1
|
Gjeta I, Bakalli I, Sala D, Celaj E, Biqiku M, Hoxha V, Velmishi V, Kola E. Medium-Chain Acyl-CoA Dehydrogenase Deficiency Disorder as a Cause of Acute Liver Failure in a 23-Month-Old Baby. J Med Cases 2025; 16:114-119. [PMID: 40160193 PMCID: PMC11954612 DOI: 10.14740/jmc5093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
Fatty acid oxidation disorders are inborn metabolic defects caused by impaired beta-oxidation of fats within the mitochondria. This occurs due to a deficiency in the pathway of fatty acids into the mitochondria via carnitine. Although their incidence is not frequent, the clinical presence of this disorder often leads to morbidity and high mortality. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is part of the large group of fatty acid oxidation disorders which has a high variability in clinical manifestations and in daily medical practice can be challenging to early and correctly diagnose. In this article, we present a 23-month-old boy with drowsiness, mild hypoglycemia, and rapid progression to acute liver failure as a consequence of this metabolic disorder. Once the diagnosis was confirmed, treatment was conducted following the guideline of hypoglycemia of the metabolic disorder of MCAD deficiency and its complications. The child was discharged in good condition and the follow-up after 6 months was successful. Further, we review the literature on this genetic condition and check on how they connect to our case. The article aims to focus on the early evaluation of the clinical signs that present from the underlying of this rare metabolic disorder and the importance of aggressive treatment to prevent complications that can be fatal for the patient.
Collapse
Affiliation(s)
- Inva Gjeta
- Pediatric Intensive Care Unit, University Hospital Center “Mother Teresa”, Tirana, Albania
| | - Ilirjana Bakalli
- Pediatric Intensive Care Unit, University Hospital Center “Mother Teresa”, Tirana, Albania
| | - Durim Sala
- Pediatric Intensive Care Unit, University Hospital Center “Mother Teresa”, Tirana, Albania
| | - Ermela Celaj
- Pediatric Intensive Care Unit, University Hospital Center “Mother Teresa”, Tirana, Albania
| | - Marsela Biqiku
- Pediatric Intensive Care Unit, University Hospital Center “Mother Teresa”, Tirana, Albania
| | - Vladimir Hoxha
- Pediatric Intensive Care Unit, University Hospital Center “Mother Teresa”, Tirana, Albania
| | - Virtut Velmishi
- Pediatric Intensive Care Unit, University Hospital Center “Mother Teresa”, Tirana, Albania
| | - Elmira Kola
- Pediatric Intensive Care Unit, University Hospital Center “Mother Teresa”, Tirana, Albania
| |
Collapse
|
2
|
Smith DM, Choi J, Wolfgang MJ. Tissue specific roles of fatty acid oxidation. Adv Biol Regul 2025; 95:101070. [PMID: 39672726 PMCID: PMC11832339 DOI: 10.1016/j.jbior.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Mitochondrial long chain fatty acid β-oxidation is a critical central carbon catabolic process. The importance of fatty acid oxidation is made evident by the life-threatening disease associated with diverse inborn errors in the pathway. While inborn errors show multisystemic requirements for fatty acid oxidation, it is not clear from the clinical presentation of these enzyme deficiencies what the tissue specific roles of the pathway are compared to secondary systemic effects. To understand the cell or tissue specific contributions of fatty acid oxidation to systemic physiology, conditional knockouts in mice have been employed to determine the requirements of fatty acid oxidation in disparate cell types. This has produced a host of surprising results that sometimes run counter to the canonical view of this metabolic pathway. The rigor of conditional knockouts has also provided clarity over previous research utilizing cell lines in vitro or small molecule inhibitors with dubious specificity. Here we will summarize current research using mouse models of Carnitine Palmitoyltransferases to determine the tissue specific roles and requirements of long chain mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Mason E, Hindmarch CCT, Dunham‐Snary KJ. Medium-chain Acyl-COA dehydrogenase deficiency: Pathogenesis, diagnosis, and treatment. Endocrinol Diabetes Metab 2022; 6:e385. [PMID: 36300606 PMCID: PMC9836253 DOI: 10.1002/edm2.385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Medium-Chain Acyl-CoA Dehydrogenase Deficiency (MCADD) is the most common inherited metabolic disorder of β-oxidation. Patients with MCADD present with hypoketotic hypoglycemia, which may quickly progress to lethargy, coma, and death. Prognosis for MCADD patients is highly promising once a diagnosis has been established, though management strategies may vary depending on the severity of illness and the presence of comorbidities. METHODS AND RESULTS Given the rapid developments in the world of gene therapy and implementation of newborn screening for inherited metabolic disorders, the provision of concise and contemporary knowledge of MCADD is essential for clinicians to effectively manage patients. Thus, this review aims to consolidate current information for physicians on the pathogenesis, diagnostic tools, and treatment options for MCADD patients. CONCLUSION MCADD is a commonly inherited metabolic disease with serious implications for health outcomes, particularly in children, that may be successfully managed with proper intervention.
Collapse
Affiliation(s)
- Emily Mason
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | | | - Kimberly J. Dunham‐Snary
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada,Department of MedicineQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
4
|
Abstract
Metabolism consists of a series of reactions that occur within cells of living organisms to sustain life. The process of metabolism involves many interconnected cellular pathways to ultimately provide cells with the energy required to carry out their function. The importance and the evolutionary advantage of these pathways can be seen as many remain unchanged by animals, plants, fungi, and bacteria. In eukaryotes, the metabolic pathways occur within the cytosol and mitochondria of cells with the utilisation of glucose or fatty acids providing the majority of cellular energy in animals. Metabolism is organised into distinct metabolic pathways to either maximise the capture of energy or minimise its use. Metabolism can be split into a series of chemical reactions that comprise both the synthesis and degradation of complex macromolecules known as anabolism or catabolism, respectively. The basic principles of energy consumption and production are discussed, alongside the biochemical pathways that make up fundamental metabolic processes for life.
Collapse
|
5
|
Della Pepa G, Vetrani C, Lupoli R, Massimino E, Lembo E, Riccardi G, Capaldo B. Uncooked cornstarch for the prevention of hypoglycemic events. Crit Rev Food Sci Nutr 2021; 62:3250-3263. [PMID: 33455416 DOI: 10.1080/10408398.2020.1864617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hypoglycemia is a pathological condition characterized by a low plasma glucose concentration associated with typical autonomic and/or neuroglycopenic symptoms, and resolution of these symptoms with carbohydrate consumption. Hypoglycemia is quite common in clinical practice, particularly in insulin-treated patients with diabetes and in other inherited or acquired conditions involving the regulation of glucose metabolism. Beyond symptoms that might strongly affect the quality of life, hypoglycemia can lead to short- and long-term detrimental consequences for health. Hypoglycemia can be prevented by appropriate changes in dietary habits or by relevant modifications of the drug treatment. Several dietary approaches based on the intake of various carbohydrate foods have been tested for hypoglycemia prevention; among them uncooked cornstarch (UCS) has demonstrated a great efficacy. In this narrative review, we have summarized the current evidence on the UCS usefulness in some conditions characterized by high hypoglycemic risk, focusing on some inherited diseases -i.e. glycogen storage diseases and other rare disorders - and acquired conditions such as type 1 diabetes, postprandial hypoglycemia consequent to esophageal-gastric or bariatric surgery, and insulin autoimmune syndrome. We also considered the possible role of UCS during endurance exercise performance. Lastly, we have discussed the dose requirement, the side effects, the limitations of UCS use, and the plausible mechanisms by which UCS could prevent hypoglycemia.
Collapse
Affiliation(s)
- Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Roberta Lupoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Elena Massimino
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Erminia Lembo
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Brunella Capaldo
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| |
Collapse
|
6
|
Jager EA, Kuijpers MM, Bosch AM, Mulder MF, Gozalbo ER, Visser G, de Vries M, Williams M, Waterham HR, van Spronsen FJ, Schielen PCJI, Derks TGJ. A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands. J Inherit Metab Dis 2019; 42:890-897. [PMID: 31012112 DOI: 10.1002/jimd.12102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 11/07/2022]
Abstract
To evaluate the Dutch newborn screening (NBS) for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency since 2007, a nationwide retrospective, observational study was performed of clinical, laboratory and epidemiological parameters of patients with MCAD deficiency born between 2007 and 2015. Severe MCAD deficiency was defined by ACADM genotypes associated with clinical ascertainment, or variant ACADM genotypes with a residual MCAD enzyme activity <10%. Mild MCAD deficiency was defined by variant ACADM genotypes with a residual MCAD enzyme activity ≥10%. The prevalence of MCAD deficiency was 1/8300 (95% CI: 1/7300-1/9600). Sensitivity of the Dutch NBS was 99% and specificity ~100%, with a positive predictive value of 86%. Thirteen newborns with MCAD deficiency suffered from neonatal symptoms, three of them died. Of the 189 identified neonates, 24% had mild MCAD deficiency. The acylcarnitine ratio octanoylcarnitine (C8)/decanoylcarnitine (C10) was superior to C8 in discriminating between mild and severe cases and more stable in the first days of life. NBS for MCAD deficiency has a high sensitivity, specificity, and positive predictive value. In the absence of a golden standard to confirm the diagnosis, the combination of acylcarnitine (ratios), molecular and enzymatic studies allows risk stratification. To improve evaluation of NBS protocols and clinical guidelines, additional use of acylcarnitine ratios and multivariate pattern-recognition software may be reappraised in the Dutch situation. Prospective recording of NBS and follow-up data is warranted covering the entire health care chain of preventive and curative medicine.
Collapse
Affiliation(s)
- Emmalie A Jager
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Myrthe M Kuijpers
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Annet M Bosch
- Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Margot F Mulder
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Estela R Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike de Vries
- Institute for Genetic and Metabolic Disease, Department of Pediatrics, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Monique Williams
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Hans R Waterham
- Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Francjan J van Spronsen
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter C J I Schielen
- Reference laboratory Neonatal Screening, Centre for Public Health Research, National Institute of Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Li Y, Zhu R, Liu Y, Song J, Xu J, Yang Y. Medium-chain acyl-coenzyme A dehydrogenase deficiency: Six cases in the Chinese population. Pediatr Int 2019; 61:551-557. [PMID: 31033143 DOI: 10.1111/ped.13872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) is a rare autosomal recessive disorder that affects the degradation of medium-chain fatty acids. Few cases of MCADD have been documented to date in mainland China. METHODS Medium-chain acyl-coenzyme A dehydrogenase deficiency was diagnosed in six patients (three girls and three boys) from six unrelated Chinese families at ages ranging from 10 days to 3 years old. The diagnosis was confirmed by the identification of a primary biomarker of serum octanoyl-carnitine (C8) and genetic pathogenic mutations. RESULTS Only two patients were admitted because of vomiting, diarrhea, myasthenia, and coma; the other four patients were diagnosed via the newborn screening process. Six mutations were found in acyl-CoA dehydrogenase medium chain (ACADM). One mutation (c.727C>T) was novel and the others (c.158G>A, c.387+1delG, c.449_452del, c.1045C>T, and c.1085G>A) have been previously reported. CONCLUSIONS Six Chinese cases of MCADD were identified. One novel mutation was found. c.449_452del and c.1085G>A were common mutations in this study.
Collapse
Affiliation(s)
- Yanhan Li
- Department of Laboratory Animal Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ruoxin Zhu
- Department of Reproductive center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|