1
|
Siddalingaiah N, Lodha L, Ashwini MA, Chandel S, Manuel SP, Prathyusha PV, Damodar T, Subramanian S, Mani RS. Neurofilament Light Chain: A Potential Diagnostic Biomarker for Rabies. Microbiol Immunol 2025; 69:212-219. [PMID: 39915944 DOI: 10.1111/1348-0421.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 04/08/2025]
Abstract
Rabies is a fatal, acute progressive encephalomyelitis caused by the rabies virus and other Lyssaviruses. Several other clinical conditions can mimic rabies. Antemortem laboratory diagnosis remains challenging and requires multiple or serial sampling for confirmation. Measurement of host-based biomarkers is an emerging area of research in infectious diseases; however, a reliable biomarker for rabies remains elusive. In this study, neurofilament light chain (NfL), an established marker of neuronal injury, has been investigated as a potential diagnostic marker for rabies. NfL levels were measured using the Simoa NfL v2 kit in serum and cerebrospinal fluid (CSF) samples received for routine diagnostic testing from encephalitis cases (rabies, n = 31; other encephalitides, n = 30) and controls (n = 24). The median serum NfL level in the rabies group was significantly higher than that in the control group (adjusted p < 0.001), as well as the other encephalitides group (adjusted p = 0.024). Furthermore, the median CSF NfL level in the rabies group was significantly higher than that in the other encephalitides group (p < 0.001). There were no significant differences in serum or CSF NfL levels in rabies cases with different clinical presentations, prior vaccination status, or incubation period. These findings demonstrate for the first time that rabies can be differentiated from other causes of encephalitis by extremely high NfL levels.
Collapse
Affiliation(s)
- Nayana Siddalingaiah
- Department of Neurovirology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Lonika Lodha
- Department of Neurovirology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Manoor Ananda Ashwini
- Department of Neurovirology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Shubhangi Chandel
- Department of Neurovirology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Sathya Priya Manuel
- Department of Neurovirology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Tina Damodar
- Department of Neurovirology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Sarada Subramanian
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
2
|
Di Muro G, Tessarolo C, Cagnotti G, Favole A, Ferrini S, Ala U, Bellino C, Borriello G, Gallo M, Iamone G, Iulini B, Pezzolato M, Casalone C, Caramelli M, Capucci L, Cavadini P, Corona C, D'Angelo A. Neurofilament light chain (Nf-L) in cerebrospinal fluid and serum as a potential biomarker in the differential diagnosis of neurological diseases in cattle. Vet Res 2025; 56:6. [PMID: 39794836 PMCID: PMC11724550 DOI: 10.1186/s13567-024-01441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/19/2024] [Indexed: 01/13/2025] Open
Abstract
Neurofilament light chain (Nf-L) is a biomarker for axonal damage in human neurology but is understudied in cattle. With this study we wanted to determine Nf-L stability at two different storage temperatures and Nf-L levels in healthy cattle and the relationship with age, evaluate whether Nf-L holds diagnostic potential for neurological disorders, and whether an association exists between Nf-L in serum and in cerebrospinal fluid (CSF). To do this, we measured Nf-L levels in CSF and serum samples from 49 healthy and 75 sick cattle. Storage at -80 °C or -20 °C had no impact on Nf-L concentration. Physiological median Nf-L levels were 6.3 pg/mL (serum) and 414 pg/mL (CSF) in calves and 5.5 pg/mL (serum) and 828 pg/mL (CSF) in adult cattle. There was no association between Nf-L levels in CSF and calf age (r2 0.07, p = 0.13), while a weak association was found for Nf-L in serum (r2 0.26, p = 0.01), and a significant association in adult cattle (CSF, r2 0.69, p = 0.0001; serum, r2 0.68, p = 0.0003). CSF Nf-L levels were higher in samples from animals with degenerative (median Nf-L 49971 pg/mL) and infectious central nervous system (CNS) disorders (median Nf-L, age < 2 months 8863 pg/mL; age 2-12 months 17474 pg/mL; age 1-6 years 3546 pg/mL), CNS anomalies and metabolic/toxic disorders. There was a significant association between CSF Nf-L and serum Nf-L in cattle with neurological disorders (r2 0.2, p = 0.009). Taken together, these findings suggest the potential of Nf-L as a diagnostic tool in cattle neurology.
Collapse
Affiliation(s)
- Giorgia Di Muro
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Carlotta Tessarolo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Giulia Cagnotti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy.
| | - Alessandra Favole
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Sara Ferrini
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Claudio Bellino
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Giuliano Borriello
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Marina Gallo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Giulia Iamone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Via Bianchi 9, 25124, Brescia, BS, Italy
| | - Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Via Bianchi 9, 25124, Brescia, BS, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Antonio D'Angelo
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| |
Collapse
|
3
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
4
|
Alsén K, Patzi Churqui M, Norder H, Rembeck K, Zetterberg H, Blennow K, Sahlgren F, Grahn A. Biomarkers and genotypes in patients with Central nervous system infection caused by enterovirus. Infect Dis (Lond) 2024; 56:722-731. [PMID: 38756101 PMCID: PMC11371261 DOI: 10.1080/23744235.2024.2345712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE Enteroviruses (EV) comprises many different types and are the most common cause of aseptic meningitis. How the virus affects the brain including potential differences between types are largely unknown. Measuring biomarkers in CSF is a tool to estimate brain damage caused by CNS infections. METHODS A retrospective study was performed in samples from 38 patients with acute neurological manifestations and positive CSF-EV RNA (n = 37) or serum-IgM (n = 1). The EV in 17 samples were typed by sequencing. The biomarkers neurofilament light (NFL), glial fibrillary acidic protein (GFAP), S-100B protein, amyloid-β (Aβ) 40 and Aβ42, total-tau (T-tau) and phosphorylated tau (P-tau) were measured and compared with data derived from a control group (n = 19). RESULTS There were no increased levels of GFAP (p ≤ 0.1) nor NFL (p ≤ 0.1) in the CSF of patients with EV meningitis (n = 38) compared with controls. However, we found decreased levels of Aβ42 (p < 0.001), Aβ40 (p < 0.001), T-tau (p ≥ 0.01), P-tau (p ≤ 0.001) and S-100B (p ≤ 0.001). E30 (n = 9) and CVB5 (n = 6) were the most frequent EV-types identified, but no differences in biomarker levels or other clinical parameters were found between the infecting virus type. Seven patients who were followed for longer than one month reported remaining cognitive impairment, although no correlations with biomarker concentrations were observed. CONCLUSION There are no indication of neuronal or astrocyte damage in patients with EV meningitis. Yet, decreased concentrations of Aβ40, Aβ42, P-tau and T-tau were shown, a finding of unknown importance. Cognitive impairment after acute disease occurs, but with only a limited number of patients analysed, no conclusion can be drawn concerning any association with biomarker levels or EV types.
Collapse
Affiliation(s)
- Karolina Alsén
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious diseases, Västra Götaland Region, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marianela Patzi Churqui
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helene Norder
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karolina Rembeck
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious diseases, Västra Götaland Region, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kaj Blennow
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- University of Science and Technology of China, Hefei, P.R. China
| | | | - Anna Grahn
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious diseases, Västra Götaland Region, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Ongphichetmetha T, Thanapornsangsuth P, Luechaipanit W, Loymunkong N, Rattanawong W, Hiransuthikul A, Supharatpariyakorn T, Sriswasdi S, Hemachudha T. Neurofilament light chain for classifying the aetiology of alteration of consciousness. Brain Commun 2023; 5:fcad278. [PMID: 37942089 PMCID: PMC10629465 DOI: 10.1093/braincomms/fcad278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Neurofilament light chain has become a promising biomarker for neuroaxonal injury; however, its diagnostic utility is limited to chronic disorders or specific contexts. Alteration of consciousness is a common clinical problem with diverse aetiologies, many of which require timely diagnoses. We evaluated the value of neurofilament light chain alone, as well as creating diagnostic models, in distinguishing causes of alteration of consciousness. Patients presenting with alteration of consciousness were enrolled. Initial clinical data of each participant were evaluated by a neurologist to give a provisional diagnosis. Each participant subsequently received advanced investigations and follow-up to conclude the final diagnosis. All diagnoses were classified into a structural or non-structural cause of alteration of consciousness. Plasma and cerebrospinal fluid levels of neurofilament light chain were measured. Cerebrospinal fluid neurofilament light chain and other clinical parameters were used to develop logistic regression models. The performance of cerebrospinal fluid neurofilament light chain, the neurologist's provisional diagnosis, and the model to predict the final diagnosis were compared. For the results, among 71 participants enrolled, 67.6% and 32.4% of their final diagnoses were classified as structural and non-structural, respectively. Cerebrospinal fluid neurofilament light chain demonstrated an area under the curve of 0.75 (95% confidence interval 0.63-0.88) which was not significantly different from a neurologist's provisional diagnosis 0.85 (95% confidence interval 0.75-0.94) (P = 0.14). The multivariable regression model using cerebrospinal fluid neurofilament light chain and other basic clinical data achieved an area under the curve of 0.90 (95% confidence interval 0.83-0.98). In conclusion, neurofilament light chain classified causes of alteration of consciousness with moderate accuracy. Nevertheless, including other basic clinical data to construct a model improved the performance to a level that was comparable to clinical neurologists.
Collapse
Affiliation(s)
- Tatchaporn Ongphichetmetha
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Siriraj Neuroimmunology Center, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Poosanu Thanapornsangsuth
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Watayuth Luechaipanit
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Nattawan Loymunkong
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Wanakorn Rattanawong
- Department of Medicine, Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Akarin Hiransuthikul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thirawat Supharatpariyakorn
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Sira Sriswasdi
- Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thiravat Hemachudha
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Geis T, Gutzeit S, Fouzas S, Ambrosch A, Benkert P, Kuhle J, Wellmann S. Serum Neurofilament light chain (NfL) levels in children with and without neurologic diseases. Eur J Paediatr Neurol 2023; 45:9-13. [PMID: 37236127 DOI: 10.1016/j.ejpn.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/10/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND/OBJECTIVE Serum neurofilament light chain (sNfL) is a specific biomarker of neuronal damage. Elevated sNfL levels have been reported in numerous neurologic diseases in adults, whereas data on sNfL in the pediatric population are incomplete. The aim of this study was to investigate sNfL levels in children with various acute and chronic neurologic disorders and describe the age dependence of sNfL from infancy to adolescence. METHODS The total study cohort of this prospective cross-sectional study consisted of 222 children aged from 0 to 17 years. Patients' clinical data were reviewed and patients were assigned to the following groups: 101 (45.5%) controls, 34 (15.3%) febrile controls, 23 (10.4%) acute neurologic conditions (meningitis, facial nerve palsy, traumatic brain injury, or shunt dysfunction in hydrocephalus), 37 (16.7%) febrile seizures, 6 (2.7%) epileptic seizures, 18 (8.1%) chronic neurologic conditions (autism, cerebral palsy, inborn mitochondrial disorder, intracranial hypertension, spina bifida, or chromosomal abnormalities), and 3 (1.4%) severe systemic disease. sNfL levels were measured using a sensitive single-molecule array assay. RESULTS There were no significant differences in sNfL levels between controls, febrile controls, febrile seizures, epileptic seizures, acute neurologic conditions, and chronic neurologic conditions. In children with severe systemic disorders, by far the highest NfL levels were found with an sNfL of 429 pg/ml in a patient with neuroblastoma, 126 pg/ml in a patient with cranial nerve palsy and pharyngeal Burkitt's lymphoma, and 42 pg/ml in a child with renal transplant rejection. The relationship between sNfL and age could be described by a second order polynomial with an R2 of 0.153 with a decrease of sNfL by 3.2% per year from birth to age 12 years and thereafter an increase by 2.7% per year until age 18 years. CONCLUSIONS In this study cohort, sNfL levels were not elevated in children with febrile or epileptic seizures, or various other neurologic diseases. Strikingly high sNfL levels were detected in children with oncologic disease or transplant rejection. A biphasic sNfL age-dependency was documented, with highest levels in infancy and late adolescence and the lowest levels in middle school age.
Collapse
Affiliation(s)
- Tobias Geis
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany.
| | - Svena Gutzeit
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Sotiris Fouzas
- Department of Pediatrics, University Hospital of Patras, Patras, Greece
| | - Andreas Ambrosch
- Institute of Laboratory Medicine, Microbiology and Hygiene, Hospital of the Order of St. John, Regensburg, Germany
| | - Pascal Benkert
- Neurologic Clinic and Policlinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sven Wellmann
- Research and Development Campus Regensburg (WECARE), at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany; Department of Neonatology, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Regner-Nelke L, Ruck T, Meuth SG. [Meningitis in the Emergency Room]. Anasthesiol Intensivmed Notfallmed Schmerzther 2023; 58:322-334. [PMID: 37192640 DOI: 10.1055/a-2077-6971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
AbstractMeningitis describes an inflammation of the meninges of the brain and spinal cord, which, depending on the etiology, can be a serious disease with high lethality. The suspicion of
meningitis therefore requires rapid and adept action. In this paper, we explain the diagnostic and therapeutic approach to suspected meningitis in the emergency department.
Collapse
|
8
|
Nitsch L, Ehrentraut SF, Grobe-Einsler M, Bode FJ, Banat M, Schneider M, Lehmann F, Zimmermann J, Weller J. The Diagnostic Value of Cerebrospinal Fluid Lactate for Detection of Sepsis in Community-Acquired Bacterial Meningitis. Diagnostics (Basel) 2023; 13:diagnostics13071313. [PMID: 37046531 PMCID: PMC10093535 DOI: 10.3390/diagnostics13071313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Community-acquired bacterial meningitis conveys significant morbidity and mortality due to intracranial and systemic complications, and sepsis is a major contributor to the latter. While cerebrospinal fluid (CSF) analysis is essential in the diagnosis of bacterial meningitis, its predictive utility for detection of sepsis is unknown. We investigated the diagnostic performance of CSF parameters for sepsis defined by the Sepsis-3 criteria in a retrospective cohort of patients with community-acquired bacterial meningitis. Among 103 patients, 69.5% developed sepsis. CSF lactate was associated with sepsis with an odds ratio of 1.11 (p = 0.022), while CSF cell counts, glucose and protein levels were not (all p > 0.4). Employing the optimal cutoff of 8.2 mmol/L, elevated CSF lactate resulted in a sensitivity of 81.5% and specificity of 61.5% for sepsis. In exploratory analyses, CSF lactate was also associated with in-hospital mortality with an odds ratio of 1.21 (p = 0.011). Elevated CSF lactate might contribute to early diagnosis of sepsis as well as prognostication in patients with community-acquired bacterial meningitis.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | | | | | - Felix J. Bode
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Mohammed Banat
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Felix Lehmann
- Department of Anesthesiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julian Zimmermann
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Johannes Weller
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Dalmau J, Dalakas MC, Kolson DL, Paul F, Sánchez-Valle R, Zamvil SS. N2 Year in Review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/1/e200076. [PMID: 36596717 PMCID: PMC9827124 DOI: 10.1212/nxi.0000000000200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Josep Dalmau
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco.
| | - Marinos C Dalakas
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| | - Dennis L Kolson
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| | - Friedemann Paul
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| | - Raquel Sánchez-Valle
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| | - Scott S Zamvil
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| |
Collapse
|
10
|
Chung H, Wickel J, Oswald M, Dargvainiene J, Rupp J, Rohde G, Witzenrath M, Leypoldt F, König R, Pletz MW, Geis C. Neurofilament light chain levels predict encephalopathy and outcome in community-acquired pneumonia. Ann Clin Transl Neurol 2022; 10:204-212. [PMID: 36479924 PMCID: PMC9930427 DOI: 10.1002/acn3.51711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Serum neurofilament light chain (sNfL) is a biomarker for neuroaxonal damage and has been found to be elevated in several neurological diseases with neuronal destruction. New onset of confusion is a hallmark of severity in infections. The objective of this study was to determine whether sNfL levels are increased in patients with community-acquired pneumonia (CAP) and if increased sNfL levels are associated with disease-associated confusion or disease severity. METHODS In this observational study, sNfL levels were determined with single-molecule array technology in CAP patients of the CAPNETZ cohort with validated CRB (confusion, respiratory rate, and blood pressure)-65 score. We determined associations between log-transformed sNfL concentrations, well-defined clinical characteristics, and unfavorable outcome in multivariable analyses. Receiver operating characteristic (ROC) analysis was performed to assess the prediction accuracy of sNfL levels for confusion in CAP patients. RESULTS sNfL concentrations were evaluated in 150 CAP patients. Patients with confusion had higher sNfL levels as compared to non-confusion patients of comparable overall disease severity. ROC analysis of sNfL and confusion provided an area under the curve (AUC) of 0.73 (95% CI 0.62-0.82). Log-transformed sNfL levels were not associated with general disease severity. In a logistic regression analysis, log2-sNfL was identified as a strong predictor for an unfavorable outcome. INTERPRETATION sNfL levels are specifically associated with confusion and not with pneumonia disease severity, thus reflecting a potential objective marker for encephalopathy in these patients. Furthermore, sNfL levels are also associated with unfavorable outcome in these patients and might help clinicians to identify patients at risk.
Collapse
Affiliation(s)
- Ha‐Yeun Chung
- Section of Translational Neuroimmunology, Department of NeurologyJena University HospitalJenaGermany,Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of NeurologyJena University HospitalJenaGermany,Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Marcus Oswald
- Systems Biology Research Group, Institute for Infectious Diseases and Infection Control (IIMK)Jena University HospitalJenaGermany
| | - Justina Dargvainiene
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/LübeckKiel UniversityKielGermany
| | - Jan Rupp
- Department of Infectious Diseases and MicrobiologyUniversity Hospital Schleswig‐HolsteinLübeckGermany,CAPNETZ STIFTUNGHannoverGermany
| | - Gernot Rohde
- CAPNETZ STIFTUNGHannoverGermany,Biomedical Research in Endstage in Obstructive Lung Disease Hannover (BREATH)German Center for Lung Research (DZL)HannoverGermany,Department of Respiratory Medicine, Medical Clinic IFrankfurt University Hospital, Goethe University FrankfurtFrankfurt/MainGermany
| | - Martin Witzenrath
- CAPNETZ STIFTUNGHannoverGermany,Department of Infectious Diseases and Respiratory MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/LübeckKiel UniversityKielGermany
| | - Rainer König
- Systems Biology Research Group, Institute for Infectious Diseases and Infection Control (IIMK)Jena University HospitalJenaGermany
| | - Mathias W. Pletz
- Center for Sepsis Control and CareJena University HospitalJenaGermany,CAPNETZ STIFTUNGHannoverGermany,Institute of Infectious Diseases and Infection ControlJena University HospitalJenaGermany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of NeurologyJena University HospitalJenaGermany,Center for Sepsis Control and CareJena University HospitalJenaGermany
| | | |
Collapse
|
11
|
van Zeggeren IE, ter Horst L, Heijst H, Teunissen CE, van de Beek D, Brouwer MC. Neurofilament light chain in central nervous system infections: a prospective study of diagnostic accuracy. Sci Rep 2022; 12:14140. [PMID: 35986031 PMCID: PMC9391449 DOI: 10.1038/s41598-022-17643-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Diagnosing central nervous system (CNS) infections quickly is often difficult. Neurofilament light chain (NfL) is a component of the axonal cytoskeleton and identified as marker of neuronal damage in several CNS diseases. We evaluated the diagnostic accuracy of NfL for diagnosing CNS infections. We included patients from a prospective cohort of consecutive patients in whom a lumbar puncture was performed for suspected CNS infection in an academic hospital in The Netherlands. The index test was NfL in cerebrospinal fluid (CSF) and reference standard the final clinical diagnosis. Diagnostic accuracy was determined using the area-under-the-curve (AUC) with 95% confidence intervals (CI). The association of CSF NfL with clinical characteristics, diagnosis and outcome was evaluated. Between 2012 and 2015, 273 episodes in adults of which sufficient CSF was available were included. CNS infection was diagnosed in 26%(n = 70), CNS inflammatory disease in 7%(n = 20), systemic infection in 32%(n = 87), and other neurological disorders in 33%(n = 90). Median CSF NfL level was 593 pg/ml (IQR 249–1569) and did not discriminate between diagnostic categories or CNS infection subcategories. AUC for diagnosing any CNS infection compared to patients without CNS infections was 0.50 (95% CI 0.42–0.59). Patients presenting with an altered mental status had higher NfL levels compared to other patients. We concluded that NfL cannot discriminate between causes in patients suspected of CNS infections. High concentrations of NfL are associated with severe neurological disease and the prognostic value of NfL in patients with CNS infections should be investigated in future research.
Collapse
|
12
|
Le ND, Steinfort M, Grandgirard D, Maleska A, Leppert D, Kuhle J, Leib SL. The CCR5 antagonist maraviroc exerts limited neuroprotection without improving neurofunctional outcome in experimental pneumococcal meningitis. Sci Rep 2022; 12:12945. [PMID: 35902720 PMCID: PMC9334283 DOI: 10.1038/s41598-022-17282-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
One-third of pneumococcal meningitis (PM) survivors suffer from neurological sequelae including learning disabilities and hearing loss due to excessive neuroinflammation. There is a lack of efficacious compounds for adjuvant therapy to control this long-term consequence of PM. One hallmark is the recruitment of leukocytes to the brain to combat the bacterial spread. However, this process induces excessive inflammation, causing neuronal injury. Maraviroc (MVC)-a CCR5 antagonist-was demonstrated to inhibit leukocyte recruitment and attenuate neuroinflammation in several inflammatory diseases. Here, we show that in vitro, MVC decreased nitric oxide production in astroglial cells upon pneumococcal stimulation. In vivo, infant Wistar rats were infected with 1 × 104 CFU/ml S. pneumoniae and randomized for treatment with ceftriaxone plus MVC (100 mg/kg) or ceftriaxone monotherapy. During the acute phase, neuroinflammation in the CSF was measured and histopathological analyses were performed to determine neuronal injury. Long-term neurofunctional outcome (learning/memory and hearing capacity) after PM was assessed. MVC treatment reduced hippocampal cell apoptosis but did not affect CSF neuroinflammation and the neurofunctional outcome after PM. We conclude that MVC treatment only exerted limited effect on the pathophysiology of PM and is, therefore, not sufficiently beneficial in this experimental paradigm of PM.
Collapse
Affiliation(s)
- Ngoc Dung Le
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Marel Steinfort
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Aleksandra Maleska
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|