1
|
Gonçalves MVM, Tomaselli PJ, Marques Junior W. Immune-mediated insights into clinical and specific autoantibodies in acute and chronic immune-mediated nodo-paranodopathies. ARQUIVOS DE NEURO-PSIQUIATRIA 2025; 83:1-6. [PMID: 40107278 DOI: 10.1055/s-0045-1805073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The recognition of the molecular structures, namely the node of Ranvier and the axonal regions surrounding it (the paranode and juxtaparanode), as the primary target for specific autoantibodies has introduced a new site for neurological location (microtopographic structures), in contrast to the prevailing understanding, in which lesions to neural macrostructures (roots, nerves, and/or plexus) were the focus of semiologists and electrophysiologists for topographic, syndromic, and nosological diagnoses. Therefore, there was a need to understand and characterize the components of these neural microstructures that are grouped in small regions within the nerve to optimize clinical and therapeutic reasoning.
Collapse
Affiliation(s)
| | - Pedro José Tomaselli
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil
| | - Wilson Marques Junior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Ribeirão Preto SP, Brazil
| |
Collapse
|
2
|
Caballero-Ávila M, Martín-Aguilar L, Pascual-Goñi E, Michael MR, Koel-Simmelink MJA, Höftberger R, Wanschitz J, Alonso-Jiménez A, Armangué T, Baars AE, Carbayo Á, Castek B, Collet-Vidiella R, De Winter J, Del Real MÁ, Delmont E, Diamanti L, Doneddu PE, Hiew FL, Gallardo E, Gonzalez A, Grinzinger S, Horga A, Iglseder S, Jacobs BC, Jauregui A, Killestein J, Pozza EL, Martínez-Martínez L, Nobile-Orazio E, Ortiz N, Pérez-Pérez H, Poppert KN, Ripellino P, Roche JC, Rodriguez de Rivera FJ, Rostasy K, Sparasci D, Tejada-Illa C, Teunissen CCE, Vegezzi E, Xuclà-Ferrarons T, Zach F, Wieske L, Eftimov F, Lleixà C, Querol L. Long-Term Follow Up in Anti-Contactin-1 Autoimmune Nodopathy. Ann Neurol 2025; 97:529-541. [PMID: 39601182 DOI: 10.1002/ana.27142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE To analyze long-term clinical and biomarker features of anti-contactin-1 (CNTN1) autoimmune nodopathy (AN). METHODS Patients with anti-CNTN1+ autoimmune nodopathy detected in our laboratory from which clinical information was available were included. Clinical features and treatment response were retrospectively collected. Autoantibody, serum neurofilament light chain (sNfL), and serum CNTN1 levels (sCNTN1) were analyzed at baseline and follow up. RESULTS A total of 31 patients were included. Patients presented with progressive sensory motor neuropathy (76.7%) with proximal (74.2%) and distal involvement (87.1%), ataxia (71.4%), and severe disability (median INCAT at nadir of 8). A total of 11 patients (35%) showed kidney involvement. Most patients (97%) received intravenous immunoglobulin, but only 1 achieved remission with intravenous immunoglobulin. A total of 22 patients (71%) received corticosteroids, and 3 of them (14%) did not need further treatments. Rituximab was effective in 21 of 22 patients (95.5%), with most of them (72%) receiving a single course. Four patients (12.9%) relapsed after a median follow up of 25 months after effective treatment (12-48 months). Anti-CNTN1 titers correlated with clinical scales at sampling and were negative after treatment in all patients, but 1 (20/21). sNfL levels were significantly higher and sCNTN1 significantly lower in anti-CNTN1+ patients than in healthy controls (sNfL: 135.9 pg/ml vs 7.48 pg/ml, sCNTN1: 25.03 pg/ml vs 22,186 pg/ml, p < 0.0001). Both sNfL and sCNTN1 returned to normal levels after successful treatment. INTERPRETATION Patients with anti-CNTN1+ autoimmune nodopathy have a characteristic clinical profile. Clinical and immunological relapses are infrequent after successful treatment, suggesting that continuous treatment is unnecessary. Anti-CNTN1 antibodies, sNfL, and sCNTN1 levels are useful to monitor disease status in these patients. ANN NEUROL 2025;97:529-541.
Collapse
Affiliation(s)
- Marta Caballero-Ávila
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lorena Martín-Aguilar
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elba Pascual-Goñi
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Milou R Michael
- Department of Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Marleen J A Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, the Netherlands
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia Wanschitz
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alicia Alonso-Jiménez
- Department of Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Thais Armangué
- Neuroimmunology program, IDIBAPS-Hospital de Clinic; University of Barcelona. Pediatric Neuroimmunology Program, Neurology Department, Sant Joan de Deu Children's Hospital, Barcelona, Spain
| | - Adája Elisabeth Baars
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Álvaro Carbayo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Barbara Castek
- Department of Neurology, Landeskrankenhaus Villach, Villach, Austria
| | - Roger Collet-Vidiella
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jonathan De Winter
- Department of Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | | | - Emilien Delmont
- Referral Centre for Neuromuscular Diseases and ALS, Hospital La Timone, Marseille, France
| | | | - Pietro Emiliano Doneddu
- Neuromuscular and Neuroimmunology Unit, IRCCS Humanitas Research Hospital, Rozzano, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Fu Liong Hiew
- Department of Neurology, Sunway Medical Center, Bandar Sunway, Malaysia
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuromuscular Diseases, Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Amaia Gonzalez
- Department of Neurology, University Hospital Cruces, Barakaldo, Spain
| | | | - Alejandro Horga
- Department of Neurology, Neuromuscular Diseases Unit, University Hospital San Carlos, Madrid, Spain
| | - Stephan Iglseder
- Department of Neurology, Krankenhaus Barmherzige Brüder, Linz, Austria
| | - Bart C Jacobs
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Amaia Jauregui
- Department of Neurology, University Hospital Cruces, Barakaldo, Spain
| | - Joep Killestein
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Laura Martínez-Martínez
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Unit, IRCCS Humanitas Research Hospital, Rozzano, Department of Medical Biotechnology and Translational Medicine, Milan University, Milan, Italy
| | - Nicolau Ortiz
- Department of Neurology, University Hospital Sant Joan, Reus, Spain
| | - Helena Pérez-Pérez
- Department of Neurology, University Hospital of Canarias, Tenerife, Spain
| | | | - Paolo Ripellino
- Department of Neurology, Neurocenter of Southern Switzerland EOC, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Jose Carlos Roche
- Department of Neurology, University Hospital Miguel Servet, Zaragoza, Spain
| | - Franscisco Javier Rodriguez de Rivera
- Department of Neurology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, University Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Kevin Rostasy
- Department of Pediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Davide Sparasci
- Department of Neurology, Neurocenter of Southern Switzerland EOC, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Clara Tejada-Illa
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Charlotte C E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Tomàs Xuclà-Ferrarons
- Department of Neurology, Hospital Sant Joan Despí Moisès Broggi, Sant Joan Despí, Spain
| | - Fabian Zach
- Department of Neurology, Kardinal Schwarzenberg Klinikum, Salzburg, Austria
| | - Luuk Wieske
- Department of Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Filip Eftimov
- Department of Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuromuscular Diseases, Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Luis Querol
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuromuscular Diseases, Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
3
|
Rashed HR, Paramasivan NK, Selcen D, Dyck PJB, Thakolwiboon S, Mauermann ML, Mills J, Dubey D. Clinical Manifestations and Treatment Responses in Pediatric Neurofascin 155-IgG4 Autoimmune Nodopathy. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200368. [PMID: 39823553 PMCID: PMC11744604 DOI: 10.1212/nxi.0000000000200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND AND OBJECTIVES While it is well characterized in adults, little is known about the clinical features of neurofascin 155-IgG4 autoimmune nodopathy (NF155-IgG4 AN) in the pediatric population. In this study, we aimed to describe the clinical features and treatment outcomes in children diagnosed with neurofascin 155-IgG4 autoimmune nodopathy (NF155-IgG4 AN). METHODS Pediatric and adult patients with NF155-IgG4 AN were identified retrospectively through the Mayo Clinic Neuroimmunology Laboratory database. RESULTS Eight pediatric and 20 adult patients with NF155-IgG4 AN were included with a median age at onset of 11 and 43 years, respectively. Pediatric patients (3/8) were often diagnosed initially with Guillain-Barre syndrome compared with adults (2/20) (p = 0.123). Six pediatric patients deteriorated beyond 2 months with rapid progression to disease nadir compared with adults (22 vs 52 weeks, p = 0.04). All had distal predominant weakness with paresthesias. Four patients had tremor, and one had cerebellar ataxia. Sensory ataxia was significantly less common in pediatric patients (4/8) compared with adults (18/20) (p = 0.038). Most pediatric patients (6/7) were IVIG refractory and responded to rituximab. Six patients had favorable outcomes after immunotherapy with improvement ≥1 in the Inflammatory Neuropathy Cause and Treatment disability score. DISCUSSION Pediatric patients with NF155-IgG4 AN display an aggressive disease course with rapid progression to disease nadir compared with adults. Sensory ataxia is less common in children, and they often respond to rituximab. It is crucial to consider autoimmune nodopathies in the differential diagnosis of pediatric patients with suspected inflammatory demyelinating polyneuropathy and to test for NF155-IgG4 antibodies because of their diagnostic and therapeutic implications. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that in pediatric patients with NF155-IgG4 AN who are refractory to IVIG, rituximab treatment provided some benefit.
Collapse
Affiliation(s)
- Hebatallah R Rashed
- Department of Neurology, Mayo Clinic, Rochester, MN
- Department of Neurology, Ain Shams University, Cairo, Egypt; and
| | | | - Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, MN
| | | | | | | | - John Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Monohan EM, Brannagan TH. Immune-Mediated Neuropathies: Top 10 Clinical Pearls. Semin Neurol 2025; 45:122-131. [PMID: 39419067 DOI: 10.1055/s-0044-1791579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Immune-mediated neuropathies encompass a range of neurological disorders, including chronic inflammatory demyelinating polyradiculoneuropathy, Guillain-Barré syndrome, multifocal motor neuropathy, autoimmune autonomic neuropathies, and paranodal nodopathies. Recognizing clinical patterns is key to narrowing the broad range of differential diagnoses in immune-mediated neuropathies. Electrodiagnostic testing is a useful tool to support the diagnosis of immune-mediated neuropathies. Our understanding of autoimmune demyelinating neuropathies is rapidly advancing, particularly with the discovery of nodal and paranodal antibodies. Recent advances in neuropathy treatment include the utilization of neonatal Fc receptors to reduce antibody recycling, and the development of complement inhibitors to reduce inflammatory damage, offering promising new therapeutic avenues. Timely identification of immune-mediated neuropathies is imperative as delay in diagnosis and treatment may lead to irreversible disability.
Collapse
Affiliation(s)
- Elizabeth M Monohan
- Department of Neurology, Columbia University Irving Medical Center, New York, New York
| | - Thomas H Brannagan
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
5
|
Querol L, Dalakas MC. The Discovery of Autoimmune Nodopathies and the Impact of IgG4 Antibodies in Autoimmune Neurology. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200365. [PMID: 39671536 PMCID: PMC11649181 DOI: 10.1212/nxi.0000000000200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
In the past decade, significant progress has been made on the understanding of IgG4-mediated autoimmune diseases, of both the central and the peripheral CNS. In addition to the description of diverse antigenic targets, the description of IgG subclasses associated with specific pathogenic autoantibodies has provided useful insights into the pathophysiology and, more importantly, into the therapeutic implications of the autoantibody subclasses. This understanding has affected how myasthenia gravis, autoimmune encephalitis, and autoimmune neuropathies are treated. In the case of autoimmune neuropathies, the discovery of antigenic targets located at the node of Ranvier has led to the definition of a new diagnostic category, the autoimmune nodopathies, which differentiate them from the classical forms of Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. These neuropathies including those caused by autoantibodies targeting contactin-1, contactin-associated protein 1, and neurofascin are mainly, though not always exclusively, mediated by IgG4 antibodies, and respond to therapies similarly to other IgG4-mediated neurologic and non-neurologic diseases, providing evidence that not only the antigenic target but also the autoantibody subclass play a role in understanding both the disease pathophysiology and response to therapies. In this article, we describe the history and main findings on autoimmune nodopathies; highlight the particularities and similarities of IgG4-mediated neurologic diseases, including autoimmune nodopathies and neuromuscular junction and certain CNS disorders; elaborate on the unique functional properties of IgG4 in influencing their specific response to immunotherapies stressing the rationale of the most suitable present and future targeted therapies; and discuss how best to apply and monitor maintenance therapies for inducing disease stability in all IgG4 neurologic autoimmunities including the need for potential future biomarkers.
Collapse
Affiliation(s)
- Luis Querol
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marinos C Dalakas
- Thomas Jefferson University, Philadelphia, PA; and
- University of Athens Medical School, Greece
| |
Collapse
|
6
|
Sharma R, Bellacicco NJ, Husar WG, Park JH, Lancaster E, Singer M. Pearls & Oy-sters: Breaking Bad CIDP: Recognition of Anti-NF155 Autoimmune Nodopathy in Refractory CIDP. Neurology 2024; 103:e209848. [PMID: 39467232 PMCID: PMC11503473 DOI: 10.1212/wnl.0000000000209848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/29/2024] [Indexed: 10/30/2024] Open
Affiliation(s)
- Roopa Sharma
- From the Rutgers New Jersey Medical School (R.S., N.J.B., W.G.H., J.H.P.), Newark; East Orange Veterans Hospital (W.G.H., J.H.P.), NJ; University of Pennsylvania (E.L., M.S.), Philadelphia; and Philadelphia VA Medical Center (E.L.), PA
| | - Nicholas J Bellacicco
- From the Rutgers New Jersey Medical School (R.S., N.J.B., W.G.H., J.H.P.), Newark; East Orange Veterans Hospital (W.G.H., J.H.P.), NJ; University of Pennsylvania (E.L., M.S.), Philadelphia; and Philadelphia VA Medical Center (E.L.), PA
| | - Walter G Husar
- From the Rutgers New Jersey Medical School (R.S., N.J.B., W.G.H., J.H.P.), Newark; East Orange Veterans Hospital (W.G.H., J.H.P.), NJ; University of Pennsylvania (E.L., M.S.), Philadelphia; and Philadelphia VA Medical Center (E.L.), PA
| | - James H Park
- From the Rutgers New Jersey Medical School (R.S., N.J.B., W.G.H., J.H.P.), Newark; East Orange Veterans Hospital (W.G.H., J.H.P.), NJ; University of Pennsylvania (E.L., M.S.), Philadelphia; and Philadelphia VA Medical Center (E.L.), PA
| | - Eric Lancaster
- From the Rutgers New Jersey Medical School (R.S., N.J.B., W.G.H., J.H.P.), Newark; East Orange Veterans Hospital (W.G.H., J.H.P.), NJ; University of Pennsylvania (E.L., M.S.), Philadelphia; and Philadelphia VA Medical Center (E.L.), PA
| | - Madeline Singer
- From the Rutgers New Jersey Medical School (R.S., N.J.B., W.G.H., J.H.P.), Newark; East Orange Veterans Hospital (W.G.H., J.H.P.), NJ; University of Pennsylvania (E.L., M.S.), Philadelphia; and Philadelphia VA Medical Center (E.L.), PA
| |
Collapse
|
7
|
Antoine JC. Antibodies in immune-mediated peripheral neuropathies. Where are we in 2024? Rev Neurol (Paris) 2024; 180:876-887. [PMID: 39322491 DOI: 10.1016/j.neurol.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Over the past 30 years, about 20 antibodies have been identified in immune-mediated neuropathies, recognizing membrane or intracellular proteins or glycolipids of neuron and Schwann cells. This article reviews the different methods used for their detection, what we know about their pathogenic role, how they have helped identify several disorders, and how they are essential for diagnosis. Despite sustained efforts, some immune-mediated disorders still lack identified autoantibodies, notably the classical form of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. The reasons for this are discussed. The article also tries to determine potential future developments in antibody research, particularly the use of omic approaches and the search for other types of biomarkers beyond diagnostic ones, such as those that can identify patients who will respond to a given treatment.
Collapse
Affiliation(s)
- J-C Antoine
- Service de neurologie, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France; Inserm CNRS, laboratoire SynAtac, MeliS, université Jean-Monnet, Saint-Étienne, France.
| |
Collapse
|
8
|
Niu J, Ding Q, Zhang L, Hu N, Cui L, Liu M. The difference in nerve ultrasound and motor nerve conduction studies between autoimmune nodopathy and chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 2024; 70:972-979. [PMID: 39205380 DOI: 10.1002/mus.28239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION/AIMS Nerve enlargement has been described in autoimmune nodopathy and chronic inflammatory demyelinating polyneuropathy (CIDP). However, comparisons of the distribution of enlargement between autoimmune nodopathy and CIDP have not been well characterized. To fill this gap, we explored differences in the ultrasonographic and electrophysiological features between autoimmune nodopathy and CIDP. METHODS Between March 2015 and June 2023, patients fulfilling diagnostic criteria for CIDP were enrolled; among them, those with positive antibodies against nodal-paranodal cell-adhesion molecules were distinguished as autoimmune nodopathy. Nerve ultrasound and nerve conduction studies (NCS) were performed. RESULTS Overall, 114 CIDP patients and 13 patients with autoimmune nodopathy were recruited. Cross-sectional areas (CSA) at all sites were larger in patients with CIDP and autoimmune nodopathy than in healthy controls. CSAs at the roots and trunks of the brachial plexus were significantly larger in patients with anti-neurofascin-155 (NF155), anti-contactin-1 (CNTN1), and anti-contactin-associated protein 1 (CASPR1) antibodies than in CIDP patients. The patients with anti-NF186 antibody did not have enlargement in the brachial plexus. NCS showed more frequent probable conduction block at Erb's point in autoimmune nodopathy than in CIDP (61.9% vs. 36.6% for median nerve, 52.4% vs. 39.5% for ulnar nerve). Markedly prolonged distal motor latencies were also present in autoimmune nodopathy. DISCUSSION Patients with autoimmune nodopathies had distinct distributions of peripheral nerve enlargement revealed by ultrasound, as well as distinct NCS patterns, which were different from CIDP. This suggests the potential utility of nerve ultrasound and NCS to supplement clinical characteristics for distinguishing nodopathies from CIDP.
Collapse
Affiliation(s)
- Jingwen Niu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingyun Ding
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Zhang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Hu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Funakoshi K, Kokubun N, Suzuki K, Yuki N. Proteinuria is a key to suspect autoimmune nodopathies. Eur J Neurol 2024; 31:e16406. [PMID: 38980226 DOI: 10.1111/ene.16406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND PURPOSE Reports of patients who have autoimmune nodopathies concurrent with nephrotic syndrome are increasing. We investigated whether proteinuria could be a biomarker of autoimmune nodopathies. METHODS Qualitative urinalysis results were retrospectively obtained from 69 patients who were diagnosed with chronic inflammatory demyelinating polyneuropathy (CIDP) at a hospital in Japan. Proteinuria was graded as mild to severe (i.e., mild, 30-99; moderate, 100-299; severe, 300 mg/dL or more) according to the results of the urine dipstick test. Autoantibodies against the paranodal proteins contactin 1 (CNTN1), neurofascin 155 (NF155), and contactin-associated protein 1 (Caspr1) and the nodal protein neurofascin 186 (NF186) were measured, and the predominant IgG subclass was determined by enzyme-linked immunosorbent assay in sera from the 69 patients. RESULTS Four patients (6%), five patients (7%), and one (1%) patient were positive for anti-CNTN1, anti-NF155, and anti-Caspr1 IgG4 antibodies, respectively. No patients had IgG4 antibodies against NF186. Proteinuria of mild or greater levels was found in three patients with anti-CNTN1 IgG4 and two patients with anti-NF155 IgG4 antibodies. The autoantibody-positive patients more frequently had proteinuria of mild or greater levels than the seronegative patients (p = 0.01). CONCLUSIONS Proteinuria is a possible biomarker of autoimmune nodopathies associated with autoantibodies targeting CNTN1 or NF155. Urinalysis results should be carefully checked for quick differentiation of autoimmune nodopathies from CIDP. Patients who present with nephrotic syndrome should be tested for anti-CNTN1 IgG4 antibodies, and patients who exhibit mild proteinuria should be tested for anti-NF155 IgG4 antibodies.
Collapse
Affiliation(s)
- Kei Funakoshi
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Norito Kokubun
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Nobuhiro Yuki
- Department of Neurology, Takai Hospital, Nara, Japan
| |
Collapse
|
10
|
Baum ML, Bartley CM. Human-derived monoclonal autoantibodies as interrogators of cellular proteotypes in the brain. Trends Neurosci 2024; 47:753-765. [PMID: 39242246 PMCID: PMC11656492 DOI: 10.1016/j.tins.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
A major aim of neuroscience is to identify and model the functional properties of neural cells whose dysfunction underlie neuropsychiatric illness. In this article, we propose that human-derived monoclonal autoantibodies (HD-mAbs) are well positioned to selectively target and manipulate neural subpopulations as defined by their protein expression; that is, cellular proteotypes. Recent technical advances allow for efficient cloning of autoantibodies from neuropsychiatric patients. These HD-mAbs can be introduced into animal models to gain biological and pathobiological insights about neural proteotypes of interest. Protein engineering can be used to modify, enhance, silence, or confer new functional properties to native HD-mAbs, thereby enhancing their versatility. Finally, we discuss the challenges and limitations confronting HD-mAbs as experimental research tools for neuroscience.
Collapse
Affiliation(s)
- Matthew L Baum
- Brigham and Women's Hospital, Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA
| | - Christopher M Bartley
- Translational Immunopsychiatry Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Quinot V, Rostasy K, Höftberger R. Antibody-Mediated Nodo- and Paranodopathies. J Clin Med 2024; 13:5721. [PMID: 39407781 PMCID: PMC11477122 DOI: 10.3390/jcm13195721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The recent discovery of pathogenic antibodies targeting cell adhesion molecules of the node of Ranvier has prompted efforts to develop a new classification for a subset of antibody-mediated peripheral neuropathies. These autoimmune nodo- and paranodopathies encompass epitopes such as neurofascin 155, neurofascin 186, contactin-1, and contactin-associated protein 1, with a high likelihood of involving additional yet unidentified proteins. So far, the investigation of this subset of patients was primarily focused on adults, with only rare reports of pediatric cases. Low awareness among pediatricians and insufficient availability of appropriate diagnostic methods in many laboratories may mask a higher pediatric incidence than currently observed. Diagnosis is made by transfected cell-based assays and ELISA to characterize the specific target antigen and antibody subclass that provides insight into the pathophysiology. Clinical features often resemble those of CIDP or GBS in adults, whilst in pediatric patients, although rare, an atypical CIDP phenotype has predominantly been reported. Yet, in contrast to classical immune-mediated neuropathies, the clinical course is usually rapidly progressive, and response to classical first-line therapy often poor. Although electrophysiological signs of demyelination are observed, segmental demyelination and inflammation are not present on pathological examination. Rather, few neuropathological reports demonstrate features of axonal neuropathy without signs of true de- or remyelination. This review aims to summarize recent findings on such nodo- and paranodoneuropathies, shining light on features of these disorders in pediatric patients, a still little-explored field with only a few reports currently present.
Collapse
Affiliation(s)
- Valérie Quinot
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kevin Rostasy
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, 45711 Datteln, Germany;
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
12
|
Kokubun N, Tsuchiya T, Hamaguchi M, Ueda Y, Matsuda H, Ishida K, Funakoshi K, Suzuki K, Yuki N. IgG subclass shifts occurring at acute exacerbations in autoimmune nodopathies. J Neurol 2024; 271:6301-6312. [PMID: 39093334 DOI: 10.1007/s00415-024-12597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Autoimmune nodopathy associated with anti-contactin1 (CNTN1) IgG4 antibodies frequently manifests as acute axonal degeneration in addition to detachment of the paranodal myelin loops. The acute destruction of myelinated nerve fibers does not match the function of IgG4, which cannot activate the complement pathway. IgG subclass switching from IgG1 or IgG3 to IgG4 has been observed in some patients with autoimmune diseases associated with IgG4 throughout their disease course. METHODS Serial changes in IgG subclasses, clinico-neurophysiological features, and nerve and renal pathology were reviewed in three patients with anti-CNTN1-associated autoimmune nodopathy and one patient with anti-contactin-associated protein1 (Caspr1) autoimmune nodopathy. RESULTS All four patients had predominantly IgG4 autoantibodies, whereas they showed evidence of acute axonal degeneration. The IgG1 subclass was present in all patients at their progressing stage but then disappeared at follow-up. Nerve pathology in the patients with anti-CNTN1 and anti-Caspr1 autoimmune nodopathies showed both structural changes in the paranodes and evidence of acute axonal degeneration. Renal biopsy specimens from two patients with membranous glomerulonephritis and anti-CNTN1 autoimmune nodopathy showed deposition of IgG1 and complement on the glomerular basement membrane, as well as IgG4. DISCUSSION In patients with autoimmune nodopathies associated with anti-CNTN1 and anti-Caspr1 IgG4 antibodies, IgG1 subclass autoantibodies were present at their acute exacerbations and might have contributed to the axonal degeneration and glomerular injury. IgG1 disappeared with the cessation of disease progression, which indicates that the IgG1 subclass is a possible biomarker of disease activity.
Collapse
Affiliation(s)
- Norito Kokubun
- Department of Neurology, Dokkyo Medical University, 880 Kitakobayashi, Shimotsuga, Mibu, Tochigi, 321-0293, Japan.
| | - Tomohiro Tsuchiya
- Department of Neurology, Dokkyo Medical University, 880 Kitakobayashi, Shimotsuga, Mibu, Tochigi, 321-0293, Japan
- Department of Neurology, Dokkyo Medical University Nikko Medical Center, Nikko, Tochigi, Japan
| | - Mai Hamaguchi
- Department of Neurology, Dokkyo Medical University, 880 Kitakobayashi, Shimotsuga, Mibu, Tochigi, 321-0293, Japan
| | - Yoshihiko Ueda
- Department of Diagnostic Pathology, Dokkyo Medical University, Shimotsuga, Mibu, Tochigi, Japan
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Hadzki Matsuda
- Department of Diagnostic Pathology, Dokkyo Medical University, Shimotsuga, Mibu, Tochigi, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University, Shimotsuga, Mibu, Tochigi, Japan
| | - Kei Funakoshi
- Department of Neurology, Dokkyo Medical University, 880 Kitakobayashi, Shimotsuga, Mibu, Tochigi, 321-0293, Japan
| | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, 880 Kitakobayashi, Shimotsuga, Mibu, Tochigi, 321-0293, Japan
| | - Nobuhiro Yuki
- Department of Neurology, Takai Hospital, Tenri, Nara, Japan
| |
Collapse
|
13
|
Dubey D. Autoimmune Neuromuscular Disorders Associated With Neural Antibodies. Continuum (Minneap Minn) 2024; 30:1136-1159. [PMID: 39088291 DOI: 10.1212/con.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE This article reviews autoimmune neuromuscular disorders and includes an overview of the diagnostic approach, especially the role of antibody testing in a variety of neuropathies and some other neuromuscular disorders. LATEST DEVELOPMENTS In the past few decades, multiple antibody biomarkers associated with immune-mediated neuromuscular disorders have been reported. These biomarkers are not only useful for better understanding of disease pathogenesis and allowing more timely diagnosis but may also aid in the selection of an optimal treatment strategy. ESSENTIAL POINTS Recognition of autoimmune neuromuscular conditions encountered in inpatient or outpatient neurologic practice is very important because many of these disorders are reversible with prompt diagnosis and early treatment. Antibodies are often helpful in making this diagnosis. However, the clinical phenotype and electrodiagnostic testing should be taken into account when ordering antibody tests or panels and interpreting the subsequent results. Similar to other laboratory investigations, understanding the potential utility and limitations of antibody testing in each clinical setting is critical for practicing neurologists.
Collapse
|
14
|
Zhang L, Zhang Y, Li R, Zhu J, Lin A, Yan Y, Zhang Z, Wang N, Xu G, Fu Y. Anti-neurofascin-155 antibody mediated a distinct phenotype of chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol 2024; 271:4991-5002. [PMID: 38771386 DOI: 10.1007/s00415-024-12443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND To investigate Ranvier's autoantibodies prevalence and isotypes in various peripheral neuropathy variants, compare clinical features between seronegative and seropositive patients, and elucidate immune mechanisms underlying antibody generation. METHODS Antibodies against anti-neurofascin-155 (NF155), NF186, contactin-1 (CNTN1), CNTN2, contactin-associated protein 1 (CASPR1), and CASPR2 were identified through cell-based assays. Plasma cytokines were analyzed in anti-NF155 antibody-positive chronic inflammatory demyelinating polyneuropathy (NF155+ CIDP) and Ranvier's antibodies-negative CIDP (Ab- CIDP) patients using a multiplexed fluorescent immunoassay, validated in vitro in a cell culture model. RESULTS In 368 plasma samples, 50 Ranvier's autoantibodies were found in 45 individuals, primarily in CIDP cases (25 out of 69 patients) and in 10 out of 122 Guillain-Barré syndrome patients. Anti-NF155 and CNTN1-IgG were exclusive to CIDP. Fourteen samples were NF155-IgG, primarily IgG4 subclass, linked to CIDP features including early onset, tremor, sensory disturbance, elevated CSF protein, prolonged motor latency, conduction block, and poor treatment response. NF155-IgG had low sensitivity (20.28%) but high specificity (100%) for CIDP, rising to 88.88% with tremor and prolonged motor latency. Cytokine profiling in NF155+ CIDP revealed distinct immune responses involving helper T cells, toll-like receptor pathways. Some NF155+ CIDP patients had circulating NF155-specific B cells producing NF155-IgG without antigen presence, suggesting therapeutic potential. CONCLUSION The study emphasizes the high specificity and sensitivity of NF155-IgG for diagnosing CIDP characterized by distinctive features. Further investigation into circulating NF155-specific B cell phenotypes may pave the way for B cell directed therapy.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yuanyuan Zhang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Runyun Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jiting Zhu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Aiyu Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Zaiqiang Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Guorong Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
15
|
Wei SJ, Xiong Q, Yao H, He QM, Yu PL. Is systemic lupus erythematosus linked to Immunoglobulin G4 Autoantibodies? Hum Immunol 2024; 85:110826. [PMID: 38954949 DOI: 10.1016/j.humimm.2024.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by a hyperactive immune system with multiple abnormalities in B-cell proliferation, antibody production, T-cell regulation, and immune complex (IC) formation. In humans, Immunoglobulin (Ig) G is found in four subclasses. IgG1-IgG4, which are distinguished by both structural and biological differences. Fab-arm Exchange (FAE), specific biases in the IgG4 response repertoire, and a decreased capacity to induce effector functions mediated by interactions in the fragment crystallizable (Fc) region are just a few of the distinctive characteristics of IgG4. The recent finding of the presence of double-stranded DNA (dsDNA) and antinuclear antibody (ANA)-IgG4 has raised attention to this IgG subclass and its possible role in SLE. IgG4 was previously believed to just have anti-inflammatory effects by inhibiting immune responses, but recent studies have shown that these antibodies can also play a role in the onset and development of some clinical disorders. To consider the clinical effects of IgG4 presence, it is necessary to discuss its characteristics, which could underlie the potential role it can play in SLE. Therefore, this study aimed to comprehensively review the role of IgG4 in SLE to elucidate the collective incidence of high IgG4 levels reported in some SLE patients.
Collapse
Affiliation(s)
- Shu-Jun Wei
- Sichuan Police College, Longtouguan Road, Jiangyang District, Luzhou City, Sichuan Province, China
| | - Qian Xiong
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, China
| | - Huan Yao
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Pengzhou 611930, China
| | - Qing-Man He
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng-Long Yu
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, China.
| |
Collapse
|
16
|
Papadopoulou M, Tzanetakos D, Moschovos C, Korona A, Vartzelis G, Voudris K, Fanouraki S, Dimitriadou EM, Papadimas G, Tzartos JS, Giannopoulos S, Tsivgoulis G. Combined Central and Peripheral Demyelination (CCPD) Associated with MOG Antibodies: Report of Four New Cases and Narrative Review of the Literature. J Clin Med 2024; 13:3604. [PMID: 38930142 PMCID: PMC11204739 DOI: 10.3390/jcm13123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Myelin oligodendrocyte glycoprotein (MOG) is exclusively expressed in the central nervous system (CNS) and is found on the outer surface of oligodendrocytes. Antibodies to MOG are associated with CNS demyelination, whereas peripheral nervous system (PNS) demyelination is seldom reported to be related to MOG-IgG. Methods: The database of patients seen in our neurological academic center was searched for MOG-IgG seropositivity and concomitant demyelinating polyneuropathy. For the purpose of the review, in March 2024, we searched for case reports and case series in the following databases: PubMed, Scopus, Cochrane, and ScienceDirect. Inclusion criteria were MOG-IgG seropositivity and demyelinating polyneuropathy. Exclusion criteria were type of publication other than case reports and case series, unconfirmed diagnosis of demyelinating polyneuropathy, and other diseases causing demyelination in either the CNS or PNS. Critical appraisal of the selected case reports and case series was realized by JBI. Results: Four new cases were identified with MOG-IgG and confirmed demyelinating polyneuropathy. This review identified 22 cases that have been published since 2018. Clinical, imaging, neurophysiological, and immunological characteristics, as well as treatment options and outcomes are presented and compared to those of other cases with combined central and peripheral demyelination (CCPD). Conclusions: The pathogenetic mechanism is unclear; thus, different hypotheses are discussed. New case reporting and large cohort studies will help further the exploration of the underlying mechanism and guide more effective therapeutic interventions.
Collapse
Affiliation(s)
- Marianna Papadopoulou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.P.); (D.T.); (C.M.); (S.F.); (E.-M.D.); (J.S.T.); (G.T.)
- Department of Physiotherapy, University of West Attica, Ag. Spyridonos Str., 12243 Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.P.); (D.T.); (C.M.); (S.F.); (E.-M.D.); (J.S.T.); (G.T.)
| | - Christos Moschovos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.P.); (D.T.); (C.M.); (S.F.); (E.-M.D.); (J.S.T.); (G.T.)
| | - Anastasia Korona
- Department of Neurology, Children’s Hospital of Athens “P. & A. Kyriakou”, 11527 Athens, Greece; (A.K.); (K.V.)
| | - George Vartzelis
- Second Department of Pediatrics, Children’s Hospital ‘P. & A. Kyriakou’, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Voudris
- Department of Neurology, Children’s Hospital of Athens “P. & A. Kyriakou”, 11527 Athens, Greece; (A.K.); (K.V.)
| | - Stella Fanouraki
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.P.); (D.T.); (C.M.); (S.F.); (E.-M.D.); (J.S.T.); (G.T.)
| | - Evangelia-Makrina Dimitriadou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.P.); (D.T.); (C.M.); (S.F.); (E.-M.D.); (J.S.T.); (G.T.)
| | - Georgios Papadimas
- First Department of Neurology, National and Kapodistrian University of Athens, Eginition University Hospital School of Medicine, 11528 Athens, Greece;
| | - John S. Tzartos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.P.); (D.T.); (C.M.); (S.F.); (E.-M.D.); (J.S.T.); (G.T.)
| | - Sotirios Giannopoulos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.P.); (D.T.); (C.M.); (S.F.); (E.-M.D.); (J.S.T.); (G.T.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.P.); (D.T.); (C.M.); (S.F.); (E.-M.D.); (J.S.T.); (G.T.)
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
17
|
Jentzer A, Taieb G, El Bechir J, Vincent T, Devaux JJ. An immuno-DOT diagnostic assay for autoimmune nodopathy. Clin Chem Lab Med 2024; 0:cclm-2024-0510. [PMID: 38862497 DOI: 10.1515/cclm-2024-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES Autoimmune nodopathy (AN) is a life-threatening peripheral neuropathy mediated by four autoantibodies targeting axoglial cell adhesion molecules at the nodes of Ranvier: Neurofascin-155 (Nfasc155), PanNeurofascin (PanNfasc), Contactin-1 (CNTN1), and Contactin-associated protein 1 (CASPR1). Antibody detection is a strong biomarker for AN diagnosis and treatment monitoring. The aim of this study was to develop an immuno-dot assay (immuno-DOT) compatible with routine implementation in medical laboratories. METHODS This new approach was compared to standard techniques: indirect immunofluorescence assay, cell-based assay, and ELISA. Sensitivities (Se) and specificities (Sp) were calculated on a cohort composed of 58 patients diagnosed with AN, 50 seronegative patients with chronic inflammatory demyelinating polyradiculoneuropathy, 20 healthy controls, 30 patients with Guillain-Barré syndrome, 20 with monoclonal gammopathy and 20 with Charcot-Marie-Tooth disease. The patients were diagnosed with AN based on compatible electro-clinical arguments and at least two positive standard techniques. RESULTS Immuno-DOT sensitivities and specificities were Se=91 %, Sp=97 % for anti-Nfasc155; Se=80 %, Sp=94 % for anti-PanNfasc; Se=93 %, Sp=98 % for anti-CNTN1; and Se=87 %, Sp=94 % for anti-CASPR1. Immuno-DOT allowed the diagnosis within 3 h and the accurate follow-up of the immune reactivity and isotype, and dot intensity correlated with antibody titers following treatments. A longitudinal study indicated that immuno-DOT yielded reliable results even after six months of storage at -20 °C. CONCLUSIONS The diagnostic performance of immuno-DOT was satisfactory and compatible with routine implementation in medical laboratories.
Collapse
Affiliation(s)
- Alexandre Jentzer
- 131795 Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM , Montpellier, France
- Department of Immunology, Saint Eloi University Hospital Center, Montpellier University, Montpellier, France
| | - Guillaume Taieb
- 131795 Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM , Montpellier, France
- Department of Neurology, Gui de Chauliac University Hospital Center, Montpellier, France
| | - Jérémie El Bechir
- 131795 Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM , Montpellier, France
| | - Thierry Vincent
- Department of Immunology, Saint Eloi University Hospital Center, Montpellier University, Montpellier, France
| | - Jérôme Joël Devaux
- 131795 Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
18
|
Niu J, Zhang L, Hu N, Cui L, Liu M. Long-term follow-up of relapse and remission of CIDP in a Chinese cohort. BMJ Neurol Open 2024; 6:e000651. [PMID: 38770161 PMCID: PMC11103238 DOI: 10.1136/bmjno-2024-000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Objective We aim to describe the long-term outcome of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) after immune treatment in a Chinese cohort. Methods Between March 2015 and March 2023, 89 patients fulfilling the criteria for CIDP were followed up for a median of 22 months after treatment. Nine had positive antibodies against nodal-paranodal cell-adhesion molecules. Patients were treated according to clinical requirements with prednisone, intravenous immunoglobulin (IVIg) and/or immunosuppressant. Results A total of 78/89 patients had decreased inflammatory neuropathy cause and treatment (INCAT) scores at the last follow-up. For CIDP patients treated with steroids, 35 were stable without relapse after cessation or with a small maintenance dose; 2 relapsed at a high dose (20 mg/day); 15 relapsed at a low dosage (<20 mg/day) and 11 did not respond. The INCAT before treatment was significantly lower in those without relapse (median INCAT 2 vs 3, p=0.030). IVIg was effective in 37/52 CIDP patients. 28 CIDP patients and 4 autoimmune nodopathy patients were treated with immunosuppressants. The average INCAT was 3.3±1.9 before and 1.9±1.3 after immunosuppressant treatment (p=0.001) in CIDP. Conclusion The long-term prognosis of CIDP patients was generally favourable. Nearly half of our patients treated with steroid were stable without relapse after cessation or with a small maintenance dose. The risk of relapse was higher in those with high INCAT. We recommend slowly tapering prednisone based on clinical judgement.
Collapse
Affiliation(s)
- Jingwen Niu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Lei Zhang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Nan Hu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
19
|
Caballero-Ávila M, Lleixà C, Pascual-Goñi E, Martín-Aguilar L, Vidal-Fernandez N, Tejada-Illa C, Collet-Vidiella R, Rojas-Garcia R, Cortés-Vicente E, Turon-Sans J, Gallardo E, Olivé M, Vesperinas A, Carbayo Á, Llansó L, Martinez-Martinez L, Shock A, Christodoulou L, Dizier B, Freeth J, Soden J, Dawson S, Querol L. Membrane Proteome-Wide Screening of Autoantibodies in CIDP Using Human Cell Microarray Technology. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200216. [PMID: 38484217 PMCID: PMC11078148 DOI: 10.1212/nxi.0000000000200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/19/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Autoantibody discovery in complex autoimmune diseases is challenging. Diverse successful antigen identification strategies are available, but, so far, have often been unsuccessful, especially in the discovery of protein antigens in which conformational and post-translational modification are critical. Our study assesses the utility of a human membrane and secreted protein microarray technology to detect autoantibodies in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS A cell microarray consisting of human embryonic kidney-293 cells expressing >5,000 human proteins was used. First, a validation step was performed with 4 serum samples from patients with autoimmune nodopathy (AN) to assess the ability of this technology to detect circulating known autoantibodies. The ability of the cell microarray technology to discover novel IgG autoantibodies was assessed incubating the array with 8 CIDP serum samples. Identified autoantibodies were subsequently validated using cell-based assays (CBAs), ELISA, and/or tissue immunohistochemistry and analyzed in a cohort of CIDP and AN (n = 96) and control (n = 100) samples. RESULTS Serum anti-contactin-1 and anti-neurofascin-155 were detected by the human cell microarray technology. Nine potentially relevant antigens were found in patients with CIDP without other detectable antibodies; confirmation was possible in six of them: ephrin type-A receptor 7 (EPHA7); potassium-transporting ATPase alpha chain 1 and subunit beta (ATP4A/4B); leukemia-inhibitory factor (LIF); and interferon lambda 1, 2, and 3 (IFNL1, IFNL2, IFNL3). Anti-ATP4A/4B and anti-EPHA7 antibodies were detected in patients and controls and considered unrelated to CIDP. Both anti-LIF and anti-IFNL antibodies were found in the same 2 patients and were not detected in any control. Both patients showed the same staining pattern against myelinating fibers of peripheral nerve tissue and of myelinating neuron-Schwann cell cocultures. Clinically relevant correlations could not be established for anti-LIF and anti-IFNL3 antibodies. DISCUSSION Our work demonstrates the utility of human cell microarray technology to detect known and discover unknown autoantibodies in human serum samples. Despite potential CIDP-associated autoantibodies (anti-LIF and anti-IFNL3) being identified, their clinical and pathogenic relevance needs to be elucidated in bigger cohorts.
Collapse
Affiliation(s)
- Marta Caballero-Ávila
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Cinta Lleixà
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Elba Pascual-Goñi
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Lorena Martín-Aguilar
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Núria Vidal-Fernandez
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Clara Tejada-Illa
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Roger Collet-Vidiella
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Ricardo Rojas-Garcia
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Elena Cortés-Vicente
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Janina Turon-Sans
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Eduard Gallardo
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Montse Olivé
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Ana Vesperinas
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Álvaro Carbayo
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Laura Llansó
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Laura Martinez-Martinez
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Anthony Shock
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Louis Christodoulou
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Benjamin Dizier
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Jim Freeth
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Jo Soden
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Sarah Dawson
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| | - Luis Querol
- From the Neuromuscular Diseases Unit (M.C.-Á., C.L., E.P.-G., L.M.-A., N.V.-F., C.T.-I., R.C.-V., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., A.V., Á.C., L.L., L.Q.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases (C.L., R.R.-G., E.C.-V., J.T.-S., E.G., M.O., L.Q.), Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid; Department of Immunology (L.M.-M.), Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Spain; UCB Pharma (A.S., L.C., B.D.), Slough; and Retrogenix (Charles River's company) (J.F., J.S., S.D.), United Kingdom
| |
Collapse
|
20
|
Zhang J, Hou X, Wei L, Liu J, Li S, Guo Y, Liu H, Jiang Y. Clinical characteristics of patients with autoimmune nodopathy with anti-neurofascin155 antibodies. Front Immunol 2024; 15:1345953. [PMID: 38726012 PMCID: PMC11079118 DOI: 10.3389/fimmu.2024.1345953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Background According to the latest guidelines on chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), patients with CIDP with anti-neurofascin 155 (NF155) antibodies are referred to as autoimmune nodopathy (AN), an autoimmune disorder distinct from CIDP. We aimed to compare the clinical data of patients with AN with anti-NF155 antibodies with those of anti-NF155 antibodies-negative patients with CIDP, and to summarize the clinical characteristics of patients with AN with anti-NF155 antibodies. Methods Nine patients with AN with anti-NF155 antibodies and 28 serologically negative patients with CIDP were included in this study. Diagnosis was made according to the diagnostic criteria in the European Academy of Neurology (EAN)/Peripheral Nerve Society (PNS) guidelines on CIDP published in 2021. Demographics, clinical manifestations, electrophysiological examination, cerebrospinal fluid (CSF) tests, and response to treatment were retrospectively analyzed. Results Compared with serologically negative patients with CIDP, those patients with AN with anti-NF155 antibodies were younger (p=0.007), had a younger onset age (p=0.009), more frequent ataxia (p=0.019), higher CSF protein levels (p=0.001), and more frequent axon damage in electrophysiology (p=0.025). The main characteristics of patients with AN with anti-NF155 antibodies include younger age and onset age, limb weakness, sensory disturbance, ataxia, multiple motor-sensory peripheral neuropathies with demyelination and axonal damage on electrophysiological examination, markedly elevated CSF protein levels, and varying degrees of response to immunotherapy. Conclusions Patients with AN with anti-NF155 antibodies differed from serologically negative patients with CIDP in terms of clinical characteristics. When AN is suspected, testing for antibodies associated with the nodes of Ranvier is essential for early diagnosis and to guide treatment.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaotong Hou
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liting Wei
- Department of Neurology, Luoyang Central Hospital, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Jinshun Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shibo Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Guo
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Jiang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Acerra GM, Bevilacqua L, Noioso CM, Valle PD, Serio M, Vinciguerra C, Piscosquito G, Toriello A, Vegezzi E, Gastaldi M, Barone P, Iovino A. Anti-pan-neurofascin nodopathy: cause of fulminant neuropathy. Neurol Sci 2024; 45:1755-1759. [PMID: 38190082 DOI: 10.1007/s10072-023-07297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Autoimmune nodopathies are inflammatory diseases of the peripheral nervous system with clinical and neurophysiological peculiar characteristics. In this nosological category, we find patients with autoantibodies against Neurofascin 140/186 and 155, Contactin1, and Caspr1 directed precisely towards nodal and paranodal structures. These antibodies are extremely rare and cause severe clinical symptoms. We describe the clinical case of a patient with autoimmune nodopathy caused by the coexistence of anti-neurofascin (NF) 186/140 and 155, characterized by progressive weakness in all limbs leading to tetraplegia, involving cranial nerves, and respiratory insufficiency. Response to first-line treatments was good followed by rapid dramatic clinical relapse. There are few reported cases of anti-pan NF neuropathy in the literature, and they present a clinical phenotype similar to our patient. In these cases, early recognition of clinical red flags of nodopathies and serial neurophysiological studies can facilitate the diagnosis. However, the severe clinical relapse suggests a possible early use of immunosuppressive therapies for this rare category of patients.
Collapse
Affiliation(s)
- Gabriella Maria Acerra
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy.
| | - Liliana Bevilacqua
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Ciro Maria Noioso
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Paola Della Valle
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Marina Serio
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Claudia Vinciguerra
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Giuseppe Piscosquito
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Antonella Toriello
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Elisa Vegezzi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Paolo Barone
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Aniello Iovino
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| |
Collapse
|
22
|
Fukami Y, Iijima M, Koike HH, Yagi S, Furukawa S, Mouri N, Ouchida J, Murakami A, Iida M, Yokoi S, Hashizume A, Iguchi Y, Imagama S, Katsuno M. Autoantibodies Against Dihydrolipoamide S-Acetyltransferase in Immune-Mediated Neuropathies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200199. [PMID: 38181320 DOI: 10.1212/nxi.0000000000200199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/16/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND AND OBJECTIVES This study aimed to identify disease-related autoantibodies in the serum of patients with immune-mediated neuropathies including chronic inflammatory demyelinating polyneuropathy (CIDP) and to investigate the clinical characteristics of patients with these antibodies. METHODS Proteins extracted from mouse brain tissue were used to react with sera from patients with CIDP by western blotting (WB) to determine the presence of common bands. Positive bands were then identified by mass spectrometry and confirmed for reactivity with patient sera using enzyme-linked immunosorbent assay (ELISA) and WB. Reactivity was further confirmed by cell-based and tissue-based indirect immunofluorescence assays. The clinical characteristics of patients with candidate autoantibody-positive CIDP were analyzed, and their association with other neurologic diseases was also investigated. RESULTS Screening of 78 CIDP patient sera by WB revealed a positive band around 60-70 kDa identified as dihydrolipoamide S-acetyltransferase (DLAT) by immunoprecipitation and mass spectrometry. Serum immunoglobulin G (IgG) and IgM antibodies' reactivity to recombinant DLAT was confirmed using ELISA and WB. A relatively high reactivity was observed in 29 of 160 (18%) patients with CIDP, followed by patients with sensory neuropathy (6/58, 10%) and patients with MS (2/47, 4%), but not in patients with Guillain-Barré syndrome (0/27), patients with hereditary neuropathy (0/40), and healthy controls (0/26). Both the cell-based and tissue-based assays confirmed reactivity in 26 of 33 patients with CIDP. Comparing the clinical characteristics of patients with CIDP with anti-DLAT antibodies (n = 29) with those of negative cases (n = 131), a higher percentage of patients had comorbid sensory ataxia (69% vs 37%), cranial nerve disorders (24% vs 9%), and malignancy (20% vs 5%). A high DLAT expression was observed in human autopsy dorsal root ganglia, confirming the reactivity of patient serum with mouse dorsal root ganglion cells. DISCUSSION Reactivity to DLAT was confirmed in patient sera, mainly in patients with CIDP. DLAT is highly expressed in the dorsal root ganglion cells, and anti-DLAT antibody may serve as a biomarker for sensory-dominant neuropathies.
Collapse
Affiliation(s)
- Yuki Fukami
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Masahiro Iijima
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Haruki H Koike
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Satoru Yagi
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Soma Furukawa
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Naohiro Mouri
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Jun Ouchida
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Ayuka Murakami
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Madoka Iida
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Satoshi Yokoi
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Hashizume
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Yohei Iguchi
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Shiro Imagama
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Masahisa Katsuno
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
23
|
Lyou HJ, Chung YH, Kim MJ, Kim M, Jeon MY, Kim SW, Shin HY, Kim BJ. Clinical Features of Autoimmune Nodopathy With Anti-Neurofascin-155 Antibodies in South Koreans. J Clin Neurol 2024; 20:186-193. [PMID: 38171501 PMCID: PMC10921045 DOI: 10.3988/jcn.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Anti-neurofascin-155 (NF155) antibody is one of the autoantibodies associated with autoimmune nodopathy. We aimed to determine the clinical features of South Korean patients with anti-NF155-antibody-positive autoimmune nodopathy. METHODS The sera of 68 patients who fulfilled the diagnostic criteria for chronic inflammatory demyelinating polyneuropathy (CIDP) were tested for anti-NF155 antibodies using a cell-based assay (CBA) and enzyme-linked immunosorbent assay (ELISA). The anti-NF155-positive sera were also assayed for NF155 immunoglobulin G (IgG) subclasses, and for anti-NF186 and NF140 antibodies. The clinical features of the patients were reviewed retrospectively. RESULTS Among the 68 patients, 6 (8.8%) were positive for anti-NF155 antibodies in both the CBA and ELISA. One of those six patients was also positive for anti-NF186 and anti-NF140 antibodies. IgG4 was the predominant subclass in four patients. The mean age at onset was 32.2 years. All six positive patients presented with progressive sensory ataxia. Five patients treated using corticosteroids presented a partial or no response. All six patients were treated using intravenous immunoglobulin (IVIg). Among them, five exhibited a partial or poor response and the other exhibited a good response. All three patients treated using rituximab showed a good response. CONCLUSIONS The clinical characteristics of the patients were consistent with those in previous studies. Anti-NF155 antibody assay is necessary for diagnosing autoimmune nodopathy and its appropriate treatment, especially in young patients with CIDP who present with sensory ataxia and poor therapeutic responses to corticosteroids and IVIg.
Collapse
Affiliation(s)
- Hyun Ji Lyou
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Yeon Hak Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Ju Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - MinGi Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Young Jeon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Vallat J, Mathis S. Pathology explains various mechanisms of auto-immune inflammatory peripheral neuropathies. Brain Pathol 2024; 34:e13184. [PMID: 37356965 PMCID: PMC10901618 DOI: 10.1111/bpa.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023] Open
Abstract
Autoimmune neuropathies are a heterogeneous group of rare and disabling diseases in which the immune system is thought to target antigens in the peripheral nervous system: they usually respond to immune therapies. Guillain-Barré syndrome is divided into several subtypes including "acute inflammatory demyelinating polyradiculoneuropathy," "acute motor axonal neuropathy," "acute motor sensory neuropathy," and other variants. Chronic forms such as chronic inflammatory demyelinating polyneuropathy (CIDP) and other subtypes and polyneuropathy associated with IgM monoclonal gammopathy; autoimmune nodopathies also belong to this group of auto-immune neuropathies. It has been shown that immunoglobulin G from the serum of about 30% of CIDP patients immunolabels nodes of Ranvier or paranodes of myelinated axons. Whatever the cause of myelin damage of the peripheral nervous system, the initial attack on myelin by a dysimmune process may begin either at the internodal area or in the paranodal and nodal regions. The term "nodoparanodopathy" was first applied to some "axonal Guillain-Barré syndrome" subtypes, then extended to cases classified as CIDP bearing IgG4 antibodies against paranodal axoglial proteins. In these cases, paranodal dissection develops in the absence of macrophage-induced demyelination. In contrast, the mechanisms of demyelination of other dysimmune neuropathies induced by macrophages are unexplained, as no antibodies have been identified in such cases. The main objective of this presentation is to show that the pathology illustrates, confirms, and may explain such mechanisms.
Collapse
Affiliation(s)
- Jean‐Michel Vallat
- Department and Laboratory of Neurology, National Reference Center for ‘Rare Peripheral Neuropathies’University Hospital of Limoges (CHU Limoges)LimogesFrance
| | - Stéphane Mathis
- Department of Neurology (Nerve‐Muscle Unit), ‘Grand Sud‐Ouest’ National Reference Center for Neuromuscular Disorders, ALS CenterUniversity Hospital of Bordeaux (CHU Bordeaux)BordeauxFrance
| |
Collapse
|
25
|
Liu Y, Wang Y, Hu M, Xu S, Jiang F, Han Y, Liu Z. The role of IgG4 in systemic lupus erythematosus: Implications for pathogenesis and therapy. J Biochem Mol Toxicol 2024; 38:e23626. [PMID: 38229315 DOI: 10.1002/jbt.23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Immunoglobulin (Ig) G4 has a distinctive nature, and its involvement in autoimmune disorders is a subject of ongoing debate and uncertainty. A growing body of evidence indicates that IgG4 may play a pathogenic role in the development of systemic lupus erythematosus (SLE). The IgG4 autoantibodies have the capability to bind autoantigens in a competitive manner with other Ig classes, thereby forming immune complexes (ICs) that are noninflammatory in nature. This is due to the low affinity of IgG4 for both the Fc receptors and the C1 complement molecule, which results in a diminished inflammatory response in individuals with SLE. The present study aims to elucidate the significance of IgG4 in SLE. The present discourse pertains to the nascent and suggested modalities through which IgG4 might participate in the pathogenesis of SLE and the potential ramifications for therapeutic interventions in SLE.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Broers MC, Wieske L, Erdag E, Gürlek C, Bunschoten C, van Doorn PA, Eftimov F, Kuitwaard K, de Vries JM, de Wit MCY, Nagtzaam MM, Franken SC, Zhu L, Paunovic M, de Wit M, Schreurs MW, Lleixà C, Martín-Aguilar L, Pascual-Goñi E, Querol L, Jacobs BC, Huizinga R, Titulaer MJ. Clinical relevance of distinguishing autoimmune nodopathies from CIDP: longitudinal assessment in a large cohort. J Neurol Neurosurg Psychiatry 2023; 95:52-60. [PMID: 37879898 DOI: 10.1136/jnnp-2023-331378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/28/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND The aim of this study was to determine treatment response and whether it is associated with antibody titre change in patients with autoimmune nodopathy (AN) previously diagnosed as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), and to compare clinical features and treatment response between AN and CIDP. METHODS Serum IgG antibodies to neurofascin-155 (NF155), contactin-1 (CNTN1) and contactin-associated protein 1 (CASPR1) were detected with cell-based assays in patients diagnosed with CIDP. Clinical improvement was determined using the modified Rankin scale, need for alternative and/or additional treatments and assessment of the treating neurologist. RESULTS We studied 401 patients diagnosed with CIDP and identified 21 patients with AN (10 anti-NF155, 6 anti-CNTN1, 4 anti-CASPR1 and 1 anti-NF155/anti-CASPR1 double positive). In patients with AN ataxia (68% vs 28%, p=0.001), cranial nerve involvement (34% vs 11%, p=0.012) and autonomic symptoms (47% vs 22%, p=0.025) were more frequently reported; patients with AN improved less often after intravenous immunoglobulin treatment (39% vs 80%, p=0.002) and required additional/alternative treatments more frequently (84% vs 34%, p<0.001), compared with patients with CIDP. Antibody titres decreased or became negative in patients improving on treatment. Treatment withdrawal was associated with a titre increase and clinical deterioration in four patients. CONCLUSIONS Distinguishing CIDP from AN is important, as patients with AN need a different treatment approach. Improvement and relapses were associated with changes in antibody titres, supporting the pathogenicity of these antibodies.
Collapse
Affiliation(s)
- Merel C Broers
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Ece Erdag
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cemre Gürlek
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Carina Bunschoten
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Krista Kuitwaard
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Juna M de Vries
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marie-Claire Y de Wit
- Department of Pediatric Neurology, Erasmus MC, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Mariska Mp Nagtzaam
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Suzanne C Franken
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Louisa Zhu
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Manuela Paunovic
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maurice de Wit
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marco Wj Schreurs
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lorena Martín-Aguilar
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elba Pascual-Goñi
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Querol
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro para la de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Bart C Jacobs
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ruth Huizinga
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maarten J Titulaer
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Tsoumanis P, Kitsouli A, Stefanou C, Papathanakos G, Stefanou S, Tepelenis K, Zikidis H, Tsoumani A, Zafeiropoulos P, Kitsoulis P, Kanavaros P. Chronic Inflammatory Demyelinating Polyneuropathy and Evaluation of the Visual Evoked Potentials: A Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2160. [PMID: 38138263 PMCID: PMC10744621 DOI: 10.3390/medicina59122160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare autoimmune disorder characterised by the progressive demyelination of peripheral nerves, resulting in motor and sensory deficits. While much research has focused on clinical and electrophysiological aspects of CIDP, there is an emerging interest in exploring its impact on the visual system through visual evoked potentials (VEPs). This comprehensive review synthesises existing literature on VEP findings in CIDP patients, shedding light on their potential diagnostic and prognostic value. The review thoroughly examines studies spanning the last two decades, exploring VEP abnormalities in CIDP patients. Notably, VEP studies have consistently revealed prolonged latencies and reduced amplitudes in CIDP patients compared to healthy controls. These alterations in VEP parameters suggest that the demyelinating process extends beyond the peripheral nervous system to affect the central nervous system, particularly the optic nerve and its connections. The correlation between VEP abnormalities and clinical manifestations of CIDP, such as visual impairment and sensory deficits, underscores the clinical relevance of VEP assessment in CIDP management. Furthermore, this review addresses the potential utility of VEPs in aiding CIDP diagnosis and monitoring disease progression. VEP abnormalities may serve as valuable biomarkers for disease activity, helping clinicians make timely therapeutic decisions. Moreover, this review discusses the limitations and challenges associated with VEP assessment in CIDP, including variability in recording techniques and the need for standardised protocols. In conclusion, this review highlights the evolving role of VEPs as a non-invasive tool in CIDP evaluation. The consistent VEP abnormalities observed in CIDP patients suggest the involvement of the central nervous system in this demyelinating disorder. As our understanding of CIDP and its pathophysiology continues to evolve, further research in this area may lead to improved diagnostic accuracy and monitoring strategies, ultimately enhancing the clinical management of CIDP patients.
Collapse
Affiliation(s)
- Periklis Tsoumanis
- Department of Ophthalmology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Aikaterini Kitsouli
- Anatomy-Histology-Embryology, University of Ioannina, 45500 Ioannina, Greece; (A.K.); (P.K.); (P.K.)
| | - Christos Stefanou
- Department of Surgery, General Hospital of Filiates, 46300 Filiates, Greece;
| | | | - Stefanos Stefanou
- Department of Endocrine Surgery, Henry Dunant Hospital Center, 11526 Athens, Greece;
| | - Kostas Tepelenis
- Department of Surgery, General Hospital of Ioannina G. Hatzikosta, 45500 Ioannina, Greece;
| | - Hercules Zikidis
- Department of Neurology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | | | | | - Panagiotis Kitsoulis
- Anatomy-Histology-Embryology, University of Ioannina, 45500 Ioannina, Greece; (A.K.); (P.K.); (P.K.)
| | - Panagiotis Kanavaros
- Anatomy-Histology-Embryology, University of Ioannina, 45500 Ioannina, Greece; (A.K.); (P.K.); (P.K.)
| |
Collapse
|
28
|
Moodley K, Patel VB, Moodley AA, Bill PLA, Kajee A, Mgbachi V, Fehmi J, Rinaldi S. Nodal-paranodal antibodies in HIV-immune mediated radiculo-neuropathies: Clinical phenotypes and relevance. J Peripher Nerv Syst 2023; 28:578-585. [PMID: 37676746 DOI: 10.1111/jns.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The frequency of nodal-paranodal antibodies in HIV-infected patients with chronic immune-mediated radiculo-neuropathies (IMRN) has not been previously described. METHODS HIV-infected patients who met the inclusion criteria for chronic IMRN were screened for immunoglobulin G (IgG) antibodies directed against nodal (neurofascin (NF)186) and paranodal (NF155, contactin-1 (CNTN1) and contactin-associated protein(Caspr1)) cell adhesion molecules, using a live, cell-based assay. To explore potential pathogenicity, binding of human IgG to myelinated co-cultures was assessed by incubation with patients' sera positive for nodal or paranodal antibodies. Normal human serum was added as a source of complement to assess for complement activation as a mechanism for myelin injury. RESULTS Twenty-four HIV-infected patients with IMRN were included in the study, 15 with chronic inflammatory demyelinating polyneuropathy (CIDP), 4 with ventral root radiculopathies (VRR), and 5 with dorsal root ganglionopathies (DRG). Five patients with CIDP had combined central and peripheral demyelination (CCPD). Three patients (12.7%) tested positive for neurofascin IgG1 antibodies in the following categories: 1 patient with VRR was NF186 positive, and 2 patients were NF155 positive with DRG and mixed sensory-motor demyelinating neuropathy with optic neuritis, respectively. CONCLUSION The frequency of nodal-paranodal antibodies is similar among IMRN regardless of HIV status. Interpretation of the results in the context of HIV is challenging as there is uncertainty regarding pathogenicity of the antibodies, especially at low titres. Larger prospective immune studies are required to delineate pathogenicity in the context of HIV, and to establish a panel of antibodies to predict for a particular clinical phenotype.
Collapse
Affiliation(s)
- K Moodley
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - V B Patel
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - A A Moodley
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - P L A Bill
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - A Kajee
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - V Mgbachi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - J Fehmi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - S Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Ogata H. [The significance of autoantibodies against nodal and paranodal proteins in autoimmune nodopathies]. Rinsho Shinkeigaku 2023; 63:715-724. [PMID: 37880115 DOI: 10.5692/clinicalneurol.cn-001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is recognized as a syndrome caused by multiple pathologies. Since the 2010s, it has been clarified that autoantibodies against membranous proteins localized in the nodes of Ranvier and paranodes are positive in subsets of CIDP patients, leading to proposing a new disease concept called autoimmune nodopathies, which is independent of CIDP, in the revised international CIDP guidelines. This article reviews the significance of these autoantibodies, especially anti-neurofascin 155 and anti-contactin 1 antibodies, which have been the most prevalent and achieved a higher degree of consensus.
Collapse
|
30
|
Rispens T, Huijbers MG. The unique properties of IgG4 and its roles in health and disease. Nat Rev Immunol 2023; 23:763-778. [PMID: 37095254 PMCID: PMC10123589 DOI: 10.1038/s41577-023-00871-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
IgG4 is the least abundant subclass of IgG in human serum and has unique functional features. IgG4 is largely unable to activate antibody-dependent immune effector responses and, furthermore, undergoes Fab (fragment antigen binding)-arm exchange, rendering it bispecific for antigen binding and functionally monovalent. These properties of IgG4 have a blocking effect, either on the immune response or on the target protein of IgG4. In this Review, we discuss the unique structural characteristics of IgG4 and how these contribute to its roles in health and disease. We highlight how, depending on the setting, IgG4 responses can be beneficial (for example, in responses to allergens or parasites) or detrimental (for example, in autoimmune diseases, in antitumour responses and in anti-biologic responses). The development of novel models for studying IgG4 (patho)physiology and understanding how IgG4 responses are regulated could offer insights into novel treatment strategies for these IgG4-associated disease settings.
Collapse
Affiliation(s)
- Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
31
|
Oeztuerk M, Henes A, Schroeter CB, Nelke C, Quint P, Theissen L, Meuth SG, Ruck T. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Cells 2023; 12:2456. [PMID: 37887300 PMCID: PMC10605022 DOI: 10.3390/cells12202456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammatory neuromuscular disorders encompass a diverse group of immune-mediated diseases with varying clinical manifestations and treatment responses. The identification of specific biomarkers has the potential to provide valuable insights into disease pathogenesis, aid in accurate diagnosis, predict disease course, and monitor treatment efficacy. However, the rarity and heterogeneity of these disorders pose significant challenges in the identification and implementation of reliable biomarkers. Here, we aim to provide a comprehensive review of biomarkers currently established in Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), myasthenia gravis (MG), and idiopathic inflammatory myopathy (IIM). It highlights the existing biomarkers in these disorders, including diagnostic, prognostic, predictive and monitoring biomarkers, while emphasizing the unmet need for additional specific biomarkers. The limitations and challenges associated with the current biomarkers are discussed, and the potential implications for disease management and personalized treatment strategies are explored. Collectively, biomarkers have the potential to improve the management of inflammatory neuromuscular disorders. However, novel strategies and further research are needed to establish clinically meaningful biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.O.); (A.H.); (P.Q.)
| |
Collapse
|
32
|
Collet R, Caballero-Ávila M, Querol L. Clinical and pathophysiological implications of autoantibodies in autoimmune neuropathies. Rev Neurol (Paris) 2023; 179:831-843. [PMID: 36907709 DOI: 10.1016/j.neurol.2023.02.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Autoimmune neuropathies are a heterogeneous group of rare and disabling diseases in which the immune system targets peripheral nervous system antigens and that respond to immune therapies. This review focuses on Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, polyneuropathy associated with IgM monoclonal gammopathy, and autoimmune nodopathies. Autoantibodies targeting gangliosides, proteins in the node of Ranvier, and myelin-associated glycoprotein have been described in these disorders, defining subgroups of patients with similar clinical features and response to therapy. This topical review describes the role of these autoantibodies in the pathogenesis of autoimmune neuropathies and their clinical and therapeutic importance.
Collapse
Affiliation(s)
- R Collet
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - M Caballero-Ávila
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Querol
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
33
|
Müller-Miny L, Sauer R, Schulte-Mecklenbeck A, Gross CC, Kovac S, Schilling M, Beuker C, Wiendl H, Meyer zu Hörste G. Contactin-associated protein 2 autoantibodies can be associated with multifocal motor-like neuropathy: a case report. Ther Adv Neurol Disord 2023; 16:17562864231189323. [PMID: 37599705 PMCID: PMC10434843 DOI: 10.1177/17562864231189323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Autoantibodies against contactin-associated protein 2 (CASPR2) are usually associated with autoimmune encephalitis and neuromyotonia. Their association with inflammatory neuropathies has been described in case reports albeit all with distal symmetric manifestation. Here, we report a patient who developed distal arm paresis, dominantly of the right arm, over the course of 1 year. Electroneurography showed a conduction block of motor nerve conduction, nerve ultrasonography a swelling of the right median and ulnar nerve and flow cytometry an increase in natural killer (NK cells) in the blood and natural killer T (NKT) cells in the cerebrospinal fluid (CSF), therefore indicating a multifocal motor neuropathy-like (MMN-like) phenotype. CASPR2 autoantibodies were detected in serum and CSF. Through immunotherapy with intravenous immunoglobulins the patient showed clinical and neurographic improvement. We therefore describe the first association of CASPR2 autoantibodies with a MMN-like clinical manifestation, extending the spectrum of CASPR2-associated diseases.
Collapse
Affiliation(s)
- Louisa Müller-Miny
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Raoul Sauer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C. Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Matthias Schilling
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Carolin Beuker
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Building A1, Münster 48149, Germany
| |
Collapse
|
34
|
Speer W, Szewczyk C, Jacobson R. An Atypical Pediatric Presentation of a Chronic Polyradiculoneuropathy. Cureus 2023; 15:e44361. [PMID: 37779799 PMCID: PMC10540090 DOI: 10.7759/cureus.44361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Here, we present a case of a 15-year-old male with polyradiculoneuropathy, which was diagnosed as chronic inflammatory demyelinating polyneuropathy (CIDP), who was refractory to initial treatment. The patient presented with a one-and-a-half-month history of decreased strength, most notable in the bilateral hip flexors and finger flexors/extensors, and areflexia. Electromyography and nerve conduction studies did not fulfill diagnostic criteria for a demyelinating polyneuropathy; however, the cerebrospinal fluid analysis demonstrated albuminocytologic dissociation and his physical exam was otherwise consistent with the diagnosis. He was treated with IV immunoglobulin (IVIg). He relapsed less than one month later with worsening weakness. Imaging revealed increased cauda equina enhancement when compared to the MRI from the previous admission, and labs were otherwise similar to the initial presentation. He was treated with a second course of IVIg in addition to high-dose IV methylprednisolone. Upon his second discharge, he was transitioned to oral corticosteroids, and at a follow-up visit one month later, he had fully regained his strength and demonstrated normal reflexes. This case highlights the variable nature of CIDP in its initial presentation, its course, and its response to treatment, particularly in young patients. Additionally, we would like to emphasize that this case of CIDP was in the context of chronic malnutrition and significant weight loss, which made the diagnostic picture more complex.
Collapse
Affiliation(s)
- Wes Speer
- Psychiatry, Rush Medical College, Chicago, USA
| | | | - Ryan Jacobson
- Neurology, Rush University Medical Center, Chicago, USA
| |
Collapse
|
35
|
Fuse K, Araki A, Morozumi S, Yasui K. [A patient with anti-myelin oligodendrocyte glycoprotein antibody-associated combined central and peripheral demyelination with anti-galactocerebroside and anti-GM1 antibodies]. Rinsho Shinkeigaku 2023:cn-001850. [PMID: 37394490 DOI: 10.5692/clinicalneurol.cn-001850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A 48-year-old male was admitted to our hospital because of chronic progressive demyelination of the peripheral nerves of the upper limbs, as well as acute myelitis presenting with sensory disturbance from the left chest to the left leg. We established a diagnosis of combined central and peripheral demyelination (CCPD). The patient was positive for serum anti-myelin oligodendrocyte glycoprotein (MOG), anti-galactocerebroside IgG, and anti-GM1 IgG antibodies. Intravenous methylprednisolone therapy and plasma exchange improved myelitis, and the subsequent administration of oral prednisolone yielded a gradual improvement of the peripheral nerve damage with a mostly negative result for the antibodies. However, the patient experienced a relapse of radiculitis eight months later. Relapses of anti-MOG antibody-associated disease can provoke new immune reactions, leading to CCPD.
Collapse
Affiliation(s)
- Kenshiro Fuse
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital
| | - Amane Araki
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital
| | - Saori Morozumi
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital
| |
Collapse
|
36
|
Liu B, Zhou L, Sun C, Wang L, Zheng Y, Hu B, Qiao K, Zhao C, Lu J, Lin J. Clinical profile of autoimmune nodopathy with anti-neurofascin 186 antibody. Ann Clin Transl Neurol 2023; 10:944-952. [PMID: 37060203 PMCID: PMC10270277 DOI: 10.1002/acn3.51775] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVE Nodal/paranodal autoantibodies identified a group of peripheral neuropathies independent from chronic inflammatory demyelinating polyneuropathy (CIDP). However, nodopathy with antibody against neurofascin 186 (NF186) was rarely reported. We presented a cohort of patients with anti-NF186 antibody and described the clinical profile of them. METHODS In this retrospective study, 195 patients diagnosed with CIDP and immune mediated idiopathic neuropathies were enrolled. Cell-based assay was used to screen anti-NF186 and anti-NF155 antibodies in serum samples. Teased-fiber immunofluorescence were used as a confirmatory assay. Clinical data of seropositive patients were collected and analyzed. RESULTS Among the patients with anti-NF186 antibody, seven patients (58.3%) presented acute or subacute disorder onset. Four patients (33.3%) were found to have asymmetric weakness or numbness. Distal weakness and/or numbness was the core feature. Sensory ataxia, tremor and central nervous system demyelination were rarely observed. Nerve conduction studies revealed predominant demyelinating with/without axonal loss. Brachial plexus MRI was normal in the majority of patients (6/7, 85.7%). Five patients (5/9, 55.6%) showed response to intravenous immunoglobulin. Eight patients (8/10, 80.0%) improved after corticosteroids. All patients (3/3,100%) responded to rituximab. INTERPRETATION In the study, we depicted the clinical profile of nodopathy with anti-NF186 antibody. The diversity of clinical features, electrophysiology results and pathological findings was specific in nodopathy with anti-NF186 antibody. Screening of autoantibody against NF186 in acute-onset neuropathy is recommended.
Collapse
Affiliation(s)
- Bingyou Liu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Lei Zhou
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Chong Sun
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Longjie Wang
- Electron Microscopy Center, Department of Nephrology, Huashan Hospital North BranchFudan UniversityShanghaiChina
| | - Yongsheng Zheng
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Bin Hu
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
| | - Kai Qiao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Chongbo Zhao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiahong Lu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Jie Lin
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
37
|
Dziadkowiak E, Nowakowska-Kotas M, Rałowska-Gmoch W, Budrewicz S, Koszewicz M. Molecular, Electrophysiological, and Ultrasonographic Differences in Selected Immune-Mediated Neuropathies with Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24119180. [PMID: 37298132 DOI: 10.3390/ijms24119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The spectrum of immune-mediated neuropathies is broad and the different subtypes are still being researched. With the numerous subtypes of immune-mediated neuropathies, establishing the appropriate diagnosis in normal clinical practice is challenging. The treatment of these disorders is also troublesome. The authors have undertaken a literature review of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), Guillain-Barre syndrome (GBS) and multifocal motor neuropathy (MMN). The molecular, electrophysiological and ultrasound features of these autoimmune polyneuropathies are analyzed, highlighting the differences in diagnosis and ultimately treatment. The immune dysfunction can lead to damage to the peripheral nervous system. In practice, it is suspected that these disorders are caused by autoimmunity to proteins located in the node of Ranvier or myelin components of peripheral nerves, although disease-associated autoantibodies have not been identified for all disorders. The electrophysiological presence of conduction blocks is another important factor characterizing separate subgroups of treatment-naive motor neuropathies, including multifocal CIDP (synonyms: multifocal demyelinating neuropathy with persistent conduction block), which differs from multifocal motor neuropathy with conduction block (MMN) in both responses to treatment modalities and electrophysiological features. Ultrasound is a reliable method for diagnosing immune-mediated neuropathies, particularly when alternative diagnostic examinations yield inconclusive results. In overall terms, the management of these disorders includes immunotherapy such as corticosteroids, intravenous immunoglobulin or plasma exchange. Improvements in clinical criteria and the development of more disease-specific immunotherapies should expand the therapeutic possibilities for these debilitating diseases.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Marta Nowakowska-Kotas
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Wiktoria Rałowska-Gmoch
- Department of Neurology, The St. Jadwiga's Regional Specialist Neuropsychiatric Centre, Wodociągowa 4, 45-221 Opole, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
38
|
Li Q, Chen Q, Zhang T, Xu Y, Kan Y, Zhang J. Case report: Anti-CNTN1 antibody-associated nodopathies disease with asymmetric onset. Front Neurol 2023; 14:1124540. [PMID: 36970505 PMCID: PMC10035883 DOI: 10.3389/fneur.2023.1124540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Anti-contactin-1 (CNTN1) IgG4 antibody-associated nodopathies is an autoimmune antibody-mediated peripheral neuropathy with a unique clinical presentation, pathophysiology, electrophysiology, and therapeutic response. The critical histopathological features are a dense lymphoplasmacytic infiltrate, a storiform pattern of fibrosis, and obliterative phlebitis. Here, a 62-year-old male patient presented with subacute unilateral limb onset, progressive exacerbation, marked weakness of the extremities, cranial, and autonomic nerve involvement. Neurophysiology showed slowed motor nerve conduction velocity (MCV), prolonged distal motor delay (DML), slowed sensory nerve conduction velocity (SCV), decreased sensory nerve activity potential (SNAP) amplitude, decreased amplitude of bilateral neuromotor conduction, abnormal cutaneous sympathetic response (SSR) in both lower extremities, axonal damage, prolonged F-wave latency, and discrete waves. In the initial phase, there was a response to intravenous immunoglobulin (IVIG), and corticosteroids and rituximab were also effective. After 1 year follow-up, the patient improved significantly. This article reports on a patient with nodular disease with anti-contactin-1 (CNTN1) IgG4 antibodies and reviews the literature to improve clinicians' understanding of the disease.
Collapse
Affiliation(s)
- Qian Li
- Neurology Department, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Qing Chen
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Ting Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Ying Xu
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yanmin Kan
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- The Third Central Clinical College of Nankai University, Tianjin, China
- *Correspondence: Yanmin Kan
| | - Jing Zhang
- Neurology Department, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- The Third Central Clinical College of Nankai University, Tianjin, China
- Jing Zhang
| |
Collapse
|
39
|
刘 小, 张 朔, 马 妍, 孙 阿, 张 英, 樊 东. [Diagnostic value of F wave changes in patients with Charcot-Marie-Tooth1A and chronic inflammatory demyelinating polyneuropathy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:160-166. [PMID: 36718706 PMCID: PMC9894793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To analyze and compare the characteristics and causes of F wave changes in patients with Charcot-Marie-Tooth1A (CMT1A) and chronic inflammatory demyelinating polyneuropathy (CIDP). METHODS Thirty patients with CMT1A and 30 patients with CIDP were enrolled in Peking University Third Hospital from January 2012 to December 2018. Their clinical data, electrophysiological data(nerve conduction velocity, F wave and H reflex) and neurological function scores were recorded. Some patients underwent magnetic resonance imaging of brachial plexus and lumbar plexus, and the results were analyzed and compared. RESULTS The average motor conduction velocity (MCV) of median nerve was (21.10±10.60) m/s in CMT1A and (31.52±12.46) m/s in CIDP. There was a significant difference between the two groups (t=-6.75, P < 0.001). About 43.3% (13/30) of the patients with CMT1A did not elicit F wave in ulnar nerve, which was significantly higher than that of the patients with CIDP (4/30, 13.3%), χ2=6.65, P=0.010. Among the patients who could elicit F wave, the latency of F wave in CMT1A group was (52.40±17.56) ms and that in CIDP group was (42.20±12.73) ms. There was a significant difference between the two groups (t=2.96, P=0.006). The occurrence rate of F wave in CMT1A group was 34.6%±39%, and that in CIDP group was 70.7%±15.2%. There was a significant difference between the two groups (t=-5.13, P < 0.001). The MCV of median nerve in a patient with anti neurofascin 155 (NF155) was 23.22 m/s, the latency of F wave was 62.9-70.7 ms, and the occurrence rate was 85%-95%. The proportion of brachial plexus and lumbar plexus thickening in CMT1A was 83.3% (5/6) and 85.7% (6/7), respectively. The proportion of brachial plexus and lumbar plexus thickening in the CIDP patients was only 25.0% (1/4, 2/8). The nerve roots of brachial plexus and lumbar plexus were significantly thickened in a patient with anti NF155 antibody. CONCLUSION The prolonged latency of F wave in patients with CMT1A reflects the homogenous changes in both proximal and distal peripheral nerves, which can be used as a method to differentiate the CIDP patients characterized by focal demyelinating pathology. Moreover, attention should be paid to differentiate it from the peripheral neuropathy caused by anti NF155 CIDP. Although F wave is often used as an indicator of proximal nerve injury, motor neuron excitability, anterior horn cells, and motor nerve myelin sheath lesions can affect its latency and occurrence rate. F wave abnormalities need to be comprehensively analyzed in combination with the etiology, other electrophysiological results, and MRI imaging.
Collapse
Affiliation(s)
- 小璇 刘
- />北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 朔 张
- />北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 妍 马
- />北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 阿萍 孙
- />北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 英爽 张
- />北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 东升 樊
- />北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
40
|
Steinman L, Patarca R, Haseltine W. Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. J Exp Med 2023; 220:213807. [PMID: 36652203 PMCID: PMC9880878 DOI: 10.1084/jem.20221322] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
20 yr ago, a tribute appeared in this journal on the 70th anniversary of an animal model of disseminated encephalomyelitis, abbreviated EAE for experimental autoimmune encephalomyelitis. "Observations on Attempts to Produce Disseminated Encephalomyelitis in Monkeys" appeared in the Journal of Experimental Medicine on February 21, 1933. Rivers and colleagues were trying to understand what caused neurological reactions to viral infections like smallpox, vaccinia, and measles, and what triggered rare instances of encephalomyelitis to smallpox vaccines. The animal model known as EAE continues to display its remarkable utility. Recent research, since the 70th-anniversary tribute, helps explain how Epstein-Barr virus triggers multiple sclerosis via molecular mimicry to a protein known as GlialCAM. Proteins with multiple domains similar to GlialCAM, tenascin, neuregulin, contactin, and protease kinase C inhibitors are present in the poxvirus family. These observations take us a full circle back to Rivers' first paper on EAE, 90 yr ago.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences and Pediatrics, Stanford University, Stanford, CA, USA,Correspondence to Lawrence Steinman:
| | | | | |
Collapse
|
41
|
Zhang X, Kira JI, Ogata H, Imamura T, Mitsuishi M, Fujii T, Kobayashi M, Kitagawa K, Namihira Y, Ohya Y, Maimaitijiang G, Yamasaki R, Fukata Y, Fukata M, Isobe N, Nakamura Y. Anti-LGI4 Antibody Is a Novel Juxtaparanodal Autoantibody for Chronic Inflammatory Demyelinating Polyneuropathy. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/2/e200081. [PMID: 36631269 PMCID: PMC9833819 DOI: 10.1212/nxi.0000000000200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/10/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to discover novel nodal autoantibodies in chronic inflammatory demyelinating polyneuropathy (CIDP). METHODS We screened for autoantibodies that bind to mouse sciatic nerves and dorsal root ganglia (DRG) using indirect immunofluorescence (IFA) assays with sera from 113 patients with CIDP seronegative for anti-neurofascin 155 and anticontactin-1 antibodies and 127 controls. Western blotting, IFA assays using HEK293T cells transfected with relevant antigen expression plasmids, and cell-based RNA interference assays were used to identify target antigens. Krox20 and Periaxin expression, both of which independently control peripheral nerve myelination, was assessed by quantitative real-time PCR after application of patient and control sera to Schwann cells. RESULTS Sera from 4 patients with CIDP, but not control sera, selectively bound to the nodal regions of sciatic nerves and DRG satellite glia (p = 0.048). The main immunoglobulin G (IgG) subtype was IgG4. IgG from these 4 patients stained a 60-kDa band on Western blots of mouse DRG and sciatic nerve lysates. These features indicated leucine-rich repeat LGI family member 4 (LGI4) as a candidate antigen. A commercial anti-LGI4 antibody and IgG from all 4 seropositive patients with CIDP showed the same immunostaining patterns of DRG and cultured rat Schwann cells and bound to the 60-kDa protein in Western blots of LGI4 overexpression lysates. IgG from 3 seropositive patients, but none from controls, bound to cells cotransfected with plasmids containing LGI4 and a disintegrin and metalloprotease domain-containing protein 22 (ADAM22), an LGI4 receptor. In cultured rat Schwann and human melanoma cells constitutively expressing LGI4, LGI4 siRNA effectively downregulated LGI4 and reduced patients' IgG binding compared with scrambled siRNA. Application of serum from a positive patient to Schwann cells expressing ADAM22 significantly reduced the expression of Krox20, but not Periaxin. Anti-LGI4 antibody-positive patients had a relatively old age at onset (mean age 58 years), motor weakness, deep and superficial sensory impairment with Romberg sign, and extremely high levels of CSF protein. Three patients showed subacute CIDP onset resembling Guillain-Barré syndrome. DISCUSSION IgG4 anti-LGI4 antibodies are found in some elderly patients with CIDP who present subacute sensory impairment and motor weakness and are worth measuring, particularly in patients with symptoms resembling Guillain-Barré syndrome.
Collapse
Affiliation(s)
| | - Jun-Ichi Kira
- From the Translational Neuroscience Center (X.Z., J.K., T.I., M.M., G.M., Y. Nakamura), Graduate School of Medicine, International University of Health and Welfare, Okawa; School of Pharmacy at Fukuoka (J.K., T.I., Y. Nakamura), International University of Health and Welfare, Okawa; Department of Neurology (J.K., Y. Nakamura), Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, Fukuoka; Department of Neurology (H.O., T.F., R.Y., N.I.), Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Neurology (M.K., K.K.), Tokyo Women's Medical University Hospital, Tokyo; Department of Cardiovascular Medicine (Y. Namihira, Y.O.), Nephrology, and Neurology, Graduate School of Medicine, University of Ryukyus, Okinawa; and Division of Membrane Physiology (Y.F., M.F.), National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Autoimmune neuropathy may present acutely or with a more progressive and/or relapsing and remitting course. Acute inflammatory neuropathy or Guillain-Barré syndrome (GBS) has variable presentations but by far the most common is acute inflammatory demyelinating polyradiculoneuropathy which is characterized by rapidly progressive proximal and distal symmetric weakness, sensory loss, and depressed reflexes. The most common chronic autoimmune neuropathy is chronic inflammatory demyelinating polyradiculoneuropathy, which in its most typical form is clinically similar to acute inflammatory demyelinating polyradiculoneuropathy (proximal and distal symmetric weakness, sensory loss, and depressed reflexes) but differs in that onset is much more gradual, i.e., over at least 8 weeks. While the majority of GBS cases result from a postinfectious activation of the immune system, presumably in a genetically susceptible host, less is understood regarding the etiopathogenesis of chronic inflammatory demyelinating polyradiculoneuropathy. Both acute and chronic forms of these inflammatory neuropathies are driven by some combination of innate and adaptive immune pathways, with differing contributions depending on the neuropathy subtype. Both disorders are largely clinical diagnoses, but diagnostic tools are available to confirm the diagnosis, prognosticate, detect variant forms, and rule out mimics. Given the autoimmune underpinnings of both disorders, immunosuppressive and immunomodulating treatments are typically given in both diseases; however, they differ in their response to treatment.
Collapse
Affiliation(s)
- Caroline Miranda
- Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States.
| | - Thomas H Brannagan
- Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
43
|
Tozza S, Spina E, Iovino A, Iodice R, Dubbioso R, Ruggiero L, Nolano M, Manganelli F. Value of Antibody Determinations in Chronic Dysimmune Neuropathies. Brain Sci 2022; 13:37. [PMID: 36672019 PMCID: PMC9856104 DOI: 10.3390/brainsci13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic dysimmune neuropathies encompass a group of neuropathies that share immune-mediated pathomechanism. Chronic dysimmune antibody-related neuropathies include anti-MAG neuropathy, multifocal motor neuropathy, and neuropathies related to immune attack against paranodal antigens. Such neuropathies exhibit distinguishing pathomechanism, clinical and response to therapy features with respect to chronic inflammatory demyelinating polyradiculoneuropathy and its variants, which represent the most frequent form of chronic dysimmune neuropathy. This narrative review provides an overview of pathomechanism; clinical, electrophysiological, and biochemical features; and treatment response of the antibody-mediated neuropathies, aiming to establish when and why to look for antibodies in chronic dysimmune neuropathies.
Collapse
Affiliation(s)
- Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Emanuele Spina
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Aniello Iovino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
- Neurology Department, Skin Biopsy Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, 82037 Telese Terme, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| |
Collapse
|
44
|
Khadilkar SV, Kamat S, Patel R. Nodo-paranodopathies: Concepts, Clinical Implications, and Management. Ann Indian Acad Neurol 2022; 25:1001-1008. [PMID: 36911467 PMCID: PMC9996523 DOI: 10.4103/aian.aian_382_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/04/2022] Open
Abstract
Peripheral neuropathies are traditionally categorized into demyelinating or axonal. It has been proposed that dysfunction at nodal/paranodal region may be a key for better understanding of pathophysiology in patients with immune mediated neuropathies. In last few years, antibodies targeting node and paranode of myelinated nerves have been increasingly detected in patients with immune mediated neuropathies. These patients have clinical phenotype similar common inflammatory neuropathies like Guillain Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy with some additional atypical neurological and systemic features, and they respond poorly to conventional first line immunotherapies like IVIG. This review summarizes the structure of the node, concept and pathophysiology of nodopathies. We provide an overview of clinical phenotypes in patients with specific nodal/paranodal antibodies, along with electrophysiological and other diagnostic features and suggest therapeutic line of management based on current evidence.
Collapse
Affiliation(s)
- Satish V. Khadilkar
- Departments of Neurology, Bombay Hospital Institute of Medical Sciences, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Saurabh Kamat
- Departments of Neurology, Bombay Hospital Institute of Medical Sciences, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Riddhi Patel
- Departments of Neurology, Bombay Hospital Institute of Medical Sciences, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
45
|
Höftberger R, Lassmann H, Berger T, Reindl M. Pathogenic autoantibodies in multiple sclerosis - from a simple idea to a complex concept. Nat Rev Neurol 2022; 18:681-688. [PMID: 35970870 DOI: 10.1038/s41582-022-00700-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
The role of autoantibodies in multiple sclerosis (MS) has been enigmatic since the first description, many decades ago, of intrathecal immunoglobulin production in people with this condition. Some studies have indicated that MS pathology is heterogeneous, with an antibody-associated subtype - characterized by B cells (in varying quantities), antibodies and complement - existing alongside other subtypes with different pathologies. However, subsequent evidence suggested that some cases originally diagnosed as MS with autoantibody-mediated demyelination were more likely to be neuromyelitis optica spectrum disorder or myelin oligodendrocyte glycoprotein antibody-associated disease. These findings raise the important question of whether an autoantibody-mediated MS subtype exists and whether pathogenic MS-associated autoantibodies remain to be identified. Potential roles of autoantibodies in MS could range from specific antibodies defining the disease to a non-disease-specific amplification of cellular immune responses and other pathophysiological processes. In this Perspective, we review studies that have attempted to identify MS-associated autoantibodies and provide our opinions on their possible roles in the pathophysiology of MS.
Collapse
Affiliation(s)
- Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
46
|
Fargeot G, Gitiaux C, Magy L, Pereon Y, Delmont E, Viala K, Echaniz-Laguna A. French recommendations for the management of adult & pediatric chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Rev Neurol (Paris) 2022; 178:953-968. [PMID: 36182621 DOI: 10.1016/j.neurol.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a rare autoimmune disorder of the peripheral nervous system, primarily affecting the myelin sheath. The pathophysiology of CIDP is complex, involving both humoral and cellular immunity. The diagnosis of CIDP should be suspected in patients with symmetrical proximal and distal motor weakness and distal sensory symptoms of progressive onset, associated with decreased/abolished tendon reflexes. Treatments include intraveinous immunoglobulins, steroids and plasma exchange, with usually an induction phase followed by a maintenance therapy with progressive weaning. Treatment should be rapidly initiated to prevent axonal degeneration, which may compromise recovery. CIDP outcome is variable, ranging from mild distal paresthesiae to complete loss of ambulation. There have been several breakthroughs in the diagnosis and management of CIDP the past ten years, e.g. discovery of antibodies against the node of Ranvier, contribution of nerve ultrasound and magnetic resonance imaging to diagnosis, and demonstration of subcutaneous immunoglobulins efficiency. This led us to elaborate French recommendations for the management of adult & pediatric CIDP patients. These recommendations include diagnosis assessment, treatment, and follow-up.
Collapse
Affiliation(s)
- G Fargeot
- Neurophysiology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - C Gitiaux
- Department of Paediatric Neurophysiology, Necker-Enfants-Malades Hospital, AP-HP, Paris University, Paris, France
| | - L Magy
- Department of Neurology, National Reference Center for 'Rare Peripheral Neuropathies', University Hospital of Limoges, Limoges, France
| | - Y Pereon
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Explorations Fonctionnelles, Hôtel-Dieu, Nantes, France
| | - E Delmont
- Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France
| | - K Viala
- Neurophysiology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - A Echaniz-Laguna
- Neurology Department, CHU de Bicêtre, AP-HP, Le-Kremlin-Bicêtre, France; French National Reference Center for Rare Neuropathies (NNERF), Le-Kremlin-Bicêtre, France; Inserm U1195, Paris-Saclay University, Le-Kremlin-Bicêtre, France
| |
Collapse
|
47
|
Martín-Aguilar L, Lleixà C, Pascual-Goñi E. Autoimmune nodopathies, an emerging diagnostic category. Curr Opin Neurol 2022; 35:579-585. [PMID: 35989582 DOI: 10.1097/wco.0000000000001107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW In the last decade, antibodies targeting cell adhesion molecules of the node of Ranvier were described in patients with autoimmune neuropathies. These nodal/paranodal antibodies associate with specific clinicopathological features that are different from classical chronic inflammatory demyelinating polyneuropathy (CIDP). In this review, we will summarize recent findings establishing autoimmune nodopathies (AN) as a new category of autoimmune neuropathies. RECENT FINDINGS AN include anti-contactin 1, anti-contactin-associated protein 1, anti-neurofascin 155 and anti-pan-neurofascin antibody-mediated neuropathies. Their clinical spectrum includes acute, subacute or chronic onset sensory-motor neuropathies mimicking Guillain-Barré syndrome (GBS) and CIDP, although they differ in their response to standard therapy with intravenous immunoglobulin (IVIG). Neurophysiologically they overlap with acquired demyelinating neuropathies, but ultrastructural studies and animal models demonstrated antibody-mediated pathology restricted to the node of Ranvier. Anti-contactin1 and anti-pan-neurofascin also associate with nephrotic syndrome. Nodal/paranodal antibodies are predominantly of the immunoglobulin (IgG)4 subclass during the chronic phase of the disease, but complement-fixing IgG3 antibodies are detected during the early phase and associate with aggressive onset and IVIG response. Nodal/paranodal antibodies testing is key in the diagnosis of AN. SUMMARY AN have emerged as a new diagnostic category pathologically different from acquired demyelinating neuropathies. Clinically they overlap with GBS and CIDP although they associate with specific clinical features that should lead to clinical suspicion. Nodal/paranodal antibodies are key effector mechanisms of disease and good diagnostic and disease-monitoring biomarkers in AN.
Collapse
Affiliation(s)
- Lorena Martín-Aguilar
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
48
|
Wang W, Liu L, Zhang M, Yang R, Liu D, Yang S, Meng Q. Case report: Autoimmune nodopathy with concurrent serum and CSF IgG4 anti-neurofascin 155 antibodies. Front Immunol 2022; 13:1028282. [PMID: 36248836 PMCID: PMC9561397 DOI: 10.3389/fimmu.2022.1028282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To report a case of autoimmune nodopathy (AN) with concurrent serum and CSF immunoglobulin (Ig)G4 anti-neurofascin 155 (NF155) and anti-GD1b antibodies. Methods A 20-year-old male presented distal weakness of the 4 limbs, hypoesthesia, absent tendon reflexes and sensory ataxia. Nerve conduction studies (NCS), MRI, and autoantibody tests were performed. Results NCS revealed a diffuse demyelinating neuropathy in the peripheral nerve with motor and sensory involvement. MRI of the cervical and lumbar plexus showed diffuse enlargement. IgG4 anti-NF155 antibodies in both serum and CSF and IgG anti-GD1b antibodies in serum were positive. After treatment with IVIg, rituximab, and plasma exchange, the titer of the patient’s anti-NF155 antibodies decreased, but symptoms did not significantly improve. Discussion This patient presented a typical clinical feature of AN with serum and CSF anti-NF155 antibodies and serum anti-GD1b antibodies coexistent but poor response to IVIg, rituximab and plasma exchange. Early detection of antibodies may be helpful in both diagnosis and therapy of the disease. And prospective studies are necessary to demonstrate the potential role of anti-NF155 antibodies in CSF and help further understand this complex and heterogeneous disease.
Collapse
Affiliation(s)
- Wanyu Wang
- Department of Neurology, The Affiliated Hospital of Kunming University of Science and Technology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lingchun Liu
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Mingzhi Zhang
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ruihan Yang
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Liu
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shunyu Yang
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiang Meng
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Qiang Meng,
| |
Collapse
|
49
|
Jentzer A, Attal A, Roué C, Raymond J, Lleixà C, Illa I, Querol L, Taieb G, Devaux J. IgG4 Valency Modulates the Pathogenicity of Anti–Neurofascin-155 IgG4 in Autoimmune Nodopathy. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/5/e200014. [PMID: 35948442 PMCID: PMC9365386 DOI: 10.1212/nxi.0000000000200014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022]
Abstract
Background and Objectives IgG4 autoantibodies to neurofascin-155 (Nfasc155) are associated with a subgroup of patients with chronic inflammatory demyelinating polyneuropathy (CIDP), currently named autoimmune nodopathy. We previously demonstrated that those antibodies alter conduction along myelinated axons by inducing Nfasc155 depletion and paranode destruction. In blood, IgG4 have the potency to exchange their moiety with other unrelated IgG4 through a process called Fab-arm exchange (FAE). This process results in functionally monovalent antibodies and may affect the pathogenicity of autoantibodies. Here, we examined this issue and whether FAE is beneficial or detrimental for Nfasc155 autoimmune nodopathy. Methods The bivalency and monospecificity of anti-Nfasc155 were examined by sandwich ELISA in 10 reactive patients, 10 unreactive CIDP patients, and 10 healthy controls. FAE was induced in vitro using reduced glutathione and unreactive IgG4, and the ratio of the κ:λ light chain was monitored. To determine the pathogenic potential of bivalent anti-Nfasc155 IgG4, autoantibodies derived from patients were enzymatically cleaved into monovalent Fab and bivalent F(ab’)2 or swapped with unreactive IgG4 and then were injected in neonatal animals. Results Monospecific bivalent IgG4 against Nfasc155 were detected in the serum of all reactive patients, indicating that a fraction of IgG4 have not undergone FAE in situ. These IgG4 were, nonetheless, capable of engaging into FAE with unreactive IgG4 in vitro, and this decreased the levels of monospecific antibodies and modulated the ratio of the κ:λ light chain. When injected in animals, monovalent anti-Nfasc155 Fab did not alter the formation of paranodes; by contrast, both native anti-Nfasc155 IgG4 and F(ab’)2 fragments strongly impaired paranode formation. The promotion of FAE with unreactive IgG4 also strongly diminished the pathogenic potential of anti-Nfasc155 IgG4 in animals and decreased IgG4 clustering on Schwann cells. Discussion Our findings demonstrate that monospecific and bivalent anti-Nfasc155 IgG4 are detected in patients and that those autoantibodies are the pathogenic ones. The transformation of anti-Nfasc155 IgG4 into monovalent Fab or functionally monovalent IgG4 through FAE strongly decreases paranodal alterations. Bivalency thus appears crucial for Nfasc155 clustering and paranode destruction.
Collapse
Affiliation(s)
- Alexandre Jentzer
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Arthur Attal
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Clémence Roué
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Julie Raymond
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Cinta Lleixà
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Isabel Illa
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Luis Querol
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Guillaume Taieb
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Jérôme Devaux
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain.
| |
Collapse
|
50
|
Gupta N, Shirani A, Arcot Jayagopal L, Piccione E, Hartman E, Zabad RK. Anti-Neurofascin Antibodies Associated with White Matter Diseases of the Central Nervous System: A Red Flag or a Red Herring? Brain Sci 2022; 12:brainsci12091124. [PMID: 36138860 PMCID: PMC9497231 DOI: 10.3390/brainsci12091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Autoantibodies against nodal and paranodal proteins, specifically anti-neurofascin antibodies (ANFAs), have been recently described in central and peripheral nervous system demyelinating disorders. We retrospectively reviewed the charts of six individuals evaluated at our Multiple Sclerosis Program who tested positive for serum ANFAs on Western blot. We describe these patients’ clinical and diagnostic findings and attempt to identify features that might guide clinicians in checking for ANFAs. In our series, the women-to-men ratio was 2:1. At presentation, the median age was 60 years (range 30–70). The clinical presentation was pleiotropic and included incomplete transverse myelitis (n = 3), progressive myelopathy (n = 1), recurrent symmetric polyneuropathy (n = 1), and nonspecific neurological symptoms (n = 1). Atypical features prompting further workup included coexisting upper and lower motor neuron features, older age at presentation with active disease, atypical spinal cord MRI features, and unusual cerebrospinal fluid findings. The serum ANFAs panel was positive for the NF-155 isoform in five patients (IgM n = 2; IgG n = 2; both n = 1) and the NF-140 isoform in two (IgG n = 2). Larger studies are needed to assess the relevance of ANFAs in demyelinating nervous system diseases, their impact on long-term clinical outcomes, and associated therapeutic implications.
Collapse
|