1
|
Veshchitskii A, Shkorbatova P, Efimova E, Merkulyeva N. Inter-Strain Differences in the Lumbar Spinal Cord Anatomy and Neuromorphology: Wistar Versus Dark Agouti Rats. J Comp Neurol 2024; 532:e25673. [PMID: 39380325 DOI: 10.1002/cne.25673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
Rat strains differ in physiology, behavior, and recovery after central nervous system injury. To assess these differences, we compared the gross and local anatomy and neuromorphology of the lumbar spinal cord of the Wistar and Dark Agouti (DA) strains. The key findings include (i) distinct spatial relationships between vertebrae and spinal segments in the two strains; (ii) Wistar rats have larger volumes of spinal cord gray and white matter; (iii) DA rats have smaller total neuronal populations, thus indicating an expectation of smaller local neuronal populations; (iv) this expectation was confirmed for interneurons expressing calbindin 28 kDa. But contrary to expectations, (v) DA rats had more numerous populations of the interneurons expressing parvalbumin and a population of α-motoneurons. Consequently, these strains displayed divergent ratios in specific spinal neuronal populations. Researchers should consider these inter-strain differences when comparing data across different strains.
Collapse
Affiliation(s)
| | - Polina Shkorbatova
- Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| | - Evgeniya Efimova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia Merkulyeva
- Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
2
|
Pollard KJ, Bowser DA, Anderson WA, Meselhe M, Moore MJ. Morphine-sensitive synaptic transmission emerges in embryonic rat microphysiological model of lower afferent nociceptive signaling. SCIENCE ADVANCES 2021; 7:7/35/eabj2899. [PMID: 34452921 PMCID: PMC8397270 DOI: 10.1126/sciadv.abj2899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 05/12/2023]
Abstract
Debilitating chronic pain resulting from genetic predisposition, injury, or acquired neuropathy is becoming increasingly pervasive. Opioid analgesics remain the gold standard for intractable pain, but overprescription of increasingly powerful and addictive opioids has contributed to the current prescription drug abuse epidemic. There is a pressing need to screen experimental compounds more efficiently for analgesic potential that remains unmet by conventional research models. The spinal cord dorsal horn is a common target for analgesic intervention, where peripheral nociceptive signals are relayed to the central nervous system through synaptic transmission. Here, we demonstrate that coculturing peripheral and dorsal spinal cord nerve cells in a novel bioengineered microphysiological system facilitates self-directed emergence of native nerve tissue macrostructure and concerted synaptic function. The mechanistically distinct analgesics-morphine, lidocaine, and clonidine-differentially and predictably modulate this microphysiological synaptic transmission. Screening drug candidates for similar microphysiological profiles will efficiently identify therapeutics with analgesic potential.
Collapse
Affiliation(s)
- Kevin J Pollard
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Devon A Bowser
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- Bioinnovation Program, Tulane University, New Orleans, LA 70118, USA
| | - Wesley A Anderson
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- AxoSim Inc., New Orleans, LA 70112, USA
| | - Mostafa Meselhe
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Michael J Moore
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
- AxoSim Inc., New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
3
|
Jaffal SM, Al-Najjar BO, Abbas MA. Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation. Korean J Pain 2021; 34:262-270. [PMID: 34193633 PMCID: PMC8255156 DOI: 10.3344/kjp.2021.34.3.262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022] Open
Abstract
Background Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel implicated in pain sensation in response to heat, protons, and capsaicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action. Methods Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 µg CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection of 100 µg O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Frey filament 30, 90, and 150 minutes after CAPS injection. A molecular docking tool, AutoDock 4.2, was used to study the binding energies and intermolecular interactions between O. spinosa constituents and TRPV1 receptor. Results The ipsilateral ipl injection of O. spinosa before CAPS injection increased PWT in rats at all time points. O. spinosa decreased mechanical allodynia by 5.35-fold compared to a 3.59-fold decrease produced by diclofenac sodium. The ipsilateral pretreatment with TRPV1 antagonist (300 µg 4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide [BCTC]) as well as the β2-adrenoreceptor antagonist (150 µg butoxamine) attenuated the action of O. spinosa. Depending on molecular docking results, the activity of the extract could be attributed to the bindings of campesterol, stigmasterol, and ononin compounds to TRPV1. Conclusions O. spinosa alleviated CAPS-induced mechanical allodynia through 2 mechanisms the direct modulation of TRPV1 and the involvement of β2 adrenoreceptor signaling.
Collapse
Affiliation(s)
- Sahar Majdi Jaffal
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Belal Omar Al-Najjar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan.,Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Manal Ahmad Abbas
- Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan.,Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
4
|
Perreault T, Fernández-de-las-Peñas C, Cummings M, Gendron BC. Needling Interventions for Sciatica: Choosing Methods Based on Neuropathic Pain Mechanisms-A Scoping Review. J Clin Med 2021; 10:2189. [PMID: 34069357 PMCID: PMC8158699 DOI: 10.3390/jcm10102189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Sciatica is a condition often accompanied by neuropathic pain (NP). Acupuncture and dry needling are common treatments for pain, and the current literature supports acupuncture as an effective treatment for sciatica. However, it is unknown if the mechanisms of NP are considered in the delivery of needling interventions for sciatica. Our objective was to assess the efficacy and the effectiveness of needling therapies, to identify common needling practices and to investigate if NP mechanisms are considered in the treatment of sciatica. A scoping review of the literature on needling interventions for sciatica and a review of the literature on mechanisms related to NP and needling interventions were performed. Electronic literature searches were conducted on PubMed, MEDLINE, CINAHL and Cochrane Database of Systematic Reviews from inception to August, 2020 to identify relevant papers. Reference lists of included papers were also manually screened and a related-articles search through PubMed was performed on all included articles. Mapping of the results included description of included studies, summary of results, and identification of gaps in the existing literature. Ten articles were included. All studies used acupuncture for the treatment of sciatica, no studies on dry needling were identified. Current evidence supports the efficacy and effectiveness of acupuncture for sciatica, however, no studies considered underlying NP mechanisms in the acupuncture approach for sciatica and the rationale for using acupuncture was inconsistent among trials. This review reveals that neuropathic pain mechanisms are not routinely considered in needling approaches for patients with sciatica. Studies showed acupuncture to be an effective treatment for sciatic pain, however, further research is warranted to explore if needling interventions for sciatica and NP would be more effective if NP mechanisms are considered.
Collapse
Affiliation(s)
- Thomas Perreault
- Northern New England Spine Center, Department of Physical Therapy, Wentworth Douglass Hospital, Dover, NH 03820, USA;
| | - César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
- Cátedra Institucional en Docencia, Clínica e Investigación en Fisioterapia: Terapia Manual, Punción Seca y Ejercicio Terapéutico, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
| | - Mike Cummings
- British Medical Acupuncture Society, London WC1N 3HR, UK;
| | - Barry C. Gendron
- Northern New England Spine Center, Department of Physical Medicine and Rehabilitation, Musculoskeletal Health and Rehabilitation, Wentworth Douglass Hospital, Dover, NH 03820, USA;
| |
Collapse
|
5
|
Chang C, Liu HK, Yeh CB, Yang ML, Liao WC, Liu CH, Tseng TJ. Cross-Talk of Toll-Like Receptor 5 and Mu-Opioid Receptor Attenuates Chronic Constriction Injury-Induced Mechanical Hyperalgesia through a Protein Kinase C Alpha-Dependent Signaling. Int J Mol Sci 2021; 22:1891. [PMID: 33673008 PMCID: PMC7918001 DOI: 10.3390/ijms22041891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, Toll-like receptors (TLRs), a family of pattern recognition receptors, are reported as potential modulators for neuropathic pain; however, the desired mechanism is still unexplained. Here, we operated on the sciatic nerve to establish a pre-clinical rodent model of chronic constriction injury (CCI) in Sprague-Dawley rats, which were assigned into CCI and Decompression groups randomly. In Decompression group, the rats were performed with nerve decompression at post-operative week 4. Mechanical hyperalgesia and mechanical allodynia were obviously attenuated after a month. Toll-like receptor 5 (TLR5)-immunoreactive (ir) expression increased in dorsal horn, particularly in the inner part of lamina II. Additionally, substance P (SP) and isolectin B4 (IB4)-ir expressions, rather than calcitonin-gene-related peptide (CGRP)-ir expression, increased in their distinct laminae. Double immunofluorescence proved that increased TLR5-ir expression was co-expressed mainly with IB4-ir expression. Through an intrathecal administration with FLA-ST Ultrapure (a TLR5 agonist, purified flagellin from Salmonella Typhimurium, only the CCI-induced mechanical hyperalgesia was attenuated dose-dependently. Moreover, we confirmed that mu-opioid receptor (MOR) and phospho-protein kinase Cα (pPKCα)-ir expressions but not phospho-protein kinase A RII (pPKA RII)-ir expression, increased in lamina II, where they mostly co-expressed with IB4-ir expression. Go 6976, a potent protein kinase C inhibitor, effectively reversed the FLA-ST Ultrapure- or DAMGO-mediated attenuated trend towards mechanical hyperalgesia by an intrathecal administration in CCI rats. In summary, our current findings suggest that nerve decompression improves CCI-induced mechanical hyperalgesia that might be through the cross-talk of TLR5 and MOR in a PKCα-dependent manner, which opens a novel opportunity for the development of analgesic therapeutics in neuropathic pain.
Collapse
Affiliation(s)
- Ching Chang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
| | - Hung-Kai Liu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
| | - Chao-Bin Yeh
- Department of Emergency Medicine, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan;
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan
| | - Ming-Lin Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
- Department of Medical Education, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
- Department of Medical Education, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan
| | - Chiung-Hui Liu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
- Department of Medical Education, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
- Department of Medical Education, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan
| |
Collapse
|
6
|
Heijmans L, Mons MR, Joosten EA. A systematic review on descending serotonergic projections and modulation of spinal nociception in chronic neuropathic pain and after spinal cord stimulation. Mol Pain 2021; 17:17448069211043965. [PMID: 34662215 PMCID: PMC8527581 DOI: 10.1177/17448069211043965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic neuropathic pain is a debilitating ordeal for patients worldwide and pharmacological treatment efficacy is still limited. As many pharmacological interventions for neuropathic pain often fail, insights into the underlying mechanism and role of identified receptors is of utmost importance. An important target for improving treatment of neuropathic pain is the descending serotonergic system as these projections modulate nociceptive signaling in the dorsal horn. Also with use of last resort treatments like spinal cord stimulation (SCS), the descending serotonergic projections are known to be involved in the pain relieving effect. This systematic review summarizes the involvement of the serotonergic system on nociceptive modulation in the healthy adult rodent and the chronic neuropathic rodent and summarizes all available literature on the serotonergic system in the SCS-treated neuropathic rodent. Medline, Embase and Pubmed databases were used in the search for articles. Descending serotonergic modulation of nociceptive signaling in spinal dorsal horn in normal adult rat is mainly inhibitory and mediated by 5-HT1a, 5-HT1b, 5-HT2c, 5-HT3 and 5-HT4 receptors. Upon injury and in the neuropathic rat, this descending serotonergic modulation becomes facilitatory via activation of the 5-HT2a, 5-HT2b and 5-HT3 receptors. Analgesia due to neuromodulatory intervention like SCS restores the inhibitory function of the descending serotonergic system and involves 5-HT2, 5-HT3 and 5-HT4 receptors. The results of this systematic review provide insights and suggestions for further pharmacological and or neuromodulatory treatment of neuropathic pain based on targeting selected serotonergic receptors related to descending modulation of nociceptive signaling in spinal dorsal horn. With the novel developed SCS paradigms, the descending serotonergic system will be an important target for mechanism-based stimulation induced analgesia.
Collapse
Affiliation(s)
- Lonne Heijmans
- Department of Anesthesiology and Pain Management, Maastricht
University Medical Centre, the Netherlands
- Department of Translational Neuroscience, School of Mental
Health and Neuroscience, Maastricht University, the Netherlands
| | - Martijn R Mons
- Department of Anesthesiology and Pain Management, Maastricht
University Medical Centre, the Netherlands
- Department of Translational Neuroscience, School of Mental
Health and Neuroscience, Maastricht University, the Netherlands
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, Maastricht
University Medical Centre, the Netherlands
- Department of Translational Neuroscience, School of Mental
Health and Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
7
|
Azizi SA. Monoamines: Dopamine, Norepinephrine, and Serotonin, Beyond Modulation, "Switches" That Alter the State of Target Networks. Neuroscientist 2020; 28:121-143. [PMID: 33292070 DOI: 10.1177/1073858420974336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
How do monoamines influence the perceptual and behavioral aspects of brain function? A library of information regarding the genetic, molecular, cellular, and function of monoamines in the nervous system and other organs has accumulated. We briefly review monoamines' anatomy and physiology and discuss their effects on the target neurons and circuits. Monoaminergic cells in the brain stem receive inputs from sensory, limbic, and prefrontal areas and project extensively to the forebrain and hindbrain. We review selected studies on molecular, cellular, and electrophysiological effects of monoamines on the brain's target areas. The idea is that monoamines, by reversibly modulating the "primary" information processing circuits, regulate and switch the functions of brain networks and can reversibly alter the "brain states," such as consciousness, emotions, and movements. Monoamines, as the drivers of normal motor and sensory brain operations, including housekeeping, play essential roles in pathogenesis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sayed Ausim Azizi
- Department of Neurology, Global Neuroscience Institute, Chester, PA, USA
| |
Collapse
|
8
|
Mustonen L, Aho T, Harno H, Kalso E. Static mechanical allodynia in post-surgical neuropathic pain after breast cancer treatments. Scand J Pain 2020; 20:683-691. [PMID: 32697763 DOI: 10.1515/sjpain-2020-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/19/2020] [Indexed: 11/15/2022]
Abstract
Objectives Static mechanical allodynia (SMA), i. e., pain caused by normally non-painful static pressure, is a prevalent manifestation of neuropathic pain (NP). Although SMA may significantly affect the patient's daily life, it is less well studied in the clinical context. We aimed to characterize SMA in women with chronic post-surgical NP (CPSNP) after breast cancer surgery. Our objective was to improve understanding of the clinical picture of this prevalent pain condition. This is a substudy of a previously published larger cohort of patients with intercostobrachial nerve injury after breast cancer surgery (Mustonen et al. Pain. 2019;160:246-56). Methods We studied SMA in 132 patients with CPSNP after breast cancer surgery. The presence, location, and intensity of SMA were assessed at clinical sensory examination. The patients gave self-reports of pain with the Brief Pain Inventory (BPI). We studied the association of SMA to type of surgery, oncological treatments, BMI, other pains, and psychological factors. General pain sensitivity was assessed by the cold pressor test. Results SMA was prevalent (84%) in this cohort whereas other forms of allodynia were scarce (6%). Moderate-to-severe SMA was frequently observed even in patients who reported mild pain in BPI. Breast and the side of chest were the most common locations of SMA. SMA was associated with breast surgery type, but not with psychological factors. Severe SMA, but not self-reported pain, was associated with lower cold pain tolerance. Conclusions SMA is prevalent in post-surgical NP after breast cancer surgery and it may represent a distinct NP phenotype. High intensities of SMA may signal the presence of central sensitization. Implications SMA should be considered when examining and treating patients with post-surgical NP after breast cancer surgery.
Collapse
Affiliation(s)
- Laura Mustonen
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.,Neurocenter, Neurology, University of Helsinki, and Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Tommi Aho
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hanna Harno
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.,Neurocenter, Neurology, University of Helsinki, and Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Eija Kalso
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Jabbarzadeh-Tabrizi S, Boutin M, Day TS, Taroua M, Schiffmann R, Auray-Blais C, Shen JS. Assessing the role of glycosphingolipids in the phenotype severity of Fabry disease mouse model. J Lipid Res 2020; 61:1410-1423. [PMID: 32868283 DOI: 10.1194/jlr.ra120000909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fabry disease is caused by deficient activity of α-galactosidase A, an enzyme that hydrolyzes the terminal α-galactosyl moieties from glycolipids and glycoproteins, and subsequent accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), globotriaosylsphingosine (lyso-Gb3), and galabiosylceramide. However, there is no known link between these compounds and disease severity. In this study, we compared Gb3 isoforms (various fatty acids) and lyso-Gb3 analogs (various sphingosine modifications) in two strains of Fabry disease mouse models: a pure C57BL/6 (B6) background or a B6/129 mixed background, with the latter exhibiting more prominent cardiac and renal hypertrophy and thermosensation deficits. Total Gb3 and lyso-Gb3 levels in the heart, kidney, and dorsal root ganglion (DRG) were similar in the two strains. However, levels of the C20-fatty acid isoform of Gb3 and particular lyso-Gb3 analogs (+18, +34) were significantly higher in Fabry-B6/129 heart tissue when compared with Fabry-B6. By contrast, there was no difference in Gb3 and lyso-Gb3 isoforms/analogs in the kidneys and DRG between the two strains. Furthermore, using immunohistochemistry, we found that Gb3 massively accumulated in DRG mechanoreceptors, a sensory neuron subpopulation with preserved function in Fabry disease. However, Gb3 accumulation was not observed in nonpeptidergic nociceptors, the disease-relevant subpopulation that has remarkably increased isolectin-B4 (the marker of nonpeptidergic nociceptors) binding and enlarged cell size. These findings suggest that specific species of Gb3 or lyso-Gb3 may play major roles in the pathogenesis of Fabry disease, and that Gb3 and lyso-Gb3 are not responsible for the pathology in all tissues or cell types.
Collapse
Affiliation(s)
| | - Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Taniqua S Day
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Mouna Taroua
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jin-Song Shen
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
10
|
García-Magro N, Negredo P, Martin YB, Nuñez Á, Avendaño C. Modulation of mechanosensory vibrissal responses in the trigeminocervical complex by stimulation of the greater occipital nerve in a rat model of trigeminal neuropathic pain. J Headache Pain 2020; 21:96. [PMID: 32762640 PMCID: PMC7410158 DOI: 10.1186/s10194-020-01161-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Stimulation of the occipital or trigeminal nerves has been successfully used to treat chronic refractory neurovascular headaches such as migraine or cluster headache, and painful neuropathies. Convergence of trigeminal and occipital sensory afferents in the ‘trigeminocervical complex’ (TCC) from cutaneous, muscular, dural, and visceral sources is a key mechanism for the input-induced central sensitization that may underlie the altered nociception. Both excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) mechanisms are involved in modulating nociception in the spinal and medullary dorsal horn neurons, but the mechanisms by which nerve stimulation effects occur are unclear. This study was aimed at investigating the acute effects of electrical stimulation of the greater occipital nerve (GON) on the responses of neurons in the TCC to the mechanical stimulation of the vibrissal pad. Methods Adult male Wistar rats were used. Neuronal recordings were obtained in laminae II-IV in the TCC in control, sham and infraorbital chronic constriction injury (CCI-IoN) animals. The GON was isolated and electrically stimulated. Responses to the stimulation of vibrissae by brief air pulses were analyzed before and after GON stimulation. In order to understand the role of the neurotransmitters involved, specific receptor blockers of NMDA (AP-5), GABAA (bicuculline, Bic) and Glycine (strychnine, Str) were applied locally. Results GON stimulation produced a facilitation of the response to light facial mechanical stimuli in controls, and an inhibition in CCI-IoN cases. AP-5 reduced responses to GON and vibrissal stimulation and blocked the facilitation of GON on vibrissal responses found in controls. The application of Bic or Str significantly reduced the facilitatory effect of GON stimulation on the response to vibrissal stimulation in controls. However, the opposite effect was found when GABAergic or Glycinergic transmission was prevented in CCI-IoN cases. Conclusions GON stimulation modulates the responses of TCC neurons to light mechanical input from the face in opposite directions in controls and under CCI-IoN. This modulation is mediated by GABAergic and Glycinergic mechanisms. These results will help to elucidate the neural mechanisms underlying the effectiveness of nerve stimulation in controlling painful craniofacial disorders, and may be instrumental in identifying new therapeutic targets for their prevention and treatment.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.,Programme in Neuroscience, Doctoral School, Autonoma University of Madrid, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
11
|
Uno T. Possible Mechanisms of Spinal Cord Stimulation: Disinhibition of the Dorsal Horn Circuits and Ascending Nociceptive Control. Neuromodulation 2020; 23:407-408. [DOI: 10.1111/ner.13135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takeshi Uno
- Pain Clinic Junwakai Memorial Hospital Miyazaki Japan
| |
Collapse
|
12
|
Fardo F, Beck B, Allen M, Finnerup NB. Beyond labeled lines: A population coding account of the thermal grill illusion. Neurosci Biobehav Rev 2020; 108:472-479. [DOI: 10.1016/j.neubiorev.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
13
|
McDowell TS. Spinal and Medullary Dorsal Horn Mechanisms. Pain 2019. [DOI: 10.1007/978-3-319-99124-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Yan X, Xu Y, Cheng X, He X, Wang Y, Zheng W, Zhao Y, Chen H, Wang Y. SP1, MYC, CTNNB1, CREB1, JUN genes as potential therapy targets for neuropathic pain of brain. J Cell Physiol 2018; 234:6688-6695. [PMID: 30478830 DOI: 10.1002/jcp.27413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Xue‐Tao Yan
- Department of Anesthesiology Bao'an Maternal and Child Health Hospital, Jinan University Shenzhen China
| | - Yong Xu
- Department of Nephrology Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Xiao‐Li Cheng
- Department of Pharmacy Shenzhen Bao'an Maternity and Child Health Hospital Shenzhen China
| | - Xiang‐Hu He
- Department of Anesthesiology Zhongnan Hospital of Wuhan University Wuhan Hubei China
| | - Yu Wang
- Department of Anesthesiology Taihe Hospital Shiyan Hubei China
| | - Wen‐Zhong Zheng
- Department of Anesthesiology Bao'an Maternal and Child Health Hospital, Jinan University Shenzhen China
| | - Ying Zhao
- Department of Neurology Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Hu Chen
- Department of Anesthesiology Bao'an Maternal and Child Health Hospital, Jinan University Shenzhen China
| | - Yan‐Lin Wang
- Department of Anesthesiology Zhongnan Hospital of Wuhan University Wuhan Hubei China
| |
Collapse
|
15
|
Ge A, Wang S, Miao B, Yan M. Effects of metformin on the expression of AMPK and STAT3 in the spinal dorsal horn of rats with neuropathic pain. Mol Med Rep 2018; 17:5229-5237. [PMID: 29393487 PMCID: PMC5865989 DOI: 10.3892/mmr.2018.8541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain (NP) is a frustrating and burdensome problem. Current treatments for NP have unendurable side effects and/or questionable efficacy, and once these therapies are stopped, the symptoms often return. Thus, novel drugs are needed to enhance the effectiveness of treatments for NP. One novel target for pain treatments is adenosine monophosphate-activated protein kinase (AMPK), which regulates a variety of cellular processes, including protein translation, which is considered to be affected in NP. Metformin is a widely available drug that possesses the ability to activate AMPK. The signal transducer and activator of transcription 3 (STAT3) pathway plays an important role in neuroinflammation. The present study investigated the analgesic effect of metformin on NP induced by chronic constriction injury (CCI), and the influence of metformin on the expression of AMPK and STAT3 in the spinal dorsal horn (SDH). In CCI rats, paw withdrawal latencies in response to thermal hyperalgesia were significantly shorter, while phosphorylated (p)-AMPK was expressed at lower levels and p-STAT3 was expressed at higher levels in the SDH. Administering intraperitoneal injections of metformin (200 mg/kg) for 6 successive days activated AMPK and suppressed the expression of p-STAT3, in addition to reversing hyperalgesia. Finally, metformin inhibited the activation of microglia and astrocytes in the SDH, which may explain how it alleviates NP.
Collapse
Affiliation(s)
- Anqi Ge
- Jiangsu Province Key Laboratory of Anesthesiology, Clinic Skill Center, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Shu Wang
- Department of Anesthesiology, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Bei Miao
- Laboratory of Gastroenterology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Ming Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
16
|
Yan YY, Li CY, Zhou L, Ao LY, Fang WR, Li YM. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci 2017; 190:68-77. [PMID: 28964813 DOI: 10.1016/j.lfs.2017.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is maladaptive pain caused by injury or dysfunction in peripheral and central nervous system, and remains a worldwide thorny problem leading to decreases in physical and mental quality of people's life. Currently, drug therapy is the main treatment regimen for resolving pain, while effective drugs are still unmet in medical need, and commonly used drugs such as anticonvulsants and antidepressants often make patients experience adverse drug reactions like dizziness, somnolence, severe headache, and high blood pressure. Thus, in this review we overview the anatomical physiology, underlying mechanisms of neuropathic pain to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets. Furthermore, we summarized the existing drug therapies and new compounds that have shown antalgic effects in laboratory studies to be helpful for rational regimens in clinical treatment and promotion in novel drug discovery.
Collapse
Affiliation(s)
- Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Sokolov AY, Murzina AA, Osipchuk AV, Lyubashina OA, Amelin AV. Cholinergic mechanisms of headaches. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|