1
|
Hok P, Thai QT, Bučková BR, Domin M, Řasová K, Tintěra J, Lotze M, Grothe M, Hlinka J. Global functional connectivity reorganization reflects cognitive processing speed deficits and fatigue in multiple sclerosis. Eur J Neurol 2025; 32:e16421. [PMID: 39058296 PMCID: PMC11622266 DOI: 10.1111/ene.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND PURPOSE Cognitive impairment (CI) in multiple sclerosis (MS) is associated with bidirectional changes in resting-state centrality measures. However, practicable functional magnetic resonance imaging (fMRI) biomarkers of CI are still lacking. The aim of this study was to assess the graph-theory-based degree rank order disruption index (kD) and its association with cognitive processing speed as a marker of CI in patients with MS (PwMS) in a secondary cross-sectional fMRI analysis. METHODS Differentiation between PwMS and healthy controls (HCs) using kD and its correlation with CI (Symbol Digit Modalities Test) was compared to established imaging biomarkers (regional degree, volumetry, diffusion-weighted imaging, lesion mapping). Additional associations were assessed for fatigue (Fatigue Scale for Motor and Cognitive Functions), gait and global disability. RESULTS Analysis in 56 PwMS and 58 HCs (35/27 women, median age 45.1/40.5 years) showed lower kD in PwMS than in HCs (median -0.30/-0.06, interquartile range 0.55/0.54; p = 0.009, Mann-Whitney U test), yielding acceptable yet non-superior differentiation (area under curve 0.64). kD and degree in medial prefrontal cortex (MPFC) correlated with CI (kD/MPFC Spearman's ρ = 0.32/-0.45, p = 0.019/0.001, n = 55). kD also explained fatigue (ρ = -0.34, p = 0.010, n = 56) but neither gait nor disability. CONCLUSIONS kD is a potential biomarker of CI and fatigue warranting further validation.
Collapse
Affiliation(s)
- Pavel Hok
- Department of NeurologyUniversity Medicine GreifswaldGreifswaldGermany
- Functional Imaging UnitInstitute of Diagnostic Radiology and Neuroradiology, University Medicine GreifswaldGreifswaldGermany
- Department of Neurology, Faculty of Medicine and DentistryPalacký University OlomoucOlomoucCzechia
| | - Quang Thong Thai
- Functional Imaging UnitInstitute of Diagnostic Radiology and Neuroradiology, University Medicine GreifswaldGreifswaldGermany
| | - Barbora Rehák Bučková
- Department of Complex SystemsInstitute of Computer Science of the Czech Academy of SciencesPragueCzechia
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Martin Domin
- Functional Imaging UnitInstitute of Diagnostic Radiology and Neuroradiology, University Medicine GreifswaldGreifswaldGermany
| | - Kamila Řasová
- Department of Rehabilitation, Third Faculty of MedicineCharles UniversityPragueCzechia
| | - Jaroslav Tintěra
- Radiodiagnostic and Interventional Radiology DepartmentInstitute for Clinical and Experimental MedicinePragueCzechia
| | - Martin Lotze
- Functional Imaging UnitInstitute of Diagnostic Radiology and Neuroradiology, University Medicine GreifswaldGreifswaldGermany
| | - Matthias Grothe
- Department of NeurologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Jaroslav Hlinka
- Department of Complex SystemsInstitute of Computer Science of the Czech Academy of SciencesPragueCzechia
| |
Collapse
|
2
|
Hechler A, Kuchling J, Müller-Jensen L, Klag J, Paul F, Prüss H, Finke C. Hippocampal hub failure is linked to long-term memory impairment in anti-NMDA-receptor encephalitis: insights from structural connectome graph theoretical network analysis. J Neurol 2024; 271:5886-5898. [PMID: 38977462 PMCID: PMC11377655 DOI: 10.1007/s00415-024-12545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is characterized by distinct structural and functional brain alterations, predominantly affecting the medial temporal lobes and the hippocampus. Structural connectome analysis with graph-based investigations of network properties allows for an in-depth characterization of global and local network changes and their relationship with clinical deficits in NMDAR encephalitis. METHODS Structural networks from 61 NMDAR encephalitis patients in the post-acute stage (median time from acute hospital discharge: 18 months) and 61 age- and sex-matched healthy controls (HC) were analyzed using diffusion-weighted imaging (DWI)-based probabilistic anatomically constrained tractography and volumetry of a selection of subcortical and white matter brain volumes was performed. We calculated global, modular, and nodal graph measures with special focus on default-mode network, medial temporal lobe, and hippocampus. Pathologically altered metrics were investigated regarding their potential association with clinical course, disease severity, and cognitive outcome. RESULTS Patients with NMDAR encephalitis showed regular global graph metrics, but bilateral reductions of hippocampal node strength (left: p = 0.049; right: p = 0.013) and increased node strength of right precuneus (p = 0.013) compared to HC. Betweenness centrality was decreased for left-sided entorhinal cortex (p = 0.042) and left caudal middle frontal gyrus (p = 0.037). Correlation analyses showed a significant association between reduced left hippocampal node strength and verbal long-term memory impairment (p = 0.021). We found decreased left (p = 0.013) and right (p = 0.001) hippocampal volumes that were associated with hippocampal node strength (left p = 0.009; right p < 0.001). CONCLUSIONS Focal network property changes of the medial temporal lobes indicate hippocampal hub failure that is associated with memory impairment in NMDAR encephalitis at the post-acute stage, while global structural network properties remain unaltered. Graph theory analysis provides new pathophysiological insight into structural network changes and their association with persistent cognitive deficits in NMDAR encephalitis.
Collapse
Affiliation(s)
- André Hechler
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- TUM-Neuroimaging Center, Technische Universitaet Muenchen, Munich, Germany
| | - Joseph Kuchling
- Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Leonie Müller-Jensen
- Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Johanna Klag
- Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Friedemann Paul
- Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, NeuroCure Clinical Research Center, Charité, Berlin Institute of Health, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Berlin, Germany
| | - Carsten Finke
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
- Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Wang X, Lin J, Lu H, Xiong Y, Duan C, Zhang D, Huang J, Deng L, Li C, Li R, Zhang D, Bian X, Zhou J, Pan L, Lou X. Alteration of White Matter Connectivity for MR-Guided Focused Ultrasound in the Treatment of Essential Tremor. J Magn Reson Imaging 2024; 59:1358-1370. [PMID: 37491872 DOI: 10.1002/jmri.28896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy has been implemented as a therapeutic alternative for the treatment of drug-refractory essential tremor (ET). However, its impact on the brain structural network is still unclear. PURPOSE To investigate both global and local alterations of the white matter (WM) connectivity network in ET after MRgFUS thalamotomy. STUDY TYPE Retrospective. SUBJECTS Twenty-seven ET patients (61 ± 11 years, 19 males) with MRgFUS thalamotomy and 28 healthy controls (HC) (61 ± 11 years, 20 males) were recruited for comparison. FIELD STRENGTH/SEQUENCE A 3 T/single shell diffusion tensor imaging by using spin-echo-based echo-planar imaging, three-dimensional T1 weighted imaging by using gradient-echo-based sequence. ASSESSMENT Patients were undergoing MRgFUS thalamotomy and their clinical data were collected from pre-operation to 6-month post-operation. Network topological metrics, including rich-club organization, small-world, and efficiency properties were calculated. Correlation between the topological metrics and tremor scores in ET groups was also calculated to assess the role of neural remodeling in the brain. STATISTICAL TESTS Two-sample independent t-tests, chi-squared test, ANOVA, Bonferroni test, and Spearman's correlation. Statistical significance was set at P < 0.05. RESULTS For ET patients, the strength of rich-club connection and clustering coefficient significantly increased vs. characteristic path length decreased at 6-month post-operation compared with pre-operation. The distribution pattern of rich-club regions was different in ET groups. Specifically, the order of the rich-club regions was changed according to the network degree value after MRgFUS thalamotomy. Moreover, the altered nodal efficiency in the right temporal pole of the superior temporal gyrus (R = 0.434-0.596) and right putamen (R = 0.413-0.436) was positively correlated with different tremor improvement. DATA CONCLUSION These findings might improve understanding of treatment-induced modulation from a network perspective and may work as an objective marker in the assessment of ET tremor control with MRgFUS thalamotomy. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Caohui Duan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Dong Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiayu Huang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Linlin Deng
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Chenxi Li
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Runze Li
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Dekang Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiangbing Bian
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiayou Zhou
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Mao C, Zhang Y, Jiang J, Qin R, Ye Q, Zhu X, Wu J. Magnetic Resonance Imaging Biomarkers of Punding in Parkinson's Disease. Brain Sci 2023; 13:1423. [PMID: 37891792 PMCID: PMC10605844 DOI: 10.3390/brainsci13101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Punding is a rare condition triggered by dopaminergic therapy in Parkinson's disease (PD), characterized by a complex, excessive, repetitive, and purposeless abnormal movement, and its pathogenesis remains unclear. We aimed to assess the brain structure alterations related to punding by using multipametric magnetic resonance imaging (MRI). Thirty-eight PD patients (19 with punding and 19 without punding) from the Parkinson's Progression Marker Initiative (PPMI) were included in this study. Cortical thickness was assessed with FreeSurfer, and the integrity of white matter fiber tracts and network topologies were analyzed by using FMRIB Software Library (FSL) and Pipeline for Analyzing braiN Diffusion imAges (PANDA). PD patients with punding showed a higher apathy score and more severe cortical atrophy in the left superior parietal, right inferior parietal, and right superior frontal gyrus, and worse integrity of the right cingulum cingulate tract compared to those without punding. On the other hand, no significant difference in structural network topologies was detected between the two groups. These data suggest that the specific area of destruction may be an MRI biomarker of punding risk, and these findings may have important implications for understanding the neural mechanisms of punding in PD.
Collapse
Affiliation(s)
- Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Yang Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jialiu Jiang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Qing Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jiayong Wu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| |
Collapse
|
5
|
Tilsley P, Strohmeyer IA, Heinrich I, Rosenthal F, Patra S, Schulz KH, Rosenkranz SC, Ramien C, Pöttgen J, Heesen C, Has AC, Gold SM, Stellmann JP. Physical fitness moderates the association between brain network impairment and both motor function and cognition in progressive multiple sclerosis. J Neurol 2023; 270:4876-4888. [PMID: 37341806 DOI: 10.1007/s00415-023-11806-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Neurodegeneration leads to continuous accumulation of disability in progressive Multiple Sclerosis (MS). Exercise is considered to counteract disease progression, but little is known on the interaction between fitness, brain networks and disability in MS. OBJECTIVE The aim of this study to explore functional and structural brain connectivity and the interaction between fitness and disability based on motor and cognitive functional outcomes in a secondary analysis of a randomised, 3-month, waiting group controlled arm ergometry intervention in progressive MS. METHODS We modelled individual structural and functional brain networks based on magnetic resonance imaging (MRI). We used linear mixed effect models to compare changes in brain networks between the groups and explore the association between fitness, brain connectivity and functional outcomes in the entire cohort. RESULTS We recruited 34 persons with advanced progressive MS (pwMS, mean age 53 years, females 71%, mean disease duration 17 years and an average walking restriction of < 100 m without aid). Functional connectivity increased in highly connected brain regions of the exercise group (p = 0.017), but no structural changes (p = 0.817) were observed. Motor and cognitive task performance correlated positively with nodal structural connectivity but not nodal functional connectivity. We also found that the correlation between fitness and functional outcomes was stronger with lower connectivity. CONCLUSIONS Functional reorganisation seems to be an early indicator of exercise effects on brain networks. Fitness moderates the relationship between network disruption and both motor and cognitive outcomes, with growing importance in more disrupted brain networks. These findings underline the need and opportunities associated with exercise in advanced MS.
Collapse
Affiliation(s)
- Penelope Tilsley
- CEMEREM, APHM La Timone, 264 Rue Saint-Pierre, 13385, Marseille, France
- CNRS, CRMBM, UMR 7339, Aix-Marseille Univ, Marseille, France
| | - Isanbert Arun Strohmeyer
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inga Heinrich
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neurologische Klinik, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Friederike Rosenthal
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Patra
- Universitäres Kompetenzzentrum für Sport- und Bewegungsmedizin (Athleticum) und Institut und Poliklinik für Medizinische Psychologie, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl Heinz Schulz
- Universitäres Kompetenzzentrum für Sport- und Bewegungsmedizin (Athleticum) und Institut und Poliklinik für Medizinische Psychologie, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caren Ramien
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Pöttgen
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arzu Ceylan Has
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Gold
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Division of Psychosomatic Medicine, Medical Department, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jan-Patrick Stellmann
- CEMEREM, APHM La Timone, 264 Rue Saint-Pierre, 13385, Marseille, France.
- CNRS, CRMBM, UMR 7339, Aix-Marseille Univ, Marseille, France.
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Hejazi S, Karwowski W, Farahani FV, Marek T, Hancock PA. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci 2023; 13:brainsci13020246. [PMID: 36831789 PMCID: PMC9953947 DOI: 10.3390/brainsci13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an immune system disease in which myelin in the nervous system is affected. This abnormal immune system mechanism causes physical disabilities and cognitive impairment. Functional magnetic resonance imaging (fMRI) is a common neuroimaging technique used in studying MS. Computational methods have recently been applied for disease detection, notably graph theory, which helps researchers understand the entire brain network and functional connectivity. (2) Methods: Relevant databases were searched to identify articles published since 2000 that applied graph theory to study functional brain connectivity in patients with MS based on fMRI. (3) Results: A total of 24 articles were included in the review. In recent years, the application of graph theory in the MS field received increased attention from computational scientists. The graph-theoretical approach was frequently combined with fMRI in studies of functional brain connectivity in MS. Lower EDSSs of MS stage were the criteria for most of the studies (4) Conclusions: This review provides insights into the role of graph theory as a computational method for studying functional brain connectivity in MS. Graph theory is useful in the detection and prediction of MS and can play a significant role in identifying cognitive impairment associated with MS.
Collapse
Affiliation(s)
- Sara Hejazi
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
7
|
Cui W, Wang S, Chen B, Fan G. White matter structural network alterations in congenital bilateral profound sensorineural hearing loss children: A graph theory analysis. Hear Res 2022; 422:108521. [PMID: 35660126 DOI: 10.1016/j.heares.2022.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/22/2022] [Accepted: 05/14/2022] [Indexed: 11/25/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies have revealed a functional reorganization in patients with sensorineural hearing loss (SNHL). The structural basement of functional changes has also been investigated recently. Graph theory analysis brings a new understanding of the structural connectome and topological features in central neural system diseases. However, little is known about the structural network connectome changes in SNHL patients, especially in children. We explored the differences in topologic organization, rich-club organization, and structural connection between children with congenital bilateral profound SNHL and normal hearing under the age of three using graph theory analysis and probabilistic tractography. Compared with the normal-hearing (NH) group, the SNHL group showed no difference in global and nodal topological parameters. Increased structural connection strength were found in the right cortico-striatal-thalamus-cortical circuity. Decreased cross-hemisphere connections were found between the right precuneus and the left auditory cortex as well as the left subcortical regions. Rich-club organization analysis found increased local connection in the SNHL group. These results revealed structural organizations after hearing deprivation in congenital bilateral profound SNHL children.
Collapse
Affiliation(s)
- Wenzhuo Cui
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Shanshan Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Boyu Chen
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China.
| |
Collapse
|
8
|
Guo T, Xuan M, Zhou C, Wu J, Gao T, Bai X, Liu X, Gu L, Liu R, Song Z, Gu Q, Huang P, Pu J, Zhang B, Xu X, Guan X, Zhang M. Normalization effect of levodopa on hierarchical brain function in Parkinson’s disease. Netw Neurosci 2022; 6:552-569. [PMID: 35733432 PMCID: PMC9208001 DOI: 10.1162/netn_a_00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022] Open
Abstract
Hierarchical brain organization, in which the rich club and diverse club situate in core position, is critical for global information integration in the human brain network. Parkinson’s disease (PD), a common movement disorder, has been conceptualized as a network disorder. Levodopa is an effective treatment for PD. Whether there is a functional divergence in the hierarchical brain system under PD pathology, and how this divergence is regulated by immediate levodopa therapy, remains unknown. We constructed a functional network in 61 PD patients and 89 normal controls and applied graph theoretical analyses to examine the neural mechanism of levodopa short response from the perspective of brain hierarchical configuration. The results revealed the following: (a) PD patients exhibited disrupted function within rich-club organization, while the diverse club preserved function, indicating a differentiated brain topological organization in PD. (b) Along the rich-club derivate hierarchical system, PD patients showed impaired network properties within rich-club and feeder subnetworks, and decreased nodal degree centrality in rich-club and feeder nodes, along with increased nodal degree in peripheral nodes, suggesting distinct functional patterns in different types of nodes. And (c) levodopa could normalize the abnormal network architecture of the rich-club system. This study provides evidence for levodopa effects on the hierarchical brain system with divergent functions. Many studies of brain networks have revealed densely connected regions forming the rich club and diverse club, which occupy the central position of the hierarchical brain system. Here, we explore the hierarchical topology in Parkinson’s disease (PD) and investigate the neural effect of levodopa on it. We show that within the core position of the hierarchical system, the function of the diverse club is preserved while the function of the rich club is impaired. Along the rich-club hierarchical system, the function of biologically costly rich-club and feeder subnetworks is disrupted, together with an increased function of peripheral nodes, which could be normalized by levodopa. Our study provides evidence of a disparity pattern between different levels of brain hierarchical systems under PD pathology.
Collapse
Affiliation(s)
- Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhe Song
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Li D, Cui X, Yan T, Liu B, Zhang H, Xiang J, Wang B. Abnormal Rich Club Organization in Hemispheric White Matter Networks of ADHD. J Atten Disord 2021; 25:1215-1229. [PMID: 31884863 DOI: 10.1177/1087054719892887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: Brain network studies have revealed abnormal topology asymmetry of white matter (WM) in ADHD. Recently, rich club organization was proposed to be a key feature of brain network topology. However, abnormalities in the rich club organization of hemispheric WM networks in ADHD remain unclear. Method: Forty ADHD patients and 51 normal controls participated in this study. Structural networks were reconstructed based on diffusion tensor imaging (DTI) and analyzed with graph theory. Results: The two groups exhibited different patterns of asymmetry in connectivity measures of rich club connections. ADHD patients showed more feeder connections than normal controls. Reduced rightward asymmetry was observed in connectivity measures of local connections involving several peripheral regions of the ADHD patients. In addition, abnormal regional asymmetry scores were associated with ADHD symptoms. Conclusion: The topological changes in rich club organization provide a novel insight into the alteration of WM connections in ADHD.
Collapse
Affiliation(s)
- Dandan Li
- Taiyuan University of Technology, China
| | | | - Ting Yan
- Shanxi Medical University, Taiyuan, China
| | - Bo Liu
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Zhang
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Xiang
- Taiyuan University of Technology, China
| | - Bing Wang
- Taiyuan University of Technology, China
| |
Collapse
|
10
|
Egger P, Evangelista GG, Koch PJ, Park CH, Levin-Gleba L, Girard G, Beanato E, Lee J, Choirat C, Guggisberg AG, Kim YH, Hummel FC. Disconnectomics of the Rich Club Impacts Motor Recovery After Stroke. Stroke 2021; 52:2115-2124. [PMID: 33902299 DOI: 10.1161/strokeaha.120.031541] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Structural brain networks possess a few hubs, which are not only highly connected to the rest of the brain but are also highly connected to each other. These hubs, which form a rich-club, play a central role in global brain organization. To investigate whether the concept of rich-club sheds new light on poststroke recovery, we applied a novel network-theoretical quantification of lesions to patients with stroke and compared the outcomes with what lesion size alone would indicate. METHODS Whole-brain structural networks of 73 patients with ischemic stroke were reconstructed using diffusion-weighted imaging data. Disconnectomes, a new type of network analyses, were constructed using only those fibers that pass through the lesion. Fugl-Meyer upper extremity scores and their changes were used to determine whether the patients show natural recovery or not. RESULTS Cluster analysis revealed 3 patient clusters: small-lesion-good-recovery, midsized-lesion-poor-recovery (MLPR), and large-lesion-poor-recovery (LLPR). The small-lesion-good-recovery consisted of subjects whose lesions were small, and whose prospects for recovery were relatively good. To explain the nondifference in recovery between the MLPR and LLPR clusters despite the difference (LLPR>MLPR) in lesion volume, we defined the [Formula: see text] metric to be the sum of the entries in the disconnectome and, more importantly, the [Formula: see text] to be the sum of all entries in the disconnectome corresponding to edges with at least one node in the rich-club. Unlike lesion volume and corticospinal tract damage (MLPR<LLPR), for [Formula: see text], this relationship was reversed (MLPR>LLPR) or showed no difference for [Formula: see text]. CONCLUSIONS Smaller lesions that focus on the rich-club can be just as devastating as much larger lesions that do not focus on the rich-club, pointing to the role of the rich-club as a backbone for functional communication within brain networks and for recovery from stroke.
Collapse
Affiliation(s)
- Philip Egger
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.).,Defitech Chair of Clinical Neuroengineering, CNP and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.)
| | - Giorgia G Evangelista
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.).,Defitech Chair of Clinical Neuroengineering, CNP and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.)
| | - Philipp J Koch
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.).,Defitech Chair of Clinical Neuroengineering, CNP and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.).,Department of Neurology, University of Lübeck, Germany (P.J.K.)
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.).,Defitech Chair of Clinical Neuroengineering, CNP and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.)
| | - Laura Levin-Gleba
- Swiss Data Science Center, EPFL, Lausanne, Switzerland (L.L.-G., C.C.)
| | - Gabriel Girard
- Signal Processing Laboratory, School of Engineering, EPFL, Lausanne, Switzerland (G.G.).,Center for Biomedical Imaging, Lausanne, Switzerland (G.G.).,Radiology Department, Lausanne University Hospital, Switzerland (G.G.)
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.).,Defitech Chair of Clinical Neuroengineering, CNP and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.)
| | - Jungsoo Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.L., Y.-H.K.)
| | - Christine Choirat
- Swiss Data Science Center, EPFL, Lausanne, Switzerland (L.L.-G., C.C.)
| | - Adrian G Guggisberg
- Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (A.G.G., F.C.H.)
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.L., Y.-H.K.).,Department of Health Sciences and Technology, Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea (Y.-H.K.)
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.).,Defitech Chair of Clinical Neuroengineering, CNP and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (P.E., G.G.E., P.J.K., C.-H.P., E.B., F.C.H.).,Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (A.G.G., F.C.H.)
| |
Collapse
|
11
|
Has Silemek AC, Ranjeva J, Audoin B, Heesen C, Gold SM, Kühn S, Weygandt M, Stellmann J. Delayed access to conscious processing in multiple sclerosis: Reduced cortical activation and impaired structural connectivity. Hum Brain Mapp 2021; 42:3379-3395. [PMID: 33826184 PMCID: PMC8249884 DOI: 10.1002/hbm.25440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/24/2023] Open
Abstract
Although multiple sclerosis (MS) is frequently accompanied by visuo‐cognitive impairment, especially functional brain mechanisms underlying this impairment are still not well understood. Consequently, we used a functional MRI (fMRI) backward masking task to study visual information processing stratifying unconscious and conscious in MS. Specifically, 30 persons with MS (pwMS) and 34 healthy controls (HC) were shown target stimuli followed by a mask presented 8–150 ms later and had to compare the target to a reference stimulus. Retinal integrity (via optical coherence tomography), optic tract integrity (visual evoked potential; VEP) and whole brain structural connectivity (probabilistic tractography) were assessed as complementary structural brain integrity markers. On a psychophysical level, pwMS reached conscious access later than HC (50 vs. 16 ms, p < .001). The delay increased with disease duration (p < .001, β = .37) and disability (p < .001, β = .24), but did not correlate with conscious information processing speed (Symbol digit modality test, β = .07, p = .817). No association was found for VEP and retinal integrity markers. Moreover, pwMS were characterized by decreased brain activation during unconscious processing compared with HC. No group differences were found during conscious processing. Finally, a complementary structural brain integrity analysis showed that a reduced fractional anisotropy in corpus callosum and an impaired connection between right insula and primary visual areas was related to delayed conscious access in pwMS. Our study revealed slowed conscious access to visual stimulus material in MS and a complex pattern of functional and structural alterations coupled to unconscious processing of/delayed conscious access to visual stimulus material in MS.
Collapse
Affiliation(s)
- Arzu C. Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Jean‐Philippe Ranjeva
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Bertrand Audoin
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Stefan M. Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Charité ‐ Universitätsmedizin Berlin, Freie Universität BerlinHumboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF)BerlinGermany
| | - Simone Kühn
- Clinic for Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Lise Meitner Group for Environmental NeuroscienceMax Planck Institute for Human DevelopmentBerlinGermany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research CenterBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research CenterBerlinGermany
| | - Jan‐Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
12
|
Frey BM, Petersen M, Schlemm E, Mayer C, Hanning U, Engelke K, Fiehler J, Borof K, Jagodzinski A, Gerloff C, Thomalla G, Cheng B. White matter integrity and structural brain network topology in cerebral small vessel disease: The Hamburg city health study. Hum Brain Mapp 2021; 42:1406-1415. [PMID: 33289924 PMCID: PMC7927298 DOI: 10.1002/hbm.25301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral small vessel disease is a common finding in the elderly and associated with various clinical sequelae. Previous studies suggest disturbances in the integration capabilities of structural brain networks as a mediating link between imaging and clinical presentations. To what extent cerebral small vessel disease might interfere with other measures of global network topology is not well understood. Connectomes were reconstructed via diffusion weighted imaging in a sample of 930 participants from a population based epidemiologic study. Linear models were fitted testing for an association of graph-theoretical measures reflecting integration and segregation with both the Peak width of Skeletonized Mean Diffusivity (PSMD) and the load of white matter hyperintensities of presumed vascular origin (WMH). The latter were subdivided in periventricular and deep for an analysis of localisation-dependent correlations of cerebral small vessel disease. The median WMH volume was 0.6 mL (1.4) and the median PSMD 2.18 mm2 /s x 10-4 (0.5). The connectomes showed a median density of 0.880 (0.030), the median values for normalised global efficiency, normalised clustering coefficient, modularity Q and small-world propensity were 0.780 (0.045), 1.182 (0.034), 0.593 (0.026) and 0.876 (0.040) respectively. An increasing burden of cerebral small vessel disease was significantly associated with a decreased integration and increased segregation and thus decreased small-worldness of structural brain networks. Even in rather healthy subjects increased cerebral small vessel disease burden is accompanied by topological brain network disturbances. Segregation parameters and small-worldness might as well contribute to the understanding of the known clinical sequelae of cerebral small vessel disease.
Collapse
Affiliation(s)
- Benedikt M. Frey
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marvin Petersen
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eckhard Schlemm
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Carola Mayer
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Uta Hanning
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kristin Engelke
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jens Fiehler
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Katrin Borof
- Epidemiological study centerUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Annika Jagodzinski
- Epidemiological study centerUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of General and Interventional CardiologyUniversity Heart and Vascular CenterHamburgGermany
| | - Christian Gerloff
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Götz Thomalla
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bastian Cheng
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
13
|
Xu CX, Jiang H, Zhao ZJ, Sun YH, Chen X, Sun BM, Sun QF, Bian LG. Disruption of Rich-Club Connectivity in Cushing Disease. World Neurosurg 2021; 148:e275-e281. [PMID: 33412326 DOI: 10.1016/j.wneu.2020.12.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cushing disease (CD) is a rare clinical disease in which brain structural and function are impaired as the result of excessive cortisol. However, little is known whether rich-club organization changes in patients with CD, as visualized on resting-state magnetic resonance imaging (fMRI), can reverse to normal conditions after transsphenoidal surgery (TSS). In this study, we aimed to investigate whether the functional connectivity of rich-club organization is affected and whether any abnormal changes may reverse after TSS. METHODS In this study, 38 patients with active CD, 33 with patients with CD in remission, and 41 age-, sex-, and education-matched healthy control participants underwent resting-state fMRI. Brain functional connectivity was constructed based on fMRI and rich club was calculated with graph theory approach. We constructed the functional brain networks for all participants and calculated rich-club connectivity based on fMRI. RESULTS We identified left precuneus, right precuneus, left middle cingulum, right middle cingulum, right inferior temporal, right middle temporal, right lingual, right postcentral, right middle occipital, and right precentral regions as rich club nodes. Compared with healthy control participants, rich-club connectivity was significantly lower in patients with active CD (P < 0.001). Moreover, abnormal rich-club connectivity improved to normal after TSS. CONCLUSIONS Our results show rich-club organization was disrupted in patients with active CD with excessive cortisol production. TSS can reverse abnormal rich-club connectivity. Rich club may be a new indicator to investigate the outcomes of TSS and to increase our understanding of the effect of excessive cortisol on brain functional connectivity in patients with CD.
Collapse
Affiliation(s)
- Can-Xin Xu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Jie Zhao
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Hao Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Chen
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Min Sun
- Department of Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Fang Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurosurgery, Rui-Jin Lu-Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liu-Guan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Klauser P, Cropley VL, Baumann PS, Lv J, Steullet P, Dwir D, Alemán-Gómez Y, Bach Cuadra M, Cuenod M, Do KQ, Conus P, Pantelis C, Fornito A, Van Rheenen TE, Zalesky A. White Matter Alterations Between Brain Network Hubs Underlie Processing Speed Impairment in Patients With Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab033. [PMID: 34901867 PMCID: PMC8650074 DOI: 10.1093/schizbullopen/sgab033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Processing speed (PS) impairment is one of the most severe and common cognitive deficits in schizophrenia. Previous studies have reported correlations between PS and white matter diffusion properties, including fractional anisotropy (FA), in several fiber bundles in schizophrenia, suggesting that white matter alterations could underpin decreased PS. In schizophrenia, white matter alterations are most prevalent within inter-hub connections of the rich club. However, the spatial and topological characteristics of this association between PS and FA have not been investigated in patients. In this context, we tested whether structural connections comprising the rich club network would underlie PS impairment in 298 patients with schizophrenia or schizoaffective disorder and 190 healthy controls from the Australian Schizophrenia Research Bank. PS, measured using the digit symbol coding task, was largely (Cohen’s d = 1.33) and significantly (P < .001) reduced in the patient group when compared with healthy controls. Significant associations between PS and FA were widespread in the patient group, involving all cerebral lobes. FA was not associated with other cognitive measures of phonological fluency and verbal working memory in patients, suggesting specificity to PS. A topological analysis revealed that despite being spatially widespread, associations between PS and FA were over-represented among connections forming the rich club network. These findings highlight the need to consider brain network topology when investigating high-order cognitive functions that may be spatially distributed among several brain regions. They also reinforce the evidence that brain hubs and their interconnections may be particularly vulnerable parts of the brain in schizophrenia.
Collapse
Affiliation(s)
- Paul Klauser
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Jinglei Lv
- School of Biomedical Engineering and Brain and Mind Center, University of Sydney, Sydney, New South Whales,Australia
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Medical Image Analysis Laboratory, Center for Biomedical Imaging, University of Lausanne, Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Centre for Mental Health, School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University, Melbourne, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Stellmann JP, Maarouf A, Schulz KH, Baquet L, Pöttgen J, Patra S, Penner IK, Gellißen S, Ketels G, Besson P, Ranjeva JP, Guye M, Nolte G, Engel AK, Audoin B, Heesen C, Gold SM. Aerobic Exercise Induces Functional and Structural Reorganization of CNS Networks in Multiple Sclerosis: A Randomized Controlled Trial. Front Hum Neurosci 2020; 14:255. [PMID: 32714172 PMCID: PMC7340166 DOI: 10.3389/fnhum.2020.00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives: Evidence from animal studies suggests that aerobic exercise may promote neuroplasticity and could, therefore, provide therapeutic benefits for neurological diseases such as multiple sclerosis (MS). However, the effects of exercise in human CNS disorders on the topology of brain networks, which might serve as an outcome at the interface between biology and clinical performance, remain poorly understood. Methods: We investigated functional and structural networks in patients with relapsing-remitting MS in a clinical trial of standardized aerobic exercise. Fifty-seven patients were randomly assigned to moderate-intensity exercise for 3 months or a non-exercise control group. We reconstructed functional networks based on resting-state functional magnetic resonance imaging (MRI) and used probabilistic tractography on diffusion-weighted imaging data for structural networks. Results: At baseline, compared to 30 healthy controls, patients exhibited decreased structural connectivity that was most pronounced in hub regions of the brain. Vice versa, functional connectivity was increased in hubs. After 3 months, we observed hub independent increased functional connectivity in the exercise group while the control group presented a loss of functional hub connectivity. On a structural level, the control group remained unchanged, while the exercise group had also increased connectivity. Increased clustering of hubs indicates a better structural integration and internal connectivity at the top of the network hierarchy. Conclusion: Increased functional connectivity of hubs contrasts a loss of structural connectivity in relapsing-remitting MS. Under an exercise condition, a further hub independent increase of functional connectivity seems to translate in higher structural connectivity of the whole brain.
Collapse
Affiliation(s)
- Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Adil Maarouf
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Karl-Heinz Schulz
- Institut und Poliklinik für Medizinische Psychologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Universitäres Kompetenzzentrum für Sport-und Bewegungsmedizin (Athleticum), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Baquet
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Pöttgen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Patra
- Institut und Poliklinik für Medizinische Psychologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Universitäres Kompetenzzentrum für Sport-und Bewegungsmedizin (Athleticum), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Iris-Katharina Penner
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Gellißen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gesche Ketels
- Department of Physiotherapy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Pierre Besson
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Jean-Philippe Ranjeva
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Maxime Guye
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Bertrand Audoin
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin (CBF), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Med. Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF), Berlin, Germany
| |
Collapse
|
16
|
Kim DJ, Min BK. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Comput Struct Biotechnol J 2020; 18:1761-1773. [PMID: 32695269 PMCID: PMC7355726 DOI: 10.1016/j.csbj.2020.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is a complex network. Growing evidence supports the critical roles of a set of brain regions within the brain network, known as the brain’s cores or hubs. These regions require high energy cost but possess highly efficient neural information transfer in the brain’s network and are termed the rich-club. The rich-club of the brain network is essential as it directly regulates functional integration across multiple segregated regions and helps to optimize cognitive processes. Here, we review the recent advances in rich-club organization to address the fundamental roles of the rich-club in the brain and discuss how these core brain regions affect brain development and disorders. We describe the concepts of the rich-club behind network construction in the brain using graph theoretical analysis. We also highlight novel insights based on animal studies related to the rich-club and illustrate how human studies using neuroimaging techniques for brain development and psychiatric/neurological disorders may be relevant to the rich-club phenomenon in the brain network.
Collapse
Key Words
- AD, Alzheimer’s disease
- ADHD, attention deficit hyperactivity disorder
- ASD, autism spectrum disorder
- BD, bipolar disorder
- Brain connectivity
- Brain network
- DTI, diffusion tensor imaging
- EEG, electroencephalography
- Graph theory
- MDD, major depressive disorder
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Neuroimaging
- Rich-club
- TBI, traumatic brain injury
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Impaired brain network architecture in Cushing's disease based on graph theoretical analysis. Aging (Albany NY) 2020; 12:5168-5182. [PMID: 32208364 PMCID: PMC7138581 DOI: 10.18632/aging.102939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022]
Abstract
To investigate the whole functional brain networks of active Cushing disease (CD) patients about topological parameters (small world and rich club et al.) and compared with healthy control (NC). Nineteen active CD patients and twenty-two healthy control subjects, matched in age, gender, and education, underwent resting-state fMRI. Graph theoretical analysis was used to calculate the functional brain network organizations for all participants, and those for active CD patients were compared for and NCs. Active CD patients revealed higher global efficiency, shortest path length and reduced cluster efficiency compared with healthy control. Additionally, small world organization was present in active CD patients but higher than healthy control. Moreover, rich club connections, feeder connections and local connections were significantly decreased in active CD patients. Functional network properties appeared to be disrupted in active CD patients compared with healthy control. Analyzing the changes that lead to abnormal network metrics will improve our understanding of the pathophysiological mechanisms underlying CD.
Collapse
|
18
|
Charalambous T, Clayden JD, Powell E, Prados F, Tur C, Kanber B, Chard D, Ourselin S, Wheeler-Kingshott CAMG, Thompson AJ, Toosy AT. Disrupted principal network organisation in multiple sclerosis relates to disability. Sci Rep 2020; 10:3620. [PMID: 32108146 PMCID: PMC7046772 DOI: 10.1038/s41598-020-60611-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/13/2020] [Indexed: 01/15/2023] Open
Abstract
Structural network-based approaches can assess white matter connections revealing topological alterations in multiple sclerosis (MS). However, principal network (PN) organisation and its clinical relevance in MS has not been explored yet. Here, structural networks were reconstructed from diffusion data in 58 relapsing-remitting MS (RRMS), 28 primary progressive MS (PPMS), 36 secondary progressive (SPMS) and 51 healthy controls (HCs). Network hubs' strengths were compared with HCs. Then, PN analysis was performed in each clinical subtype. Regression analysis was applied to investigate the associations between nodal strength derived from the first and second PNs (PN1 and PN2) in MS, with clinical disability. Compared with HCs, MS patients had preserved hub number, but some hubs exhibited reduced strength. PN1 comprised 10 hubs in HCs, RRMS and PPMS but did not include the right thalamus in SPMS. PN2 comprised 10 hub regions with intra-hemispheric connections in HCs. In MS, this subnetwork did not include the right putamen whilst in SPMS the right thalamus was also not included. Decreased nodal strength of the right thalamus and putamen from the PNs correlated strongly with higher clinical disability. These PN analyses suggest distinct patterns of disruptions in MS subtypes which are clinically relevant.
Collapse
Affiliation(s)
- Thalis Charalambous
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Jonathan D Clayden
- UCL GOS Institute of Child Health, University College London, London, UK
| | - Elizabeth Powell
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Ferran Prados
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, WC1V 6LJ, UK
- eHealth Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Carmen Tur
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Baris Kanber
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, WC1V 6LJ, UK
| | - Declan Chard
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Sebastien Ourselin
- Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, WC1V 6LJ, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Brain MRI 3T Research Center, C. Mondino National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Alan J Thompson
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ahmed T Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
| |
Collapse
|
19
|
Has Silemek AC, Fischer L, Pöttgen J, Penner IK, Engel AK, Heesen C, Gold SM, Stellmann JP. Functional and structural connectivity substrates of cognitive performance in relapsing remitting multiple sclerosis with mild disability. Neuroimage Clin 2020; 25:102177. [PMID: 32014828 PMCID: PMC6997626 DOI: 10.1016/j.nicl.2020.102177] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/06/2019] [Accepted: 01/11/2020] [Indexed: 01/10/2023]
Abstract
Multiple Sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS), which can lead to severe cognitive impairment over time. Magnetic resonance imaging (MRI) is currently the best available biomarker to track MS pathophysiology in vivo and examine the link to clinical disability. However, conventional MRI metrics have limited sensitivity and specificity to detect direct associations between symptoms and their underlying CNS substrates. In this study, we aimed to investigate structural and resting state functional connectomes and subnetworks associated with neuropsychological (NP) performance using a graph theoretical approach. A comprehensive NP test battery was administered in a sample of patients with relapsing remitting MS (RRMS) and mild disability [n = 33, F/M = 20/13, age = 40.9 ± 9.7, median [Expanded Disability Status Scale] (EDSS) = 2, range =0-4] and compared to healthy controls (HC) [n = 29, F/M = 19/10, age = 41.0 ± 8.5] closely matched for age, sex, and level of education. The NP battery comprised the most relevant domains of cognitive dysfunction in MS including attention, processing speed, verbal and spatial learning and memory, and executive function. While standard MRI metrics showed good correlations with TAP Alertness test, disease duration and neurological exams, structural networks showed closer associations with 9-hole peg test and cognitive performances. Decreased graph strength was associated with two out of the 5 NP tests in the spatial learning and memory domain specified by BVMT [Sum 1-3] and BVMT [Recall], and with also SDMT which is one out of the 9 NP tests in the attention/processing speed domain, while no correlation was found between these scores and functional connectivity. Nodal strength was decreased in all subnetworks based on Yeo atlas in patients compared to HC; however, no difference was observed in nodal level of functional connectivity between the groups. The difference in structural and functional nodal connectivity between the groups was also observed in the relationship between structural and functional connectivity within the groups; the relationship between nodal degree and nodal strength was reversed in patients but positive in controls. On a nodal level, structural and functional networks (mainly the default mode network) were correlated with more than one cognitive domain rather than one specific network for each domain within patients. Interestingly, poorer cognitive performance was mostly correlated with increased functional connectivity but decreased structural connectivity in patients. Increased functional connectivity in the default mode network had both positive as well as negative associations with verbal and spatial learning and memory, possibly indicating adaptive and maladaptive mechanisms. In conclusion, our results suggest that cognitive performance, even in patients with RRMS and very mild disability, may reflect a loss of structural connectivity. In contrast, widespread increases in functional connectivity may be the result of maladaptive processes.
Collapse
Affiliation(s)
- Arzu Ceylan Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany.
| | - Lukas Fischer
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany
| | - Jana Pöttgen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany
| | - Iris-Katharina Penner
- Klinik für Neurologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany; COGITO Zentrum für Angewandte Neurokognition und Neuropsychologische Forschung, Düsseldorf 40225, Germany
| | - Andreas K Engel
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin 12203, Germany
| | - Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| |
Collapse
|
20
|
Modeling Resilience to Damage in Multiple Sclerosis: Plasticity Meets Connectivity. Int J Mol Sci 2019; 21:ijms21010143. [PMID: 31878257 PMCID: PMC6981966 DOI: 10.3390/ijms21010143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 02/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelinating white matter lesions and neurodegeneration, with a variable clinical course. Brain network architecture provides efficient information processing and resilience to damage. The peculiar organization characterized by a low number of highly connected nodes (hubs) confers high resistance to random damage. Anti-homeostatic synaptic plasticity, in particular long-term potentiation (LTP), represents one of the main physiological mechanisms underlying clinical recovery after brain damage. Different types of synaptic plasticity, including both anti-homeostatic and homeostatic mechanisms (synaptic scaling), contribute to shape brain networks. In MS, altered synaptic functioning induced by inflammatory mediators may represent a further cause of brain network collapse in addition to demyelination and grey matter atrophy. We propose that impaired LTP expression and pathologically enhanced upscaling may contribute to disrupting brain network topology in MS, weakening resilience to damage and negatively influencing the disease course.
Collapse
|
21
|
Guillon J, Chavez M, Battiston F, Attal Y, La Corte V, Thiebaut de Schotten M, Dubois B, Schwartz D, Colliot O, De Vico Fallani F. Disrupted core-periphery structure of multimodal brain networks in Alzheimer's disease. Netw Neurosci 2019; 3:635-652. [PMID: 31157313 PMCID: PMC6542619 DOI: 10.1162/netn_a_00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
In Alzheimer's disease (AD), the progressive atrophy leads to aberrant network reconfigurations both at structural and functional levels. In such network reorganization, the core and peripheral nodes appear to be crucial for the prediction of clinical outcome because of their ability to influence large-scale functional integration. However, the role of the different types of brain connectivity in such prediction still remains unclear. Using a multiplex network approach we integrated information from DWI, fMRI, and MEG brain connectivity to extract an enriched description of the core-periphery structure in a group of AD patients and age-matched controls. Globally, the regional coreness-that is, the probability of a region to be in the multiplex core-significantly decreased in AD patients as result of a random disconnection process initiated by the neurodegeneration. Locally, the most impacted areas were in the core of the network-including temporal, parietal, and occipital areas-while we reported compensatory increments for the peripheral regions in the sensorimotor system. Furthermore, these network changes significantly predicted the cognitive and memory impairment of patients. Taken together these results indicate that a more accurate description of neurodegenerative diseases can be obtained from the multimodal integration of neuroimaging-derived network data.
Collapse
Affiliation(s)
- Jeremy Guillon
- Institut du Cerveau et de la Moelle Epiniere, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Universite, Paris, France
- Inria Paris, Aramis Project Team, Paris, France
| | | | - Federico Battiston
- Inria Paris, Aramis Project Team, Paris, France
- CNRS, UMR 7225, Paris, France
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | | | - Valentina La Corte
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, Assistance Publique - Hopitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
- Inserm, UMR 894, Center of Psychiatry and Neurosciences, Memory and Cognition Laboratory, Paris, France
- Institute of Psychology, University Paris Descartes, Sorbonne Paris Cite, France
| | - Michel Thiebaut de Schotten
- Institut du Cerveau et de la Moelle Epiniere, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Universite, Paris, France
| | - Bruno Dubois
- Institut de la Memoire et de la Maladie d’Alzheimer - IM2A, AP-HP, Sorbonne Universite, Paris, France
| | - Denis Schwartz
- Institut du Cerveau et de la Moelle Epiniere, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Universite, Ecole Normale Superieure, ENS, Centre MEG-EEG, Paris, France
| | - Olivier Colliot
- Institut du Cerveau et de la Moelle Epiniere, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Universite, Paris, France
- Inria Paris, Aramis Project Team, Paris, France
| | - Fabrizio De Vico Fallani
- Institut du Cerveau et de la Moelle Epiniere, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Universite, Paris, France
- Inria Paris, Aramis Project Team, Paris, France
| |
Collapse
|
22
|
Verhelst H, Vander Linden C, De Pauw T, Vingerhoets G, Caeyenberghs K. Impaired rich club and increased local connectivity in children with traumatic brain injury: Local support for the rich? Hum Brain Mapp 2018. [PMID: 29528158 DOI: 10.1002/hbm.24041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent evidence has shown the presence of a "rich club" in the brain, which constitutes a core network of highly interconnected and spatially distributed brain regions, important for high-order cognitive processes. This study aimed to map the rich club organization in 17 young patients with moderate to severe TBI (15.71 ± 1.75 years) in the chronic stage of recovery and 17 age- and gender-matched controls. Probabilistic tractography was performed on diffusion weighted imaging data to construct the edges of the structural connectomes using number of streamlines as edge weight. In addition, the whole-brain network was divided into a rich club network, a local network and a feeder network connecting the latter two. Functional outcome was measured with a parent questionnaire for executive functioning. Our results revealed a significantly decreased rich club organization (p values < .05) and impaired executive functioning (p < .001) in young patients with TBI compared with controls. Specifically, we observed reduced density values in all three subnetworks (p values < .005) and a reduced mean strength in the rich club network (p = .013) together with an increased mean strength in the local network (p = .002) in patients with TBI. This study provides new insights into the nature of TBI-induced brain network alterations and supports the hypothesis that the local subnetwork tries to compensate for the biologically costly subnetwork of rich club nodes after TBI.
Collapse
Affiliation(s)
- Helena Verhelst
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, University of Ghent, Ghent, Belgium
| | - Catharine Vander Linden
- Child Rehabilitation Center, Department of Physical Medicine and Rehabilitation, Ghent University Hospital, Ghent, Belgium
| | - Toon De Pauw
- Department of Electronics and ICT, Faculty of Industrial Sciences and Technology, Odisee University College, Belgium
| | - Guy Vingerhoets
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, University of Ghent, Ghent, Belgium
| | - Karen Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|