1
|
Alonso R, Eizaguirre MB, Casas M, Lazaro L, Laffue A, Mainella C, Tavolini D, Leguizamon F, Jose G, Rojas JI, Burgos M, Deri N, Liwacki S, Tkachuk V, Silva B. Determination of disability progression in moderately and highly disabled ambulatory patients with relapsing-remitting multiple sclerosis using the EDSS-Plus: A prospective study in Argentina. Mult Scler Relat Disord 2025; 99:106453. [PMID: 40300408 DOI: 10.1016/j.msard.2025.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic autoimmune disease causing central nervous system damage. Relapsing-remitting MS (RRMS) is the most common type. Disability in MS can result from relapse-associated worsening (RAW) or progression independent of relapse activity (PIRA), impacting quality of life. The Expanded Disability Status Scale (EDSS) is commonly used but has limitations. The Multiple Sclerosis Functional Composite (MSFC) improves progression detection sensitivity. OBJECTIVE To analyze disability progression in a subgroup of RRMS patients (EDSS 3.0-6.5) and compare EDSS-Plus (EDSS, T25FW, and 9HPT) and EDSS-Plus with cognition (EDSS-Plus cog) to EDSS in assessing disease progression. METHODOLOGY An 18-month prospective study in Argentina involved RRMS patients meeting the 2017 McDonald criteria and an EDSS between 3.0 and 6.5 at baseline. Patients received standard care and were assessed using EDSS, T25FW, 9HPT, and SDMT. Progression was defined as a ≥ 1.0-point increase in EDSS (baseline ≤5.5) or ≥0.5-point increase (baseline ≥6.0) over 24 weeks. RESULTS EDSS-Plus and EDSS-Plus cog identified more progressors than EDSS, especially in patients with higher baseline disability (EDSS >4). Progression rates were 14 % for EDSS, 22.17 % for EDSS-Plus, and 25.33 % for EDSS-Plus cog. Progressors showed higher fatigue, depression, and anxiety scores. CONCLUSION EDSS-Plus and EDSS-Plus cog are more sensitive than EDSS in detecting disability progression in RRMS patients, particularly those with higher baseline disability. However, this increase in detected progression events reflects the broader assessment criteria rather than necessarily indicating greater accuracy in identifying true disease progression.
Collapse
Affiliation(s)
- Ricardo Alonso
- Hospital J.M. Ramos Mejía, Centro Universitario de Esclerosis Múltiple Buenos Aires, Argentina.
| | | | - Magdalena Casas
- Hospital J.M. Ramos Mejía, Centro Universitario de Esclerosis Múltiple Buenos Aires, Argentina
| | - Luciana Lazaro
- Hospital J.M. Ramos Mejía, Centro Universitario de Esclerosis Múltiple Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | - Susana Liwacki
- Hospital de Córdoba, Servicio de Neurología, Córdoba, Argentina; Clínica Universitaria Reina Fabiola Servicio de Neurología, Córdoba, Argentina
| | - Veronica Tkachuk
- Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Berenice Silva
- Hospital J.M. Ramos Mejía, Centro Universitario de Esclerosis Múltiple Buenos Aires, Argentina; Hospital Italiano de Buenos Aires, Argentina
| |
Collapse
|
2
|
De Angelis F, Cameron JR, Eshaghi A, Parker R, Connick P, Stutters J, Plantone D, Doshi A, John N, Williams T, Calvi A, MacManus D, Barkhof F, Chandran S, Weir CJ, Toosy A, Chataway J. Optical coherence tomography in secondary progressive multiple sclerosis: cross-sectional and longitudinal exploratory analysis from the MS-SMART randomised controlled trial. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-334801. [PMID: 39694820 DOI: 10.1136/jnnp-2024-334801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Optical coherence tomography (OCT) inner retinal metrics reflect neurodegeneration in multiple sclerosis (MS). We explored OCT measures as biomarkers of disease severity in secondary progressive MS (SPMS). METHODS We investigated people with SPMS from the Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial OCT substudy, analysing brain MRIs, clinical assessments and OCT at baseline and 96 weeks. We measured peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses. Statistical analysis included correlations, multivariable linear regressions and mixed-effects models. RESULTS Of the 212 participants recruited at baseline, 192 attended at 96 weeks follow-up. Baseline pRNFL and GCIPL thickness correlated with Symbol Digit Modalities Test (SDMT) (respectively, r=0.33 (95% CI 0.20 to 0.47); r=0.39 (0.26 to 0.51)) and deep grey matter volume (respectively, r=0.21 (0.07 to 0.35); r=0.28 (0.14 to 0.41)).pRNFL was associated with Expanded Disability Status Scale (EDSS) score change (normalised beta (B)=-0.12 (-0.23 to -0.01)). Baseline pRNFL and GCIPL were associated with Timed 25-Foot Walk change (T25FW) (respectively, B=-0.14 (-0.25 to -0.03); B=-0.20 (-0.31 to -0.10)) and 96-week percentage brain volume change (respectively, B=0.14 (0.03 to 0.25); B=0.23 (0.12 to 0.34)). There were significant annualised thinning rates: pRNFL (-0.83 µm/year) and GCIPL (-0.37 µm/year). CONCLUSIONS In our cohort of people with SPMS and long disease duration, OCT measures correlated with SDMT and deep grey matter volume at baseline; EDSS, T25FW and whole brain volume change at follow-up.
Collapse
Affiliation(s)
- Floriana De Angelis
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- University College London Hospitals, Biomedical Research Centre, National Institute for Health and Care Research, London, UK
| | - James R Cameron
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, Edinburgh, UK
| | - Arman Eshaghi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Richard Parker
- Edinburgh Clinical Trials Unit, The University of Edinburgh, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Peter Connick
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, Edinburgh, UK
| | - Jonathan Stutters
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Domenico Plantone
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Neuroscience, University of Siena Faculty of Medicine and Surgery, Siena, Italy
| | - Anisha Doshi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Nevin John
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alberto Calvi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Advanced Imaging in Neuroimmunological Diseases lab (ImaginEM), Fundacio Clinic per la Recerca Biomedica, Barcelona, Spain
| | - David MacManus
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- University College London Hospitals, Biomedical Research Centre, National Institute for Health and Care Research, London, UK
- Department of Radiology and Nuclear Medicine, VU University Medical Centre Amsterdam, Amsterdam, Noord-Holland, Netherlands
| | - Siddharthan Chandran
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, Edinburgh, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, The University of Edinburgh, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Ahmed Toosy
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- University College London Hospitals, Biomedical Research Centre, National Institute for Health and Care Research, London, UK
| |
Collapse
|
3
|
Krämer J, Balloff C, Weise M, Koska V, Uthmeier Y, Esderts I, Nguyen-Minh M, Zimmerhof M, Hartmann A, Dietrich M, Ingwersen J, Lee JI, Havla J, Kümpfel T, Kerschensteiner M, Häußler V, Heesen C, Stellmann JP, Zimmermann HG, Oertel FC, Ringelstein M, Brandt AU, Paul F, Aktas O, Hartung HP, Wiendl H, Meuth SG, Albrecht P. Evolution of retinal degeneration and prediction of disease activity in relapsing and progressive multiple sclerosis. Nat Commun 2024; 15:5243. [PMID: 38897994 PMCID: PMC11187157 DOI: 10.1038/s41467-024-49309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Retinal optical coherence tomography has been identified as biomarker for disease progression in relapsing-remitting multiple sclerosis (RRMS), while the dynamics of retinal atrophy in progressive MS are less clear. We investigated retinal layer thickness changes in RRMS, primary and secondary progressive MS (PPMS, SPMS), and their prognostic value for disease activity. Here, we analyzed 2651 OCT measurements of 195 RRMS, 87 SPMS, 125 PPMS patients, and 98 controls from five German MS centers after quality control. Peripapillary and macular retinal nerve fiber layer (pRNFL, mRNFL) thickness predicted future relapses in all MS and RRMS patients while mRNFL and ganglion cell-inner plexiform layer (GCIPL) thickness predicted future MRI activity in RRMS (mRNFL, GCIPL) and PPMS (GCIPL). mRNFL thickness predicted future disability progression in PPMS. However, thickness change rates were subject to considerable amounts of measurement variability. In conclusion, retinal degeneration, most pronounced of pRNFL and GCIPL, occurs in all subtypes. Using the current state of technology, longitudinal assessments of retinal thickness may not be suitable on a single patient level.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | - Carolin Balloff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Margit Weise
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Valeria Koska
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yannik Uthmeier
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Isabell Esderts
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Mai Nguyen-Minh
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Moritz Zimmerhof
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | | | - Michael Dietrich
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jens Ingwersen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - John-Ih Lee
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians University München, München, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians University München, München, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians University München, München, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University München, München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Vivien Häußler
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Patrick Stellmann
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Aix-Marseille University, CNRS-CRMBM, UMR, 7339, Marseille, France
- APHM La Timone, CEMEREM, Marseille, France
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederike C Oertel
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Department of Neurology, Kliniken Maria Hilf, Mönchengladbach, Germany.
| |
Collapse
|
4
|
Cujbă L, Banc A, Stan C, Drugan T, Nicula C. Macular OCT's Proficiency in Identifying Retrochiasmal Visual Pathway Lesions in Multiple Sclerosis-A Pilot Study. Diagnostics (Basel) 2024; 14:1221. [PMID: 38928637 PMCID: PMC11202879 DOI: 10.3390/diagnostics14121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging technique based on the principle of low-coherence interferometry that captures detailed images of ocular structures. Multiple sclerosis (MS) is a neurodegenerative disease that can lead to damage of the optic nerve and retina, which can be depicted by OCT. The purpose of this pilot study is to determine whether macular OCT can be used as a biomarker in the detection of retrochiasmal lesions of the visual pathway in MS patients. We conducted a prospective study in which we included 52 MS patients and 27 healthy controls. All participants underwent brain MRI, visual field testing, and OCT evaluation of the thicknesses of the peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell layer (GCL), and macular inner plexiform layer (IPL). OCT measurements were adjusted for optic neuritis (ON). VF demonstrated poor capability to depict a retrochiasmal lesion identified by brain MRI (PPV 0.50). In conclusion, the OCT analysis of the macula appears to excel in identifying retrochiasmal MS lesions compared to VF changes. The alterations in the GCL and IPL demonstrate the most accurate detection of retrochiasmal visual pathway changes in MS patients.
Collapse
Affiliation(s)
- Larisa Cujbă
- Medical Doctoral School, University of Oradea, 410087 Oradea, Romania;
| | - Ana Banc
- Department of Ophthalmology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Cristina Stan
- Department of Ophthalmology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Cristina Nicula
- Department of Maxillo-Facial Surgery and Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Cordano C, Werneburg S, Abdelhak A, Bennett DJ, Beaudry-Richard A, Duncan GJ, Oertel FC, Boscardin WJ, Yiu HH, Jabassini N, Merritt L, Nocera S, Sin JH, Samana IP, Condor Montes SY, Ananth K, Bischof A, Nourbakhsh B, Hauser SL, Cree BAC, Emery B, Schafer DP, Chan JR, Green AJ. Synaptic injury in the inner plexiform layer of the retina is associated with progression in multiple sclerosis. Cell Rep Med 2024; 5:101490. [PMID: 38574736 PMCID: PMC11031420 DOI: 10.1016/j.xcrm.2024.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/01/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
While neurodegeneration underlies the pathological basis for permanent disability in multiple sclerosis (MS), predictive biomarkers for progression are lacking. Using an animal model of chronic MS, we find that synaptic injury precedes neuronal loss and identify thinning of the inner plexiform layer (IPL) as an early feature of inflammatory demyelination-prior to symptom onset. As neuronal domains are anatomically segregated in the retina and can be monitored longitudinally, we hypothesize that thinning of the IPL could represent a biomarker for progression in MS. Leveraging our dataset with over 800 participants enrolled for more than 12 years, we find that IPL atrophy directly precedes progression and propose that synaptic loss is predictive of functional decline. Using a blood proteome-wide analysis, we demonstrate a strong correlation between demyelination, glial activation, and synapse loss independent of neuroaxonal injury. In summary, monitoring synaptic injury is a biologically relevant approach that reflects a potential driver of progression.
Collapse
Affiliation(s)
- Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sebastian Werneburg
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Ophthalmology & Visual Sciences, Michigan Neuroscience Institute, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
| | - Ahmed Abdelhak
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel J Bennett
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandra Beaudry-Richard
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Greg J Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Frederike C Oertel
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - W John Boscardin
- Department of Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Hao H Yiu
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Nora Jabassini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Merritt
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sonia Nocera
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jung H Sin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Isaac P Samana
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Shivany Y Condor Montes
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kirtana Ananth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Antje Bischof
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen L Hauser
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonah R Chan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ari J Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Raghib MF, Bao F, Elkhooly M, Bernitsas E. Choroid plexus volume as a marker of retinal atrophy in relapsing remitting multiple sclerosis. J Neurol Sci 2024; 457:122884. [PMID: 38237367 DOI: 10.1016/j.jns.2024.122884] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To evaluate choroid plexus (CP) volume as a biomarker for predicting clinical disability and retinal layer atrophy in relapsing remitting multiple sclerosis (RRMS). METHODS Ninety-five RRMS patients and 26 healthy controls (HCs) underwent 3 T whole brain MRI, expanded disability status scale (EDSS) and optical coherence tomography (OCT). Fully automated intra-retinal segmentation was performed to obtain the volumes of the retinal nerve fiber layer (RNFL), combined ganglion cell layer -inner plexiform layer (GCIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigment epithelium (RPE), total macular volume (TMV) and papillomacular bundle (PMB). Automated segmentation of the CP within the lateral ventricles was performed and the choroid plexus volume (CPV) was normalized by total intracranial volume (TIV). Linear regression analysis and generalized estimating equation (GEE) models were applied to evaluate relationships between nCPV and EDSS, T2 lesion volume, disease duration, and retinal layer volumes, followed by Bonferroni correction analysis for multiple comparisons. RESULTS RRMS patients had larger tChPV compared to HCs (p < 0.001). After Bonferroni correction, there was a significant positive correlation between tChPV and EDSS (r2 = 0.25, p = 0.0002), disease duration (r2 = 0.30, p = 0.01), and T2 lesion volume (r2 = 0.39, p = 0.0000). A robust negative correlation was found between tChPV and RNFL (p < 0.001), GCIPL (p = 0.003), TMV (p = 0.0185), PMB (p < 0.0001), G (p = 0.04), T(p = 0.0001). CONCLUSIONS Our findings support the association of tChPV with disability and altered retinal integrity in RRMS.
Collapse
Affiliation(s)
- Muhammad F Raghib
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Fen Bao
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Mahmoud Elkhooly
- Department of Neurology, Wayne State University School of Medicine, United States of America; Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, United States of America; Department of Neurology and Psychiatry, Minia University, Minia, Egypt
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, United States of America; Detroit Medical Center, Detroit, MI, United States of America.
| |
Collapse
|
7
|
Oertel FC, Hastermann M, Paul F. Delimiting MOGAD as a disease entity using translational imaging. Front Neurol 2023; 14:1216477. [PMID: 38333186 PMCID: PMC10851159 DOI: 10.3389/fneur.2023.1216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 02/10/2024] Open
Abstract
The first formal consensus diagnostic criteria for myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) were recently proposed. Yet, the distinction of MOGAD-defining characteristics from characteristics of its important differential diagnoses such as multiple sclerosis (MS) and aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (NMOSD) is still obstructed. In preclinical research, MOG antibody-based animal models were used for decades to derive knowledge about MS. In clinical research, people with MOGAD have been combined into cohorts with other diagnoses. Thus, it remains unclear to which extent the generated knowledge is specifically applicable to MOGAD. Translational research can contribute to identifying MOGAD characteristic features by establishing imaging methods and outcome parameters on proven pathophysiological grounds. This article reviews suitable animal models for translational MOGAD research and the current state and prospect of translational imaging in MOGAD.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Mirmosayyeb O, Yazdan Panah M, Mokary Y, Ghaffary EM, Ghoshouni H, Zivadinov R, Weinstock-Guttman B, Jakimovski D. Optical coherence tomography (OCT) measurements and disability in multiple sclerosis (MS): A systematic review and meta-analysis. J Neurol Sci 2023; 454:120847. [PMID: 37924591 DOI: 10.1016/j.jns.2023.120847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Studies have demonstrated that people with multiple sclerosis (pwMS) experience visual impairments and neurodegenerative retinal processes. The disability progression in pwMS may be associated with retinal changes assessed with optical coherence tomography (OCT). This meta-analysis aims at synthesizing the correlations between OCT measurements of disability in pwMS. METHODS We systematically searched four databases (PubMed/MEDLINE, Embase, Scopus, and Web of Science) from inception to November 2022, then conducted a meta-analysis using a random effects model to determine the pooled correlation coefficient(r) between OCT measurements and disability scales by R version 4.2.3 with the meta version 6.2-1 package. RESULTS From 3129 studies, 100 studies were included. Among 9051 pwMS, the female-to-male ratio was 3.15:1, with a mean age of 39.57 ± 6.07 years. The mean disease duration and Expanded Disability Status Scale (EDSS) were 8.5 ± 3.7 and 2.7 ± 1.1, respectively. Among the pooled subgroup analyses, macular ganglion cell inner plexiform layer (mGCIPL) in patients with relapsing-remitting (pwRRMS) and peripapillary retinal nerve fiber layer (pRNFL) in patients with progressive MS (pwPMS) had strong correlations with EDSS, r = -0.33 (95% CI: -0.45 to -0.20, I2 = 45%, z-score = -4.86, p < 0.001) and r = -0.20 (95% CI:-0.58 to 0.26, I2 = 76%, z-score = -0.85, p = 0.395), respectively. According to subgroup analysis on pwMS without optic neuritis (ON) history, the largest correlation was seen between EDSS and macular ganglion cell complex (mGCC): r = -0.39 (95% CI: -0.70 to 0.04, I2 = 79%, z-score = -1.79, p = 0.073). CONCLUSION OCT measurements are correlated with disability in pwMS, and they can complement the comprehensive neurological visit as an additional paraclinical test.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mohammad Yazdan Panah
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousef Mokary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA.
| |
Collapse
|
9
|
Huang SC, Pisa M, Guerrieri S, Dalla Costa G, Comi G, Leocani L. Optical coherence tomography with voxel-based morphometry: a new tool to unveil focal retinal neurodegeneration in multiple sclerosis. Brain Commun 2023; 6:fcad249. [PMID: 38328398 PMCID: PMC10847824 DOI: 10.1093/braincomms/fcad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 02/09/2024] Open
Abstract
Neurodegeneration is the main contributor to disability accumulation in multiple sclerosis. Previous studies in neuro-ophthalmology have revealed that neurodegeneration in multiple sclerosis also affects the neuro-retina. Optical coherence tomography has been used to measure thinning of retinal layers, which correlates with several other markers for axonal/neuronal loss in multiple sclerosis. However, the existing analytical tools have limitations in terms of sensitivity and do not provide topographical information. In this study, we aim to evaluate whether voxel-based morphometry can increase sensitivity in detecting neuroaxonal degeneration in the retina and offer topographical information. A total of 131 people with multiple sclerosis (41 clinically isolated syndrome, 53 relapsing-remitting and 37 progressive multiple sclerosis) and 50 healthy subjects were included. Only eyes with normal global peripapillary retinal nerve fibre layer thickness and no history of optic neuritis were considered. Voxel-based morphometry and voxel-wise statistical comparisons were performed on the following: (i) patients at different disease stages and 2) patients who experienced the first demyelination attack without subclinical optic neuritis, assessed by visual evoked potentials. Standard parameters failed to discern any differences; however, voxel-based morphometry-optical coherence tomography successfully detected focal macular atrophy of retinal nerve fibre layer and ganglion cell/inner plexiform layer, along with thickening of inner nuclear layer in patients who experienced the first demyelination attack (disease duration = 4.2 months). Notably, the atrophy pattern of the ganglion cell/inner plexiform layer was comparable across disease phenotypes. In contrast, the retinal nerve fibre layer atrophy spread from the optic nerve head to the fovea as the disease evolved towards the progressive phase. Furthermore, for patients who experienced the first neurological episode, the severity of retinal nerve fibre layer atrophy at entry could predict a second attack. Our results demonstrate that voxel-based morphometry-optical coherence tomography exhibits greater sensitivity than standard parameters in detecting focal retinal atrophy, even at clinical presentation, in eyes with no history of optic neuritis and with normal latency of visual evoked potentials. Thinning of the ganglion cell/inner plexiform layer primarily concentrated in nasal perifovea in all disease phenotypes, indicating selective vulnerability of retinal ganglion cells and their perifoveal axons. Conversely, the degree of retinal nerve fibre layer thinning seems to be related to the clinical course of multiple sclerosis. The findings suggest bidirectional neurodegeneration in the visual pathway. Voxel-based morphometry-optical coherence tomography shows potential as a valuable tool for monitoring neurodegeneration on a patient level and evaluating the efficacy of novel neuroprotective treatments.
Collapse
Affiliation(s)
- Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marco Pisa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simone Guerrieri
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giancarlo Comi
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Neurorehabilitation Science, Casa di Cura Igea, Milan 20144, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan 20132, Italy
| |
Collapse
|
10
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
11
|
Tiu VE, Popescu BO, Enache II, Tiu C, Cherecheanu AP, Panea CA. Serum Neurofilaments and OCT Metrics Predict EDSS-Plus Score Progression in Early Relapse-Remitting Multiple Sclerosis. Biomedicines 2023; 11:biomedicines11020606. [PMID: 36831142 PMCID: PMC9953670 DOI: 10.3390/biomedicines11020606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
(1) Background: Early disability accrual in RRMS patients is frequent and is associated with worse long-term prognosis. Correctly identifying the patients that present a high risk of early disability progression is of utmost importance, and may be aided by the use of predictive biomarkers. (2) Methods: We performed a prospective cohort study that included newly diagnosed RRMS patients, with a minimum follow-up period of one year. Biomarker samples were collected at baseline, 3-, 6- and 12-month follow-ups. Disability progression was measured using the EDSS-plus score. (3) Results: A logistic regression model based on baseline and 6-month follow-up sNfL z-scores, RNFL and GCL-IPL thickness and BREMSO score was statistically significant, with χ2(4) = 19.542, p < 0.0001, R2 = 0.791. The model correctly classified 89.1% of cases, with a sensitivity of 80%, a specificity of 93.5%, a positive predictive value of 85.7% and a negative predictive value of 90.62%. (4) Conclusions: Serum biomarkers (adjusted sNfL z-scores at baseline and 6 months) combined with OCT metrics (RNFL and GCL-IPL layer thickness) and the clinical score BREMSO can accurately predict early disability progression using the EDSS-plus score for newly diagnosed RRMS patients.
Collapse
Affiliation(s)
- Vlad Eugen Tiu
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Correspondence:
| | - Iulian Ion Enache
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Cristina Tiu
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alina Popa Cherecheanu
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ophtalmology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Cristina Aura Panea
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
12
|
Cordano C, Nourbakhsh B, Yiu HH, Papinutto N, Caverzasi E, Abdelhak A, Oertel FC, Beaudry-Richard A, Santaniello A, Sacco S, Bennett DJ, Gomez A, Sigurdson CJ, Hauser SL, Magliozzi R, Cree BA, Henry RG, Green AJ. Differences in Age-related Retinal and Cortical Atrophy Rates in Multiple Sclerosis. Neurology 2022; 99:e1685-e1693. [PMID: 36038272 PMCID: PMC9559941 DOI: 10.1212/wnl.0000000000200977] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The timing of neurodegeneration in multiple sclerosis (MS) remains unclear. It is critical to understand the dynamics of neuroaxonal loss if we hope to prevent or forestall permanent disability in MS. We therefore used a deeply phenotyped longitudinal cohort to assess and compare rates of neurodegeneration in retina and brain throughout the MS disease course. METHODS We analyzed 597 patients with MS who underwent longitudinal optical coherence tomography imaging annually for 4.5 ± 2.4 years and 432 patients who underwent longitudinal MRI scans for 10 ± 3.4 years, quantifying macular ganglion cell-inner plexiform layer (GCIPL) volume and cortical gray matter (CGM) volume. The association between the slope of decline in the anatomical structure and the age of entry in the cohort (categorized by the MRI cohort's age quartiles) was assessed by hierarchical linear models. RESULTS The rate of CGM volume loss declined with increasing age of study entry (1.3% per year atrophy for the age of entry in the cohort younger than 35 years; 1.1% for older than 35 years and younger than 41; 0.97% for older than 41 years and younger than 49; 0.9% for older than 49 years) while the rate of GCIPL thinning was highest in patients in the youngest quartile, fell by more than 50% in the following age quartile, and then stabilized (0.7% per year thinning for the age of entry in the cohort younger than 35 years; 0.29% for age older than 35 and younger than 41 years; 0.34% for older than 41 and younger than 49 years; 0.33% for age older than 49 years). DISCUSSION An age-dependent reduction in retinal and cortical volume loss rates during relapsing-remitting MS suggests deceleration in neurodegeneration in the earlier period of disease and further indicates that the period of greatest adaptive immune-mediated inflammatory activity is also the period with the greatest neuroaxonal loss.
Collapse
Affiliation(s)
- Christian Cordano
- From the Department of Neurology (C.C., N.P., E.C., A.A., F.C.O., A.B.-R., A.S., S.S., D.J.B., A.G., S.L.H., B.A.C.C., R.G.H., A.J.G.), UCSF Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (B.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biology (H.H.Y.), University of Maryland, College Park; Department of Pathology (C.J.S.), University of California, San Diego, La Jolla; and Department of Neurosciences (R.M.), Biomedicine and Movement Sciences, University of Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Masala A, Mola ID, Cellerino M, Pera V, Vagge A, Uccelli A, Christian C, Traverso CE, Iester M. Choroidal Thickness in Multiple Sclerosis: An Optical Coherence Tomography Study. J Clin Neurol 2022; 18:334-342. [PMID: 35589321 PMCID: PMC9163936 DOI: 10.3988/jcn.2022.18.3.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose To identify changes in the choroidal thickness (CT) in multiple sclerosis (MS) patients with and without optic neuritis (ON) using enhanced-depth-imaging optical coherence tomography (EDI-OCT). Methods This cross-sectional study included 96 eyes with MS and 28 eyes of healthy controls. All participants underwent an ophthalmologic examination and EDI-OCT scanning (Spectralis, Heidelberg Engineering, Germany) to assess the CT and the retinal nerve fiber layer (RNFL) thickness. MS patients were divided into two groups: 1) with and 2) without a history of ON. The CT was evaluated in the fovea and at six horizontal and six vertical points at 500, 1,000, and 1,500 µm from the fovea. Paired t-tests were used to compare the groups, and p-value<0.05 was considered as significant. Results At all 13 measurements points, the CT was thicker in MS patients than in the healthy controls and was thinner in eyes with ON than in the contralateral eyes, but these differences were not statistically significant. However, the CT was always larger in all points in eyes with a history of ON than in the control eyes. The RNFL was significantly thinner (p<0.05) in both MS and ON eyes than in the control eyes. Conclusions The CT did not differ between MS and control eyes, but it was significantly larger in patients with a history of ON, in whom the RNFL was thinner. Further studies are necessary to establish the possible role of the choroid in MS.
Collapse
Affiliation(s)
- Alessandro Masala
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Ilaria Di Mola
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Maria Cellerino
- Neurologic Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Valentina Pera
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Aldo Vagge
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Antonio Uccelli
- San Martino IRCCS Policlinic Hospital, Genoa, Italy.,Neurologic Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Cordano Christian
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Carlo E Traverso
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Michele Iester
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy.
| |
Collapse
|
14
|
Cordano C, Yiu HH, Abdelhak A, Beaudry-Richard A, Oertel FC, Green AJ. Reply to "Interpretation of longitudinal changes of the inner nuclear layer in MS". Ann Neurol 2022; 92:156. [PMID: 35403744 DOI: 10.1002/ana.26367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, US
| | - Hao H Yiu
- Department of Biology, University of Maryland. College Park, Maryland, US
| | - Ahmed Abdelhak
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, US
| | - Alexandra Beaudry-Richard
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, US
| | - Frederike C Oertel
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, US
| | - Ari J Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, US
| |
Collapse
|
15
|
Failed remyelination of the nonhuman primate optic nerve leads to axon degeneration, retinal damages, and visual dysfunction. Proc Natl Acad Sci U S A 2022; 119:e2115973119. [PMID: 35235463 PMCID: PMC8916013 DOI: 10.1073/pnas.2115973119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery in white matter diseases, such as multiple sclerosis (MS). To date most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair. Well-defined nonhuman primate models closer to man would allow us to efficiently advance therapeutic approaches. Here we present a nonhuman primate model of optic nerve demyelination that recapitulates several features of MS lesions. The model leads to failed remyelination, associated with progressive axonal degeneration and visual dysfunction, thus providing the missing link to translate emerging preclinical therapies to the clinic for myelin disorders such as MS. White matter disorders of the central nervous system (CNS), such as multiple sclerosis (MS), lead to failure of nerve conduction and long-lasting neurological disabilities affecting a variety of sensory and motor systems, including vision. While most disease-modifying therapies target the immune and inflammatory response, the promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery. Most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair and do not reflect the size, organization, and biology of the human CNS. Thus, well-defined nonhuman primate models are required to efficiently advance therapeutic approaches for patients. Here, we followed the consequence of long-term toxin-induced demyelination of the macaque optic nerve on remyelination and axon preservation, as well as its impact on visual functions. Findings from oculomotor behavior, ophthalmic examination, electrophysiology, and retinal imaging indicate visual impairment involving the optic nerve and retina. These visual dysfunctions fully correlated at the anatomical level, with sustained optic nerve demyelination, axonal degeneration, and alterations of the inner retinal layers. This nonhuman primate model of chronic optic nerve demyelination associated with axonal degeneration and visual dysfunction, recapitulates several key features of MS lesions and should be instrumental in providing the missing link to translate emerging repair promyelinating/neuroprotective therapies to the clinic for myelin disorders, such as MS.
Collapse
|
16
|
Mehmood A, Ali W, Song S, Din ZU, Guo RY, Shah W, Ilahi I, Yin B, Yan H, Zhang L, Khan M, Ali W, Zeb L, Safari H, Li B. Optical coherence tomography monitoring and diagnosing retinal changes in multiple sclerosis. Brain Behav 2021; 11:e2302. [PMID: 34520634 PMCID: PMC8553325 DOI: 10.1002/brb3.2302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
This study explores the use of optical coherence tomography (OCT) to monitor and diagnose multiple sclerosis (MS). The analysis of reduced total macular volume and peripapillary retinal nerve fiber layer thinning are shown. The severity of these defects increases as MS progresses, reflecting the progressive degeneration of nerve fibers and retinal ganglion cells. The OCT parameters are noninvasive, sensitive indicators that can be used to assess the progression of neurodegeneration and inflammation in MS.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, P. R. China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, Liaoning Province, P. R. China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Ikram Ilahi
- Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Bowen Yin
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China.,Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, P. R. China
| | - Hongjing Yan
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Murad Khan
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Wajid Ali
- Green and Environmental Chemistry, Ecotoxicology and Ecology Laboratory, Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, P.R. China
| | - Hamidreza Safari
- Department of Immunology, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
17
|
Cellerino M, Priano L, Bruschi N, Boffa G, Petracca M, Novi G, Lapucci C, Sbragia E, Uccelli A, Inglese M. Relationship Between Retinal Layer Thickness and Disability Worsening in Relapsing-Remitting and Progressive Multiple Sclerosis. J Neuroophthalmol 2021; 41:329-334. [PMID: 33399416 DOI: 10.1097/wno.0000000000001165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Data regarding the predictive value of optical coherence tomography (OCT)-derived measures are lacking, especially in progressive multiple sclerosis (PMS). Accordingly, we aimed at investigating whether a single OCT assessment can predict a disability risk in both relapsing-remitting MS (RRMS) and PMS. METHODS One hundred one patients with RRMS and 79 patients with PMS underwent Spectral-Domain OCT, including intraretinal layer segmentation. All patients had at least 1 Expanded Disability Status Scale (EDSS) measurement during the subsequent follow-up (FU). Differences in terms of OCT metrics and their association with FU disability were assessed by analysis of covariance and linear regression models, respectively. RESULTS The median FU was 2 years (range 1-5.5 years). The baseline peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell + inner plexiform layer (GCIPL) were thinner in PMS compared with RRMS (P = 0.02 and P = 0.003, respectively). In the RRMS population, multivariable models showed that the GCIPL significantly correlated with FU disability (0.04 increase in the EDSS for each 1-μm decrease in the baseline GCIPL, 95% confidence interval: 0.006-0.08; P = 0.02). The baseline GCIPL was thinner in patients with RRMS with FU-EDSS >4 compared with those with FU-EDSS ≤4, and individuals in the highest baseline GCIPL tertile had a significantly lower FU-EDSS score than those in the middle and lowest tertile (P = 0.01 and P = 0.001, respectively). These findings were not confirmed in analyses restricted to patients with PMS. CONCLUSIONS Among OCT-derived metrics, GCIPL thickness had the strongest association with short-medium term disability in patients with RRMS. The predictive value of OCT metrics in the longer term will have to be further investigated, especially in PMS.
Collapse
Affiliation(s)
- Maria Cellerino
- Department of Neuroscience (MC, LP, NB, GB, GN, CL, ES, AU, MI), Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy ; Departments of Neurology (MP, MI), Icahn School of Medicine at Mount Sinai, New York, New York; and Department of Neurology (AU, MI) Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jakimovski D, Zivadinov R, Vaughn CB, Ozel O, Weinstock-Guttman B. Clinical effects associated with five-year retinal nerve fiber layer thinning in multiple sclerosis. J Neurol Sci 2021; 427:117552. [PMID: 34175775 DOI: 10.1016/j.jns.2021.117552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neurodegenerative changes in multiple sclerosis (MS) are associated with long-term disability progression (DP). Optical coherence tomography (OCT) measures may be used to monitor DP. OBJECTIVE To determine significant effects driving the changes in OCT-based peripapillary retinal nerve fiber layer (pRNFL) in heterogeneous group of MS patients. METHODS Total of 144 MS patients (109 relapsing-remitting MS and 35 progressive MS (PMS) with mean age at baseline of 47.6 and 56.5 years old, respectively) underwent clinical and OCT examination over 5-year follow-up. All OCT exams were reviewed using the OSCAR-IB criteria. The 5-year DP was determined based on Expanded Disability Status Scale (EDSS) changes and MS clinical trial criteria. Data regarding previous history of MS optic neuritis (MSON) and use of disease modifying treatment (DMT) was derived by in-person interview and review of electronic medical records. Mixed model-type of repeated measure analysis determined effects driving pRNFL change for analysis which utilized all eyes separately. RESULTS Over an average of 5.3-years follow-up, the MS population demonstrated significant pRNFL thinning (F = 16.108, p < 0.001). The pRNFL thinning was greater due to progressive MS subtype (F = 5.102, p = 0.025), greater age at baseline (F = 4.554, p = 0.034), occurrence of DP (F = 6.583, p = 0.011), and previous history of MSON (F = 7.053, p = 0.008). Use of any or highly potent DMT (natalizumab versus first-line injectable treatments versus no DMT) significantly reduced the pRNFL thinning (F = 8.367, p = 0.004) over the follow-up. Lastly, occurrence of DP in PMS patients older than 50 years old was associated with greater pRNFL thinning (F = 6.667, p = 0.013). CONCLUSION Longitudinal pRNFL changes are modified by age, disease subtype, disabiltiy progression, history of MSON, DMT use and their interactions.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Robert Zivadinov
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Caila B Vaughn
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Osman Ozel
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
19
|
Testa V, De Santis N, Scotto R, Della Giustina P, Ferro Desideri L, Cellerino M, Cordano C, Inglese M, Uccelli A, Vagge A, Traverso CE, Iester M. Corneal epithelial dendritic cells in patients with multiple sclerosis: An in vivo confocal microscopy study. J Clin Neurosci 2020; 81:139-143. [PMID: 33222903 DOI: 10.1016/j.jocn.2020.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/22/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate density and morphology of corneal epithelial dendritic cells (DCs) in patients with multiple sclerosis (MS) using in vivo confocal microscopy (IVCM). METHODS This was a single-center cross-sectional comparative study. All MS patients were clinically scored using the Expanded Disability Status Scale (EDSS) score. Patients underwent ophthalmological examination and then cornea was analyzed by IVCM Heidelberg Retina Tomograph (HRT 3) in combination with Rostock Cornea Module and CCD camera. Five sectors (central, nasal, temporal, inferior, superior and central area) were analyzed in both patient eyes, then for each sector one image was selected and analyzed by using the manual cell counting system offered with the software and ImageJ program. DCs density (cell/mm2) and DCs size (µm2) were considered for the analyses. Difference between the two groups and correlation between DCs, MS type, EDSS score, optic neuritis and ongoing therapy were analyzed. RESULTS We enrolled 46 consecutive patients: 23 with MS (age 47.87 ± 7.22 years (mean ± standard deviation) and 21 healthy subjects (age 46.0 ± 12.6 years) from July 2017 to July 2018. MS patients showed a lower DCs density when compared with healthy subjects (p < 0.05). Moreover, we found a direct correlation (r:0.48, p < 0.05) between DCs density and ongoing disease-modifying therapy. CONCLUSION IVCM was able to show a difference in corneal DCs density between MS patients and healthy subjects, providing an insight to the underlying changes of the clinical manifestations of MS. Further studies are needed to provide evidence of possible clinical implications.
Collapse
Affiliation(s)
- Valeria Testa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Nicole De Santis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Riccardo Scotto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Piero Della Giustina
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Lorenzo Ferro Desideri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Maria Cellerino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Inglese
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Antonio Uccelli
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Aldo Vagge
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Carlo Enrico Traverso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Michele Iester
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| |
Collapse
|
20
|
Kuchling J, Paul F. Visualizing the Central Nervous System: Imaging Tools for Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Front Neurol 2020; 11:450. [PMID: 32625158 PMCID: PMC7311777 DOI: 10.3389/fneur.2020.00450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are autoimmune central nervous system conditions with increasing incidence and prevalence. While MS is the most frequent inflammatory CNS disorder in young adults, NMOSD is a rare disease, that is pathogenetically distinct from MS, and accounts for approximately 1% of demyelinating disorders, with the relative proportion within the demyelinating CNS diseases varying widely among different races and regions. Most immunomodulatory drugs used in MS are inefficacious or even harmful in NMOSD, emphasizing the need for a timely and accurate diagnosis and distinction from MS. Despite distinct immunopathology and differences in disease course and severity there might be considerable overlap in clinical and imaging findings, posing a diagnostic challenge for managing neurologists. Differential diagnosis is facilitated by positive serology for AQP4-antibodies (AQP4-ab) in NMOSD, but might be difficult in seronegative cases. Imaging of the brain, optic nerve, retina and spinal cord is of paramount importance when managing patients with autoimmune CNS conditions. Once a diagnosis has been established, imaging techniques are often deployed at regular intervals over the disease course as surrogate measures for disease activity and progression and to surveil treatment effects. While the application of some imaging modalities for monitoring of disease course was established decades ago in MS, the situation is unclear in NMOSD where work on longitudinal imaging findings and their association with clinical disability is scant. Moreover, as long-term disability is mostly attack-related in NMOSD and does not stem from insidious progression as in MS, regular follow-up imaging might not be useful in the absence of clinical events. However, with accumulating evidence for covert tissue alteration in NMOSD and with the advent of approved immunotherapies the role of imaging in the management of NMOSD may be reconsidered. By contrast, MS management still faces the challenge of implementing imaging techniques that are capable of monitoring progressive tissue loss in clinical trials and cohort studies into treatment algorithms for individual patients. This article reviews the current status of imaging research in MS and NMOSD with an emphasis on emerging modalities that have the potential to be implemented in clinical practice.
Collapse
Affiliation(s)
- Joseph Kuchling
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
21
|
Dalmau J, Dalakas MC, Kolson DL, Paul F, Zamvil SS. N2 year in review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e644. [PMID: 31831570 PMCID: PMC6935839 DOI: 10.1212/nxi.0000000000000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Josep Dalmau
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco.
| | - Marinos C Dalakas
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Dennis L Kolson
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Friedemann Paul
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Scott S Zamvil
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| |
Collapse
|
22
|
Cree BAC, Hollenbach JA, Bove R, Kirkish G, Sacco S, Caverzasi E, Bischof A, Gundel T, Zhu AH, Papinutto N, Stern WA, Bevan C, Romeo A, Goodin DS, Gelfand JM, Graves J, Green AJ, Wilson MR, Zamvil SS, Zhao C, Gomez R, Ragan NR, Rush GQ, Barba P, Santaniello A, Baranzini SE, Oksenberg JR, Henry RG, Hauser SL. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol 2019; 85:653-666. [PMID: 30851128 PMCID: PMC6518998 DOI: 10.1002/ana.25463] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
Objective Rates of worsening and evolution to secondary progressive multiple sclerosis (MS) may be substantially lower in actively treated patients compared to natural history studies from the pretreatment era. Nonetheless, in our recently reported prospective cohort, more than half of patients with relapsing MS accumulated significant new disability by the 10th year of follow‐up. Notably, “no evidence of disease activity” at 2 years did not predict long‐term stability. Here, we determined to what extent clinical relapses and radiographic evidence of disease activity contribute to long‐term disability accumulation. Methods Disability progression was defined as an increase in Expanded Disability Status Scale (EDSS) of 1.5, 1.0, or 0.5 (or greater) from baseline EDSS = 0, 1.0–5.0, and 5.5 or higher, respectively, assessed from baseline to year 5 (±1 year) and sustained to year 10 (±1 year). Longitudinal analysis of relative brain volume loss used a linear mixed model with sex, age, disease duration, and HLA‐DRB1*15:01 as covariates. Results Relapses were associated with a transient increase in disability over 1‐year intervals (p = 0.012) but not with confirmed disability progression (p = 0.551). Relative brain volume declined at a greater rate among individuals with disability progression compared to those who remained stable (p < 0.05). Interpretation Long‐term worsening is common in relapsing MS patients, is largely independent of relapse activity, and is associated with accelerated brain atrophy. We propose the term silent progression to describe the insidious disability that accrues in many patients who satisfy traditional criteria for relapsing–remitting MS. Ann Neurol 2019;85:653–666
Collapse
Affiliation(s)
| | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Jill A Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Gina Kirkish
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Simone Sacco
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Eduardo Caverzasi
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Antje Bischof
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Tristan Gundel
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Alyssa H Zhu
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Nico Papinutto
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - William A Stern
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Carolyn Bevan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Andrew Romeo
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Douglas S Goodin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Jeffrey M Gelfand
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Jennifer Graves
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Ari J Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Michael R Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Scott S Zamvil
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Chao Zhao
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Refujia Gomez
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Nicholas R Ragan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Gillian Q Rush
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Patrick Barba
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Adam Santaniello
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Sergio E Baranzini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Jorge R Oksenberg
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Roland G Henry
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Stephen L Hauser
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|