1
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
2
|
Zhang H, Chang M, Chen D, Yang J, Zhang Y, Sun J, Yao X, Sun H, Gu X, Li M, Shen Y, Dai B. Congenital myopathies: pathophysiological mechanisms and promising therapies. J Transl Med 2024; 22:815. [PMID: 39223631 PMCID: PMC11370226 DOI: 10.1186/s12967-024-05626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Congenital myopathies (CMs) are a kind of non-progressive or slow-progressive muscle diseases caused by genetic mutations, which are currently defined and categorized mainly according to their clinicopathological features. CMs exhibit pleiotropy and genetic heterogeneity. Currently, supportive treatment and pharmacological remission are the mainstay of treatment, with no cure available. Some adeno-associated viruses show promising prospects in the treatment of MTM1 and BIN1-associated myopathies; however, such gene-level therapeutic interventions target only specific mutation types and are not generalizable. Thus, it is particularly crucial to identify the specific causative genes. Here, we outline the pathogenic mechanisms based on the classification of causative genes: excitation-contraction coupling and triadic assembly (RYR1, MTM1, DNM2, BIN1), actin-myosin interaction and production of myofibril forces (NEB, ACTA1, TNNT1, TPM2, TPM3), as well as other biological processes. Furthermore, we provide a comprehensive overview of recent therapeutic advancements and potential treatment modalities of CMs. Despite ongoing research endeavors, targeted strategies and collaboration are imperative to address diagnostic uncertainties and explore potential treatments.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiawen Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yijie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiacheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
3
|
Sun GB, Lu YF, Duan XJ. Exploration of the genetic influence of MYOT and MB genes on the plumage coloration of Muscovy ducks. Open Life Sci 2024; 19:20220836. [PMID: 38585635 PMCID: PMC10998670 DOI: 10.1515/biol-2022-0836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 04/09/2024] Open
Abstract
Plumage color, a pivotal attribute delineating diverse Muscovy duck strains, assumes considerable significance within the field of Muscovy duck breeding research. This study extends the existing research by delving into the hereditary aspects of genes associated with plumage coloration in Muscovy ducks. The principal objective is to discern marker genes conducive to targeted breeding strategies based on plumage color, thereby furnishing indispensable technical foundations for the development of novel Muscovy duck varieties. Our investigation focused on scrutinizing the impact of MYOT and MB genes on the genetic expression of plumage color at both the RNA and protein levels in Muscovy ducks. The results elucidate that black Muscovy ducks manifest markedly elevated mRNA and protein expression levels of MYOT and MB genes in comparison to their white counterparts, indicating that both genes may play a constructive regulatory role in the context of plumage coloration in Muscovy ducks. The outcomes of this study delineate a discernible correlation between MYOT and MB genes and the plumage coloration in Muscovy ducks. Employing gene expression analysis, we successfully identified candidate genes that may be intricately linked to the determination of plumage color in these ducks.
Collapse
Affiliation(s)
- Guo-Bo Sun
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, No. 8 of Fenghuang East Road, Hailing District, Taizhou City, Jiangsu Province, 225300, China
| | - Yan-Feng Lu
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, No. 8 of Fenghuang East Road, Hailing District, Taizhou City, Jiangsu Province, 225300, China
| | - Xiu-Jun Duan
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, No. 8 of Fenghuang East Road, Hailing District, Taizhou City, Jiangsu Province, 225300, China
| |
Collapse
|
4
|
Karuppasamy M, English KG, Henry CA, Manzini MC, Parant JM, Wright MA, Ruparelia AA, Currie PD, Gupta VA, Dowling JJ, Maves L, Alexander MS. Standardization of zebrafish drug testing parameters for muscle diseases. Dis Model Mech 2024; 17:dmm050339. [PMID: 38235578 PMCID: PMC10820820 DOI: 10.1242/dmm.050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Skeletal muscular diseases predominantly affect skeletal and cardiac muscle, resulting in muscle weakness, impaired respiratory function and decreased lifespan. These harmful outcomes lead to poor health-related quality of life and carry a high healthcare economic burden. The absence of promising treatments and new therapies for muscular disorders requires new methods for candidate drug identification and advancement in animal models. Consequently, the rapid screening of drug compounds in an animal model that mimics features of human muscle disease is warranted. Zebrafish are a versatile model in preclinical studies that support developmental biology and drug discovery programs for novel chemical entities and repurposing of established drugs. Due to several advantages, there is an increasing number of applications of the zebrafish model for high-throughput drug screening for human disorders and developmental studies. Consequently, standardization of key drug screening parameters, such as animal husbandry protocols, drug compound administration and outcome measures, is paramount for the continued advancement of the model and field. Here, we seek to summarize and explore critical drug treatment and drug screening parameters in the zebrafish-based modeling of human muscle diseases. Through improved standardization and harmonization of drug screening parameters and protocols, we aim to promote more effective drug discovery programs.
Collapse
Affiliation(s)
- Muthukumar Karuppasamy
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Katherine G. English
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Clarissa A. Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - M. Chiara Manzini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Melissa A. Wright
- Department of Pediatrics, Section of Child Neurology, University of Colorado at Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Avnika A. Ruparelia
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Peter D. Currie
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria 3800, Australia
| | - Vandana A. Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James J. Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), Birmingham, AL 35294, USA
| |
Collapse
|