1
|
Agarwal N, Fan A, Huang X, Dehkharghani S, van der Kolk A. ISMRM Clinical Focus Meeting 2023: "Imaging the Fire in the Brain". J Magn Reson Imaging 2025; 61:1580-1596. [PMID: 39193867 PMCID: PMC11896938 DOI: 10.1002/jmri.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
Set during the Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), the "Clinical Focus Meeting" (CFM) aims to bridge the gap between innovative magnetic resonance imaging (MRI) scientific research and daily patient care. This initiative is dedicated to maximizing the impact of MRI technology on healthcare outcomes for patients. At the 2023 Annual Meeting, clinicians and scientists from across the globe were invited to discuss neuroinflammation from various angles (entitled "Imaging the Fire in the Brain"). Topics ranged from fundamental mechanisms and biomarkers of neuroinflammation to the role of different contrast mechanisms, including both proton and non-proton techniques, in brain tumors, autoimmune disorders, and pediatric neuroinflammatory diseases. Discussions also delved into how systemic inflammation can trigger neuroinflammation and the role of the gut-brain axis in causing brain inflammation. Neuroinflammation arises from various external and internal factors and serves as a vital mechanism to mitigate tissue damage and provide neuroprotection. Nonetheless, excessive neuroinflammatory responses can lead to significant tissue injury and subsequent neurological impairments. Prolonged neuroinflammation can result in cellular apoptosis and neurodegeneration, posing severe consequences. MRI can be used to visualize these consequences, by detecting blood-brain barrier damage, characterizing brain lesions, quantifying edema, and identifying specific metabolites. It also facilitates monitoring of chronic changes in both the brain and spinal cord over time, potentially leading to better patient outcomes. This paper represents a summary of the 2023 CFM, and is intended to guide the enthusiastic MR user to several key and novel sequences that MRI offers to image pathophysiologic processes underlying acute and chronic neuroinflammation. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology UnitIRCCS Scientific Institute E. MedeaBosisio PariniLeccoItaly
| | - Audrey Fan
- Department of NeurologyUniversity of California Davis HealthSacramentoCaliforniaUSA
- Department of Biomedical EngineeringUniversity of California DavisDavisCaliforniaUSA
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Seena Dehkharghani
- Department of RadiologyAlbert Einstein College of Medicine‐Montefiore HealthNew YorkNew YorkUSA
| | | |
Collapse
|
2
|
Müller-Miny L, Lünemann J. Molekulare Biomarker bei neuroinflammatorischen
Erkrankungen. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:468-481. [PMID: 39510124 DOI: 10.1055/a-2335-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
3
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
4
|
Yu S, Zhao Y, Luo Q, Gu B, Wang X, Cheng J, Wang Z, Liu D, Ho RCM, Ho CSH. Early life stress enhances the susceptibility to depression and interferes with neuroplasticity in the hippocampus of adolescent mice via regulating miR-34c-5p/SYT1 axis. J Psychiatr Res 2024; 170:262-276. [PMID: 38181539 DOI: 10.1016/j.jpsychires.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Early life events are major risk factors for the onset of depression and have long-term effects on the neurobiological changes and behavioral development of rodents. However, little is known about the specific mechanisms of early life adversity in the susceptibility to subsequent stress exposure in adolescence. This study characterized the effect of maternal separation (MS), an animal model of early life adversity, on the behavioral responses to restraint stress in mice during adolescence and investigated the molecular mechanism underlying behavioral vulnerability to chronic stress induced by MS. Our results showed that MS exposure could further reinforce the depressive vulnerability to restraint stress in adolescent mice. In addition, miR-34c-5p expression was obviously up-regulated in the hippocampi of MS mice at postnatal day (P) 14 and P42. Further, synaptotagmin-1 (SYT1) was deemed as a target gene candidate of miR-34c-5p on the basis of dual luciferase assay. It was found that the downregulation of miR-34c-5p expression in the hippocampi of MS mice could ameliorate dysfunction of synaptic plasticity by targeting molecule SYT1, effects which were accompanied by alleviation of depressive and anxious behaviors in these mice. The results demonstrated that the miR-34c-5p/SYT1 pathway was involved in the susceptibility to depression induced by MS via regulating neuroplasticity in the hippocampi of mice.
Collapse
Affiliation(s)
- Shuwen Yu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Qian Luo
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Bing Gu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xixi Wang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jiao Cheng
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Roger C M Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Schneider R, Brand-Arzamendi K, Reynold Lim T, Lee LE, Guenette M, Suthiphosuwan S, Bharatha A, Oh J. Plasma glial fibrillary acidic protein levels correlate with paramagnetic rim lesions in people with radiologically isolated syndrome. Mult Scler 2024; 30:156-165. [PMID: 38145319 DOI: 10.1177/13524585231219131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND There are no specific, evidence-based recommendations for the management of individuals with radiologically isolated syndrome. Imaging and blood biomarkers may have prognostic utility. OBJECTIVE To determine whether plasma neurofilament light protein (NfL) or glial fibrillary acidic protein (GFAP) levels in people with radiologically isolated syndrome correlate with imaging measures that have been shown to be associated with negative clinical outcomes in people with multiple sclerosis. METHODS Cross-sectional analysis of people with radiologically isolated syndrome. Participants underwent magnetic resonance imaging (MRI) of the brain and cervical spinal cord, and plasma was collected. Plasma NfL and GFAP levels were measured with a single-molecule array, and correlations with MRI measures were assessed, including the number of: T1-black holes, white-matter lesions demonstrating the central vein sign, paramagnetic rim lesions, cervical spinal cord lesions and infratentorial lesions. RESULTS Plasma GFAP levels, but not NfL levels, showed correlations with the number of T1-black holes, white matter lesions demonstrating the central vein sign and paramagnetic rim lesions (all p < 0.05). CONCLUSION We found correlations between plasma GFAP levels and imaging measures associated with poor clinical outcomes and chronic inflammation in individuals with radiologically isolated syndrome. Plasma GFAP may have prognostic utility in clinical trials and clinical practice.
Collapse
Affiliation(s)
- Raphael Schneider
- Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute and Keenan Research Centre for Biomedical Science, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- BARLO MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Koroboshka Brand-Arzamendi
- Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Timothy Reynold Lim
- Department of Radiology, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Lisa Eunyoung Lee
- Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Melanie Guenette
- Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Suradech Suthiphosuwan
- Department of Radiology, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Aditya Bharatha
- Department of Radiology, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Jiwon Oh
- Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute and Keenan Research Centre for Biomedical Science, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Casanova I, Domínguez-Mozo MI, De Torres L, Aladro-Benito Y, García-Martínez Á, Gómez P, Abellán S, De Antonio E, Álvarez-Lafuente R. MicroRNAs Associated with Disability Progression and Clinical Activity in Multiple Sclerosis Patients Treated with Glatiramer Acetate. Biomedicines 2023; 11:2760. [PMID: 37893133 PMCID: PMC10604830 DOI: 10.3390/biomedicines11102760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
MicroRNAs (miRNAs) are promising biomarkers in multiple sclerosis (MS). This study aims to investigate the association between a preselected list of miRNAs in serum with therapeutic response to Glatiramer Acetate (GA) and with the clinical evolution of a cohort of relapsing-remitting MS (RRMS) patients. We conducted a longitudinal study for 5 years, with cut-off points at 2 and 5 years, including 26 RRMS patients treated with GA for at least 6 months. A total of 6 miRNAs from a previous study (miR-9.5p, miR-126.3p, mir-138.5p, miR-146a.5p, miR-200c.3p, and miR-223.3p) were selected for this analysis. Clinical relapse, MRI activity, confirmed disability progression (CDP), alone or in combination (No Evidence of Disease Activity-3) (NEDA-3), and Expanded Disability Status Scale (EDSS), were studied. After multivariate regression analysis, miR-9.5p was associated with EDSS progression at 2 years (β = 0.23; 95% CI: 0.04-0.46; p = 0.047). Besides this, mean miR-138.5p values were lower in those patients with NEDA-3 at 2 years (p = 0.033), and miR-146a.5p and miR-126.3p were higher in patients with CDP progression at 2 years (p = 0.044 and p = 0.05 respectively. These results reinforce the use of microRNAs as potential biomarkers in multiple sclerosis. We will need more studies to corroborate these data and to better understand the role of microRNAs in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Ignacio Casanova
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
- School of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - María I. Domínguez-Mozo
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (Á.G.-M.); (R.Á.-L.)
| | - Laura De Torres
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
| | | | - Ángel García-Martínez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (Á.G.-M.); (R.Á.-L.)
| | - Patricia Gómez
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
- School of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Sara Abellán
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
| | - Esther De Antonio
- Department of Radiology, Torrejon University Hospital, 28850 Madrid, Spain;
| | - Roberto Álvarez-Lafuente
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (Á.G.-M.); (R.Á.-L.)
| |
Collapse
|
7
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
8
|
Maciak K, Dziedzic A, Saluk J. Remyelination in multiple sclerosis from the miRNA perspective. Front Mol Neurosci 2023; 16:1199313. [PMID: 37333618 PMCID: PMC10270307 DOI: 10.3389/fnmol.2023.1199313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Remyelination relies on the repair of damaged myelin sheaths, involving microglia cells, oligodendrocyte precursor cells (OPCs), and mature oligodendrocytes. This process drives the pathophysiology of autoimmune chronic disease of the central nervous system (CNS), multiple sclerosis (MS), leading to nerve cell damage and progressive neurodegeneration. Stimulating the reconstruction of damaged myelin sheaths is one of the goals in terms of delaying the progression of MS symptoms and preventing neuronal damage. Short, noncoding RNA molecules, microRNAs (miRNAs), responsible for regulating gene expression, are believed to play a crucial role in the remyelination process. For example, studies showed that miR-223 promotes efficient activation and phagocytosis of myelin debris by microglia, which is necessary for the initiation of remyelination. Meanwhile, miR-124 promotes the return of activated microglia to the quiescent state, while miR-204 and miR-219 promote the differentiation of mature oligodendrocytes. Furthermore, miR-138, miR-145, and miR-338 have been shown to be involved in the synthesis and assembly of myelin proteins. Various delivery systems, including extracellular vesicles, hold promise as an efficient and non-invasive way for providing miRNAs to stimulate remyelination. This article summarizes the biology of remyelination as well as current challenges and strategies for miRNA molecules in potential diagnostic and therapeutic applications.
Collapse
|
9
|
Gonzalez-Martinez A, Patel R, Healy BC, Lokhande H, Paul A, Saxena S, Polgar-Turcsanyi M, Weiner HL, Chitnis T. miRNA 548a-3p as biomarker of NEDA-3 at 2 years in multiple sclerosis patients treated with fingolimod. J Neuroinflammation 2023; 20:131. [PMID: 37254147 DOI: 10.1186/s12974-023-02811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a disabling autoimmune demyelinating disorder affecting young people and causing significant disability. In the last decade, different microRNA (miRNA) expression patterns have been associated to several treatment response therapies such as interferon and glatiramer acetate. Nowadays, there is increasing interest in the potential role of miRNA as treatment response biomarkers to the most recent oral and intravenous treatments. In this study, we aimed to evaluate serum miRNAs as biomarkers of No Evidence of Disease Activity (NEDA-3) at 2 years in patients with relapsing remitting MS (RRMS) treated with fingolimod. MAIN BODY A Discovery cohort of 31 RRMS patients treated with fingolimod were identified from the CLIMB study and classified as No Evidence of Disease Activity (NEDA-3) or Evidence of Disease Activity (EDA-3) after 2 years on treatment. Levels of miRNA expression were measured at 6 months using human serum miRNA panels and compared in EDA-3 and NEDA-3 groups using the Wilcoxon rank sum test. A set of differentially expressed miRNA was further validated in an independent cohort of 22 fingolimod-treated patients. We found that 548a-3p serum levels were higher levels in fingolimod-treated patients classified as NEDA-3, compared to the EDA-3 group in both the Discovery (n = 31; p = 0.04) and Validation (n = 22; p = 0.03) cohorts 6 months after treatment initiation; miR-548a-3p provided an AUC of 0.882 discriminating patients with NEDA-3 at 2 years in the Validation cohort. CONCLUSION Our results show differences in miR-548a-3p expression at 6 months after fingolimod start in patients with MS with NEDA-3 at 2 years. These results provide class III evidence of the use of miR-548a-3p as biomarker of NEDA-3 in patients with fingolimod.
Collapse
Affiliation(s)
- Alicia Gonzalez-Martinez
- Department of Neurology, Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases (ARCND), Brigham and Women's Hospital, 60 Fenwood Road, 9002K, Boston, MA, 02115, USA
| | - Rohit Patel
- Department of Neurology, Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases (ARCND), Brigham and Women's Hospital, 60 Fenwood Road, 9002K, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Brian C Healy
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurology, Brigham MS Center, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Hrishikesh Lokhande
- Department of Neurology, Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases (ARCND), Brigham and Women's Hospital, 60 Fenwood Road, 9002K, Boston, MA, 02115, USA
| | - Anu Paul
- Department of Neurology, Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases (ARCND), Brigham and Women's Hospital, 60 Fenwood Road, 9002K, Boston, MA, 02115, USA
| | - Shrishti Saxena
- Department of Neurology, Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases (ARCND), Brigham and Women's Hospital, 60 Fenwood Road, 9002K, Boston, MA, 02115, USA
| | - Mariann Polgar-Turcsanyi
- Department of Neurology, Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases (ARCND), Brigham and Women's Hospital, 60 Fenwood Road, 9002K, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Howard L Weiner
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurology, Brigham MS Center, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Tanuja Chitnis
- Department of Neurology, Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases (ARCND), Brigham and Women's Hospital, 60 Fenwood Road, 9002K, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurology, Brigham MS Center, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Pozzilli C, Pugliatti M, Vermersch P, Grigoriadis N, Alkhawajah M, Airas L, Oreja-Guevara C. Diagnosis and treatment of progressive multiple sclerosis: A position paper. Eur J Neurol 2023; 30:9-21. [PMID: 36209464 PMCID: PMC10092602 DOI: 10.1111/ene.15593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis (MS) is an unpredictable disease characterised by a highly variable disease onset and clinical course. Three main clinical phenotypes have been described. However, distinguishing between the two progressive forms of MS can be challenging for clinicians. This article examines how the diagnostic definitions of progressive MS impact clinical research, the design of clinical trials and, ultimately, treatment decisions. METHODS We carried out an extensive review of the literature highlighting differences in the definition of progressive forms of MS, and the importance of assessing the extent of the ongoing inflammatory component in MS when making treatment decisions. RESULTS Inconsistent results in phase III clinical studies of treatments for progressive MS, may be attributable to differences in patient characteristics (e.g., age, clinical and radiological activity at baseline) and endpoint definitions. In both primary and secondary progressive MS, patients who are younger and have more active disease will derive the greatest benefit from the available treatments. CONCLUSIONS We recommend making treatment decisions based on the individual patient's pattern of disease progression, as well as functional, clinical and imaging parameters, rather than on their clinical phenotype. Because the definition of progressive MS differs across clinical studies, careful selection of eligibility criteria and study endpoints is needed for future studies in patients with progressive MS.
Collapse
Affiliation(s)
- Carlo Pozzilli
- Multiple Sclerosis Center, Sant'Andrea Hospital, Rome, Italy.,Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Interdepartmental Center of Research for Multiple Sclerosis and Neuro-inflammatory and Degenerative Diseases, University of Ferrara, Ferrara, Italy
| | - Patrick Vermersch
- Inserm U1172 LilNCog, CHU Lille, FHU Precise, University of Lille, Lille, France
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mona Alkhawajah
- Section of Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, College of Medicine, Al Faisal University, Riyadh, Kingdom of Saudi Arabia
| | - Laura Airas
- Division of Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter of Turku University Hospital, Turku, Finland
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clinico San Carlos, IdISSC, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
11
|
Muñoz-San Martín M, Gómez I, Quiroga-Varela A, Gonzalez-del Río M, Robles Cedeño R, Álvarez G, Buxó M, Miguela A, Villar LM, Castillo-Villalba J, Casanova B, Quintana E, Ramió-Torrentà L. miRNA Signature in CSF From Patients With Primary Progressive Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200069. [PMID: 36724195 PMCID: PMC9743264 DOI: 10.1212/nxi.0000000000200069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Primary progressive multiple sclerosis (PPMS) displays a highly variable disease progression with a characteristic accumulation of disability, what makes difficult its diagnosis and efficient treatment. The identification of microRNAs (miRNAs)-based signature for the early detection in biological fluids could reveal promising biomarkers to provide new insights into defining MS clinical subtypes and potential therapeutic strategies. The objective of this cross-sectional study was to describe PPMS miRNA profiles in CSF and serum samples compared with other neurologic disease individuals (OND) and relapsing-remitting MS (RRMS). METHODS First, a screening stage analyzing multiple miRNAs in few samples using OpenArray plates was performed. Second, individual quantitative polymerase chain reactions (qPCRs) were used to validate specific miRNAs in a greater number of samples. RESULTS A specific profile of dysregulated circulating miRNAs (let-7b-5p and miR-143-3p) was found downregulated in PPMS CSF samples compared with OND. In addition, in serum samples, miR-20a-5p and miR-320b were dysregulated in PPMS against RRMS and OND, miR-26a-5p and miR-485-3p were downregulated in PPMS vs RRMS, and miR-142-5p was upregulated in RRMS compared with OND. DISCUSSION We described a 2-miRNA signature in CSF of PPMS individuals and several dysregulated miRNAs in serum from patients with MS, which could be considered valuable candidates to be further studied to unravel their actual role in MS. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that specific miRNA profiles accurately distinguish PPMS from RRMS and other neurologic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ester Quintana
- From the Neuroinflammation and Neurodegeneration Group (M.M.-S.M., I.G., A.Q.-V., M.G.R., R.R.C., G.Á., A.M., E.Q., L.R.-T.), Girona Biomedical Research Institute (IDIBGI), Salt, Spain; CERCA Programme/Generalitat de Catalunya; Neurology Department (R.R.C., G.Á., L.R.-T.), Girona Neuroimmunology and Multiple Sclerosis Unit, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Red Española de Esclerosis Múltiple (REEM) (R.R.C., E.Q., L.R.-T.) Medical Sciences Department (R.R.C., E.Q., L.R.-T.), University of Girona (UdG), Spain; Girona Biomedical Research Institute (IDIBGI) (M.B.), Spain; Immunology Department (L.M.V.), Hospital Ramón y Cajal, Madrid, Spain; IRYCIS; and Unitat de Neuroimmunologia, Hospital Universitari i Politècnic La Fe.València (J.C.-V., B.C.).
| | - Lluís Ramió-Torrentà
- From the Neuroinflammation and Neurodegeneration Group (M.M.-S.M., I.G., A.Q.-V., M.G.R., R.R.C., G.Á., A.M., E.Q., L.R.-T.), Girona Biomedical Research Institute (IDIBGI), Salt, Spain; CERCA Programme/Generalitat de Catalunya; Neurology Department (R.R.C., G.Á., L.R.-T.), Girona Neuroimmunology and Multiple Sclerosis Unit, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Red Española de Esclerosis Múltiple (REEM) (R.R.C., E.Q., L.R.-T.) Medical Sciences Department (R.R.C., E.Q., L.R.-T.), University of Girona (UdG), Spain; Girona Biomedical Research Institute (IDIBGI) (M.B.), Spain; Immunology Department (L.M.V.), Hospital Ramón y Cajal, Madrid, Spain; IRYCIS; and Unitat de Neuroimmunologia, Hospital Universitari i Politècnic La Fe.València (J.C.-V., B.C.).
| |
Collapse
|
12
|
Gentile MT, Muto G, Lus G, Lövblad KO, Svenningsen ÅF, Colucci-D’Amato L. Angiogenesis and Multiple Sclerosis Pathogenesis: A Glance at New Pharmaceutical Approaches. J Clin Med 2022; 11:jcm11164643. [PMID: 36012883 PMCID: PMC9410525 DOI: 10.3390/jcm11164643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis is a chronic disease of the central nervous system characterized by demyelination and destruction of axons. The most common form of the disease is the relapsing-remitting multiple sclerosis in which episodic attacks with typical neurological symptoms are followed by episodes of partial or complete recovery. One of the underestimated factors that contribute to the pathogenesis of multiple sclerosis is excessive angiogenesis. Here, we review the role of angiogenesis in the onset and in the development of the disease, the molecular mechanisms underlying angiogenesis, the current therapeutic approaches, and the potential therapeutic strategies with a look at natural compounds as multi-target drugs with both neuroprotective and anti-angiogenic properties.
Collapse
Affiliation(s)
- Maria Teresa Gentile
- Laboratory of Cellular and Molecular Neuropathology, Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Gianluca Muto
- Division of Diagnostic and Interventional Neuroradiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Giacomo Lus
- Multiple Sclerosis Center, II Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Karl-Olof Lövblad
- Division of Diagnostic and Interventional Neuroradiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Åsa Fex Svenningsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Luca Colucci-D’Amato
- Laboratory of Cellular and Molecular Neuropathology, Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-366-9763554
| |
Collapse
|
13
|
Dominguez-Mozo MI, Casanova I, De Torres L, Aladro-Benito Y, Perez-Perez S, Garcia-Martínez A, Gomez P, Abellan S, De Antonio E, Lopez-De-Silanes C, Alvarez-Lafuente R. microRNA Expression and Its Association With Disability and Brain Atrophy in Multiple Sclerosis Patients Treated With Glatiramer Acetate. Front Immunol 2022; 13:904683. [PMID: 35774792 PMCID: PMC9239306 DOI: 10.3389/fimmu.2022.904683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background MicroRNAs are small non-coding RNA that regulate gene expression at a post-transcriptional level affecting several cellular processes including inflammation, neurodegeneration and remyelination. Different patterns of miRNAs expression have been demonstrated in multiple sclerosis compared to controls, as well as in different courses of the disease. For these reason they have been postulated as promising biomarkers candidates in multiple sclerosis. Objective to correlate serum microRNAs profile expression with disability, cognitive functioning and brain volume in patients with remitting-relapsing multiple sclerosis. Methods cross-sectional study in relapsing-remitting multiple sclerosis patients treated with glatiramer acetate. Disability was measured with Expanded Disability Status Scale (EDSS) and cognitive function was studied with Symbol Digit Modalities Test (SDMT). Brain volume was analyzed with automatic software NeuroQuant®. Results We found an association between miR.146a.5p (rs:0.434, p=0.03) and miR.9.5p (rs:0.516, p=0.028) with EDSS; and miR-146a.5p (rs:-0.476, p=0.016) and miR-126.3p (rs:-0.528, p=0.007) with SDMT. Regarding to the brain volume, miR.9.5p correlated with thalamus (rs:-0.545, p=0.036); miR.200c.3p with pallidum (rs:-0.68, p=0.002) and cerebellum (rs:-0.472, p=0.048); miR-138.5p with amygdala (rs:0.73, p=0.016) and pallidum (rs:0.64, p=0.048); and miR-223.3p with caudate (rs:0.46, p=0.04). Conclusions These data support the hypothesis of microRNA as potential biomarkers in this disease. More studies are needed to validate these results and to better understand the role of microRNAs in the pathogenesis, monitoring and therapeutic response of multiple sclerosis.
Collapse
Affiliation(s)
- María I. Dominguez-Mozo
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ignacio Casanova
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Laura De Torres
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
| | | | - Silvia Perez-Perez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Angel Garcia-Martínez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Patricia Gomez
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Sara Abellan
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
| | - Esther De Antonio
- Department of Radiology, Hospital Universitario de Torrejón, Madrid, Spain
| | - Carlos Lopez-De-Silanes
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Roberto Alvarez-Lafuente
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is highly heterogenic disorder with respect to clinical course, diagnosis, and treatment response. There is an urgent need to search for simply and reliable fluid body biomarker which would assist the diagnosis and prediction of clinical and treatment prognosis. RECENT FINDINGS 'Traditional' MS biomarkers, with exception of cerebrospinal fluid oligoclonal bands, still are having limited clinical value. Therefore, there is growing interest in novel molecules and ingredients. The most robust results have been generated with regard to cerebrospinal fluid and serum levels of neurofilament light chains (NfL). However, there are still some limitations related to specificity of NfL which delays its use in everyday practice. We present a new approach to search for biomarkers involving extracellular RNA, particularly microRNA (miRNA), and small extracellular vesicles. MiRNA represents an important molecular mechanism influencing gene expression, including those involved in MS pathogenesis and extracellular vesicles transfer multiple cargo, including myelin molecules from parental cells of central nervous system to the long-distance targets. SUMMARY MiRNAs which control gene expression in cells involved in autoimmune processes in MS as well as extracellular vesicles transferring myelin content might generate a new promising categories of biomarkers of MS.
Collapse
|
15
|
The role of non-coding RNAs in neuroinflammatory process in multiple sclerosis. Mol Neurobiol 2022; 59:4651-4668. [PMID: 35589919 DOI: 10.1007/s12035-022-02854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system chronic neuroinflammatory disease followed by neurodegeneration. The diagnosis is based on clinical presentation, cerebrospinal fluid testing and magnetic resonance imagining. There is still a lack of a diagnostic blood-based biomarker for MS. Due to the cost and difficulty of diagnosis, new and more easily accessible methods are being sought. New biomarkers should also allow for early diagnosis. Additionally, the treatment of MS should lead to the personalization of the therapy. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as well as their target genes participate in pathophysiology processes in MS. Although the detailed mechanism of action of non-coding RNAs (ncRNAs, including miRNAs and lncRNAs) on neuroinflammation in MS has not been fully explained, several studies were conducted aiming to analyse their impact in MS. In this article, we review up-to-date knowledge on the latest research concerning the ncRNAs in MS and evaluate their role in neuroinflammation. We also point out the most promising ncRNAs which may be promising in MS as diagnostic and prognostic biomarkers.
Collapse
|
16
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
17
|
Zeng T, Zhang S, He Y, Liu Z, Cheng Q. MiR-361-5p promotes oxygen-glucose deprivation/re-oxygenation induced neuronal injury by negatively regulating SQSTM1 in vitro. Metab Brain Dis 2021; 36:2359-2368. [PMID: 34581931 DOI: 10.1007/s11011-021-00845-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
It has been reported that microRNAs (miRNAs) play essential roles in cerebral ischemia and reperfusion (I/R) injury. This study aimed to explore the role of miR-361-5p in oxygen-glucose deprivation/re-oxygenation-induced neuronal injury in vitro. Cerebral I/R injury cell model was established by using PC12 cells exposed to oxygen-glucose deprivation/re-oxygenation (OGD/R). The expression of miR-361-5p and SQSTM1 was evaluated by qRT-PCR or western blot. Neuronal apoptosis was detected by flow cytometry, and cell viability was assessed by CCK-8 assay. The effects of miR-361-5p on the release of LDH and the levels of MDA, SOD, and GSH-Px were investigated by respective detection kits. Dual-luciferase reporter assay and RIP assay were performed to determine the interaction between miR-361-5p and SQSTM1. Rescue experiments were performed to evaluate the function of miR-361-5p and SQSTM1. MiR-361-5p was significantly upregulated, and SQSTM1 was significantly downregulated in OGD/R-stimulated PC12 cells. MiR-361-5p could directly interact with SQSTM1 and negatively regulated it. Inhibition of miR-361-5p efficiently inhibited OGD/R-induced apoptosis and attenuated OGD/R-induced growth defect in PC12 cells. In addition, SQSTM1 overexpression partially attenuates the apoptosis and promoted the viability of OGD/R-treated PC12 cells, which were aggravated by miR-361-5p mimics. Our study demonstrated that miR-361-5p promotes OGD/R-induced neuronal injury via regulating SQSTM1 in PC12 cells.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China.
| | - Sai Zhang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Yan He
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Zhenxing Liu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Qiusheng Cheng
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Hurtado Rúa SM, Kaunzner UW, Pandya S, Sweeney E, Tozlu C, Kuceyeski A, Nguyen TD, Gauthier SA. Lesion features on magnetic resonance imaging discriminate multiple sclerosis patients. Eur J Neurol 2021; 29:237-246. [PMID: 34402140 DOI: 10.1111/ene.15067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) provides insight into various pathological processes in multiple sclerosis (MS) and may provide insight into patterns of damage among patients. OBJECTIVE We sought to determine if MRI features have clinical discriminative power among a cohort of MS patients. METHODS Ninety-six relapsing remitting and seven progressive MS patients underwent myelin water fraction (MWF) imaging and conventional MRI for cortical thickness and thalamic volume. Patients were clustered based on lesion level MRI features using an agglomerative hierarchical clustering algorithm based on principal component analysis (PCA). RESULTS One hundred and three patients with 1689 MS lesions were analyzed. PCA on MRI features demonstrated that lesion MWF and volume distributions (characterized by 25th, 50th, and 75th percentiles) accounted for 87% of the total variability based on four principal components. The best hierarchical cluster confirmed two distinct patient clusters. The clustering features in order of importance were lesion median MWF, MWF 25th, MWF 75th, volume 75th percentiles, median individual lesion volume, total lesion volume, cortical thickness, and thalamic volume (all p values <0.01368). The clusters were associated with patient Expanded Disability Status Scale (EDSS) (n = 103, p = 0.0338) at baseline and at 5 years (n = 72, p = 0.0337). CONCLUSIONS These results demonstrate that individual MRI features can identify two patient clusters driven by lesion-based values, and our unique approach is an analysis blinded to clinical variables. The two distinct clusters exhibit MWF differences, most likely representing individual remyelination capabilities among different patient groups. These findings support the concept of patient-specific pathophysiological processes and may guide future therapeutic approaches.
Collapse
Affiliation(s)
- Sandra M Hurtado Rúa
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, USA
| | - Ulrike W Kaunzner
- Department of Neurology, Weill Cornell Medicine, New York City, New York, USA
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Medicine, New York City, New York, USA
| | - Elizabeth Sweeney
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, New York, USA
| | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York City, New York, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York City, New York, USA.,Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York City, New York, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York City, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York City, New York, USA.,Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York City, New York, USA
| |
Collapse
|
19
|
An Insight into the microRNAs Associated with Arteriovenous and Cavernous Malformations of the Brain. Cells 2021; 10:cells10061373. [PMID: 34199498 PMCID: PMC8227573 DOI: 10.3390/cells10061373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Brain arteriovenous malformations (BAVMs) and cerebral cavernous malformations (CCMs) are rare developmental anomalies of the intracranial vasculature, with an irregular tendency to rupture, and as of yet incompletely deciphered pathophysiology. Because of their variety in location, morphology, and size, as well as unpredictable natural history, they represent a management challenge. MicroRNAs (miRNAs) are strands of non-coding RNA of around 20 nucleotides that are able to modulate the expression of target genes by binding completely or partially to their respective complementary sequences. Recent breakthroughs have been made on elucidating their contribution to BAVM and CCM occurrence, growth, and evolution; however, there are still countless gaps in our understanding of the mechanisms involved. Methods: We have searched the Medline (PubMed; PubMed Central) database for pertinent articles on miRNAs and their putative implications in BAVMs and CCMs. To this purpose, we employed various permutations of the terms and idioms: ‘arteriovenous malformation’, ‘AVM’, and ‘BAVM’, or ‘cavernous malformation’, ‘cavernoma’, and ‘cavernous angioma’ on the one hand; and ‘microRNA’, ‘miRNA’, and ‘miR’ on the other. Using cross-reference search; we then investigated additional articles concerning the individual miRNAs identified in other cerebral diseases. Results: Seven miRNAs were discovered to play a role in BAVMs, three of which were downregulated (miR-18a, miR-137, and miR-195*) and four upregulated (miR-7-5p, miR-199a-5p, miR-200b-3p, and let-7b-3p). Similarly, eight miRNAs were identified in CCM in humans and experimental animal models, two being upregulated (miR-27a and mmu-miR-3472a), and six downregulated (miR-125a, miR-361-5p, miR-370-3p, miR-181a-2-3p, miR-95-3p, and let-7b-3p). Conclusions: The following literature review endeavored to address the recent discoveries related to the various implications of miRNAs in the formation and growth of BAVMs and CCMs. Additionally, by presenting other cerebral pathologies correlated with these miRNAs, it aimed to emphasize the potential directions of upcoming research and biological therapies.
Collapse
|
20
|
Deeb O, Nabulsi M. Exploring Multiple Sclerosis (MS) and Amyotrophic Lateral Scler osis (ALS) as Neurodegenerative Diseases and their Treatments: A Review Study. Curr Top Med Chem 2021; 20:2391-2403. [PMID: 32972341 DOI: 10.2174/1568026620666200924114827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Growing concern about neurodegenerative diseases is becoming a global issue. It is estimated that not only will their prevalence increase but also morbidity and health burden will be concerning. Scientists, researchers and clinicians share the responsibility of raising the awareness and knowledge about the restricting and handicapping health restrains related to these diseases. Multiple Sclerosis (MS), as one of the prevalent autoimmune diseases, is characterized by abnormal regulation of the immune system that periodically attacks parts of the nervous system; brain and spinal cord. Symptoms and impairments include weakness, numbness, visual problems, tingling pain that are quietly variable among patients. Amyotrophic Lateral Sclerosis (ALS) is another neurodegenerative disease that is characterized by the degeneration of motor neurons in the brain and spinal cord. Unlike MS, symptoms begin with muscle weakness and progress to affect speech, swallowing and finally breathing. Despite the major differences between MS and ALS, misdiagnosis is still influencing disease prognosis and patient's quality of life. Diagnosis depends on obtaining a careful history and neurological examination as well as the use of Magnetic Resonance Imaging (MRI), which are considered challenging and depend on the current disease status in individuals. Fortunately, a myriad of treatments is available now for MS. Most of the cases are steroid responsive. Disease modifying therapy is amongst the most important set of treatments. In ALS, few medications that slow down disease progression are present. The aim of this paper is to summarize what has been globally known and practiced about MS and ALS, as they are currently classified as important growing key players among autoimmune diseases. In terms of treatments, it is concluded that special efforts and input should be directed towards repurposing of older drugs and on stem cells trials. As for ALS, it is highlighted that supportive measurements and supplementary treatments remain essentially needed for ALS patients and their families. On the other hand, it is noteworthy to clarify that the patient-doctor communication is relatively a cornerstone in selecting the best treatment for each MS patient.
Collapse
Affiliation(s)
- Omar Deeb
- Faculty of Pharmacy, Al-Quds University, P.O. Box 20002 Jerusalem, Palestinian Territory, Occupied
| | - Maisa Nabulsi
- Faculty of Pharmacy, Al-Quds University, P.O. Box 20002 Jerusalem, Palestinian Territory, Occupied
| |
Collapse
|
21
|
Zmyslowska A, Stanczak M, Nowicka Z, Waszczykowska A, Baranska D, Fendler W, Borowiec M, Młynarski W. Serum microRNA as indicators of Wolfram syndrome's progression in neuroimaging studies. BMJ Open Diabetes Res Care 2020; 8:8/2/e001379. [PMID: 33132210 PMCID: PMC7607591 DOI: 10.1136/bmjdrc-2020-001379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Patients with the ultra-rare Wolfram syndrome (WFS) develop insulin-dependent diabetes and progressive neurodegeneration. The aim of the study was to quantify microRNAs (miRNAs) in sera from patients with WFS, correlate their expression with neurological imaging over time and compare miRNA levels with those observed in patients with type 1 diabetes mellitus (T1DM). RESEARCH DESIGN AND METHODS We quantified miRNA expression (Qiagen, Germany) in two groups of patients: with WFS at study entry (n=14) and after 2 years of follow-up and in 15 glycated hemoglobin-matched (p=0.72) patients with T1DM. RESULTS We observed dynamic changes in the expression of multiple miRNAs in patients with WFS parallel to disease progression and in comparison to the T1DM patients group. Among miRNAs that differed between baseline and follow-up WFS samples, the level of 5 increased over time (miR-375, miR-30d-5p, miR-30e-30, miR-145-5p and miR-193a-5p) and was inversely correlated with macular average thickness, while the expression of 2 (let-7g-5p and miR-22-3p) decreased and was directly correlated with neuroimaging indicators of neurodegeneration. CONCLUSIONS Our findings show for the first time that serum miRNAs can be used as easily accessible indicators of disease progression in patients with WFS, potentially facilitating clinical trials on mitigating neurodegeneration.
Collapse
Affiliation(s)
| | - Marcin Stanczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Arleta Waszczykowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, Lodz, Poland
| | - Dobromila Baranska
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Sell SL, Widen SG, Prough DS, Hellmich HL. Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases. PLoS One 2020; 15:e0234185. [PMID: 32502186 PMCID: PMC7274418 DOI: 10.1371/journal.pone.0234185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Early, ideally pre-symptomatic, recognition of common diseases (e.g., heart disease, cancer, diabetes, Alzheimer’s disease) facilitates early treatment or lifestyle modifications, such as diet and exercise. Sensitive, specific identification of diseases using blood samples would facilitate early recognition. We explored the potential of disease identification in high dimensional blood microRNA (miRNA) datasets using a powerful data reduction method: principal component analysis (PCA). Using Qlucore Omics Explorer (QOE), a dynamic, interactive visualization-guided bioinformatics program with a built-in statistical platform, we analyzed publicly available blood miRNA datasets from the Gene Expression Omnibus (GEO) maintained at the National Center for Biotechnology Information at the National Institutes of Health (NIH). The miRNA expression profiles were generated from real time PCR arrays, microarrays or next generation sequencing of biologic materials (e.g., blood, serum or blood components such as platelets). PCA identified the top three principal components that distinguished cohorts of patients with specific diseases (e.g., heart disease, stroke, hypertension, sepsis, diabetes, specific types of cancer, HIV, hemophilia, subtypes of meningitis, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, mild cognitive impairment, aging, and autism), from healthy subjects. Literature searches verified the functional relevance of the discriminating miRNAs. Our goal is to assemble PCA and heatmap analyses of existing and future blood miRNA datasets into a clinical reference database to facilitate the diagnosis of diseases using routine blood draws.
Collapse
Affiliation(s)
- Stacy L. Sell
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bakshi R, Healy BC, Dupuy SL, Kirkish G, Khalid F, Gundel T, Asteggiano C, Yousuf F, Alexander A, Hauser SL, Weiner HL, Henry RG. Brain MRI Predicts Worsening Multiple Sclerosis Disability over 5 Years in the SUMMIT Study. J Neuroimaging 2020; 30:212-218. [PMID: 31994814 DOI: 10.1111/jon.12688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain MRI-derived lesions and atrophy are related to multiple sclerosis (MS) disability. In the Serially Unified Multicenter MS Investigation (SUMMIT), from Brigham and Women's Hospital (BWH) and University of California, San Francisco (UCSF), we assessed whether MRI methodologic heterogeneity may limit the ability to pool multisite data sets to assess 5-year clinical-MRI associations. METHODS Patients with relapsing-remitting (RR) MS (n = 100 from each site) underwent baseline brain MRI and baseline and 5-year clinical evaluations. Patients were matched on sex (74 women each), age, disease duration, and Expanded Disability Status Scale (EDSS) score. MRI was performed with differences between sites in both acquisition (field strength, voxel size, pulse sequences), and postprocessing pipeline to assess brain parenchymal fraction (BPF) and T2 lesion volume (T2LV). RESULTS The UCSF cohort showed higher correlation than the BWH cohort between T2LV and disease duration. UCSF showed a higher inverse correlation between BPF and age than BWH. UCSF showed a higher inverse correlation than BWH between BPF and 5-year EDSS score. Both cohorts showed inverse correlations between BPF and T2LV, with no between-site difference. The pooled but not individual cohort data showed a link between a lower baseline BPF and the subsequent 5-year worsening in disability in addition to other stronger relationships in the data. CONCLUSIONS MRI acquisition and processing differences may result in some degree of heterogeneity in assessing brain lesion and atrophy measures in patients with MS. Pooling of data across sites is beneficial to correct for potential biases in individual data sets.
Collapse
Affiliation(s)
- Rohit Bakshi
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA.,Department of Radiology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA
| | - Brian C Healy
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA
| | - Sheena L Dupuy
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA
| | - Gina Kirkish
- Department of Neurology, University of California, San Francisco, CA
| | - Fariha Khalid
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA
| | - Tristan Gundel
- Department of Neurology, University of California, San Francisco, CA
| | - Carlo Asteggiano
- Department of Neurology, University of California, San Francisco, CA
| | - Fawad Yousuf
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA
| | - Amber Alexander
- Department of Neurology, University of California, San Francisco, CA
| | - Stephen L Hauser
- Department of Neurology, University of California, San Francisco, CA
| | - Howard L Weiner
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA
| | - Roland G Henry
- Department of Neurology, University of California, San Francisco, CA
| | -
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Abstract
New DNA sequencing technologies have uncovered non-coding RNA (ncRNA) as a major player in regulating cellular processes and can no longer be dismissed as "junk" or "dark" RNA. Among the ncRNA, microRNA (miRNA) is arguably the most extensively characterized category and a number of studies have implicated them in regulating critical functions that can influence autoimmune demyelination. Of specific interest to multiple sclerosis (MS), miRNA have been implicated in both regulating immune responses and myelination, thus making them an attractive candidate for both pharmacological intervention and as disease biomarkers. In addition, exosomes, small vesicles secreted by most cell types and present in all body fluids, have been also shown to play roles in immune signaling, inflammation and angiogenesis. Therefore, exosomes are also being explored as tools for therapeutic delivery and as biomarkers. This article reviews the recent advances in miRNA and exosome profiling in MS and experimental models.
Collapse
Affiliation(s)
- Marcin P Mycko
- Department of Neurology, Laboratory of Neuroimmunology, Faculty of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Sergio E Baranzini
- Department of Neurology, Weill Institute of Neuroscience, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Gehr S, Kaiser T, Kreutz R, Ludwig WD, Paul F. Suggestions for improving the design of clinical trials in multiple sclerosis-results of a systematic analysis of completed phase III trials. EPMA J 2019; 10:425-436. [PMID: 31832116 PMCID: PMC6883016 DOI: 10.1007/s13167-019-00192-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
This manuscript reviews the primary and secondary endpoints of pivotal phase III trials with immunomodulatory drugs in multiple sclerosis (MS). Considering the limitations of previous trial designs, we propose new standards for the planning of clinical trials, taking into account latest insights into MS pathophysiology and patient-relevant aspects. Using a systematic overview of published phase III (pivotal) trials performed as part of application for drug market approval, we evaluate the following characteristics: trial duration, number of trial participants, comparators, and endpoints (primary, secondary, magnetic resonance imaging outcome, and patient-reported outcomes). From a patient perspective, the primary and secondary endpoints of clinical trials are only partially relevant. High-quality trial data pertaining to efficacy and safety that stretch beyond the time frame of pivotal trials are almost non-existent. Understanding of long-term benefits and risks of disease-modifying MS therapy is largely lacking. Concrete proposals for the trial designs of relapsing (remitting) multiple sclerosis/clinically isolated syndrome, primary progressive multiple sclerosis, and secondary progressive multiple sclerosis (e.g., study duration, mechanism of action, and choice of endpoints) are presented based on the results of the systematic overview. Given the increasing number of available immunotherapies, the therapeutic strategy in MS has shifted from a mere "relapse-prevention" approach to a personalized provision of medical care as to the choice of the appropriate drugs and their sequential application over the course of the disease. This personalized provision takes patient preferences as well as disease-related factors into consideration such as objective clinical and radiographic findings but also very burdensome symptoms such as fatigue, depression, and cognitive impairment. Future trial designs in MS will have to assign higher relevance to these patient-reported outcomes and will also have to implement surrogate measures that can serve as predictive markers for individual treatment response to new and investigational immunotherapies. This is an indispensable prerequisite to maximize the benefit of individual patients when participating in clinical trials. Moreover, such appropriate trial designs and suitable enrolment criteria that correspond to the mode of action of the study drug will facilitate targeted prevention of adverse events, thus mitigating risks for individual study participants.
Collapse
Affiliation(s)
- Sinje Gehr
- Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Kaiser
- Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (Institute for Quality and Efficiency in Health Care) (IQWiG), Im Mediapark 8, 50670 Köln, Germany
| | - Reinhold Kreutz
- Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Wolf-Dieter Ludwig
- Arzneimittelkommission der deutschen Ärzteschaft (Drug Commission of the German Medical Association), Herbert-Lewin-Platz 1, 10623 Berlin, Germany
| | - Friedemann Paul
- Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
26
|
Zurawski J, Tauhid S, Chu R, Khalid F, Healy BC, Weiner HL, Bakshi R. 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. Mult Scler 2019; 26:177-187. [DOI: 10.1177/1352458519885106] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background:Meningeal inflammation may contribute to gray matter (GM) involvement in multiple sclerosis (MS) and is proposed to manifest as magnetic resonance imaging (MRI) leptomeningeal enhancement (LME).Objective:To investigate how LME relates to GM lesions in relapsing-remitting multiple sclerosis (RRMS) at 7T.Methods:A total of 30 RRMS subjects (age (mean ± standard deviation (SD)): 44.0 ± 11.3 years, 93% on disease-modifying treatment) and 15 controls underwent gadolinium-enhanced three-dimensional (3D) MP2RAGE (magnetization-prepared 2 rapid gradient-echo) and fluid-attenuated inversion recovery (FLAIR) MRI. LME, cortical lesions (CLs), thalamic lesions (TLs), and white matter (WM) lesions were expert-quantified. Wilcoxon rank-sum, two-sample t-tests, Spearman correlations, and regression models were employed.Results:Two-thirds (20/30) of MS subjects and 1/15 controls (6.7%) had LME. LME+ MS subjects had 2.7 ± 1.5 foci, longer disease duration (14.9 ± 10.4 vs. 8.1 ± 5.7 years, p = 0.028), increased CL number (21.5 ± 12.6 vs. 5.5 ± 5.0, p < 0.001) and volume (0.80 ± 1.13 vs. 0.13 ± 0.13 mL, p = 0.002), and increased TL number (3.95 ± 2.11 vs. 0.70 ± 1.34, p < 0.001) and volume (0.106 ± 0.09 vs. 0.007 ± 0.01 mL, p < 0.001) versus LME– subjects. LME focus number correlated more highly with CL ( rs = 0.50, p = 0.01) and TL ( rs = 0.81, p < 0.001) than WM lesion ( rs = 0.34, p > 0.05) volume. Similar LME–CL number associations were observed in unadjusted and WM lesion–adjusted comparisons (both p < 0.001).Conclusion:Cerebral LME is common in RRMS at 7T and is independently associated with GM injury. We hypothesize that cerebrospinal fluid (CSF)-related inflammation links cortical and thalamic injury.
Collapse
Affiliation(s)
- Jonathan Zurawski
- Department of Neurology, Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Hale Building for Transformative Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahamat Tauhid
- Department of Neurology, Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Hale Building for Transformative Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Renxin Chu
- Department of Neurology, Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Hale Building for Transformative Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Fariha Khalid
- Department of Neurology, Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Hale Building for Transformative Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Department of Neurology, Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Hale Building for Transformative Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; Biostatistics Center, Massachusetts General Hospital, Boston MA, USA
| | - Howard L Weiner
- Department of Neurology, Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Hale Building for Transformative Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Department of Neurology, Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Hale Building for Transformative Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA/Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Pinter D, Beckmann CF, Fazekas F, Khalil M, Pichler A, Gattringer T, Ropele S, Fuchs S, Enzinger C. Morphological MRI phenotypes of multiple sclerosis differ in resting-state brain function. Sci Rep 2019; 9:16221. [PMID: 31700126 PMCID: PMC6838050 DOI: 10.1038/s41598-019-52757-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/29/2019] [Indexed: 11/09/2022] Open
Abstract
We aimed to assess differences in resting-state functional connectivity (FC) between distinct morphological MRI-phenotypes in multiple sclerosis (MS). Out of 180 MS patients, we identified those with high T2-hyperintense lesion load (T2-LL) and high normalized brain volume (NBV; a predominately white matter damage group, WMD; N = 37) and patients with low T2-LL and low NBV (N = 37; a predominately grey matter damage group; GMD). Independent component analysis of resting-state fMRI was used to test for differences in the sensorimotor network (SMN) between MS MRI-phenotypes and compared to 37 age-matched healthy controls (HC). The two MS groups did not differ regarding EDSS scores, disease duration and distribution of clinical phenotypes. WMD compared to GMD patients showed increased FC in all sub-units of the SMN (sex- and age-corrected). WMD patients had increased FC compared to HC and GMD patients in the central SMN (leg area). Only in the WMD group, higher EDSS scores and T2-LL correlated with decreased connectivity in SMN sub-units. MS patients with distinct morphological MRI-phenotypes also differ in brain function. The amount of focal white matter pathology but not global brain atrophy affects connectivity in the central SMN (leg area) of the SMN, consistent with the notion of a disconnection syndrome.
Collapse
Affiliation(s)
- Daniela Pinter
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
- Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Christian F Beckmann
- Donders Institute, Cognitive Neuroscience Department and Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Kapittelweg 29, Nijmegen, The Netherlands
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Alexander Pichler
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Siegrid Fuchs
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria.
- Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria.
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, Austria.
| |
Collapse
|
28
|
Flammer syndrome in multiple sclerosis: diagnostics, prediction, and personalization of treatments. EPMA J 2019; 10:437-444. [PMID: 31832117 DOI: 10.1007/s13167-019-00179-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Background Flammer syndrome (FS) occurs from well-described signs and symptoms. The syndrome itself is not a disease, but it may be a directive marker for advancing therapeutic approaches by predictive and preventive measures as well as for personalization of treatments. The syndrome is related to many diseases, but FS has been rarely studied in multiple sclerosis (MS). The study aimed to determine whether FS signs and symptoms occur more often in people with MS than in healthy controls, and in order to personalize the treatment, we investigated the possible effect of current therapies on FS signs and symptoms. Methods Two hundred twenty-two MS patients and 203 healthy controls answered the questionnaire consisting of 15 signs and symptoms of FS. Results MS patients had significantly more complaints in 9 items of FS signs and symptoms (cold hands or/and feet, the reduced feeling of thirst, dizziness, drug side effects, other headaches (tension-type, medication overuse), weight loss, feeling cold, long sleep-onset time, and skin blotches) compared to healthy controls. Six items (low blood pressure, tinnitus, increased odor sensitivity, low pain threshold, and perfectionism) were similar between the two groups. The treatment agents currently used did not have any effect on the signs and symptoms of FS. Conclusion This study showed that FS might be associated with MS. Injectable or oral agents are not related to the signs and symptoms of FS. Further studies are needed to validate this association. Relevance of the article for predictive preventive and personalized medicine FS is common among MS patients. Being aware of this incidence that might impair the life quality of MS patients is useful to predict the comorbidity and develop preventive strategies and applying personalized treatment options and procedures.
Collapse
|
29
|
Dalmau J. Rectifying neurologic diagnosis through autoantibodies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e540. [PMID: 30800723 PMCID: PMC6384015 DOI: 10.1212/nxi.0000000000000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/25/2022]
|