-targeted monoclonal antibodies (mAbs) and small-molecule antagonists (gepants). There are currently four CGRP-targeted mAbs and three gepants that are US Food and Drug Administration (FDA) approved for the treatment of migraine. Multiple phase II and III studies have established the efficacies and tolerability of these treatments. Previously, we reviewed the fundamental role of CGRP in migraine pathogenesis. Here, we discuss in depth the clinical evidence (randomized controlled trials and real-world studies), safety, and tolerability of CGRP-targeted mAbs and gepants for treating migraine.
Collapse
Affiliation(s)
- Fred Cohen
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, PA, 19107, USA
| | - Hsiangkuo Yuan
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, PA, 19107, USA
| | - Stephen D Silberstein
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, PA, 19107, USA.
| |
Collapse
|
23
|
Huang T, Xu Y, Chen Y, Bian J, Chu Z, Zhao S, Ma L. Efficacy and safety of calcitonin gene-related peptide antagonists in migraine treatment: A meta-analysis. Brain Behav 2022; 12:e2542. [PMID: 35261165 PMCID: PMC9015008 DOI: 10.1002/brb3.2542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION We systematically reviewed the efficacy and safety of Calcitonin Gene-Related Peptide (CGRP) antagonists for migraine treatment. METHODS Various databases including PubMed, Embase, The Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), WanFang Data were electronically searched for randomized controlled trials (RCTs) on CGRP antagonists for migraine treatment since inception to March 2021. The trials were screened for inclusion, after which the methodological quality of the included trials was assessed. Then meta-analysis was performed using the Revman 5.3 software. RESULTS A total of 26 RCTs involving 21,736 patients were included. The CGRP antagonists group included 13,635 patients while the control group included 8101 patients. Meta-analysis showed that compared to the control group, CGRP antagonists were associated with various significant effects, including the following outcome indicators: (1) number of patients with ≥50% reduction from baseline in mean monthly migraine days (RR = 1.50, 95% CI [1.39,1.62], p < .00001); (2) number of patients with pain free at 2 h postdose (RR = 1.98, 95% CI [1.77, 2.20], p < .00001), and (3) number of patients with 2-24 h sustained pain free postdose (RR = 2.18, 95% CI [1.93, 2.46], p < .00001). However, the number of patients with any adverse events was significantly high in the antagonists group, relative to the control group (RR = 1.08, 95% CI [1.04, 1.12], p < .0001). CONCLUSIONS CGRP antagonists are significantly effective for migraine treatment; however, they are associated with various adverse events. Due to limitations with regards to quantity and quality of the included studies, the above conclusions should be verified by more high quality studies.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, Anhui, China
| | - Yang Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, Anhui, China
| | - Yajie Chen
- Department of Neurology, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, Anhui, China
| | - Jing Bian
- Department of Neurology, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, Anhui, China
| | - Zhaohu Chu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, Anhui, China
| | - Shoucai Zhao
- Department of Neurology, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, Anhui, China
| | - Lingsong Ma
- Department of Neurology, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, Anhui, China
| |
Collapse
|
24
|
Villar-Martinez MD, Goadsby PJ. Dim the Lights: A Narrative Review of Photophobia in Migraine. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A preference for darkness is one of the main associated features in people with migraine, the cause remaining a mystery until some decades ago. In this article, we describe the epidemiology of photophobia in migraine and explain the pathophysiological mechanisms following an anatomical structure. In addition, we review the current management of migraine and photophobia. Ongoing characterization of patients with photophobia and its different manifestations continues to increase our understanding of the intricate pathophysiology of migraine and vice versa. Detailed phenotyping of the patient with photophobia is encouraged.
Collapse
|
25
|
Blumenfeld A, Durham PL, Feoktistov A, Hay DL, Russo AF, Turner I. Hypervigilance, Allostatic Load, and Migraine Prevention: Antibodies to CGRP or Receptor. Neurol Ther 2021; 10:469-497. [PMID: 34076848 PMCID: PMC8571459 DOI: 10.1007/s40120-021-00250-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine involves brain hypersensitivity with episodic dysfunction triggered by behavioral or physiological stressors. During an acute migraine attack the trigeminal nerve is activated (peripheral sensitization). This leads to central sensitization with activation of the central pathways including the trigeminal nucleus caudalis, the trigemino-thalamic tract, and the thalamus. In episodic migraine the sensitization process ends with the individual act, but with chronic migraine central sensitization may continue interictally. Increased allostatic load, the consequence of chronic, repeated exposure to stressors, leads to central sensitization, lowering the threshold for future neuronal activation (hypervigilance). Ostensibly innocuous stressors are then sufficient to trigger an attack. Medications that reduce sensitization may help patients who are hypervigilant and help to balance allostatic load. Acute treatments and drugs for migraine prevention have traditionally been used to reduce attack duration and frequency. However, since many patients do not fully respond, an unmet treatment need remains. Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide involved in nociception and in the sensitization of peripheral and central neurons of the trigeminovascular system, which is implicated in migraine pathophysiology. Elevated CGRP levels are associated with dysregulated signaling in the trigeminovascular system, leading to maladaptive responses to behavioral or physiological stressors. CGRP may, therefore, play a key role in the underlying pathophysiology of migraine. Increased understanding of the role of CGRP in migraine led to the development of small-molecule antagonists (gepants) and monoclonal antibodies (mAbs) that target either CGRP or the receptor (CGRP-R) to restore homeostasis, reducing the frequency, duration, and severity of attacks. In clinical trials, US Food and Drug Administration-approved anti-CGRP-R/CGRP mAbs were well tolerated and effective as preventive migraine treatments. Here, we explore the role of CGRP in migraine pathophysiology and the use of gepants or mAbs to suppress CGRP-R signaling via inhibition of the CGRP ligand or receptor.
Collapse
Affiliation(s)
- Andrew Blumenfeld
- The Headache Center of Southern California, The Neurology Center, Carlsbad, CA, USA.
| | - Paul L Durham
- Department of Biology, Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA
| | | | - Debbie L Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew F Russo
- Departments of Molecular Physiology and Biophysics, Neurology, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Ira Turner
- Island Neurological Associates, Plainview, NY, USA
| |
Collapse
|
26
|
González-Hernández A, Marichal-Cancino BA, García-Boll E, Villalón CM. The locus of Action of CGRPergic Monoclonal Antibodies Against Migraine: Peripheral Over Central Mechanisms. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:344-359. [PMID: 32552657 DOI: 10.2174/1871527319666200618144637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/18/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Migraine is a complex neurovascular disorder characterized by attacks of moderate to severe unilateral headache, accompanied by photophobia among other neurological signs. Although an arsenal of antimigraine agents is currently available in the market, not all patients respond to them. As Calcitonin Gene-Related Peptide (CGRP) plays a key role in the pathophysiology of migraine, CGRP receptor antagonists (gepants) have been developed. Unfortunately, further pharmaceutical development (for olcegepant and telcagepant) was interrupted due to pharmacokinetic issues observed during the Randomized Clinical Trials (RCT). On this basis, the use of monoclonal antibodies (mAbs; immunoglobulins) against CGRP or its receptor has recently emerged as a novel pharmacotherapy to treat migraines. RCT showed that these mAbs are effective against migraines producing fewer adverse events. Presently, the U.S. Food and Drug Administration approved four mAbs, namely: (i) erenumab; (ii) fremanezumab; (iii) galcanezumab; and (iv) eptinezumab. In general, specific antimigraine compounds exert their action in the trigeminovascular system, but the locus of action (peripheral vs. central) of the mAbs remains elusive. Since these mAbs have a molecular weight of ∼150 kDa, some studies rule out the relevance of their central actions as they seem unlikely to cross the Blood-Brain Barrier (BBB). Considering the therapeutic relevance of this new class of antimigraine compounds, the present review has attempted to summarize and discuss the current evidence on the probable sites of action of these mAbs.
Collapse
Affiliation(s)
- Abimael González-Hernández
- Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Blvd. Juriquilla 3001, 76230 Queretaro, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Mexico
| | - Enrique García-Boll
- Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Blvd. Juriquilla 3001, 76230 Queretaro, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg, Tlalpan, 14330 Ciudad de Mexico, Mexico
| |
Collapse
|
27
|
Fremanezumab autoinjector pen for the prevention of migraine. Ther Deliv 2021; 12:645-650. [PMID: 34392708 DOI: 10.4155/tde-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ajovy (fremanezumab, Teva Pharmaceuticals, Israel) is a fully humanized monoclonal antibody that selectively binds both isoforms of the calcitonin gene-related peptide. Calcitonin gene-related peptide is a 37-amino acid neuropeptide involved in central and peripheral pathophysiological events in migraine. It is indicated for prophylaxis of migraine in adults who have at least four migraine days per month, and can be administered as a subcutaneous injection using an autoinjector device, with two dosing options: 225 mg once a month or 675 mg quarterly. In this article, I present data from Phase III clinical trials of fremanezumab in episodic and chronic migraine, in which fremanezumab demonstrated efficacy and had a favorable tolerability profile, with no serious treatment-related adverse events.
Collapse
|
28
|
Akerman S, Romero-Reyes M, Karsan N, Bose P, Hoffmann JR, Holland PR, Goadsby PJ. Therapeutic targeting of nitroglycerin-mediated trigeminovascular neuronal hypersensitivity predicts clinical outcomes of migraine abortives. Pain 2021; 162:1567-1577. [PMID: 33181579 DOI: 10.1097/j.pain.0000000000002142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
ABSTRACT Cranial hypersensitivity is a prominent symptom of migraine, exhibited as migraine headache exacerbated with physical activity, and cutaneous facial allodynia and hyperalgesia. The underlying mechanism is believed to be, in part, activation and sensitization of dural-responsive trigeminocervical neurons. Validated preclinical models that exhibit this phenotype have great utility for understanding putative mechanisms and as a tool to screen therapeutics. We have previously shown that nitroglycerin triggers cranial allodynia in association with migraine-like headache, and this translates to neuronal cranial hypersensitivity in rats. Furthermore, responses in both humans and rats are aborted by triptan administration, similar to responses in spontaneous migraine. Here, our objective was to study the nitroglycerin model examining the effects on therapeutic targets with newly approved treatments, specifically gepants and ditans, for the acute treatment of migraine. Using electrophysiological methods, we determined changes to ongoing firing and somatosensory-evoked cranial sensitivity, in response to nitroglycerin, followed by treatment with a calcitonin gene-related peptide receptor antagonist, gepant (olcegepant), a 5-HT1F receptor agonist, ditan (LY344864), and an NK1 receptor antagonist (GR205171). Nitroglycerin induced activation of migraine-like central trigeminocervical neurons, and intracranial and extracranial neuronal hypersensitivity. These responses were aborted by olcegepant and LY344864. However, GR205171, which failed in clinical trial for both abortive and preventive treatment of migraine, had no effect. These data support the nitroglycerin model as a valid approach to study cranial hypersensitivity and putative mechanisms involved in migraine and as a screen to dissect potentially efficacious migraine therapeutic targets.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Pyari Bose
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Jan R Hoffmann
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Philip R Holland
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United Kingdom
| |
Collapse
|
29
|
Grech O, Mollan SP, Wakerley BR, Fulton D, Lavery GG, Sinclair AJ. The Role of Metabolism in Migraine Pathophysiology and Susceptibility. Life (Basel) 2021; 11:415. [PMID: 34062792 PMCID: PMC8147354 DOI: 10.3390/life11050415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Migraine is a highly prevalent and disabling primary headache disorder, however its pathophysiology remains unclear, hindering successful treatment. A number of key secondary headache disorders have headaches that mimic migraine. Evidence has suggested a role of mitochondrial dysfunction and an imbalance between energetic supply and demand that may contribute towards migraine susceptibility. Targeting these deficits with nutraceutical supplementation may provide an additional adjunctive therapy. Neuroimaging techniques have demonstrated a metabolic phenotype in migraine similar to mitochondrial cytopathies, featuring reduced free energy availability and increased metabolic rate. This is reciprocated in vivo when modelling a fundamental mechanism of migraine aura, cortical spreading depression. Trials assessing nutraceuticals successful in the treatment of mitochondrial cytopathies including magnesium, coenzyme q10 and riboflavin have also been conducted in migraine. Although promising results have emerged from nutraceutical trials in patients with levels of minerals or vitamins below a critical threshold, they are confounded by lacking control groups or cohorts that are not large enough to be representative. Energetic imbalance in migraine may be relevant in driving the tissue towards maximum metabolic capacity, leaving the brain lacking in free energy. Personalised medicine considering an individual's deficiencies may provide an approach to ameliorate migraine.
Collapse
Affiliation(s)
- Olivia Grech
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Susan P. Mollan
- Birmingham Neuro-Ophthalmology Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
| | - Benjamin R. Wakerley
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham B15 2TH, UK
| | - Daniel Fulton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK;
| | - Gareth G. Lavery
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Alexandra J. Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham B15 2TH, UK
| |
Collapse
|
30
|
Spekker E, Laborc KF, Bohár Z, Nagy-Grócz G, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Effect of dural inflammatory soup application on activation and sensitization markers in the caudal trigeminal nucleus of the rat and the modulatory effects of sumatriptan and kynurenic acid. J Headache Pain 2021; 22:17. [PMID: 33789568 PMCID: PMC8011387 DOI: 10.1186/s10194-021-01229-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/15/2021] [Indexed: 01/12/2023] Open
Abstract
Background The topical inflammatory soup can model the inflammation of the dura mater causing hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in the sensitization process there. 5-HT1B/1D receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can act on structures involved in trigeminal activation. Aim We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their modulatory effects are comparable. Material and methods After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult male Sprague-Dawley rats (n = 72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for immunohistochemistry. Results and conclusion Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo, which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT1B/1D and NMDA receptors in neurogenic inflammation development of the dura and thus in migraine attacks.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Klaudia Flóra Laborc
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | | | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| |
Collapse
|
31
|
de Vries T, Al-Hassany L, MaassenVanDenBrink A. Evaluating rimegepant for the treatment of migraine. Expert Opin Pharmacother 2021; 22:973-979. [PMID: 33648385 DOI: 10.1080/14656566.2021.1895749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IntroductionCalcitonin gene-related peptide (CGRP) is a vasodilatory neuropeptide involved in the pathophysiology of migraine, a highly disabling neurovascular disorder characterized by severe headache attacks. Rimegepant is a small-molecule CGRP receptor antagonist approved by the FDA for acute treatment of migraine and currently under investigation for migraine prophylaxis. Areas covered The authors summarize available data on safety and tolerability of rimegepant and provide insights on its use for acute migraine treatment. Expert opinion Rimegepant seems to be well tolerated and superior to placebo for two-hour pain freedom. Moreover, rimegepant does not induce vasoconstriction, and is therefore not contraindicated in patients with cardiovascular disease, nor does it seem to induce medication-overuse headache. However, the therapeutic gain of rimegepant is only small, and since CGRP is a vital rescue molecule during ischemia, blocking the CGRP pathway might be detrimental. Although current evidence on CGRP receptor blockade has shown no cardiovascular adverse events, clinicians should remain critical about the use of rimegepant, as well as other CGRP (receptor)-inhibiting drugs. Further research should focus on determining the consequences of long-term CGRP blockade, especially during ischemia or cardiovascular disease, the exact receptors antagonized by rimegepant, and potential effects of combining rimegepant with other antimigraine treatments.
Collapse
Affiliation(s)
- Tessa de Vries
- Erasmus MC, Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Rotterdam, Netherlands
| | - Linda Al-Hassany
- Erasmus MC, Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Rotterdam, Netherlands
| | | |
Collapse
|
32
|
Malki Y, Martinez J, Masurier N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med Res Rev 2021; 41:2247-2315. [PMID: 33645848 DOI: 10.1002/med.21795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Privileged structures have been widely used as effective templates for drug discovery. While benzo-1,4-diazepine constitutes the first historical example of such a structure, the 1,3 analogue is just as rich in terms of applications in medicinal chemistry. The 1,3-diazepine moiety is present in numerous biological active compounds including natural products, and is used to design compounds displaying a large range of biological activities. It is present in the clinically used anticancer compound pentostatin, in several recent FDA approved β-lactamase inhibitors (e.g., avibactam) and also in coformycin, a natural product known as a ring-expanded purine analogue displaying antiviral and anticancer activities. Several other 1,3-diazepine containing compounds have entered into clinical trials. This heterocyclic structure has been and is still widely used in medicinal chemistry to design enzyme inhibitors, GPCR ligands, and so forth. This review endeavours to highlight the main use of the 1,3-diazepine scaffold and its derivatives, and their applications in medicinal chemistry, drug design, and therapy. We will focus more particularly on the development of enzyme inhibitors incorporating this scaffold, with a strong emphasis on the molecular interactions involved in the inhibition mechanism.
Collapse
Affiliation(s)
- Yohan Malki
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
33
|
Moreno-Ajona D, Pérez-Rodríguez A, Goadsby PJ. Gepants, calcitonin-gene-related peptide receptor antagonists: what could be their role in migraine treatment? Curr Opin Neurol 2021; 33:309-315. [PMID: 32251023 DOI: 10.1097/wco.0000000000000806] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Migraine is the second leading cause of years lived with disability after back pain. Poor tolerability, contraindications, drug-drug interactions and efficacy limited to a subpopulation make new approaches necessary for the acute and preventive treatment of migraine. The study of the calcitonin-gene-related peptide (CGRP) pathway over the last decades is a good example of translational medicine leading to directed therapies for patients. RECENT FINDINGS After some of the first-generation CGRP receptor antagonists, gepants, were not fully developed because of hepatotoxicity, the second generation of gepants have shown efficacy, safety and tolerability in recent clinical trials. SUMMARY Both rimegepant and ubrogepant have published positive randomized placebo-controlled clinical trials data. Vazegepant is the first intranasal gepant for the acute treatment of migraine and has announced a positive phase II/III study. Daily rimegepant use has preliminary data to suggest efficacy. Atogepant has shown efficacy in migraine prevention in a phase II/III study. Most importantly, hepatotoxicity has not been reported in specifically designed phase I studies or long-term extension studies, with rimegepant or ubrogepant, or in a preventive study with atogepant. Given the preventive effect, it seems likely that gepants will not lead to medication overuse headache. They will likely have no cardiovascular warnings. Because of the particular benefit gepants may represent for these groups of patients, specific studies in patients with medication overuse headache, as well as those with comorbid cardiovascular diseases, would be of considerable interest.
Collapse
Affiliation(s)
- David Moreno-Ajona
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK
| | - Abigail Pérez-Rodríguez
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK.,Department of Neurology, Hospital Nuestra Señora Del Rosario, Calle del Príncipe de Vergara, Madrid, Spain
| | - Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK
| |
Collapse
|
34
|
Ha DK, Kim MJ, Han N, Kwak JH, Baek IH. Comparative Efficacy of Oral Calcitonin-Gene-Related Peptide Antagonists for the Treatment of Acute Migraine: Updated Meta-analysis. Clin Drug Investig 2021; 41:119-132. [PMID: 33426614 DOI: 10.1007/s40261-020-00997-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND OBJECTIVE The calcitonin gene-related peptide (CGRP) is a new therapeutic target in migraine-a common disorder resulting in reduced quality of life. The aim of this study was to compare the clinical efficacy of five oral CGRP antagonists with that of a placebo and triptans against acute migraine via meta-analysis. METHODS Suitable randomized controlled trials (RCTs) were searched in PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, ClinicalTrials.gov, and World Health Organization International Clinical Trials Registry Platform (WHO-ICTRP) to compare the efficacy of oral CGRP antagonists with that of a placebo and triptans against acute migraine. Review Manager 5.4 was used for data analysis. RESULTS A total of 17 trials met the eligibility criteria and were studied in detail. The CGRP antagonists were significantly more effective than the placebo with respect to outcomes such as pain freedom at 2 h post-dose (odds ratio = 2.11; 95% confidence intervals [CIs] = 1.90-2.35) and pain relief at 2 h post-dose (odds ratio = 1.94; 95% CIs = 1.70-2.21). Similar results were found in the subgroup analysis conducted to compare the clinical efficacy of the FDA-approved oral CGRP antagonists (ubrogepant and rimegepant) and placebo. However, the CGRP antagonists were less effective than the triptans with respect to outcomes such as pain freedom at 2 h post-dose (odds ratio = 0.66; 95% CIs = 0.55-0.78) and pain relief at 2 h post-dose (odds ratio = 0.78; 95% CIs = 0.66-0.93). CONCLUSION CGRP antagonists are more effective than placebo against acute migraine; however, further studies are required to consider CGRP antagonists as standard first-line treatment for acute migraine instead of triptans, especially in patients with co-existing cardiovascular diseases.
Collapse
Affiliation(s)
- Dong Kyoung Ha
- College of Pharmacy, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Republic of Korea
| | - Min Ji Kim
- College of Pharmacy, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Republic of Korea
| | - Nayoung Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Republic of Korea. .,Functional Food and Drug Convergence Research Center, Industry-Academic Cooperation Foundation, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Republic of Korea.
| | - In-Hwan Baek
- College of Pharmacy, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Republic of Korea. .,Functional Food and Drug Convergence Research Center, Industry-Academic Cooperation Foundation, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Republic of Korea.
| |
Collapse
|
35
|
Min KC, Kraft WK, Bondiskey P, Colón-González F, Liu W, Xu J, Panebianco D, Mixson L, Dockendorf MF, Matthews CZ, Boinpally R. Atogepant Is Not Associated With Clinically Meaningful Alanine Aminotransferase Elevations in Healthy Adults. Clin Transl Sci 2020; 14:599-605. [PMID: 33142014 PMCID: PMC7993278 DOI: 10.1111/cts.12917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/04/2020] [Indexed: 11/26/2022] Open
Abstract
Atogepant is a potent, selective, oral calcitonin gene–related peptide (CGRP) receptor antagonist in development for migraine prevention. The chemical structure of atogepant is distinct from previous CGRP receptor antagonists, which were associated with elevated serum alanine aminotransferase (ALT) in clinical trials. Here, we report the safety, tolerability, and pharmacokinetics (PKs) of a once‐daily supratherapeutic dose (170 mg) of atogepant for 28 days from a randomized, double‐blind, placebo‐controlled phase I trial in healthy participants. Overall safety, hepatic safety, and plasma PK parameters were evaluated. Thirty‐four participants aged 23–55 years enrolled; 28 (82.4%) completed the study in accordance with the protocol. Multiple doses of 170 mg atogepant for 28 consecutive days were generally well‐tolerated. All adverse events (AEs; reported in 87.0% of the atogepant group; 72.7%, placebo) were mild in severity except one serious AE of subarachnoid hemorrhage due to a bicycle accident and not considered related to treatment. There were two discontinuations due to AEs, both with atogepant, one considered possibly related to treatment. Over 28 days of treatment, no participant receiving atogepant had an ALT elevation above 1.5 × upper limit of normal. Change from baseline in serum ALT levels was not different between atogepant and placebo. Atogepant is rapidly absorbed (median time to maximum plasma concentration, ~ 2 hours) with an apparent terminal half‐life of ~ 11 hours, and no evidence of accumulation after once‐daily dosing. Overall, atogepant at a high oral dose is safe and well‐tolerated in healthy participants with no clinically meaningful elevations in ALT.
Collapse
Affiliation(s)
- K Chris Min
- Formerly of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Walter K Kraft
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | - Wen Liu
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jialin Xu
- Formerly of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - Lori Mixson
- Formerly of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | | | |
Collapse
|
36
|
Small-molecule CGRP receptor antagonists: A new approach to the acute and preventive treatment of migraine. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
37
|
Hong P, Tan T, Liu Y, Xiao J. Gepants for abortive treatment of migraine: A network meta-analysis. Brain Behav 2020; 10:e01701. [PMID: 32525262 PMCID: PMC7428487 DOI: 10.1002/brb3.1701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/20/2020] [Accepted: 05/17/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To evaluate and compare the efficacy and safety of gepants for abortive treatment of migraine by network meta-analysis. MATERIALS & METHODS Publications, which were randomized controlled trials (RCTs) about gepants for abortive treatment of migraine, were acquired from Pubmed and Cochrane Library. The literatures screening and quality assessment followed the Cochrane handbook. Review manager 5.3 and Addis v1.16.8 were utilized for data analyzing. RESULTS Totally, 15 RCTs were included in the network meta-analysis. The trials enrolled were with high quality. There are 7 treatments were analyzed: BI 44370 TA, MK-3207, olcegepant, rimegepant, telcagepant, ubrogepant, and placebo. Of these trials, 11,118 patients and 10,917 patients were assigned to one of 7 treatments randomly for efficacy assessment and safety assessment, respectively. In meta-analysis of direct comparisons, all gepants were superior to placebo in achieving pain freedom 2 hr postdose and only rimegepant and telcagepant were higher than placebo in incidence of any adverse events. In network meta-analysis, the rank best 3 drugs were olcegepant, BI 44370 TA, and MK-3207 for efficacy outcomes. And the rank best 3 drugs were BI 44370 TA, placebo, and ubrogepant for safety outcomes. CONCLUSION Gepants were effective for abortive treatment of migraine. The most effective treatment of gepants for migraine might be olcegepant which were administrated transvenously. And all of gepants were safe for migraine treatment with single dose.
Collapse
Affiliation(s)
- Peiwei Hong
- Department of Geriatric Medicine and NeurologyWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Tianlin Tan
- Xindu Hospital of Traditional Chinese MedicineChengduChina
| | - Yao Liu
- Xindu Hospital of Traditional Chinese MedicineChengduChina
| | - Jing Xiao
- Department of Geriatric Medicine and NeurologyWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| |
Collapse
|
38
|
Tang C, Unekawa M, Kitagawa S, Takizawa T, Kayama Y, Nakahara J, Shibata M. Cortical spreading depolarisation-induced facial hyperalgesia, photophobia and hypomotility are ameliorated by sumatriptan and olcegepant. Sci Rep 2020; 10:11408. [PMID: 32651400 PMCID: PMC7351983 DOI: 10.1038/s41598-020-67948-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Cortical spreading depolarisation (CSD), the neural mechanism underlying migraine aura, may cause headache by sensitising the trigeminal system. Photophobia, the most bothersome accompanying symptom during migraine attacks, is more prevalent in migraine with aura than in migraine without aura. Whether CSD plays a role in developing photophobia remains unknown. Moreover, migraine-induced physical hypoactivity contributes to loss of productivity. We aimed to investigate the development of trigeminal sensitisation, photophobia and locomotive abnormality after KCl-induced CSD using 86 male C57BL/6 mice. Sham-operated mice were used as controls. We confirmed the presence of trigeminal sensitisation and photophobia at 24 h after CSD. CSD-subjected mice also exhibited significantly reduced locomotive activity in both light and dark zones. Hence, the CSD-induced hypomobility was likely to be independent of photophobia. The 5-HT1B/1D agonist, sumatriptan, corrected all these CSD-induced abnormalities. Moreover, dose dependency was demonstrated in the ameliorating effect of the calcitonin gene-related peptide (CGRP) receptor antagonist, olcegepant, on these abnormalities. Sumatriptan and olcegepant improved mouse locomotion with therapeutic lags ranging from 20 to 30 min. Collectively, CSD caused trigeminal sensitisation, photophobia and hypomobility that persisted for at least 24 h by a mechanism involving the 5-HT1B/1D and CGRP activity.
Collapse
Affiliation(s)
- Chunhua Tang
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Satoshi Kitagawa
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yohei Kayama
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
39
|
de Vries T, Villalón CM, MaassenVanDenBrink A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol Ther 2020; 211:107528. [PMID: 32173558 DOI: 10.1016/j.pharmthera.2020.107528] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/08/2020] [Indexed: 01/08/2023]
Abstract
Migraine is a highly disabling neurovascular disorder characterized by a severe headache (associated with nausea, photophobia and/or phonophobia), and trigeminovascular system activation involving the release of calcitonin-gene related peptide (CGRP). Novel anti-migraine drugs target CGRP signaling through either stimulation of 5-HT1F receptors on trigeminovascular nerves (resulting in inhibition of CGRP release) or direct blockade of CGRP or its receptor. Lasmiditan is a highly selective 5-HT1F receptor agonist and, unlike the triptans, is devoid of vasoconstrictive properties, allowing its use in patients with cardiovascular risk. Since lasmiditan can actively penetrate the blood-brain barrier, central therapeutic as well as side effects mediated by 5-HT1F receptor activation should be further investigated. Other novel anti-migraine drugs target CGRP signaling directly. This neuropeptide can be targeted by the monoclonal antibodies eptinezumab, fremanezumab and galcanezumab, or by CGRP-neutralizing L-aptamers called Spiegelmers. The CGRP receptor can be targeted by the monoclonal antibody erenumab, or by small-molecule antagonists called gepants. Currently, rimegepant and ubrogepant have been developed for acute migraine treatment, while atogepant is studied for migraine prophylaxis. Of these drugs targeting CGRP signaling directly, eptinezumab, erenumab, fremanezumab, galcanezumab, rimegepant and ubrogepant have been approved for clinical use, while atogepant is in the last stage before approval. Although all of these drugs seem highly promising for migraine treatment, their safety should be investigated in the long-term. Moreover, the exact mechanism(s) of action of these drugs need to be elucidated further, to increase both safety and efficacy and to increase the number of responders to the different treatments, so that all migraine patients can satisfactorily be treated.
Collapse
Affiliation(s)
- Tessa de Vries
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Carlos M Villalón
- Deptartment de Farmacobiología, Cinvestav-Coapa, C.P. 14330 Ciudad de México, Mexico
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
40
|
Chan TLH, Cowan RP, Woldeamanuel YW. Calcitonin Gene-Related Peptide Receptor Antagonists (Gepants) for the Acute Treatment of Nausea in Episodic Migraine: A Systematic Review and Meta-Analysis. Headache 2020; 60:1489-1499. [PMID: 32515018 DOI: 10.1111/head.13858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To synthesize the evidence on the efficacy of calcitonin gene-related peptide receptor antagonists (gepants) from all clinical trials addressing nausea treatment for episodic migraine. INTRODUCTION Nausea is one of the most bothersome symptoms in patients with migraine. The most bothersome symptom is part of the outcomes explored in clinical trials. METHODS Published clinical trials for this project were identified via searches of 4 bibliographic databases: PubMed (includes MEDLINE), Embase, Web of Science, and the Cochrane Library. Individual search strategies included terms related to calcitonin gene-related peptide, nausea, and vomiting. Random-effects meta-analysis was conducted to estimate the overall efficacy of gepants for nausea treatment. Heterogeneity, publication bias, small-study bias, and potential confounders were explored using Galbraith plot, sensitivity analysis, meta-regression, and Egger's regression tests. Cumulative meta-analysis was done to detect temporal trend from accumulating trials. RESULTS The meta-analysis involved 23,008 participants in 65 clinical trials from 14 published articles; 10,770 subjects participated in gepant treatment arms while 12,238 subjects participated in placebo or non-gepant arms (85% females, mean age 41 years in both arms). Nearly all studies used a 2-hour incidence of nausea as an outcome measure. An overall combined effect size with an odds ratio of 1.29 (95% CI 1.18, 1.40, P = .001; I2 = 42.8%) showed the efficacy of gepants for the treatment of nausea in episodic migraine. Galbraith plot demonstrated that 98.4% of studies were within 2 standard deviations from the regression line, indicating lack of significant heterogeneity and outliers. Meta-analysis results were robust to sensitivity analysis, small-study bias, and publication bias (Kendall's Tau -0.09, P = .29; Egger's regression P = .67). Meta-regression showed that both age and sex ratio were not confounding the meta-analysis (omnibus P = .69). Cumulative meta-analysis indicated that the effect size remained stable for studies conducted after 2011, with accumulating evidence continuing to favor efficacy of gepants for the treatment of nausea in episodic migraine. CONCLUSION There is sufficient evidence to support the efficacy of gepants for the treatment of nausea in episodic migraine. Future research may focus on examining this efficacy in under-represented patient populations (males, older age groups) and in chronic migraine.
Collapse
Affiliation(s)
- Tommy Lik Hang Chan
- Division of Headache & Facial Pain, Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Robert P Cowan
- Division of Headache & Facial Pain, Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Yohannes W Woldeamanuel
- Division of Headache & Facial Pain, Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
41
|
Andreou AP, Fuccaro M, Lambru G. The role of erenumab in the treatment of migraine. Ther Adv Neurol Disord 2020; 13:1756286420927119. [PMID: 32523630 PMCID: PMC7257830 DOI: 10.1177/1756286420927119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
Calcitonin gene related peptide (CGRP) monoclonal antibodies (mAbs) have been the
first class of specifically developed preventive treatments for migraine.
Clinical trials data suggest superiority of the CGRP mAbs to placebo in terms of
prevention of migraine symptoms, migraine-specific quality of life and headache
related disability. Treatment-related side effects overall did not differ
significantly from placebo and discontinuation rate due to side effects has been
low across the clinical trials, perhaps in view of their peripheral mode of
action. Along with their route and frequency of administration, these novel
class of drugs may constitute an improvement compared with the established
arsenal of migraine treatments. Erenumab is a fully human antibody and the only
mAb acting on the CGRP pathway by blocking its receptor. It is the first of the
CGRP mAb class approved by the US Food and Drug Administration (May 2018) and
the European Medicines Agency (July 2018). Erenumab exists in two different
doses (70 mg and 140 mg) and it is administered with monthly subcutaneous
injections. This review summarises erenumab pharmacological characteristics,
clinical trials data, focusing on the potential role of this treatment in
clinical practice.
Collapse
Affiliation(s)
- Anna P Andreou
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Matteo Fuccaro
- Department of Neurology, Treviso Hospital, Treviso, Italy
| | - Giorgio Lambru
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
42
|
Pellesi L, Do TP, Ashina H, Ashina M, Burstein R. Dual Therapy With Anti-CGRP Monoclonal Antibodies and Botulinum Toxin for Migraine Prevention: Is There a Rationale? Headache 2020; 60:1056-1065. [PMID: 32437038 DOI: 10.1111/head.13843] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To narratively review the pathophysiological rationale of dual therapy with anti-calcitonin gene-related peptide monoclonal antibodies and botulinum toxin type A in treatment-resistant chronic migraine prevention. BACKGROUND For the prevention of chronic migraine, several pharmacological therapies are available, including oral medications, botulinum toxin type A, and the newly approved monoclonal antibodies targeting calcitonin gene-related peptide or its receptor. However, monotherapy does not yield benefits in some affected individuals, which raises the question of whether dual therapy with monoclonal antibodies and botulinum toxin type A hold promise in patients with treatment-resistant chronic migraine. METHOD We searched MEDLINE for articles published from database inception to December 31st, 2019. Publications were largely selected from the past 10 years but commonly referenced and highly regarded older publications were not excluded. RESULTS Preclinical data suggest that anti-calcitonin gene-related peptide monoclonal antibodies and botulinum toxin type A have synergistic effects within the trigeminovascular system. Of note, findings indicate that fremanezumab - an antibody targeting the calcitonin gene-related peptide - mainly prevents the activation of Aδ-fibers, whereas botulinum toxin type A prevents the activation of C-fibers. CONCLUSION There is currently only indirect preclinical evidence to support a rationale for dual therapy with anti-calcitonin gene-related peptide monoclonal antibodies and botulinum toxin type A for chronic migraine prevention. Rigorous studies evaluating clinical efficacy, safety, and cost-effectiveness are needed.
Collapse
Affiliation(s)
- Lanfranco Pellesi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thien P Do
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Dubowchik GM, Conway CM, Xin AW. Blocking the CGRP Pathway for Acute and Preventive Treatment of Migraine: The Evolution of Success. J Med Chem 2020; 63:6600-6623. [PMID: 32058712 DOI: 10.1021/acs.jmedchem.9b01810] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pivotal role of calcitonin gene-related peptide (CGRP) in migraine pathophysiology was identified over 30 years ago, but the successful clinical development of targeted therapies has only recently been realized. This Perspective traces the decades long evolution of medicinal chemistry required to advance small molecule CGRP receptor antagonists, also called gepants, including the current clinical agents rimegepant, vazegepant, ubrogepant, and atogepant. Providing clinically effective blockade of CGRP signaling required surmounting multiple challenging hurdles, including defeating a sizable ligand with subnanomolar affinity for its receptor, designing antagonists with an extended confirmation and multiple pharmacophores while retaining solubility and oral bioavailability, and achieving circulating free plasma levels that provided near maximal CGRP receptor coverage. The clinical efficacy of oral and intranasal gepants and the injectable CGRP monoclonal antibodies (mAbs) are described, as are recent synthetic developments that have benefited from new structural biology data. The first oral gepant was recently approved and heralds a new era in the treatment of migraine.
Collapse
Affiliation(s)
- Gene M Dubowchik
- Biohaven Pharmaceuticals Inc., 215 Church Street, New Haven, Connecticut 06510, United States
| | - Charles M Conway
- Biohaven Pharmaceuticals Inc., 215 Church Street, New Haven, Connecticut 06510, United States
| | - Alison W Xin
- Biohaven Pharmaceuticals Inc., 215 Church Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
44
|
Wattiez AS, Sowers LP, Russo AF. Calcitonin gene-related peptide (CGRP): role in migraine pathophysiology and therapeutic targeting. Expert Opin Ther Targets 2020; 24:91-100. [PMID: 32003253 DOI: 10.1080/14728222.2020.1724285] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The neuropeptide calcitonin gene-related peptide (CGRP) is recognized as a critical player in migraine pathophysiology. Excitement has grown regarding CGRP because of the development and clinical testing of drugs targeting CGRP or its receptor. While these drugs alleviate migraine symptoms in half of the patients, the remaining unresponsive half of this population creates an impetus to address unanswered questions that exist in this field.Areas covered: We describe the role of CGRP in migraine pathophysiology and CGRP-targeted therapeutics currently under development and in use. We also discuss how a second CGRP receptor may provide a new therapeutic target.Expert opinion: CGRP-targeting drugs have shown a remarkable safety profile. We speculate that this may reflect the redundancy of peptides within the CGRP family and a second CGRP receptor that may compensate for reduced CGRP activity. Furthermore, we propose that an inherent safety feature of peptide-blocking antibodies is attributed to the fundamental nature of peptide release, which occurs as a large bolus in short bursts of volume transmission. These facts support the development of more refined CGRP therapeutic drugs, as well as drugs that target other neuropeptides. We believe that the future of migraine research is bright with exciting advances on the horizon.
Collapse
Affiliation(s)
- Anne-Sophie Wattiez
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
| | - Levi P Sowers
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
| | - Andrew F Russo
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
45
|
Ankrom W, Bondiskey P, Li CC, Palcza J, Liu W, Dockendorf MF, Matthews C, Panebianco D, Reynders T, Wagner JA, Jakate A, Mesens S, Kraft WK, Marcantonio EE. Ubrogepant Is Not Associated With Clinically Meaningful Elevations of Alanine Aminotransferase in Healthy Adult Males. Clin Transl Sci 2020; 13:462-472. [PMID: 31899602 PMCID: PMC7214647 DOI: 10.1111/cts.12728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022] Open
Abstract
Ubrogepant is a novel, oral calcitonin gene-related peptide (CGRP) receptor antagonist intended for the acute treatment of migraine attacks. Ubrogepant has a chemical structure distinct from previous small-molecule CGRP receptor antagonists that were associated with elevated serum alanine aminotransferase (ALT) in clinical trials. Here, we report overall and hepatic safety data from two placebo-controlled phase I trials of ubrogepant, spray-dried oral compressed tablet (SD-OCT) in healthy male volunteers. Trial A was a pharmacokinetic (PK) trial of single (100-400 mg) and multiple (40-400 mg) ascending doses. Trial B was a dedicated hepatic safety trial assessing daily use of ubrogepant 150 mg for 28 days. Serum ALT (as hepatotoxicity biomarker) and PK data are reported. Ubrogepant was well-tolerated in both trials, with a low incidence of adverse events that did not differ greatly from placebo. Changes in mean ALT levels were minimal and similar to placebo. Over 28 days of treatment, the mean percentage change in ALT from baseline was < 5% at all time points. No participant in either trial demonstrated ALT ≥ 3× upper limit of normal at any time. Ubrogepant SD-OCT demonstrated linear PK appropriate for acute treatment of migraine, with rapid uptake (time of maximum plasma concentration (tmax ): 2-3 hours) and no accumulation with daily use. Overall, there was no evidence of ubrogepant-associated hepatotoxicity with daily doses up to 400 mg for 10 days or with daily ubrogepant 150 mg for 28 days. Supratherapeutic dosing is a useful strategy for characterizing hepatic safety in early drug development.
Collapse
Affiliation(s)
- Wendy Ankrom
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Phung Bondiskey
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Chi-Chung Li
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - John Palcza
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Wen Liu
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Marissa F Dockendorf
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Catherine Matthews
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Deborah Panebianco
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - John A Wagner
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | | - Walter K Kraft
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Eugene E Marcantonio
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
46
|
Lipton RB, Dodick DW, Ailani J, Lu K, Finnegan M, Szegedi A, Trugman JM. Effect of Ubrogepant vs Placebo on Pain and the Most Bothersome Associated Symptom in the Acute Treatment of Migraine: The ACHIEVE II Randomized Clinical Trial. JAMA 2019; 322:1887-1898. [PMID: 31742631 PMCID: PMC6865323 DOI: 10.1001/jama.2019.16711] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IMPORTANCE Ubrogepant is an oral calcitonin gene-related peptide receptor antagonist under investigation for acute treatment of migraine. OBJECTIVE To evaluate the efficacy and tolerability of ubrogepant compared with placebo for acute treatment of a single migraine attack. DESIGN, SETTING, AND PARTICIPANTS Phase 3, multicenter, randomized, double-blind, placebo-controlled, single-attack, clinical trial (ACHIEVE II) conducted in the United States (99 primary care and research clinics; August 26, 2016-February 26, 2018). Participants were adults with migraine with or without aura experiencing 2 to 8 migraine attacks per month. INTERVENTIONS Ubrogepant 50 mg (n = 562), ubrogepant 25 mg (n = 561), or placebo (n = 563) for a migraine attack of moderate or severe pain intensity. MAIN OUTCOMES AND MEASURES Co-primary efficacy outcomes were pain freedom and absence of the participant-designated most bothersome migraine-associated symptom (among photophobia, phonophobia, and nausea) at 2 hours after taking the medication. RESULTS Among 1686 randomized participants, 1465 received study treatment (safety population; mean age, 41.5 years; 90% female); 1355 of 1465 (92.5%) were evaluable for efficacy. Pain freedom at 2 hours was reported by 101 of 464 participants (21.8%) in the ubrogepant 50-mg group, 90 of 435 (20.7%) in the ubrogepant 25-mg group, and 65 of 456 (14.3%) in the placebo group (absolute difference for 50 mg vs placebo, 7.5%; 95% CI, 2.6%-12.5%; P = .01; 25 mg vs placebo, 6.4%; 95% CI, 1.5%-11.5%; P = .03). Absence of the most bothersome associated symptom at 2 hours was reported by 180 of 463 participants (38.9%) in the ubrogepant 50-mg group, 148 of 434 (34.1%) in the ubrogepant 25-mg group, and 125 of 456 (27.4%) in the placebo group (absolute difference for 50 mg vs placebo, 11.5%; 95% CI, 5.4%-17.5%; P = .01; 25 mg vs placebo, 6.7%; 95% CI, 0.6%-12.7%; P = .07). The most common adverse events within 48 hours of any dose were nausea (50 mg, 10 of 488 [2.0%]; 25 mg, 12 of 478 [2.5%]; and placebo, 10 of 499 [2.0%]) and dizziness (50 mg, 7 of 488 [1.4%]; 25 mg, 10 of 478 [2.1%]; placebo, 8 of 499 [1.6%]). CONCLUSIONS AND RELEVANCE Among adults with migraine, acute treatment with ubrogepant compared with placebo led to significantly greater rates of pain freedom at 2 hours with 50-mg and 25-mg doses, and absence of the most bothersome migraine-associated symptom at 2 hours only with the 50-mg dose. Further research is needed to assess the effectiveness of ubrogepant against other acute treatments for migraine and to evaluate the long-term safety of ubrogepant among unselected patient populations. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02867709.
Collapse
Affiliation(s)
- Richard B. Lipton
- Montefiore Headache Center, Albert Einstein College of Medicine, Bronx, New York
| | | | | | | | | | | | | |
Collapse
|
47
|
Rubio-Beltran E, Chan KY, Danser AJ, MaassenVanDenBrink A, Edvinsson L. Characterisation of the calcitonin gene-related peptide receptor antagonists ubrogepant and atogepant in human isolated coronary, cerebral and middle meningeal arteries. Cephalalgia 2019; 40:357-366. [PMID: 31674221 DOI: 10.1177/0333102419884943] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Migraine has been associated with a dysfunctional activation of the trigeminovascular system. Calcitonin gene-related peptide, a neuropeptide released from the trigeminal nerve fibres, has an important role in the pathophysiology of migraine and is a current therapeutic target for migraine treatment. METHODS We examined the effects of two novel calcitonin gene-related peptide receptor antagonists, ubrogepant and atogepant, on the relaxations induced by α calcitonin gene-related peptide in human isolated middle meningeal, cerebral and coronary arteries. Furthermore, the contractile responses to atogepant and ubrogepant per se were studied and compared to the responses elicited by zolmitriptan in proximal and distal human coronary arteries. RESULTS In intracranial arteries, both blockers antagonized the calcitonin gene-related peptide-induced relaxations more potently when compared to the inhibition observed in distal human coronary arteries, with atogepant showing a higher potency. When analysing their antagonistic profile in HCA, ubrogepant showed a competitive antagonist profile, while atogepant showed a non-competitive one. Neither of the gepants had vasoconstrictor effect at any of the concentrations studied in human coronary arteries, whereas zolmitriptan elicited concentration-dependent contractions. CONCLUSION ubrogepant and atogepant differentially inhibit the calcitonin gene-related peptide-dependent vasodilatory responses in intracranial arteries when compared to distal human coronary arteries. Also, both gepants are devoid of vasoconstrictive properties in human coronary arteries.
Collapse
Affiliation(s)
- Eloísa Rubio-Beltran
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ka Yi Chan
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ah Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Lars Edvinsson
- Department of Internal Medicine, Institute of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
48
|
Xu F, Sun W. Network Meta-Analysis of Calcitonin Gene-Related Peptide Receptor Antagonists for the Acute Treatment of Migraine. Front Pharmacol 2019; 10:795. [PMID: 31354502 PMCID: PMC6640487 DOI: 10.3389/fphar.2019.00795] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/19/2019] [Indexed: 01/29/2023] Open
Abstract
Background: Research has indicated that calcitonin gene-related peptide (CGRP) receptor antagonists can be effective in the acute treatment of migraine. Six major drugs are included within this category: telcagepant, olcegepant, BI 44370, rimegepant (BMS-927711), MK3207, and ubrogepant. However, no previous studies have performed network meta-analyses to directly compare the effects of these drugs. In the present study, we assessed the therapeutic qualities of these six different drugs to inform further clinical research. Methods: We searched PubMed, Embase, Ovid MEDLINE, Web of Science, and the Cochrane Central Register for Controlled Trials for relevant randomized controlled trials (RCTs) published through to October 2018. Two reviewers performed a network meta-analysis of efficacy and toxicity on the basis of odds ratios (ORs). Results: Ten randomized controlled trials involving 8,174 patients were included in our analysis. Olcegepant (OR: 4.09; CI: 1.81, 9.25), ubrogepant (OR: 2.11; CI: 1.10, 4.05), and BI 44370 (OR: 3.36; CI: 2.24, 5.04) were more effective in ensuring pain relief 2 h after treatment than was placebo treatment. BI 44370 was associated with an increased risk of adverse events when compared with placebo treatment (OR: 1.57; CI: 1.32, 1.88). Surface under the cumulative ranking curve analysis revealed that olcegepant was most effective and ubrogepant was associated with the lowest risk of adverse events among the six treatment options. Conclusion: Olcegepant was more effective, and ubrogepant had lower toxicity than the remaining treatments. CGRP antagonists are promising for the acute treatment of migraine, especially among patients who are unable to take triptans.
Collapse
Affiliation(s)
- Fang Xu
- Department of Encephalopathy, Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Wenjun Sun
- Department of Encephalopathy, Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
49
|
Moreno‐Ajona D, Chan C, Villar‐Martínez MD, Goadsby PJ. Targeting CGRP and 5‐HT
1F
Receptors for the Acute Therapy of Migraine: A Literature Review. Headache 2019; 59 Suppl 2:3-19. [DOI: 10.1111/head.13582] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- David Moreno‐Ajona
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Calvin Chan
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| | - María Dolores Villar‐Martínez
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Peter J. Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| |
Collapse
|
50
|
Piechal A, Domitrz I, Kurkowska-Jastrzębska I, Mirowska-Guzel D. Are antimigraine drugs that influence CGRP levels justified? Pharmacol Rep 2019; 71:624-635. [PMID: 31181379 DOI: 10.1016/j.pharep.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Migraine is one of the most common disorders found in everyday clinical practice. Although migraines are not directly life-threatening or permanently disabling, the severity of the pain and symptoms that characterize a migraine attack often prevent normal work and cause difficulties in everyday life. Migraines also affect the patient's family, who often experience stress and depression in response to the patient's condition. Available therapy, used in both acute and chronic treatments, might not provide sufficient improvement. Due to problems like therapy inefficacy, side effects, and intolerance, patients often stop treatments. Recent studies have indicated that drugs that act through calcitonin gene-related peptide (CGRP) can significantly improve migraine therapy. Here, we review results from currently available clinical trials on CGRP receptor antagonists and anti-CGRP monoclonal antibodies.
Collapse
Affiliation(s)
- Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warszawa, Poland; 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Izabela Domitrz
- Department of Neurology of the Second Faculty of Medicine, Medical University of Warsaw, Warszawa, Poland.
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warszawa, Poland; 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warszawa, Poland
| |
Collapse
|