1
|
Wemlinger SM, Cambier JC. Therapeutic tactics for targeting B lymphocytes in autoimmunity and cancer. Eur J Immunol 2024; 54:e2249947. [PMID: 37816494 DOI: 10.1002/eji.202249947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
B lymphocytes have become a very popular therapeutic target in a number of autoimmune indications due to their newly appreciated roles, and approachability, in these diseases. Many of the therapies now applied in autoimmunity were initially developed to deplete malignant B cells. These strategies have also been found to benefit patients suffering from such autoimmune diseases as multiple sclerosis, type I diabetes, systemic lupus erythematosus, and rheumatoid arthritis, to name a few. These observations have supported the expansion of research addressing the mechanistic contributions of B cells in these diseases, as well as blossoming of therapeutics that target them. This review seeks to summarize cutting-edge modalities for targeting B cells, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor-T cells, and small molecule inhibitors. Efforts to refine B-cell targeted therapy to eliminate only pathogenic autoreactive cells will be addressed as well as the potential for future B-cell-based cellular therapeutics. Finally, we also address approaches that seek to silence B-cell function without depletion.
Collapse
Affiliation(s)
- Scott M Wemlinger
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
2
|
Florian J, Gershuny V, Sun Q, Schrieber SJ, Matta MK, Hazel A, Sheikhy M, Weaver JL, Hyland PL, Hsiao CH, Vegesna G, DePalma R, Shah A, Prentice K, Sanabria C, Wang YM, Strauss DG. Considerations for Use of Pharmacodynamic Biomarkers to Support Biosimilar Development - (III) A Randomized Trial with Interferon Beta-1a Products. Clin Pharmacol Ther 2023; 113:339-348. [PMID: 36324229 DOI: 10.1002/cpt.2784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The US Food and Drug Administration (FDA) has taken steps to bring efficiency to the development of biosimilars, including establishing guidance for the use of pharmacokinetic and pharmacodynamic (PD) similarity study data without a comparative clinical study with efficacy end point(s). To better understand the potential role for PD biomarkers in biosimilar development and inform best practices for biomarker selection and analysis, we conducted a randomized, double-blinded, placebo-controlled, single-dose, parallel-arm clinical study in healthy participants. Eighty-four healthy participants (n = 12 per dose arm) received either placebo or one of three doses of either interferon β-1a (7.5-30 μg) or pegylated interferon β-1a (31.25-125 μg) to evaluate the maximum change from baseline and the baseline-adjusted area under the effect curve for the biomarkers neopterin in serum and myxovirus resistance protein 1 in blood. Both PD biomarkers increased following product administration with clear separation from baseline (neopterin: 3.4-fold and 3.9-fold increase for interferon β-1a and pegylated interferon β-1a, respectively; myxovirus resistance protein 1: 19.0-fold and 47.2-fold increase for interferon β-1a and pegylated interferon β-1a, respectively). The dose-response curves support that therapeutic doses were adequately sensitive to detect differences in both PD biomarkers for consideration in a PD similarity study design. Because baseline levels of both biomarkers are low compared with on-treatment values, there was little difference in using PD measures adjusted to baseline compared with the results without baseline adjustment. This study illustrates potential methodologies for evaluating PD biomarkers and an approach to address information gaps when limited information is publicly available for one or more PD biomarkers.
Collapse
Affiliation(s)
- Jeffry Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Victoria Gershuny
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Qin Sun
- Therapeutic Biologics Program, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sarah J Schrieber
- Office of Therapeutic Biologics and Biosimilars, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Murali K Matta
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anthony Hazel
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Morasa Sheikhy
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - James L Weaver
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Paula L Hyland
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Cheng-Hui Hsiao
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Giri Vegesna
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ryan DePalma
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Aanchal Shah
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.,Booz Allen Hamilton, McLean, Virginia, USA
| | - Kristin Prentice
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.,Booz Allen Hamilton, McLean, Virginia, USA
| | | | - Yow-Ming Wang
- Therapeutic Biologics Program, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Michaličková D, Kübra Ö, Das D, Osama B, Slanař O. Molecular biomarkers in multiple sclerosis. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Multiple sclerosis (MS) is a highly heterogenous disease regarding radiological, pathological, and clinical characteristics and therapeutic response, including both the efficacy and safety profile of treatments. Accordingly, there is a high demand for biomarkers that sensitively and specifically apprehend the distinctive aspects of the MS heterogeneity, and that can aid in better understanding of the disease diagnosis, prognosis, prediction of the treatment response, and, finally, in the development of new treatments. Currently, clinical characteristics (e.g., relapse rate and disease progression) and magnetic resonance imaging play the most important role in the clinical classification of MS and assessment of its course. Molecular biomarkers (e.g., immunoglobulin G (IgG) oligoclonal bands, IgG index, anti-aquaporin-4 antibodies, neutralizing antibodies against interferon-beta and natalizumab, anti-varicella zoster virus and anti-John Cunningham (JC) virus antibodies) complement these markers excellently. This review provides an overview of exploratory, validated and clinically useful molecular biomarkers in MS which are used for prediction, diagnosis, disease activity and treatment response.
Collapse
|
4
|
Natalizumab Induces Changes of Cerebrospinal Fluid Measures in Multiple Sclerosis. Diagnostics (Basel) 2021; 11:diagnostics11122230. [PMID: 34943468 PMCID: PMC8699923 DOI: 10.3390/diagnostics11122230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background: There is a lack of knowledge about the evolution of cerebrospinal fluid (CSF) markers in multiple sclerosis (MS) patients undergoing natalizumab treatment. Aim: We aimed to evaluate the effect of natalizumab on basic inflammatory CSF and MRI measures. Methods: Together, 411 patients were screened for eligibility and 93 subjects with ≥2 CSF examinations ≤6 months before and ≥12 months after natalizumab initiation were recruited. The effect of natalizumab on CSF as well as clinical and paraclinical measures was analyzed using adjusted mixed models. Results: Natalizumab induced a decrease in CSF leukocytes (p < 1 × 10−15), CSF protein (p = 0.00007), the albumin quotient (p = 0.007), the IgG quotient (p = 6 × 10−15), the IgM quotient (p = 0.0002), the IgG index (p = 0.0004), the IgM index (p = 0.003) and the number of CSF-restricted oligoclonal bands (OCBs) (p = 0.0005). CSF-restricted OCBs positivity dropped from 94.6% to 86% but 26 patients (28%) had an increased number of OCBs at the follow-up. The baseline to follow-up EDSS and T2-LV were stable; a decrease in the relapse rate was consistent with a decrease in the CSF inflammatory markers and previous knowledge about the effectiveness of natalizumab. The average annualized brain volume loss during the follow-up was −0.50% (IQR = −0.96, −0.16) and was predicted by the baseline IgM index (B = −0.37; p = 0.003). Conclusions: Natalizumab is associated with a reduction of basic CSF inflammatory measures supporting its strong anti-inflammatory properties. The IgM index at the baseline predicted future brain volume loss during the course of natalizumab treatment.
Collapse
|
5
|
Alborghetti M, Bellucci G, Gentile A, Calderoni C, Nicoletti F, Capra R, Salvetti M, Centonze D. Drugs used in the treatment of multiple sclerosis during COVID-19 pandemic: a critical viewpoint. Curr Neuropharmacol 2021; 20:107-125. [PMID: 33784961 PMCID: PMC9199540 DOI: 10.2174/1570159x19666210330094017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
Since COVID-19 has emerged as a word public health problem, attention has been focused on how immune-suppressive drugs used for the treatment of autoimmune disorders influence the risk for SARS-CoV-2 infection and the development of acute respiratory distress syndrome (ARDS). Here, we discuss the disease-modifying agents approved for the treatment of multiple sclerosis (MS) within this context. Interferon (IFN)-β1a and -1b, which display antiviral activity, could be protective in the early stage of COVID-19 infection, although SARS-CoV-2 may have developed resistance to IFNs. However, in the hyperinflammation stage, IFNs may become detrimental by facilitating macrophage invasion in the lung and other organs. Glatiramer acetate and its analogues should not interfere with the development of COVID-19 and may be considered safe. Teriflunomide, a first-line oral drug used in the treatment of relapsing-remitting MS (RRMS), may display antiviral activity by depleting cellular nucleotides necessary for viral replication. The other first-line drug, dimethyl fumarate, may afford protection against SARS-CoV-2 by activating the Nrf-2 pathway and reinforcing the cellular defenses against oxidative stress. Concern has been raised regarding the use of second-line treatments for MS during the COVID-19 pandemic. However, this concern is not always justified. For example, fingolimod might be highly beneficial during the hyperinflammatory stage of COVID-19 for a number of mechanisms, including the reinforcement of the endothelial barrier. Caution is suggested for the use of natalizumab, cladribine, alemtuzumab, and ocrelizumab, although MS disease recurrence after discontinuation of these drugs may overcome a potential risk for COVID-19 infection.
Collapse
Affiliation(s)
- Marika Alborghetti
- Departments of Neuroscience Mental Health and Sensory Organs (NESMOS), University Sapienza of Rome. Italy
| | - Gianmarco Bellucci
- Departments of Neuroscience Mental Health and Sensory Organs (NESMOS), University Sapienza of Rome. Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome. Italy
| | - Chiara Calderoni
- Departments of Physiology and Pharmacology, University Sapienza of Rome. Italy
| | | | - Ruggero Capra
- Multiple Sclerosis Center, ASST Ospedali Civili, Brescia. Italy
| | - Marco Salvetti
- Departments of Neuroscience Mental Health and Sensory Organs (NESMOS),University Sapienza of Rome. Italy
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133 Rome. Italy
| |
Collapse
|
6
|
Paghera S, Sottini A, Previcini V, Capra R, Imberti L. Age-Related Lymphocyte Output During Disease-Modifying Therapies for Multiple Sclerosis. Drugs Aging 2021; 37:739-746. [PMID: 32761321 DOI: 10.1007/s40266-020-00789-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Patients with multiple sclerosis exhibit the same qualitative and quantitative changes in immune system cells observed in aging. In the last 20 years, multiple sclerosis patients have shown an increase in life expectancy and average age, but clinical trial inclusion criteria typically exclude patients over the age of 55 years. Therefore, disease-modifying therapies are likely administered to patients older than those enrolled in clinical trials. OBJECTIVE In order to investigate whether disease-modifying therapies for multiple sclerosis induce modifications to the immune system that may have (super)additive effects resulting in an acceleration of immunosenescence, we quantified the number of T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs). These molecules are contained in new T and B lymphocytes released by the thymus and bone marrow and are considered molecular age-related markers. METHODS The markers of aging were measured by a multiplex quantitative real-time PCR assay in 122 patients who had started therapy with interferon-beta (IFN-β), fingolimod, alemtuzumab, or natalizumab. Samples were obtained before the therapy and at 6 and 12 months of treatment. Comparisons between the variables were performed by a non-parametric statistical analysis. RESULTS In therapy-naive patients, a significant and direct correlation was found between a lower number of newly produced T and B cells and older age. Although disease-modifying therapies induced different changes (both increases and decreases) in the production of new T and B lymphocytes, 12 months of therapy with IFN-β or natalizumab did not affect the correlations found at baseline between the release of lymphocytes containing TRECs or KRECs and age. On the contrary, in patients treated with alemtuzumab, both correlations were lost, while in fingolimod-treated patients, only the correlation between TRECs and age disappeared. CONCLUSIONS This observational study indicated that different age-related changes of the new T and B lymphocyte production could be one of the reasons for the emergence, in the real-world setting, of adverse events not otherwise observed in clinical trials; thus, caution is advised when choosing disease-modifying therapies for multiple sclerosis patients.
Collapse
Affiliation(s)
- Simone Paghera
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Vanessa Previcini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
7
|
Naughton M, Moffat J, Eleftheriadis G, de la Vega Gallardo N, Young A, Falconer J, Hawkins K, Pearson B, Perbal B, Hogan A, Moynagh P, Loveless S, Robertson NP, Gran B, Kee R, Hughes S, McDonnell G, Howell O, Fitzgerald DC. CCN3 is dynamically regulated by treatment and disease state in multiple sclerosis. J Neuroinflammation 2020; 17:349. [PMID: 33222687 PMCID: PMC7681974 DOI: 10.1186/s12974-020-02025-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated disease that damages myelin in the central nervous system (CNS). We investigated the profile of CCN3, a known regulator of immune function and a potential mediator of myelin regeneration, in multiple sclerosis in the context of disease state and disease-modifying treatment. METHODS CCN3 expression was analysed in plasma, immune cells, CSF and brain tissue of MS patient groups and control subjects by ELISA, western blot, qPCR, histology and in situ hybridization. RESULTS Plasma CCN3 levels were comparable between collective MS cohorts and controls but were significantly higher in progressive versus relapsing-remitting MS and between patients on interferon-β versus natalizumab. Higher body mass index was associated with higher CCN3 levels in controls as reported previously, but this correlation was absent in MS patients. A significant positive correlation was found between CCN3 levels in matched plasma and CSF of MS patients which was absent in a comparator group of idiopathic intracranial hypertension patients. PBMCs and CD4+ T cells significantly upregulated CCN3 mRNA in MS patients versus controls. In the CNS, CCN3 was detected in neurons, astrocytes and blood vessels. Although overall levels of area immunoreactivity were comparable between non-affected, demyelinated and remyelinated tissue, the profile of expression varied dramatically. CONCLUSIONS This investigation provides the first comprehensive profile of CCN3 expression in MS and provides rationale to determine if CCN3 contributes to neuroimmunological functions in the CNS.
Collapse
Affiliation(s)
- Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Jill Moffat
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - George Eleftheriadis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Nira de la Vega Gallardo
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Andrew Young
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - John Falconer
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Kristen Hawkins
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Ben Pearson
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | | | - Andrew Hogan
- Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Paul Moynagh
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
- Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Sam Loveless
- Department of Neurology, University Hospital of Wales and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Neil P Robertson
- Department of Neurology, University Hospital of Wales and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Bruno Gran
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK/Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rachael Kee
- Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Stella Hughes
- Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Gavin McDonnell
- Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Owain Howell
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
8
|
Khoy K, Mariotte D, Defer G, Petit G, Toutirais O, Le Mauff B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front Immunol 2020; 11:549842. [PMID: 33072089 PMCID: PMC7541830 DOI: 10.3389/fimmu.2020.549842] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system (CNS) with an autoimmune component. Among the recent disease-modifying treatments available, Natalizumab, a monoclonal antibody directed against the alpha chain of the VLA-4 integrin (CD49d), is a potent inhibitor of cell migration toward the tissues including CNS. It potently reduces relapses and active brain lesions in the relapsing remitting form of the disease. However, it has also been associated with a severe infectious complication, the progressive multifocal leukoencephalitis (PML). Using the standard protocol with an injection every 4 weeks it has been shown by a close monitoring of the drug that trough levels soon reach a plateau with an almost saturation of the target cell receptor as well as a down modulation of this receptor. In this review, mechanisms of action involved in therapeutic efficacy as well as in PML risk will be discussed. Furthermore the interest of a biological monitoring that may be helpful to rapidly adapt treatment is presented. Indeed, development of anti-NAT antibodies, although sometimes unapparent, can be detected indirectly by normalization of CD49d expression on circulating mononuclear cells and might require to switch to another drug. On the other hand a stable modulation of CD49d expression might be useful to follow the circulating NAT levels and apply an extended interval dose scheme that could contribute to limiting the risk of PML.
Collapse
Affiliation(s)
- Kathy Khoy
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Delphine Mariotte
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Gilles Defer
- Department of Neurology, MS Expert Centre, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Gautier Petit
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Olivier Toutirais
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Brigitte Le Mauff
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
9
|
Response to: Kobayashi et al.: "Erythroblast appearance associated with natalizumab" Multiple Sclerosis and Related Disorders 2019. Mult Scler Relat Disord 2019; 32:114-115. [PMID: 31103833 DOI: 10.1016/j.msard.2019.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022]
|
10
|
Klotz L, Havla J, Schwab N, Hohlfeld R, Barnett M, Reddel S, Wiendl H. Risks and risk management in modern multiple sclerosis immunotherapeutic treatment. Ther Adv Neurol Disord 2019; 12:1756286419836571. [PMID: 30967901 PMCID: PMC6444778 DOI: 10.1177/1756286419836571] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, there has been a paradigm shift in the treatment of multiple
sclerosis (MS) owing to the approval of a number of new drugs with very distinct
mechanisms of action. All approved disease-modifying drugs primarily work
directly on the immune system. However, the identification of an ‘optimal
choice’ for individual patients with regard to treatment efficacy, treatment
adherence and side-effect profile has become increasingly complex including
conceptual as well as practical considerations. Similarly, there are
peculiarities and specific requirements with regard to treatment monitoring,
especially in relation to immunosuppression, the development of secondary
immune-related complications, as well as the existence of drug-specific on- and
off-target effects. Both classical immunosuppression and selective immune
interventions generate a spectrum of potential therapy-related complications.
This article provides a comprehensive overview of available immunotherapeutics
for MS and their risks, detailing individual mechanisms of action and
side-effect profiles. Furthermore, practical recommendations for patients
treated with modern MS immunotherapeutics are provided.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Building A1, Albert Schweitzer Campus 1, 48149 Münster, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital; Data Integration for Future Medicine consortium (DIFUTURE), Ludwig-Maximilians University, Munich, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University, Munich, Germany Munich Cluster for Systems Neurology, Ludwig-Maximilians University, Munich, Germany
| | | | - Stephen Reddel
- Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Building A1, Albert Schweitzer Campus 1, 48149 Münster, Germany
| |
Collapse
|
11
|
Kaufmann M, Haase R, Proschmann U, Ziemssen T, Akgün K. Real-World Lab Data in Natalizumab Treated Multiple Sclerosis Patients Up to 6 Years Long-Term Follow Up. Front Neurol 2018; 9:1071. [PMID: 30581413 PMCID: PMC6292961 DOI: 10.3389/fneur.2018.01071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Natalizumab inhibits the transmigration of immune cells across the blood-brain barrier thus inhibiting inflammation in the central nervous system. Generally, this blockade at the blood-brain barrier has significant influence on the circulating lymphocytes. Up to date, only short-term data on peripheral blood parameters are available which are mostly from controlled clinical trials and not from real-world experience. Real-world lab data of 120 patients diagnosed with highly active disease course of relapsing-remitting multiple sclerosis (RRMS) were analyzed during natalizumab treatment. Patient sampling was performed by consecutive recruitment in the Multiple Sclerosis Center Dresden. Lab testing was performed before and at every third infusion up to 72 months follow-up. After first natalizumab infusion, absolute numbers of all major lymphocyte populations including CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, and NK-cells significantly increased and remained stable during the whole observation period of 72 months. Upon lymphocyte subsets, CD19+ B-cells presented a disproportionate increase up to levels higher than normal level in most of the treated patients. Neutralizing antibodies to natalizumab abrogated the described changes. Intra-individual variation of lymphocytes and its subsets remained in a narrow range for the whole treatment period. CD4/CD8 ratio did not change compared to baseline measurement up to 6 years of natalizumab treatment. Monocytes, eosinophils, and basophils, but not neutrophils persistently increased during natalizumab treatment. Hematological parameters including erythrocyte, platelet count, hemoglobin, and hematocrit remained unchanged compared to baseline. Interestingly, immature precursor cells including erythroblasts were detectable in 36,8% of the treated patients during natalizumab therapy, but not in the pretreatment period. Asymptomatic elevations of liver enzymes were rare, mostly only transient and lower than 3x upper normal limit. Kidney function parameters remained stable within physiological ranges in most patients. CRP levels >20 mg/dl were recognized only in 10 patients during natalizumab therapy and were mostly linked to respiratory tract infections. In our present analysis, we report persistent, but stable increases of peripheral immune cell subtypes in natalizumab treated patients. Additional serological analyses confirm excellent tolerability and safety even 6 years after natalizumab initiation in post-marketing experience.
Collapse
Affiliation(s)
- Maxi Kaufmann
- MS Center Dresden, Center of Clinical Neuroscience, Carl Gustav Carus University Hospital, University of Technology Dresden, Dresden, Germany
| | - Rocco Haase
- MS Center Dresden, Center of Clinical Neuroscience, Carl Gustav Carus University Hospital, University of Technology Dresden, Dresden, Germany
| | - Undine Proschmann
- MS Center Dresden, Center of Clinical Neuroscience, Carl Gustav Carus University Hospital, University of Technology Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- MS Center Dresden, Center of Clinical Neuroscience, Carl Gustav Carus University Hospital, University of Technology Dresden, Dresden, Germany
| | - Katja Akgün
- MS Center Dresden, Center of Clinical Neuroscience, Carl Gustav Carus University Hospital, University of Technology Dresden, Dresden, Germany
| |
Collapse
|
12
|
Smoking induces DNA methylation changes in Multiple Sclerosis patients with exposure-response relationship. Sci Rep 2017; 7:14589. [PMID: 29109506 PMCID: PMC5674007 DOI: 10.1038/s41598-017-14788-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 11/09/2022] Open
Abstract
Cigarette smoking is an established environmental risk factor for Multiple Sclerosis (MS), a chronic inflammatory and neurodegenerative disease, although a mechanistic basis remains largely unknown. We aimed at investigating how smoking affects blood DNA methylation in MS patients, by assaying genome-wide DNA methylation and comparing smokers, former smokers and never smokers in two Swedish cohorts, differing for known MS risk factors. Smoking affects DNA methylation genome-wide significantly, an exposure-response relationship exists and the time since smoking cessation affects methylation levels. The results also show that the changes were larger in the cohort bearing the major genetic risk factors for MS (female sex and HLA risk haplotypes). Furthermore, CpG sites mapping to genes with known genetic or functional role in the disease are differentially methylated by smoking. Modeling of the methylation levels for a CpG site in the AHRR gene indicates that MS modifies the effect of smoking on methylation changes, by significantly interacting with the effect of smoking load. Alongside, we report that the gene expression of AHRR increased in MS patients after smoking. Our results suggest that epigenetic modifications may reveal the link between a modifiable risk factor and the pathogenetic mechanisms.
Collapse
|
13
|
Pulido-Valdeolivas I, Zubizarreta I, Martinez-Lapiscina EH, Villoslada P. Precision medicine for multiple sclerosis: an update of the available biomarkers and their use in therapeutic decision making. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1393315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Irene Pulido-Valdeolivas
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| | - Irati Zubizarreta
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| | - Elena H Martinez-Lapiscina
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| | - Pablo Villoslada
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Plavina T, Muralidharan KK, Kuesters G, Mikol D, Evans K, Subramanyam M, Nestorov I, Chen Y, Dong Q, Ho PR, Amarante D, Adams A, De Sèze J, Fox R, Gold R, Jeffery D, Kappos L, Montalban X, Weinstock-Guttman B, Hartung HP, Cree BAC. Reversibility of the effects of natalizumab on peripheral immune cell dynamics in MS patients. Neurology 2017; 89:1584-1593. [PMID: 28916537 PMCID: PMC5634662 DOI: 10.1212/wnl.0000000000004485] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To characterize the reversibility of natalizumab-mediated changes in pharmacokinetics/pharmacodynamics in patients with multiple sclerosis (MS) following therapy interruption. METHODS Pharmacokinetic/pharmacodynamic data were collected in the Safety and Efficacy of Natalizumab in the Treatment of Multiple Sclerosis (AFFIRM) (every 12 weeks for 116 weeks) and Randomized Treatment Interruption of Natalizumab (RESTORE) (every 4 weeks for 28 weeks) studies. Serum natalizumab and soluble vascular cell adhesion molecule-1 (sVCAM-1) were measured using immunoassays. Lymphocyte subsets, α4-integrin expression/saturation, and vascular cell adhesion molecule-1 (VCAM-1) binding were assessed using flow cytometry. RESULTS Blood lymphocyte counts (cells/L) in natalizumab-treated patients increased from 2.1 × 109 to 3.5 × 109. Starting 8 weeks post last natalizumab dose, lymphocyte counts became significantly lower in patients interrupting treatment than in those continuing treatment (3.1 × 109 vs 3.5 × 109; p = 0.031), plateauing at prenatalizumab levels from week 16 onward. All measured cell subpopulation, α4-integrin expression/saturation, and sVCAM changes demonstrated similar reversibility. Lymphocyte counts remained within the normal range. Ex vivo VCAM-1 binding to lymphocytes increased until ≈16 weeks after the last natalizumab dose, then plateaued, suggesting reversibility of immune cell functionality. The temporal appearance of gadolinium-enhancing lesions was consistent with pharmacodynamic marker reversal. CONCLUSIONS Natalizumab's effects on peripheral immune cells and pharmacodynamic markers were reversible, with changes starting 8 weeks post last natalizumab dose; levels returned to those observed/expected in untreated patients ≈16 weeks post last dose. This reversibility differentiates natalizumab from MS treatments that require longer reconstitution times. Characterization of the time course of natalizumab's biological effects may help clinicians make treatment sequencing decisions. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that the pharmacodynamic markers of natalizumab are reversed ≈16 weeks after stopping natalizumab.
Collapse
Affiliation(s)
- Tatiana Plavina
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.).
| | - Kumar Kandadi Muralidharan
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Geoffrey Kuesters
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Daniel Mikol
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Karleyton Evans
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Meena Subramanyam
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Ivan Nestorov
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Yi Chen
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Qunming Dong
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Pei-Ran Ho
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Diogo Amarante
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Alison Adams
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Jerome De Sèze
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Robert Fox
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Ralf Gold
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Douglas Jeffery
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Ludwig Kappos
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Xavier Montalban
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Bianca Weinstock-Guttman
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Hans-Peter Hartung
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| | - Bruce A C Cree
- From Biogen (T.P., K.K.M., G.K., D.M., K.E., M.S., I.N., Y.C., Q.D., P.-R.H., D.A.), Cambridge, MA; Ashfield Healthcare Communications (A.A.), Middletown, CT; Hôpital Civil (J.D.S.), Strasbourg, France; Mellen Center for Multiple Sclerosis (R.F.), Cleveland Clinic, OH; St. Josef Hospital (R.G.), Ruhr University, Bochum, Germany; Piedmont HealthCare (D.J.), Mooresville, NC; Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs MS Center and Pediatric MS Center of Excellence (B.W.-G.), Jacobs Neurological Institute, Buffalo, NY; Department of Neurology (H.-P.H.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; and University of California San Francisco Multiple Sclerosis Center (B.A.C.C.)
| |
Collapse
|
15
|
The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance? Trends Immunol 2017; 38:498-512. [PMID: 28549714 PMCID: PMC7185415 DOI: 10.1016/j.it.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is a T cell driven autoimmune disease of the central nervous system (CNS). Despite its association with Epstein-Barr Virus (EBV), how viral infections promote MS remains unclear. However, there is increasing evidence that the CNS is continuously surveyed by virus-specific T cells, which protect against reactivating neurotropic viruses. Here, we discuss how viral infections could lead to the breakdown of self-tolerance in genetically predisposed individuals, and how the reactivations of viruses in the CNS could induce the recruitment of both autoaggressive and virus-specific T cell subsets, causing relapses and progressive disability. A disturbed immune surveillance in MS would explain several experimental findings, and has important implications for prognosis and therapy. A huge body of evidence suggests that viral infections promote MS; however, no single causal virus has been identified. Multiple viruses could promote MS via bystander effects. Molecular mimicry is an established pathogenic mechanism in selected autoimmune diseases. It is also well documented in MS, but its contribution to MS pathogenesis is still unclear. Bystander activation upon viral infection could be involved in the generation of the autoreactive and potentially encephalitogenic T helper (Th)-1/17 central memory (Th1/17CM) cells found in the circulation of patients with MS. Autoreactive Th1/17CM cells could expand at the cost of antiviral Th1CM cells in patients with MS, in particular in those undergoing natalizumab therapy, because these cells are expected to compete for the same homeostatic niche. Autoreactive Th1/17 cells and antiviral Th1 cells are recruited to the CSF of patients with MS following attacks, suggesting that viral reactivations in the CNS induce the recruitment of pathogenic Th1/17 cells. Autoreactive Th1/17 cells in the CNS might also induce de novo viral reactivations in a circuit of self-induced inflammation.
Collapse
|
16
|
Gabriely G, da Cunha AP, Rezende RM, Kenyon B, Madi A, Vandeventer T, Skillin N, Rubino S, Garo L, Mazzola MA, Kolypetri P, Lanser AJ, Moreira T, Faria AMC, Lassmann H, Kuchroo V, Murugaiyan G, Weiner HL. Targeting latency-associated peptide promotes antitumor immunity. Sci Immunol 2017; 2:2/11/eaaj1738. [PMID: 28763794 DOI: 10.1126/sciimmunol.aaj1738] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/14/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) promote cancer by suppressing antitumor immune responses. We found that anti-LAP antibody, which targets the latency-associated peptide (LAP)/transforming growth factor-β (TGF-β) complex on Tregs and other cells, enhances antitumor immune responses and reduces tumor growth in models of melanoma, colorectal carcinoma, and glioblastoma. Anti-LAP decreases LAP+ Tregs, tolerogenic dendritic cells, and TGF-β secretion and is associated with CD8+ T cell activation. Anti-LAP increases infiltration of tumors by cytotoxic CD8+ T cells and reduces CD103+ CD8 T cells in draining lymph nodes and the spleen. We identified a role for CD103+ CD8 T cells in cancer. Tumor-associated CD103+ CD8 T cells have a tolerogenic phenotype with increased expression of CTLA-4 and interleukin-10 and decreased expression of interferon-γ, tumor necrosis factor-α, and granzymes. Adoptive transfer of CD103+ CD8 T cells promotes tumor growth, whereas CD103 blockade limits tumorigenesis. Thus, anti-LAP targets multiple immunoregulatory pathways and represents a potential approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre P da Cunha
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brendan Kenyon
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Asaf Madi
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Vandeventer
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nathaniel Skillin
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucien Garo
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria A Mazzola
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Panagiota Kolypetri
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda J Lanser
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thais Moreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31.270-901, Brazil
| | - Ana Maria C Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31.270-901, Brazil
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Wien, Austria
| | - Vijay Kuchroo
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Smids C, Horjus Talabur Horje CS, van Wijk F, van Lochem EG. The Complexity of alpha E beta 7 Blockade in Inflammatory Bowel Diseases. J Crohns Colitis 2017; 11:500-508. [PMID: 27660340 DOI: 10.1093/ecco-jcc/jjw163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
Monoclonal antibodies targeting integrins are emerging as new treatment option in inflammatory bowel diseases. Integrins are molecules involved in cell adhesion and signalling. After the successful introduction of anti-α4β7, currently anti-β7 is under evaluation in a phase three trial. Anti-β7 blocks both α4β7/MAdCAM-1 and αEβ7/E-cadherin interaction, targeting both the homing to and the retention in the gut of potential pathological T cells. Since the physiological and potential pathological roles of immune cells expressing αEβ7 are less distinct than of those expressing α4β7, an overview of the current state of knowledge on αEβ7 in mice and humans in both health and inflammatory bowel diseases is presented here, also addressing the potential consequences of anti-β7 treatment.
Collapse
Affiliation(s)
- Carolijn Smids
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Femke van Wijk
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ellen G van Lochem
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
18
|
Saraste M, Penttilä TL, Airas L. Natalizumab treatment leads to an increase in circulating CXCR3-expressing B cells. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e292. [PMID: 27800533 PMCID: PMC5079379 DOI: 10.1212/nxi.0000000000000292] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To study the effects of natalizumab treatment on subgroups of circulating peripheral blood B cell populations. METHODS We studied the proportions and absolute numbers of CD19+CD20+, CD10+, and CD5+ B cell populations, and determined very late activation antigen-4 and chemokine receptor CXCR3, CCR5, and CCR6 expression on B cells in the peripheral blood of 14 natalizumab-treated patients with relapsing-remitting multiple sclerosis. Five blood samples per patient were obtained longitudinally before and during the first year of treatment. Blood samples were analyzed by 6-color flow cytometry. RESULTS Proportions of B cells and CD10+ pre-B cells were significantly increased, and very late activation antigen-4 expression on the B cell surface was significantly decreased already after 1 week of natalizumab treatment. Natalizumab-induced sustained increase in the proportion and absolute number of CXCR3-expressing B cells was statistically significant after 1 month of treatment. There were no changes in the proportions of CCR5- or CCR6-expressing B cells. CONCLUSIONS The rapid and persistent increase in circulating CXCR3-expressing B cells in response to natalizumab treatment possibly reflects the relevance of this chemokine receptor in controlling migration of B cells into the CNS in humans in vivo.
Collapse
Affiliation(s)
- Maija Saraste
- Department of Neurology (M.S), University of Turku; TYKSLAB (T.-L.P.), Laboratory of Clinical Haematology, Turku University Hospital; and Division of Clinical Neurosciences (L.A.), Turku University Hospital, and University of Turku, Finland
| | - Tarja-Leena Penttilä
- Department of Neurology (M.S), University of Turku; TYKSLAB (T.-L.P.), Laboratory of Clinical Haematology, Turku University Hospital; and Division of Clinical Neurosciences (L.A.), Turku University Hospital, and University of Turku, Finland
| | - Laura Airas
- Department of Neurology (M.S), University of Turku; TYKSLAB (T.-L.P.), Laboratory of Clinical Haematology, Turku University Hospital; and Division of Clinical Neurosciences (L.A.), Turku University Hospital, and University of Turku, Finland
| |
Collapse
|
19
|
Simats A, García-Berrocoso T, Montaner J. Natalizumab: a new therapy for acute ischemic stroke? Expert Rev Neurother 2016; 16:1013-21. [PMID: 27476862 DOI: 10.1080/14737175.2016.1219252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Natalizumab, a well-characterized treatment for multiple sclerosis, is a humanized antibody against alpha-4 integrin (CD49d) that mitigates the transmigration of leukocytes across the endothelium. Although numerous experimental studies have evaluated the efficacy of anti-CD49d antibody treatment for ischemic stroke, discrepancies in their results have raised concerns about the benefits of this approach. AREAS COVERED This article reviews the main experimental studies on the blockage of CD49d and identifies the potential underlying causes for their inconclusive results. Despite these divergences and the difficulties in translation of experimental studies, a phase II clinical trial has recently been conducted to evaluate the efficacy of natalizumab in stroke patients (ACTION trial). Preliminary results of the trial are also discussed here, together with a general overview of the emerged importance of the neuroprotective strategies based on the mitigation of post-stroke neuroinflammation. Expert commentary: Despite natalizumab showing positive effects on functional outcome similar to what was found in experimental models, a better understanding of how this happens without reducing the infarct volume requires further research. Therefore, new clinical trials are needed to confirm its neuroprotectant role in ischemic stroke.
Collapse
Affiliation(s)
- Alba Simats
- a Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR) , Universitat Autónoma de Barcelona , Barcelona , Spain
| | - Teresa García-Berrocoso
- a Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR) , Universitat Autónoma de Barcelona , Barcelona , Spain
| | - Joan Montaner
- a Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR) , Universitat Autónoma de Barcelona , Barcelona , Spain.,b Stroke Programme , Institute of Biomedicine of Seville (IBiS) , Seville , Spain
| |
Collapse
|
20
|
Erythroblastaemia in natalizumab-treated patients with multiple sclerosis. Mult Scler Relat Disord 2016; 8:141-4. [DOI: 10.1016/j.msard.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
|
21
|
|
22
|
Li R, Rezk A, Healy LM, Muirhead G, Prat A, Gommerman JL, Bar-Or A. Cytokine-Defined B Cell Responses as Therapeutic Targets in Multiple Sclerosis. Front Immunol 2016; 6:626. [PMID: 26779181 PMCID: PMC4705194 DOI: 10.3389/fimmu.2015.00626] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 02/04/2023] Open
Abstract
Important antibody-independent pathogenic roles of B cells are emerging in autoimmune diseases, including multiple sclerosis (MS). The contrasting results of different treatments targeting B cells in patients (in spite of predictions of therapeutic benefits from animal models) call for a better understanding of the multiple roles that distinct human B cell responses likely play in MS. In recent years, both murine and human B cells have been identified with distinct functional properties related to their expression of particular cytokines. These have included regulatory (Breg) B cells (secreting interleukin (IL)-10 or IL-35) and pro-inflammatory B cells (secreting tumor necrosis factor α, LTα, IL-6, and granulocyte macrophage colony-stimulating factor). Better understanding of human cytokine-defined B cell responses is necessary in both health and diseases, such as MS. Investigation of their surface phenotype, distinct functions, and the mechanisms of regulation (both cell intrinsic and cell extrinsic) may help develop effective treatments that are more selective and safe. In this review, we focus on mechanisms by which cytokine-defined B cells contribute to the peripheral immune cascades that are thought to underlie MS relapses, and the impact of B cell-directed therapies on these mechanisms.
Collapse
Affiliation(s)
- Rui Li
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Ayman Rezk
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Gillian Muirhead
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Alexandre Prat
- Neuroimmunology Unit, Department of Neuroscience, Centre de Recherche du CHUM (CRCHUM), Université de Montreal , Montreal, QC , Canada
| | | | - Amit Bar-Or
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Experimental Therapeutics Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
23
|
Longbrake EE, Naismith RT, Parks BJ, Wu GF, Cross AH. Dimethyl fumarate-associated lymphopenia: Risk factors and clinical significance. Mult Scler J Exp Transl Clin 2015. [PMID: 26550483 DOI: 10.1177/2055217315596994.] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Dimethyl fumarate (DMF), a disease-modifying therapy for multiple sclerosis (MS), causes lymphopenia in a fraction of patients. The clinical significance of this is unknown. Several cases of progressive multifocal leukoencephalopathy in lymphopenic fumarate-treated patients have raised concerns about drug safety. Since lymphocytes contribute to MS pathology, lymphopenia may also be a biomarker for response to the drug. OBJECTIVE The objective of this manuscript is to evaluate risk factors for DMF-induced lymphopenia and drug failure in a real-world population of MS patients. METHODS We conducted a retrospective cohort study of 221 patients prescribed DMF at a single academic medical center between March 2013 and February 2015. RESULTS Grade 2-3 lymphopenia developed in 17% of the total cohort and did not resolve during DMF treatment. Older age (>55), lower baseline absolute lymphocyte count and recent natalizumab exposure increased the risk of developing moderate to severe lymphopenia while on DMF. Lymphopenia was not predictive of good clinical response or of breakthrough MS activity on DMF. CONCLUSIONS Lymphopenia develops in a significant minority of DMF-treated patients, and if grade 2 or worse, is unlikely to resolve while on the drug. Increased vigilance in lymphocyte monitoring and infection awareness is particularly warranted in older patients and those switching from natalizumab.
Collapse
Affiliation(s)
- Erin E Longbrake
- Washington University in St. Louis, Department of Neurology, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO 63110, USA
| | | | - Becky J Parks
- Department of Neurology, Washington University in St. Louis, USA
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis, USA
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, USA
| |
Collapse
|
24
|
Signoriello E, Lanzillo R, Brescia Morra V, Di Iorio G, Fratta M, Carotenuto A, Lus G. Lymphocytosis as a response biomarker of natalizumab therapeutic efficacy in multiple sclerosis. Mult Scler 2015; 22:921-5. [PMID: 26453682 DOI: 10.1177/1352458515604381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/13/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Natalizumab is an effective therapy in relapsing-remitting multiple sclerosis (RRMS), as it reduces lymphocyte transmigration through the blood-brain barrier (BBB) and induces lymphocytosis. OBJECTIVES To analyse natalizumab-induced lymphocytosis (NIL) as a biomarker of drug efficacy. MATERIALS AND METHODS We enrolled 50 relapsing-remitting (RR) and progressive-relapsing (PR) natalizumab-treated patients who had received at least 16 infusions and had been tested for lymphocyte count 24 hours before each administration. Clinical, MRI and hematological data were collected. Patients were divided into responders and sub-optimal responders according to the experience of at least one clinical and/or instrumental relapse during the treatment. RESULTS In 15 (30%) patients, an instrumental/clinical (14) or only instrumental (one) relapse occurred. We found a statistically significant difference in the mean percentage of the lymphocytes between the two groups over the first ten administrations (p=0.04). The comparison between the time-to-relapse in the groups with high and low levels of lymphocytes showed that the group with a low NIL had a greater risk of relapse (p=0.03). CONCLUSIONS We suggest that NIL could be a biomarker of therapeutic efficacy in patients with RRMS treated with natalizumab, and that the risk of relapse may be higher in patients with a lower-than-expected NIL.
Collapse
Affiliation(s)
- E Signoriello
- Multiple Sclerosis Center, II Division of Neurology, Department of Clinical and Experimental Medicine, Second University of Naples, Italy
| | - R Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University-School of Medicine, Italy
| | - V Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University-School of Medicine, Italy
| | - G Di Iorio
- Multiple Sclerosis Center, II Division of Neurology, Department of Clinical and Experimental Medicine, Second University of Naples, Italy
| | - M Fratta
- Multiple Sclerosis Center, II Division of Neurology, Department of Clinical and Experimental Medicine, Second University of Naples, Italy
| | - A Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University-School of Medicine, Italy
| | - G Lus
- Multiple Sclerosis Center, II Division of Neurology, Department of Clinical and Experimental Medicine, Second University of Naples, Italy
| |
Collapse
|
25
|
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015; 15:545-58. [PMID: 26250739 DOI: 10.1038/nri3871] [Citation(s) in RCA: 1531] [Impact Index Per Article: 153.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two decades of clinical experience with immunomodulatory treatments for multiple sclerosis point to distinct immunological pathways that drive disease relapses and progression. In light of this, we discuss our current understanding of multiple sclerosis immunopathology, evaluate long-standing hypotheses regarding the role of the immune system in the disease and delineate key questions that are still unanswered. Recent and anticipated advances in the field of immunology, and the increasing recognition of inflammation as an important component of neurodegeneration, are shaping our conceptualization of disease pathophysiology, and we explore the potential implications for improved healthcare provision to patients in the future.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Lars Fugger
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.,Clinical Institute, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
26
|
Longbrake EE, Naismith RT, Parks BJ, Wu GF, Cross AH. Dimethyl fumarate-associated lymphopenia: Risk factors and clinical significance. Mult Scler J Exp Transl Clin 2015; 1. [PMID: 26550483 PMCID: PMC4636217 DOI: 10.1177/2055217315596994] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dimethyl fumarate (DMF), a disease-modifying therapy for multiple sclerosis (MS), causes lymphopenia in a fraction of patients. The clinical significance of this is unknown. Several cases of progressive multifocal leukoencephalopathy in lymphopenic fumarate-treated patients have raised concerns about drug safety. Since lymphocytes contribute to MS pathology, lymphopenia may also be a biomarker for response to the drug. OBJECTIVE The objective of this manuscript is to evaluate risk factors for DMF-induced lymphopenia and drug failure in a real-world population of MS patients. METHODS We conducted a retrospective cohort study of 221 patients prescribed DMF at a single academic medical center between March 2013 and February 2015. RESULTS Grade 2-3 lymphopenia developed in 17% of the total cohort and did not resolve during DMF treatment. Older age (>55), lower baseline absolute lymphocyte count and recent natalizumab exposure increased the risk of developing moderate to severe lymphopenia while on DMF. Lymphopenia was not predictive of good clinical response or of breakthrough MS activity on DMF. CONCLUSIONS Lymphopenia develops in a significant minority of DMF-treated patients, and if grade 2 or worse, is unlikely to resolve while on the drug. Increased vigilance in lymphocyte monitoring and infection awareness is particularly warranted in older patients and those switching from natalizumab.
Collapse
Affiliation(s)
- Erin E Longbrake
- Washington University in St. Louis, Department of Neurology, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO 63110, USA
| | | | - Becky J Parks
- Department of Neurology, Washington University in St. Louis, USA
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis, USA
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, USA
| |
Collapse
|