1
|
Gutierrez C, Roberson SW, Esmaeili B, Punia V, Johnson EL. Implementing Clinical Practice Guidelines: Considerations for Epileptologists. Epilepsy Curr 2025:15357597251318536. [PMID: 40040859 PMCID: PMC11873851 DOI: 10.1177/15357597251318536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Over 5000 epilepsy-related articles are indexed annually, posing a challenge for clinicians to stay updated on all relevant research. Clinical Practice Guidelines (CPGs) are vital tools for translating evidence into practice and promoting equitable, high-quality care while addressing practice variations. This review examines CPG applicability for epileptologists, emphasizing the nuances between primary and specialty care, addressing disparities, and comparing guideline usage in the United States and internationally. CPGs are utilized differently across specialties. General practitioners often manage initial epilepsy cases guided by first-seizure and new-onset epilepsy guidelines. Specialists, dealing with complex cases like treatment-resistant epilepsy, face challenges as guidelines may lag behind emerging therapies. Yet, evidence shows specialists heavily rely on CPGs to ensure optimal care. The use of race in medical algorithms highlights disparities, with examples like race-based adjustments in glomerular filtration rate calculations raising equity concerns. While frameworks exist to reduce biases, ongoing monitoring and inclusive approaches are critical. Globally, CPG implementation varies. The UK's centralized system integrates cost-effectiveness analyses, while the United States adopts a decentralized approach prioritizing clinical efficacy. Emerging technologies, such as electronic medical records and clinical decision support systems, improve CPG adoption and patient outcomes. Success stories like the "Get with the Guidelines" stroke program illustrate the potential of structured CPG frameworks. However, challenges persist, such as inconsistencies in epilepsy guidelines for acute seizure management. Ultimately, bridging the gap between evidence and practice requires rigorous, inclusive guideline development, effective communication, and proactive implementation strategies tailored to diverse healthcare systems.
Collapse
Affiliation(s)
- Camilo Gutierrez
- Department of Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | | | - Behnaz Esmaeili
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Vineet Punia
- Cleveland Clinic Epilepsy Center, Cleveland, OH, USA
| | - Emily L. Johnson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Skidmore CT. Neuroimaging in Epilepsy. Continuum (Minneap Minn) 2025; 31:61-80. [PMID: 39899096 DOI: 10.1212/con.0000000000001527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
OBJECTIVE The goal of this article is to review the use of neuroimaging in the treatment of new-onset seizures and epilepsy. The article will focus predominantly on MRI because this is the most common modality, but it will also review others that are often used in individuals being considered for epilepsy surgery. The article also reviews common causes of epilepsy and their appearance on imaging and various imaging tools that can be combined to assist in the care of people with epilepsy. LATEST DEVELOPMENTS MRI has revolutionized the ability to diagnose the cause of many forms of epilepsy. However, to maximize the diagnostic power of MRI, it is essential to order the correct imaging sequences. In this article, the harmonized neuroimaging of epilepsy structural sequences (HARNESS) MRI protocol proposed by the International League Against Epilepsy is discussed. ESSENTIAL POINTS MRI is the preferred imaging modality to identify lesions associated with epilepsy. Protocols should include thin-cut, no-gap sequences to permit the identification of small epileptogenic lesions, and studies should be reviewed with an understanding of all the clinical information to help guide the identification of potential lesions.
Collapse
|
3
|
Baca CM. Implementing Guidelines and Measures in Epilepsy Care. Continuum (Minneap Minn) 2025; 31:265-285. [PMID: 39899105 DOI: 10.1212/con.0000000000001540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
ABSTRACT People with epilepsy must receive up-to-date, high-quality care that aligns with current understanding of basic disease mechanisms, improved diagnostic testing, and evolving medical and surgical treatments. Varying progress has been made in identifying, measuring, and mitigating epilepsy care gaps. Epilepsy guidelines and quality measures should be developed using rigorous processes informed by systematic reviews of best evidence in conjunction with prioritization of need. Epilepsy measures help operationalize guidelines and practice parameters. Most epilepsy quality indicators are process-based metrics defined by delivering care to the patient. Systematic and reliable tracking and documentation of seizure frequency using consistent language is required as a patient-reported outcome within individuals over time and across populations. Emerging literature has demonstrated gaps in epilepsy care, perhaps highlighting limitations in the dissemination and implementation of guidelines and quality measures in clinical practice. Quality improvement methods applied to clinical data registries and learning health systems may afford new opportunities to iteratively, collaboratively, and feasibly disseminate guidelines and quality measures, measure epilepsy care quality, allow for the testing of interventions to mitigate identified care gaps, and, ultimately, improve care for patients with epilepsy.
Collapse
|
4
|
McDonald CR. BOLDly Going Where Few Researchers Have Gone Before-Leveraging Language-Related Hippocampal Activations to Predict Postoperative Memory Decline. Epilepsy Curr 2025; 25:45-47. [PMID: 39539400 PMCID: PMC11556318 DOI: 10.1177/15357597241292183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Hippocampal Activations Obtained During Language fMRI Tasks: A Complementary Tool for Predicting Postoperative Memory Prognosis Salleles E, Samson S, Denos M, Mere M, Lehericy S, Herlin B, Dupont S. Epilepsy Res . 2024;205:107405. doi: 10.1016/j.eplepsyres . 2024.107405. PMID: 39002388. In medial temporal lobe epilepsy (MTLE), the benefits of surgery must be balanced against the risk of postoperative memory decline. Prediction of postoperative outcomes based on functional magnetic resonance imaging (fMRI) tasks is increasingly common but remains uncertain. The aim of this retrospective study was to determine whether hippocampal activations elicited by fMRI language tasks could enhance or refine memory fMRI in MTLE patient candidates to surgery. Forty-six patients were included: 30 right and 16 left MTLE, mostly with hippocampal sclerosis. Preoperative assessment included neuropsychological tests and fMRI with language (syntactic verbal fluency) and memory tasks (encoding, delayed, and immediate recognition of images of objects). Thirty patients underwent surgery and had neuropsychological evaluations 1 year after surgery. Worsening was defined as a degradation of more than 10% in postoperative forgetting scores compared to preoperative scores in verbal, nonverbal and global memory. Memory fMRI had the best sensitivity with hippocampal activations obtained in 95% of patients, versus 65% with language fMRI. Considering the patients who elicited a hippocampal activation, language fMRI led to 80%, 65% and 85% of correct predictions for respectively global, verbal and nonverbal memory (vs 71%, 64%, and 68% with memory fMRI). Memory and language fMRI predictions outperformed those made by neuropsychological tests. In summary, language fMRI was less sensitive than memory fMRI to elicit hippocampal activations but when it did, the proportion of correct memory predictions was better. Moreover, it proved to be an independent predictive factor regardless of the side of the epileptic focus. Given the ease of setting up a language task in fMRI, we recommend the systematic combination of memory and language tasks to predict the postoperative memory outcome of MTLE patients undergoing epilepsy surgery.
Collapse
Affiliation(s)
- Carrie R McDonald
- Department of Radiation Medicine & Applied Sciences and Psychiatry UC San Diego
| |
Collapse
|
5
|
Ochoa-Lantigua P, Moreira-Mendoza J, García Ríos CA, Rodas JA, Leon-Rojas JE. The Little-Known Ribbon-Shaped Piriform Cortex: A Key Node in Temporal Lobe Epilepsy-Anatomical Insights and Its Potential for Surgical Treatment. Diagnostics (Basel) 2024; 14:2838. [PMID: 39767200 PMCID: PMC11674810 DOI: 10.3390/diagnostics14242838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The piriform cortex (PC) plays a pivotal role in the onset and propagation of temporal lobe epilepsy (TLE), making it a potential target for therapeutic interventions. This review delves into the anatomy and epileptogenic connections of the PC, highlighting its significance in seizure initiation and resistance to pharmacological treatments. Despite its importance, the PC remains underexplored in surgical approaches for TLE. We examine the specific neuroanatomy of the PC as well as the limitations of current imaging techniques and surgical interventions, emphasizing the need for improved imaging protocols to safely target the PC, especially in minimally invasive procedures. Furthermore, the PC's proximity to vital structures, such as the lenticulostriate arteries, presents challenges that must be addressed in future research. By developing multimodal imaging techniques and refining surgical strategies, the PC could emerge as a crucial node in improving seizure freedom outcomes for TLE patients.
Collapse
Affiliation(s)
| | | | | | - Jose A. Rodas
- School of Psychology, University College Dublin, D04 V1W8 Dublin, Ireland
- Escuela de Psicología, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Jose E. Leon-Rojas
- Medical School, Universidad de las Américas (UDLA), Quito 170124, Ecuador
| |
Collapse
|
6
|
Bearden DJ, Stasenko A, Prentice F, Benjamin C, Hamberger M, Reppert L, Jones JJ, Sepeta L. Mapping Cognition in Epilepsy: From the Lab to the Clinic. Epilepsy Curr 2024:15357597241280485. [PMID: 39582595 PMCID: PMC11580000 DOI: 10.1177/15357597241280485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
In this article, we provide an overview of our panel presentation at the American Epilepsy Society meeting in December2023. Our presentation reviewed functional mapping methods for epilepsy surgery including well-established and newer methods, focusing mostly on language and memory. Dr Leigh Sepeta (Chair) and Dr Jana Jones (Chair) organized the presentation, which included 5 presenters. Dr Christopher Benjamin discussed the history and current and future mapping practices using functional magnetic resonance imaging; Ms. Freya Prentice reviewed functional mapping of language and memory in pediatric epilepsy; Dr Marla Hamberger compared pros and cons of functional mapping between subdural electrodes and stereoelectroencephalography (SEEG); Dr Donald J. Bearden presented a brief how-to guide on cognitive mapping using SEEG; and Dr Alena Stasenko discussed the complexities of functional mapping of bilingual patients. We have included references for more detailed information on the content of our presentation.
Collapse
Affiliation(s)
- Donald Jay Bearden
- Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alena Stasenko
- Department of Psychiatry, University of San Diego, San Diego, CA, USA
| | - Freya Prentice
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Marla Hamberger
- Department of Neurology, Columbia University, New York, NY, USA
| | - Lauren Reppert
- Department of Neuropsychology, Children's National, Washington, DC, USA
| | - Jana J. Jones
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Leigh Sepeta
- Department of Neurology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
7
|
Zhang Q, Hudgins S, Struck AF, Ankeeta A, Javidi SS, Sperling MR, Hermann BP, Tracy JI. Association of Normative and Non-Normative Brain Networks With Cognitive Function in Patients With Temporal Lobe Epilepsy. Neurology 2024; 103:e209800. [PMID: 39250744 PMCID: PMC11385956 DOI: 10.1212/wnl.0000000000209800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Despite their temporal lobe pathology, a significant subgroup of patients with temporal lobe epilepsy (TLE) is able to maintain normative cognitive functioning. In this study, we identify patients with TLE with intact vs impaired neurocognitive profiles and interrogate for the presence of both normative and highly individual intrinsic connectivity networks (ICNs)-all toward understanding the transition from impaired to intact neurocognitive status. METHODS This retrospective cross-sectional study included patients with TLE and matched healthy controls (HCs) from the Thomas Jefferson Comprehensive Epilepsy Center. Functional MRI data were decomposed using independent component analysis to obtain individualized ICNs. In this article, we calculated the degree of match between individualized ICNs and canonical ICNs (e.g., 17 resting-state networks by Yeo et al.) and divided each participant's ICNs into normative or non-normative status based on the degree of match. RESULTS 100 patients with TLE (mean age 42.0 [SD: 13.7] years, 47 women) and 92 HCs were included in this study. We found that the individualized networks matched to the canonical networks less well in the cognitively impaired (n = 24) compared with the cognitively intact (n = 63) patients with TLE by 2-way mixed-measures analysis of variance (impaired vs intact mean difference [MD] -0.165 [-0.317, -0.013], p = 0.028). The cognitively impaired patients showed significant abnormalities in the profiles of both normative (impaired vs intact MD -0.537 [-0.998, -0.076], p = 0.017, intact vs HC MD -0.221 [-0.536, 0.924], p = 0.220, and impaired vs HC MD -0.759 [-1.200, -0.319], p < 0.001) and non-normative networks (impaired vs intact MD 0.484 [0.030, 0.937], p = 0.033, intact vs HC MD 0.369 [0.059, 0.678], p = 0.014, and impaired vs HC MD 0.853 [0.419, 1.286], p < 0.001) while the intact patients showed abnormalities only in non-normative networks. At the same time, we found that normative networks held a strong, positive association with the neuropsychological measures, with this association negative in non-normative networks. DISCUSSION Our data demonstrated that significant cognitive deficits are associated with the status of both canonical and highly individual ICNs, making clear that the transition from intact to impaired cognitive status is not simply the result of disruption to normative brain networks.
Collapse
Affiliation(s)
- Qirui Zhang
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Stacy Hudgins
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Aaron F Struck
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Ankeeta Ankeeta
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Sam S Javidi
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Michael R Sperling
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Bruce P Hermann
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Joseph I Tracy
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
8
|
Seghier ML. 7 T and beyond: toward a synergy between fMRI-based presurgical mapping at ultrahigh magnetic fields, AI, and robotic neurosurgery. Eur Radiol Exp 2024; 8:73. [PMID: 38945979 PMCID: PMC11214939 DOI: 10.1186/s41747-024-00472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Presurgical evaluation with functional magnetic resonance imaging (fMRI) can reduce postsurgical morbidity. Here, we discuss presurgical fMRI mapping at ultra-high magnetic fields (UHF), i.e., ≥ 7 T, in the light of the current growing interest in artificial intelligence (AI) and robot-assisted neurosurgery. The potential of submillimetre fMRI mapping can help better appreciate uncertainty on resection margins, though geometric distortions at UHF might lessen the accuracy of fMRI maps. A useful trade-off for UHF fMRI is to collect data with 1-mm isotropic resolution to ensure high sensitivity and subsequently a low risk of false negatives. Scanning at UHF might yield a revival interest in slow event-related fMRI, thereby offering a richer depiction of the dynamics of fMRI responses. The potential applications of AI concern denoising and artefact removal, generation of super-resolution fMRI maps, and accurate fusion or coregistration between anatomical and fMRI maps. The latter can benefit from the use of T1-weighted echo-planar imaging for better visualization of brain activations. Such AI-augmented fMRI maps would provide high-quality input data to robotic surgery systems, thereby improving the accuracy and reliability of robot-assisted neurosurgery. Ultimately, the advancement in fMRI at UHF would promote clinically useful synergies between fMRI, AI, and robotic neurosurgery.Relevance statement This review highlights the potential synergies between fMRI at UHF, AI, and robotic neurosurgery in improving the accuracy and reliability of fMRI-based presurgical mapping.Key points• Presurgical fMRI mapping at UHF improves spatial resolution and sensitivity.• Slow event-related designs offer a richer depiction of fMRI responses dynamics.• AI can support denoising, artefact removal, and generation of super-resolution fMRI maps.• AI-augmented fMRI maps can provide high-quality input data to robotic surgery systems.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healtcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
9
|
Ailion A, Duong P, Maiman M, Tsuboyama M, Smith ML. Clinical recommendations for conducting pediatric functional language and memory mapping during the phase I epilepsy presurgical workup. Clin Neuropsychol 2024; 38:1060-1084. [PMID: 37985747 DOI: 10.1080/13854046.2023.2281708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Objective: Pediatric epilepsy surgery effectively controls seizures but may risk cognitive, language, or memory decline. Historically, the intra-carotid anesthetic procedure (IAP or Wada Test) was pivotal for language and memory function. However, advancements in noninvasive mapping, notably functional magnetic resonance imaging (fMRI), have transformed clinical practice, reducing IAP's role in presurgical evaluations. Method: We conducted a critical narrative review on mapping technologies, including factors to consider for discordance. Results: Neuropsychological findings suggest that if pre-surgery function remains intact and the surgery targets the eloquent cortex, there is a high chance for decline. Memory and language decline are particularly pronounced post-left anterior temporal lobe resection (ATL), making presurgical cognitive assessment crucial for predicting postoperative outcomes. However, the risk of functional decline is not always clear - particularly with higher rates of atypical organization in pediatric epilepsy patients and discordant findings from cognitive mapping. We found little research to date on the use of IAP and other newer technologies for lateralization/localization in pediatric epilepsy. Based on this review, we introduce an IAP decision tree to systematically navigate discordance in IAP decisions for epilepsy presurgical workup. Conclusions: Future research should be aimed at pediatric populations to improve the precision of functional mapping, determine which methods predict post-surgical deficits and then create evidence-based practice guidelines to standardize mapping procedures. Explicit directives are needed for resolving conflicts between developing mapping procedures and established clinical measures. The proposed decision tree is the first step to standardize when to consider IAP or invasive mapping, in coordination with the multidisciplinary epilepsy surgical team.
Collapse
Affiliation(s)
- Alyssa Ailion
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School
- Department of Neurology, Boston Children's Hospital, Harvard Medical School
| | - Priscilla Duong
- Department of Psychiatry, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University School of Medicine
| | - Moshe Maiman
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School
| | - Melissa Tsuboyama
- Department of Neurology, Boston Children's Hospital, Harvard Medical School
| | - Mary Lou Smith
- Department of Psychology, The Hospital for Sick Children, University of Toronto Mississauga
| |
Collapse
|
10
|
Mallio CA, Buoso A, Stiffi M, Cea L, Vertulli D, Bernetti C, Di Gennaro G, van den Heuvel MP, Beomonte Zobel B. Mapping the Neural Basis of Neuroeconomics with Functional Magnetic Resonance Imaging: A Narrative Literature Review. Brain Sci 2024; 14:511. [PMID: 38790489 PMCID: PMC11120557 DOI: 10.3390/brainsci14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroeconomics merges neuroscience, economics, and psychology to investigate the neural basis of decision making. Decision making involves assessing outcomes with subjective value, shaped by emotions and experiences, which are crucial in economic decisions. Functional MRI (fMRI) reveals key areas of the brain, including the ventro-medial prefrontal cortex, that are involved in subjective value representation. Collaborative interdisciplinary efforts are essential for advancing the field of neuroeconomics, with implications for clinical interventions and policy design. This review explores subjective value in neuroeconomics, highlighting brain regions identified through fMRI studies.
Collapse
Affiliation(s)
- Carlo A. Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Andrea Buoso
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Massimo Stiffi
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Laura Cea
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Daniele Vertulli
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Caterina Bernetti
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, Medical Statistics, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Martijn P. van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands;
- Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| |
Collapse
|
11
|
Wang F, Ren J, Cui W, Zhou Y, Yao P, Lai X, Pang Y, Chen Z, Lin Y, Liu H. Verbal memory network mapping in individual patients predicts postoperative functional impairments. Hum Brain Mapp 2024; 45:e26691. [PMID: 38703114 PMCID: PMC11069337 DOI: 10.1002/hbm.26691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Verbal memory decline is a significant concern following temporal lobe surgeries in patients with epilepsy, emphasizing the need for precision presurgical verbal memory mapping to optimize functional outcomes. However, the inter-individual variability in functional networks and brain function-structural dissociations pose challenges when relying solely on group-level atlases or anatomical landmarks for surgical guidance. Here, we aimed to develop and validate a personalized functional mapping technique for verbal memory using precision resting-state functional MRI (rs-fMRI) and neurosurgery. A total of 38 patients with refractory epilepsy scheduled for surgical interventions were enrolled and 28 patients were analyzed in the study. Baseline 30-min rs-fMRI scanning, verbal memory and language assessments were collected for each patient before surgery. Personalized verbal memory networks (PVMN) were delineated based on preoperative rs-fMRI data for each patient. The accuracy of PVMN was assessed by comparing post-operative functional impairments and the overlapping extent between PVMN and surgical lesions. A total of 14 out of 28 patients experienced clinically meaningful declines in verbal memory after surgery. The personalized network and the group-level atlas exhibited 100% and 75.0% accuracy in predicting postoperative verbal memory declines, respectively. Moreover, six patients with extra-temporal lesions that overlapped with PVMN showed selective impairments in verbal memory. Furthermore, the lesioned ratio of the personalized network rather than the group-level atlas was significantly correlated with postoperative declines in verbal memory (personalized networks: r = -0.39, p = .038; group-level atlas: r = -0.19, p = .332). In conclusion, our personalized functional mapping technique, using precision rs-fMRI, offers valuable insights into individual variability in the verbal memory network and holds promise in precision verbal memory network mapping in individuals.
Collapse
Affiliation(s)
- Feng Wang
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | | | | | | | - Peisen Yao
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xuemiao Lai
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yue Pang
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhili Chen
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Hesheng Liu
- Changping LaboratoryBeijingChina
- Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| |
Collapse
|
12
|
Falby MR, Brien DC, Boissé Lomax L, Shukla G, Winston GP. Canadian Practice and Recommendations on Functional MRI to Lateralize Language in Epilepsy. Can J Neurol Sci 2024:1-8. [PMID: 38572544 DOI: 10.1017/cjn.2024.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND/OBJECTIVE Identifying a patient's dominant language hemisphere is an important evaluation performed prior to epilepsy surgery and is commonly assessed using functional magnetic resonance imaging (fMRI). However, the lack of standardization and resultant heterogeneity of fMRI paradigms used in clinical practice limits the ability of cross-center comparisons to be made regarding language laterality results. METHODS Through surveying Canadian Epilepsy Centres in combination with reviewing supporting literature, current fMRI language lateralization practices for the clinical evaluation of patients with epilepsy were assessed. To encourage standardization of this practice, we outlined a two-part paradigm series that demonstrates widespread acceptance, reliability and accessibility in lateralizing various aspects of language functioning in individuals with average or near-average IQ and normal literacy skills. RESULTS The collected data confirm a lack of standardization in fMRI laterality assessments leading to clinical heterogeneity in stimulation and control tasks, paradigm design and timing, laterality index calculations, thresholding values and analysis software and technique. We suggest a Sentence Completion (SC) and Word Generation (WG) paradigm series as it was most commonly employed across Canada, demonstrated reliability in lateralizing both receptive and expressive language areas in supporting literature, and could be readily intelligible to an inclusive population. CONCLUSION Through providing recommendations for a two-part paradigm series, we hope to contribute to the standardization of this practice across Canada to reduce clinical heterogeneity, encourage communicability between institutions, and enhance methodologies for the surgical treatment of epilepsy for the benefit of all individuals living with epilepsy in Canada.
Collapse
Affiliation(s)
- Madeleine R Falby
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Lysa Boissé Lomax
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Medicine, Division of Neurology, Queen's University, Kingston, ON, Canada
- Department of Medicine, Division of Respirology, Queen's University, Kingston, ON, Canada
| | - Garima Shukla
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Medicine, Division of Neurology, Queen's University, Kingston, ON, Canada
| | - Gavin P Winston
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Medicine, Division of Neurology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
13
|
Noorizadeh N, Rezaie R, Varner JA, Wheless JW, Fulton SP, Mudigoudar BD, Nevill L, Holder CM, Narayana S. Concordance between Wada, Transcranial Magnetic Stimulation, and Magnetoencephalography for Determining Hemispheric Dominance for Language: A Retrospective Study. Brain Sci 2024; 14:336. [PMID: 38671988 PMCID: PMC11047819 DOI: 10.3390/brainsci14040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Determination of language hemispheric dominance (HD) in patients undergoing evaluation for epilepsy surgery has traditionally relied on the sodium amobarbital (Wada) test. The emergence of non-invasive methods for determining language laterality has increasingly shown to be a viable alternative. In this study, we assessed the efficacy of transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), compared to the Wada test, in determining language HD in a sample of 12 patients. TMS-induced speech errors were classified as speech arrest, semantic, or performance errors, and the HD was based on the total number of errors in each hemisphere with equal weighting of all errors (classic) and with a higher weighting of speech arrests and semantic errors (weighted). Using MEG, HD for language was based on the spatial extent of long-latency activity sources localized to receptive language regions. Based on the classic and weighted language laterality index (LI) in 12 patients, TMS was concordant with the Wada in 58.33% and 66.67% of patients, respectively. In eight patients, MEG language mapping was deemed conclusive, with a concordance rate of 75% with the Wada test. Our results indicate that TMS and MEG have moderate and strong agreement, respectively, with the Wada test, suggesting they could be used as non-invasive substitutes.
Collapse
Affiliation(s)
- Negar Noorizadeh
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Roozbeh Rezaie
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Jackie A. Varner
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - James W. Wheless
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Stephen P. Fulton
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Basanagoud D. Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Leigh Nevill
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Christen M. Holder
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Shalini Narayana
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
14
|
Ji Z, Song RR, Swan AR, Angeles Quinto A, Lee RR, Huang M. Magnetoencephalography Language Mapping Using Auditory Memory Retrieval and Silent Repeating Task. J Clin Neurophysiol 2024; 41:148-154. [PMID: 35512180 PMCID: PMC9633581 DOI: 10.1097/wnp.0000000000000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The study aims to (1) examine the spatiotemporal map of magnetoencephalography-evoked responses during an Auditory Memory Retrieval and Silent Repeating (AMRSR) task, and determine the hemispheric dominance for language, and (2) evaluate the accuracy of the AMRSR task in Wernicke and Broca area localization. METHODS In 30 patients with brain tumors and/or epilepsies, the AMRSR task was used to evoke magnetoencephalography responses. We applied Fast VEctor-based Spatial-Temporal Analyses with minimum L1-norm source imaging method to the magnetoencephalography responses for localizing the brain areas evoked by the AMRSR task. RESULTS The Fast-VEctor-based Spatial-Temporal Analysis found consistent activation in the posterior superior temporal gyrus around 300 to 500 ms, and another activation in the frontal cortex (pars opercularis and/or pars triangularis) around 600 to 900 ms, which were localized to the Wernicke area (BA 22) and Broca area (BA 44 and BA 45), respectively. The language-dominant hemispheric laterization elicited by the AMRSR task was comparable with the result from an Auditory Dichotic task result given to the same patient, with the exception that AMRSR is more sensitive on bilateral language laterization cases on finding the Wernicke and Broca areas. CONCLUSIONS For all patients who successfully finished the AMRSR task, Fast-VEctor-based Spatial-Temporal Analysis could establish accurate and robust localizations of Broca and Wernicke area and determine hemispheric dominance. For subjects with normal auditory functionality, the AMRSR paradigm evaluation showed significant promise in providing reliable assessments of cerebral language dominance and language network localization.
Collapse
Affiliation(s)
- Zhengwei Ji
- Radiology Department, University of California, San Diego, California, U.S.A
| | - Ryan R. Song
- Department of Molecular and Cell Biology, University of California, Berkeley, California, U.S.A.; and
| | - Ashley Robb Swan
- Radiology Department, University of California, San Diego, California, U.S.A
| | | | - Roland R. Lee
- Radiology Department, University of California, San Diego, California, U.S.A
- Radiology Service, San Diego VA Healthcare System, San Diego, California, U.S.A
| | - Mingxiong Huang
- Radiology Department, University of California, San Diego, California, U.S.A
- Radiology Service, San Diego VA Healthcare System, San Diego, California, U.S.A
| |
Collapse
|
15
|
Doss DJ, Johnson GW, Englot DJ. Imaging and Stereotactic Electroencephalography Functional Networks to Guide Epilepsy Surgery. Neurosurg Clin N Am 2024; 35:61-72. [PMID: 38000842 PMCID: PMC10676462 DOI: 10.1016/j.nec.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Epilepsy surgery is a potentially curative treatment of drug-resistant epilepsy that has remained underutilized both due to inadequate referrals and incomplete localization hypotheses. The complexity of patients evaluated for epilepsy surgery has increased, thus new approaches are necessary to treat these patients. The paradigm of epilepsy surgery has evolved to match this challenge, now considering the entire seizure network with the goal of disrupting it through resection, ablation, neuromodulation, or a combination. The network paradigm has the potential to aid in identification of the seizure network as well as treatment selection.
Collapse
Affiliation(s)
- Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Avenue South, Medical Center North AA-1105, Nashville, TN 37232, USA; Vanderbilt Institute for Surgery and Engineering (VISE), 1161 21st Avenue South, MCN S2323, Nashville, TN 37232, USA
| | - Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Avenue South, Medical Center North AA-1105, Nashville, TN 37232, USA; Vanderbilt Institute for Surgery and Engineering (VISE), 1161 21st Avenue South, MCN S2323, Nashville, TN 37232, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Avenue South, Medical Center North AA-1105, Nashville, TN 37232, USA; Vanderbilt Institute for Surgery and Engineering (VISE), 1161 21st Avenue South, MCN S2323, Nashville, TN 37232, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, 1161 21st Avenue South, T4224 Medical Center North, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, PMB 351824, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Department of Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Stasenko A, Kaestner E, Arienzo D, Schadler AJ, Helm JL, Shih JJ, Ben-Haim S, McDonald CR. Preoperative white matter network organization and memory decline after epilepsy surgery. J Neurosurg 2023; 139:1576-1587. [PMID: 37178024 PMCID: PMC10640663 DOI: 10.3171/2023.4.jns23347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Risk for memory decline is a common concern for individuals with temporal lobe epilepsy (TLE) undergoing surgery. Global and local network abnormalities are well documented in TLE. However, it is less known whether network abnormalities predict postsurgical memory decline. The authors examined the role of preoperative global and local white matter network organization and risk of postoperative memory decline in TLE. METHODS One hundred one individuals with TLE (n = 51 with left TLE and 50 with right TLE) underwent preoperative T1-weighted MRI, diffusion MRI, and neuropsychological memory testing in a prospective longitudinal study. Fifty-six age- and sex-matched controls completed the same protocol. Forty-four patients (22 with left TLE and 22 with right TLE) subsequently underwent temporal lobe surgery and postoperative memory testing. Preoperative structural connectomes were generated via diffusion tractography and analyzed using measures of global and local (i.e., medial temporal lobe [MTL]) network organization. Global metrics measured network integration and specialization. The local metric was calculated as an asymmetry of the mean local efficiency between the ipsilateral and contralateral MTLs (i.e., MTL network asymmetry). RESULTS Higher preoperative global network integration and specialization were associated with higher preoperative verbal memory function in patients with left TLE. Higher preoperative global network integration and specialization, as well as greater leftward MTL network asymmetry, predicted greater postoperative verbal memory decline for patients with left TLE. No significant effects were observed in right TLE. Accounting for preoperative memory score and hippocampal volume asymmetry, MTL network asymmetry uniquely explained 25%-33% of the variance in verbal memory decline for left TLE and outperformed hippocampal volume asymmetry and global network metrics. MTL network asymmetry alone produced good diagnostic classification of memory decline in left TLE (i.e., an area under the receiver operating characteristic curve of 0.80-0.84 and correct classification of 65%-76% of cases with cross-validation). CONCLUSIONS These preliminary data suggest that global white matter network disruption contributes to verbal memory impairment preoperatively and predicts postsurgical verbal memory outcomes in left TLE. However, a leftward asymmetry of MTL white matter network organization may confer the highest risk for verbal memory decline. Although this requires replication in a larger sample, the authors demonstrate the importance of characterizing preoperative local white matter network properties within the to-be-operated hemisphere and the reserve capacity of the contralateral MTL network, which may eventually be useful in presurgical planning.
Collapse
Affiliation(s)
- Alena Stasenko
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Donatello Arienzo
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Adam J. Schadler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Jonathan L. Helm
- Department of Psychology, San Diego State University, San Diego, California
| | - Jerry J. Shih
- Neurosciences, University of California, San Diego, California
| | | | - Carrie R. McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
- Radiation Medicine & Applied Sciences, University of California, San Diego, California
| |
Collapse
|
17
|
Voets NL, Bartsch AJ, Plaha P. Functional MRI applications for intra-axial brain tumours: uses and nuances in surgical practise. Br J Neurosurg 2023; 37:1544-1559. [PMID: 36148501 DOI: 10.1080/02688697.2022.2123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Functional MRI (fMRI) has well-established uses to inform risks and plan maximally safe approaches in neurosurgery. In the field of brain tumour surgery, however, fMRI is currently in a state of clinical equipoise due to debate around both its sensitivity and specificity. MATERIALS AND METHODS In this review, we summarise the role and our experience of fMRI in neurosurgery for gliomas and metastases. We discuss nuances in the conduct and interpretation of fMRI that, based on our practise, most directly impact fMRI's usefulness in the neurosurgical setting. RESULTS Illustrated examples in which fMRI in our hands directly influences the neurosurgical treatment of brain tumours include evaluating the probability and nature of functional risks, especially for language functions. These presurgical risk assessments, in turn, help to predict the resectability of tumours, select or deselect patients for awake surgery, indicate the need for neurophysiological monitoring and guide the optimal use of intra-operative stimulation mapping. A further emerging application of fMRI is in measuring functional adaptation of functional networks after (partial) surgery, of potential use in the timing of further surgery. CONCLUSIONS In appropriately selected patients with a clearly defined surgical question, fMRI offers a valuable complementary tool in the pre-surgical evaluation of brain tumours. However, there is a great need for standards in the administration and analysis of fMRI as much as in the techniques that it is commonly evaluated against. Surprisingly little data exists that evaluates the accuracy of fMRI not just against complementary methods, but in terms of its ultimate clinical aim of minimising post-surgical morbidity.
Collapse
Affiliation(s)
- Natalie L Voets
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- GenesisCare Ltd, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andreas J Bartsch
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Neurosurgery, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Campbell JM, Kundu B, Lee JN, Miranda M, Arain A, Taussky P, Grandhi R, Rolston JD. Evaluating the concordance of functional MRI-based language lateralization and Wada testing in epilepsy patients: A single-center analysis. Interv Neuroradiol 2023; 29:599-604. [PMID: 35979608 PMCID: PMC10549711 DOI: 10.1177/15910199221121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND For patients with drug-resistant epilepsy, surgery may be effective in controlling their disease. Surgical evaluation may involve localization of the language areas using functional magnetic resonance imaging (fMRI) or Wada testing. We evaluated the accuracy of task-based fMRI versus Wada-based language lateralization in a cohort of our epilepsy patients. METHODS In a single-center, retrospective analysis, we identified patients with medically intractable epilepsy who participated in presurgical language mapping (n = 35) with fMRI and Wada testing. Demographic variables and imaging metrics were obtained. We calculated the laterality index (LI) from task-evoked fMRI activation maps across language areas during auditory and reading tasks to determine lateralization. Possible scores for LI range from -1 (strongly left-hemisphere dominant) to 1 (strongly right-hemisphere dominant). Concordance between fMRI and Wada was estimated using Cohen's Kappa coefficient. Association between the LI scores from the auditory and reading tasks was tested using Spearman's rank correlation coefficient. RESULTS The fMRI-based laterality indices were concordant with results from Wada testing in 91.4% of patients during the reading task (κ = .55) and 96.9% of patients during the auditory task (κ = .79). The mean LIs for the reading and auditory tasks were -0.52 ± 0.43 and -0.68 ± 0.42, respectively. The LI scores for the language and reading tasks were strongly correlated, r(30) = 0.57 (p = 0.001). CONCLUSION Our findings suggest that fMRI is generally an accurate, low-risk alternative to Wada testing for language lateralization. However, when fMRI indicates atypical language lateralization (e.g., bilateral dominance), patients may benefit from subsequent Wada testing or intraoperative language mapping.
Collapse
Affiliation(s)
- Justin M Campbell
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, USA
| | - Bornali Kundu
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - James N Lee
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Michelle Miranda
- Department of Neurology, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Amir Arain
- Department of Neurology, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Ramesh Grandhi
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - John D Rolston
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
19
|
Thomas G, McMahon KL, Finch E, Copland DA. Interindividual variability and consistency of language mapping paradigms for presurgical use. BRAIN AND LANGUAGE 2023; 243:105299. [PMID: 37413742 DOI: 10.1016/j.bandl.2023.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/08/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Most functional MRI studies of language processing have focussed on group-level inference, but for clinical use, the aim is to predict outcomes at an individual patient level. This requires being able to identify atypical activation and understand how differences relate to language outcomes. A language mapping paradigm that selectively activates left hemisphere language regions in healthy individuals allows atypical activation in a patient to be more easily identified. We investigated the interindividual variability and consistency of language activation in 12 healthy participants using three tasks-verb generation, responsive naming, and sentence comprehension-for future presurgical use. Responsive naming produced the most consistent left-lateralised activation across participants in frontal and temporal regions that postsurgical voxel-based lesion-symptom mapping studies suggest are most critical for language outcomes. Studies with a long-term clinical aim of predicting language outcomes in neurosurgical patients and stroke patients should first establish paradigm validity at an individual level in healthy participants.
Collapse
Affiliation(s)
- Georgia Thomas
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Herston Imaging Research Facility, The University of Queensland, Brisbane, Australia
| | - Emma Finch
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Research and Innovation, West Moreton Health, Ipswich, Australia; Speech Pathology Department, Princess Alexandra Hospital, Brisbane, Australia
| | - David A Copland
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
| |
Collapse
|
20
|
Baxendale S. What are we really predicting with fMRI in epilepsy surgery? Epilepsy Behav 2023; 145:109298. [PMID: 37356225 DOI: 10.1016/j.yebeh.2023.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
While memory and language functional magnetic resonance imaging (fMRI) paradigms are becoming evermore refined, the measures of outcome they predict following epilepsy surgery tend to remain single scores on pencil and paper tests that were developed decades ago and have been repeatedly shown to bear little relation to patients' subjective reports of memory problems in the real world. The growing imbalance between the increasing sophistication of the predictive paradigms on the one hand and the vintage measures of the outcome on the other in the fMRI epilepsy surgery literature threatens the clinical relevance of studies employing these technologies. This paper examines some of the core principles of assessing neuropsychological outcomes following epilepsy surgery and explores how these may be adapted and applied in fMRI study designs to maximize the clinical relevance of these studies.
Collapse
Affiliation(s)
- Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, UK; University College Hospital, London, UK.
| |
Collapse
|
21
|
Lucas A, Cornblath EJ, Sinha N, Caciagli L, Hadar P, Tranquille A, Stein JM, Das S, Davis KA. Improved Seizure Onset-Zone Lateralization in Temporal Lobe Epilepsy using 7T Resting-State fMRI: A Direct Comparison with 3T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.06.23291025. [PMID: 37333141 PMCID: PMC10275004 DOI: 10.1101/2023.06.06.23291025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Objective Resting-state functional magnetic resonance imaging (rs-fMRI) at ultra high-field strengths (≥7T) is known to provide superior signal-to-noise and statistical power than comparable acquisitions at lower field strengths. In this study, we aim to provide a direct comparison of the seizure onset-zone (SOZ) lateralizing ability of 7T rs-fMRI and 3T rs-fMRI. Methods We investigated a cohort of 70 temporal lobe epilepsy (TLE) patients. A paired cohort of 19 patients had 3T and 7T rs-fMRI acquisitions for direct comparison between the two field strengths. Forty-three patients had only 3T, and 8 patients had only 7T rs-fMRI acquisitions. We quantified the functional connectivity between the hippocampus and other nodes within the default mode network (DMN) using seed-to-voxel connectivity, and measured how hippocampo-DMN connectivity could inform SOZ lateralization at 7T and 3T field strengths. Results Differences between hippocampo-DMN connectivity ipsilateral and contralateral to the SOZ were significantly higher at 7T (pFDR=0.008) than at 3T (pFDR=0.80) when measured in the same subjects. We found that our ability to lateralize the SOZ, by distinguishing subjects with left TLE from subjects with right TLE, was superior at 7T (AUC = 0.97) than 3T (AUC = 0.68). Our findings were reproduced in extended cohorts of subjects scanned at either 3T or 7T. Our rs-fMRI findings at 7T, but not 3T, are consistent and highly correlated (Spearman Rho=0.65) with clinical FDG-PET lateralizing hypometabolism. Significance We show superior SOZ lateralization in TLE patients when using 7T relative to 3T rs-fMRI, supporting the adoption of high-field strength functional imaging in the epilepsy presurgical evaluation.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | | | | | | | - Peter Hadar
- Department of Neurology, Massachussets General Hospital (work conducted while at the University of Pennsylvania)
| | | | - Joel M Stein
- Department of Radiology, University of Pennsylvania
| | | | | |
Collapse
|
22
|
Peter Binding L, Neal Taylor P, O'Keeffe AG, Giampiccolo D, Fleury M, Xiao F, Caciagli L, de Tisi J, Winston GP, Miserocchi A, McEvoy A, Duncan JS, Vos SB. The impact of temporal lobe epilepsy surgery on picture naming and its relationship to network metric change. Neuroimage Clin 2023; 38:103444. [PMID: 37300974 PMCID: PMC10300575 DOI: 10.1016/j.nicl.2023.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Anterior temporal lobe resection (ATLR) is a successful treatment for medically-refractory temporal lobe epilepsy (TLE). In the language-dominant hemisphere, 30%- 50% of individuals experience a naming decline which can impact upon daily life. Measures of structural networks are associated with language performance pre-operatively. It is unclear if analysis of network measures may predict post-operative decline. METHODS White matter fibre tractography was performed on preoperative diffusion MRI of 44 left lateralised and left resection individuals with TLE to reconstruct the preoperative structural network. Resection masks, drawn on co-registered pre- and post-operative T1-weighted MRI scans, were used as exclusion regions on pre-operative tractography to estimate the post-operative network. Changes in graph theory metrics, cortical strength, betweenness centrality, and clustering coefficient were generated by comparing the estimated pre- and post-operative networks. These were thresholded based on the presence of the connection in each patient, ranging from 75% to 100% in steps of 5%. The average graph theory metric across thresholds was taken. We incorporated leave-one-out cross-validation with smoothly clipped absolute deviation (SCAD) least absolute shrinkage and selection operator (LASSO) feature selection and a support vector classifier to assess graph theory metrics on picture naming decline. Picture naming was assessed via the Graded Naming Test preoperatively and at 3 and 12 months post-operatively and the outcome was classified using the reliable change index (RCI) to identify clinically significant decline. The best feature combination and model was selected using the area under the curve (AUC). The sensitivity, specificity and F1-score were also reported. Permutation testing was performed to assess the machine learning model and selected regions difference significance. RESULTS A combination of clinical and graph theory metrics were able to classify outcome of picture naming at 3 months with an AUC of 0.84. At 12 months, change in strength to cortical regions was best able to correctly classify outcome with an AUC of 0.86. Longitudinal analysis revealed that betweenness centrality was the best metric to identify patients who declined at 3 months, who will then continue to experience decline from 3 to 12 months. Both models were significantly higher AUC values than a random classifier. CONCLUSION Our results suggest that inferred changes of network integrity were able to correctly classify picture naming decline after ATLR. These measures may be used to prospectively to identify patients who are at risk of picture naming decline after surgery and could potentially be utilised to assist tailoring the resection in order to prevent this decline.
Collapse
Affiliation(s)
- Lawrence Peter Binding
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Peter Neal Taylor
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; CNNP lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, United Kingdom
| | - Aidan G O'Keeffe
- School of Mathematical Sciences, University of Nottingham, United Kingdom; Institute of Epidemiology and Healthcare, UCL, London WC1E 6BT, United Kingdom
| | - Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom; Department of Neurosurgery, Institute of Neurosciences, Cleveland Clinic London, United Kingdom
| | - Marine Fleury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Lorenzo Caciagli
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jane de Tisi
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine, Division of Neurology, Queens University, Kingston, Canada
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Andrew McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Sjoerd B Vos
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, United Kingdom; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
23
|
Binding LP, Dasgupta D, Taylor PN, Thompson PJ, O'Keeffe AG, de Tisi J, McEvoy AW, Miserocchi A, Winston GP, Duncan JS, Vos SB. Contribution of White Matter Fiber Bundle Damage to Language Change After Surgery for Temporal Lobe Epilepsy. Neurology 2023; 100:e1621-e1633. [PMID: 36750386 PMCID: PMC10103113 DOI: 10.1212/wnl.0000000000206862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/12/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In medically refractory temporal lobe epilepsy (TLE), 30%-50% of patients experience substantial language decline after resection in the language-dominant hemisphere. In this study, we investigated the contribution of white matter fiber bundle damage to language change at 3 and 12 months after surgery. METHODS We studied 127 patients who underwent TLE surgery from 2010 to 2019. Neuropsychological testing included picture naming, semantic fluency, and phonemic verbal fluency, performed preoperatively and 3 and 12 months postoperatively. Outcome was assessed using reliable change index (RCI; clinically significant decline) and change across timepoints (postoperative scores minus preoperative scores). Functional MRI was used to determine language lateralization. The arcuate fasciculus (AF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus, middle longitudinal fasciculus (MLF), and uncinate fasciculus were mapped using diffusion MRI probabilistic tractography. Resection masks, drawn comparing coregistered preoperative and postoperative T1 MRI scans, were used as exclusion regions on preoperative tractography to estimate the percentage of preoperative tracts transected in surgery. Chi-squared assessments evaluated the occurrence of RCI-determined language decline. Independent sample t tests and MM-estimator robust regressions were used to assess the impact of clinical factors and fiber transection on RCI and change outcomes, respectively. RESULTS Language-dominant and language-nondominant resections were treated separately for picture naming because postoperative outcomes were significantly different between these groups. In language-dominant hemisphere resections, greater surgical damage to the AF and IFOF was related to RCI decline at 3 months. Damage to the inferior frontal subfasciculus of the IFOF was related to change at 3 months. In language-nondominant hemisphere resections, increased MLF resection was associated with RCI decline at 3 months, and damage to the anterior subfasciculus was related to change at 3 months. Language-dominant and language-nondominant resections were treated as 1 cohort for semantic and phonemic fluency because there were no significant differences in postoperative decline between these groups. Postoperative seizure freedom was associated with an absence of significant language decline 12 months after surgery for semantic fluency. DISCUSSION We demonstrate a relationship between fiber transection and naming decline after temporal lobe resection. Individualized surgical planning to spare white matter fiber bundles could help to preserve language function after surgery.
Collapse
Affiliation(s)
- Lawrence Peter Binding
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia.
| | - Debayan Dasgupta
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Peter Neal Taylor
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Pamela Jane Thompson
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Aidan G O'Keeffe
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Jane de Tisi
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Andrew William McEvoy
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Anna Miserocchi
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Gavin P Winston
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - John S Duncan
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Sjoerd B Vos
- From the Department of Computer Science (L.P.B., S.B.V.), Centre for Medical Image Computing, Department of Clinical and Experimental Epilepsy (L.B.P., D.D., P.N.T., P.J.T., J.d.T., A.W.M., A.M., G.P.W., J.S.D.), UCL Queen Square Institute of Neurology, and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, University College London; Victor Horsley Department of Neurosurgery (D.D., A.W.M., A.M.), and Department of Neuropsychology (P.J.T.), National Hospital for Neurology and Neurosurgery, Queen Square, London; CNNP Lab (P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University; School of Mathematical Sciences (A.G.O.), University of Nottingham; Epilepsy Society MRI Unit (J.d.T., G.P.W., J.S.D.), Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; Department of Medicine (G.P.W.), Division of Neurology, Queen's University, Kingston, Canada; and Centre for Microscopy (S.B.V), Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
24
|
Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, Braun U, Trimmel K, Vos SB, Sidhu MK, Thompson PJ, Baxendale S, Winston GP, Duncan JS, Bassett DS, Koepp MJ, Bernhardt BC. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain 2023; 146:935-953. [PMID: 35511160 PMCID: PMC9976988 DOI: 10.1093/brain/awac150] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Epilepsy Unit, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Urs Braun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Centre for Medical Image Computing, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
25
|
Abstract
OBJECTIVE This article discusses the fundamental importance of optimal epilepsy imaging using the International League Against Epilepsy-endorsed Harmonized Neuroimaging of Epilepsy Structural Sequences (HARNESS) protocol and the use of multimodality imaging in the evaluation of patients with drug-resistant epilepsy. It outlines a methodical approach to evaluating these images, particularly in the context of clinical information. LATEST DEVELOPMENTS Epilepsy imaging is rapidly evolving, and a high-resolution epilepsy protocol MRI is essential in evaluating newly diagnosed, chronic, and drug-resistant epilepsy. The article reviews the spectrum of relevant MRI findings in epilepsy and their clinical significance. Integrating multimodality imaging is a powerful tool in the presurgical evaluation of epilepsy, particularly in "MRI-negative" cases. For example, correlation of clinical phenomenology, video-EEG with positron emission tomography (PET), ictal subtraction single-photon emission computerized tomography (SPECT), magnetoencephalography (MEG), functional MRI, and advanced neuroimaging such as MRI texture analysis and voxel-based morphometry enhances the identification of subtle cortical lesions such as focal cortical dysplasias to optimize epilepsy localization and selection of optimal surgical candidates. ESSENTIAL POINTS The neurologist has a unique role in understanding the clinical history and seizure phenomenology, which are the cornerstones of neuroanatomic localization. When integrated with advanced neuroimaging, the clinical context has a profound impact on identifying subtle MRI lesions or finding the "epileptogenic" lesion when multiple lesions are present. Patients with an identified lesion on MRI have a 2.5-fold improved chance of achieving seizure freedom with epilepsy surgery compared with those without a lesion. This clinical-radiographic integration is essential to accurate classification, localization, determination of long-term prognosis for seizure control, and identification of candidates for epilepsy surgery to reduce seizure burden or attain seizure freedom.
Collapse
|
26
|
Crow AJD, Thomas A, Rao Y, Beloor-Suresh A, Weinstein D, Hinds WA, Tracy JI. Task-based functional magnetic resonance imaging prediction of postsurgical cognitive outcomes in temporal lobe epilepsy: A systematic review, meta-analysis, and new data. Epilepsia 2023; 64:266-283. [PMID: 36522799 PMCID: PMC9944224 DOI: 10.1111/epi.17475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Task-based functional magnetic resonance imaging (tfMRI) has developed as a common alternative in epilepsy surgery to the intracarotid amobarbital procedure, also known as the Wada procedure. Prior studies have implicated tfMRI as a comparable predictor of postsurgical cognitive outcomes. However, the predictive validity of tfMRI has not been established. This preregistered systematic review and meta-analysis (CRD42020183563) synthesizes the literature predicting postsurgical cognitive outcomes in temporal lobe epilepsy (TLE) using tfMRI. The PubMed and PsycINFO literature databases were queried for English-language articles published between January 1, 2009 and December 31, 2020 associating tfMRI laterality indices or symmetry of task activation with outcomes in TLE. Their references were reviewed for additional relevant literature, and unpublished data from our center were incorporated. Nineteen studies were included in the meta-analysis. tfMRI studies predicted postsurgical cognitive outcomes in left TLE ( ρ ̂ = -.27, 95% confidence interval [CI] = -.32 to -.23) but not right TLE ( ρ ̂ = -.02, 95% CI = -.08 to .03). Among studies of left TLE, language tfMRI studies were more robustly predictive of postsurgical cognitive outcomes ( ρ ̂ = -.27, 95% CI = -.33 to -.20) than memory tfMRI studies ( ρ ̂ = -.27, 95% CI = -.43 to -.11). Further moderation by cognitive outcome domain indicated language tfMRI predicted confrontation naming ( ρ ̂ = -.32, 95% CI = -.41 to -.22) and verbal memory ( ρ ̂ = -.26, 95% CI = -.35 to -.17) outcomes, whereas memory tfMRI forecasted only verbal memory outcomes ( ρ ̂ = -.37, 95% CI = -.57 to -.18). Surgery type, birth sex, level of education, age at onset, disease duration, and hemispheric language dominance moderated study outcomes. Sensitivity analyses suggested the interval of postsurgical follow-up, and reporting and methodological practices influenced study outcomes as well. These findings intimate tfMRI is a modest predictor of outcomes in left TLE that should be considered in the context of a larger surgical workup.
Collapse
Affiliation(s)
- Andrew J. D. Crow
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Alisha Thomas
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Yash Rao
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
- Department of Radiology, Rowan University School of Osteopathic Medicine, Glassboro, New Jersey, USA
| | - Ashithkumar Beloor-Suresh
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - David Weinstein
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
- Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Walter A. Hinds
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Joseph I. Tracy
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Carmichael O. The Role of fMRI in Drug Development: An Update. ADVANCES IN NEUROBIOLOGY 2023; 30:299-333. [PMID: 36928856 DOI: 10.1007/978-3-031-21054-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of the brain is a technology that holds great potential for increasing the efficiency of drug development for the central nervous system (CNS). In preclinical studies and both early- and late-phase human trials, fMRI has the potential to improve cross-species translation of drug effects, help to de-risk compounds early in development, and contribute to the portfolio of evidence for a compound's efficacy and mechanism of action. However, to date, the utilization of fMRI in the CNS drug development process has been limited. The purpose of this chapter is to explore this mismatch between potential and utilization. This chapter provides introductory material related to fMRI and drug development, describes what is required of fMRI measurements for them to be useful in a drug development setting, lists current capabilities of fMRI in this setting and challenges faced in its utilization, and ends with directions for future development of capabilities in this arena. This chapter is the 5-year update of material from a previously published workshop summary (Carmichael et al., Drug DiscovToday 23(2):333-348, 2018).
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
28
|
Mohanty D, Quach M. The Noninvasive Evaluation for Minimally Invasive Pediatric Epilepsy Surgery (MIPES): A Multimodal Exploration of the Localization-Based Hypothesis. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractMinimally invasive pediatric epilepsy surgery (MIPES) is a rising technique in the management of focal-onset drug-refractory epilepsy. Minimally invasive surgical techniques are based on small, focal interventions (such as parenchymal ablation or localized neuromodulation) leading to elimination of the seizure onset zone or interruption of the larger epileptic network. Precise localization of the seizure onset zone, demarcation of eloquent cortex, and mapping of the network leading to seizure propagation are required to achieve optimal outcomes. The toolbox for presurgical, noninvasive evaluation of focal epilepsy continues to expand rapidly, with a variety of options based on advanced imaging and electrophysiology. In this article, we will examine several of these diagnostic modalities from the standpoint of MIPES and discuss how each can contribute to the development of a localization-based hypothesis for potential surgical targets.
Collapse
Affiliation(s)
- Deepankar Mohanty
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Michael Quach
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
29
|
Krishnamurthy M, You X, Sepeta LN, Matuska E, Oluigbo C, Berl MM, Gaillard WD, Gholipour T. Resting-state functional MRI for motor cortex mapping in childhood-onset focal epilepsy. J Neuroimaging 2022; 32:1201-1210. [PMID: 35881496 PMCID: PMC9649846 DOI: 10.1111/jon.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Task-based functional MRI (fMRI) mapping of the motor function prior to epilepsy surgery has limitations in children with epilepsy. We present a data-driven method to automatically delineate the motor cortex using task-free, resting-state fMRI (rsfMRI) data. METHODS We used whole-brain rsfMRI for independent component analysis (ICA). A template matching process with Discriminability Index-based Component Identification score was used for each participant to select and combine motor ICA components in their native brain space, resulting in a whole-brain ICA Motor Map (wIMM). We validated wIMM by comparing individual results with bilateral finger-tapping motor task fMRI activation, and evaluated its reproducibility in controls. RESULTS Data from 64 patients and 12 controls were used to generate group wIMM maps. The hit rate between wIMM and motor task activation ranged from 60% to 79% across all participants. Sensitivity of wIMM for capturing the task activation peak was 87.5% among 32 patients and 100% in 12 controls with available motor task results. We also showed high similarity in repeated runs in controls. CONCLUSIONS Our results show the sensitivity and reproducibility of an automated motor mapping method based on ICA analysis of rsfMRI in children with epilepsy. The ICA maps may provide different, but useful, information than task fMRI. Future studies will expand our method to mapping other brain functions, and may lead to a surgical planning tool for patients who cannot perform task fMRI and help predict their postsurgical function.
Collapse
Affiliation(s)
- Manu Krishnamurthy
- Center for Neuroscience, Children’s National Hospital, the George Washington University, Washington, DC
| | - Xiaozhen You
- Center for Neuroscience, Children’s National Hospital, the George Washington University, Washington, DC
| | - Leigh N. Sepeta
- Center for Neuroscience, Children’s National Hospital, the George Washington University, Washington, DC
| | - Emily Matuska
- Center for Neuroscience, Children’s National Hospital, the George Washington University, Washington, DC
| | - Chima Oluigbo
- Center for Neuroscience, Children’s National Hospital, the George Washington University, Washington, DC
| | - Madison M. Berl
- Center for Neuroscience, Children’s National Hospital, the George Washington University, Washington, DC
| | - William D. Gaillard
- Center for Neuroscience, Children’s National Hospital, the George Washington University, Washington, DC
| | - Taha Gholipour
- Center for Neuroscience, Children’s National Hospital, the George Washington University, Washington, DC
- Department of Neurology, the George Washington University, Washington, DC
| |
Collapse
|
30
|
Herfurth K, Harpaz Y, Roesch J, Mueller N, Walther K, Kaltenhaeuser M, Pauli E, Goldstein A, Hamer H, Buchfelder M, Doerfler A, Prell J, Rampp S. Localization of beta power decrease as measure for lateralization in pre-surgical language mapping with magnetoencephalography, compared with functional magnetic resonance imaging and validated by Wada test. Front Hum Neurosci 2022; 16:996989. [PMID: 36393988 PMCID: PMC9644652 DOI: 10.3389/fnhum.2022.996989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2023] Open
Abstract
Objective: Atypical patterns of language lateralization due to early reorganizational processes constitute a challenge in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy. There is no consensus on an optimal analysis method used for the identification of language dominance in MEG. This study examines the concordance between MEG source localization of beta power desynchronization and fMRI with regard to lateralization and localization of expressive and receptive language areas using a visual verb generation task. Methods: Twenty-five patients with pharmaco-resistant epilepsy, including six patients with atypical language lateralization, and ten right-handed controls obtained MEG and fMRI language assessment. Fourteen patients additionally underwent the Wada test. We analyzed MEG beta power desynchronization in sensor (controls) and source space (patients and controls). Beta power decrease between 13 and 35 Hz was localized applying Dynamic Imaging of Coherent Sources Beamformer technique. Statistical inferences were grounded on cluster-based permutation testing for single subjects. Results: Event-related desynchronization of beta power in MEG was seen within the language-dominant frontal and temporal lobe and within the premotor cortex. Our analysis pipeline consistently yielded left language dominance with high laterality indices in controls. Language lateralization in MEG and Wada test agreed in all 14 patients for inferior frontal, temporal and parietal language areas (Cohen's Kappa = 1, p < 0.001). fMRI agreed with Wada test in 12 out of 14 cases (85.7%) for Broca's area (Cohen's Kappa = 0.71, p = 0.024), while the agreement for temporal and temporo-parietal language areas were non-significant. Concordance between MEG and fMRI laterality indices was highest within the inferior frontal gyrus, with an agreement in 19/24 cases (79.2%), and non-significant for Wernicke's area. Spatial agreement between fMRI and MEG varied considerably between subjects and brain regions with the lowest Euclidean distances within the inferior frontal region of interest. Conclusion: Localizing the desynchronization of MEG beta power using a verb generation task is a promising tool for the identification of language dominance in the pre-surgical evaluation of epilepsy patients. The overall agreement between MEG and fMRI was lower than expected and might be attributed to differences within the baseline condition. A larger sample size and an adjustment of the experimental designs are needed to draw further conclusions.
Collapse
Affiliation(s)
- Kirsten Herfurth
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle, Halle (Saale), Germany
| | - Yuval Harpaz
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Julie Roesch
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Nadine Mueller
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Katrin Walther
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | | | - Elisabeth Pauli
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Abraham Goldstein
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle, Halle (Saale), Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle, Halle (Saale), Germany
| |
Collapse
|
31
|
Diachek E, Morgan VL, Wilson SM. Adaptive Language Mapping Paradigms for Presurgical Language Mapping. AJNR Am J Neuroradiol 2022; 43:1453-1459. [PMID: 36137653 PMCID: PMC9575518 DOI: 10.3174/ajnr.a7629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/12/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Functional MR imaging is widely used for preoperative language assessment in candidates for resective neurosurgery. Language mapping paradigms that are adaptive to participant performance have the potential to engage the language network more robustly and consistently, resulting in more accurate functional maps. The aim of the current study was to compare two adaptive paradigms with the recommended language mapping paradigms that constitute the current standard of care. MATERIALS AND METHODS Seventy-three patients undergoing fMRI for language lateralization and/or localization completed an adaptive semantic matching paradigm, an adaptive phonological judgment paradigm, and two standard paradigms: sentence completion and word generation. The paradigms were compared in terms of the degree to which they yielded lateralized language maps and the extent of activation in frontal, temporal, and parietal language regions. RESULTS The adaptive semantic paradigm resulted in the most strongly lateralized activation maps, the greatest extent of frontal and temporal activations, and the greatest proportion of overall satisfactory language maps. The adaptive phonological paradigm identified anterior inferior parietal phonological encoding regions in most patients, unlike any of the other paradigms. CONCLUSIONS The adaptive language mapping paradigms investigated have several psychometric advantages compared with currently recommended paradigms. Adoption of these paradigms could increase the likelihood of obtaining satisfactory language maps in each individual patient.
Collapse
Affiliation(s)
- E Diachek
- From the Departments of Psychology and Human Development (E.D., S.M.W.)
| | - V L Morgan
- Biomedical Engineering (V.L.M.), Vanderbilt University, Nashville, Tennessee
- Departments of Radiology and Radiological Sciences (V.L.M., S.M.W.)
- Neurological Surgery (V.L.M.)
| | - S M Wilson
- From the Departments of Psychology and Human Development (E.D., S.M.W.)
- Departments of Radiology and Radiological Sciences (V.L.M., S.M.W.)
- Hearing and Speech Sciences (S.M.W.), Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
32
|
Massot-Tarrús A, Mirsattari SM. Roles of fMRI and Wada tests in the presurgical evaluation of language functions in temporal lobe epilepsy. Front Neurol 2022; 13:884730. [PMID: 36247757 PMCID: PMC9562037 DOI: 10.3389/fneur.2022.884730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Surgical treatment of pharmacoresistant temporal lobe epilepsy (TLE) carries risks for language function that can significantly affect the quality of life. Predicting the risks of decline in language functions before surgery is, consequently, just as important as predicting the chances of becoming seizure-free. The intracarotid amobarbital test, generally known as the Wada test (WT), has been traditionally used to determine language lateralization and to estimate their potential decline after surgery. However, the test is invasive and it does not localize the language functions. Therefore, other noninvasive methods have been proposed, of which functional magnetic resonance (fMRI) has the greatest potential. Functional MRI allows localization of language areas. It has good concordance with the WT for language lateralization, and it is of predictive value for postsurgical naming outcomes. Consequently, fMRI has progressively replaced WT for presurgical language evaluation. The objective of this manuscript is to review the most relevant aspects of language functions in TLE and the current role of fMRI and WT in the presurgical evaluation of language. First, we will provide context by revising the language network distribution and the effects of TLE on them. Then, we will assess the functional outcomes following various forms of TLE surgery and measures to reduce postoperative language decline. Finally, we will discuss the current indications for WT and fMRI and the potential usefulness of the resting-state fMRI technique.
Collapse
Affiliation(s)
| | - Seyed M. Mirsattari
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| |
Collapse
|
33
|
Sarkis RA. fMRI to Predict Naming Decline: Can We Improve the Grade From a C to an A? Epilepsy Curr 2022; 22:345-347. [PMID: 36426181 PMCID: PMC9661605 DOI: 10.1177/15357597221126277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Prediction of Naming Outcome With fMRI Language Lateralization in Left Temporal Epilepsy Surgery Gross WL, Helfand AI, Swanson SJ, Conant LL, Humphries CJ, Raghavan M, Mueller WM, Busch RM, Allen L, Anderson CT, Carlson CE, Lowe MJ, Langfitt JT, Tivarus ME, Drane DL, Loring DW, Jacobs M, Morgan VL, Allendorfer JB, Szaflarski JP, Bonilha L, Bookheimer S, Grabowski T, Vannest J, Binder JR; FMRI in Anterior Temporal Epilepsy Surgery (FATES) Study. Neurology. 2022;98(23):e2337-e2346. doi:10.1212/WNL.0000000000200552. PMID: 35410903; PMCID: PMC9202528. Background and Objectives: Naming decline after left temporal lobe epilepsy (TLE) surgery is common and difficult to predict. Preoperative language fMRI may predict naming decline, but this application is still lacking evidence. We performed a large multicenter cohort study of the effectiveness of fMRI in predicting naming deficits after left TLE surgery. Methods: At 10 US epilepsy centers, 81 patients with left TLE were prospectively recruited and given the Boston Naming Test (BNT) before and ≈7 months after anterior temporal lobectomy. An fMRI language laterality index (LI) was measured with an auditory semantic decision-tone decision task contrast. Correlations and a multiple regression model were built with a priori chosen predictors. Results: Naming decline occurred in 56% of patients and correlated with fMRI LI (r = −0.41, p < 0.001), age at epilepsy onset (r = −0.30, p = 0.006), age at surgery (r = −0.23, p = 0.039), and years of education (r = 0.24, p = 0.032). Preoperative BNT score and duration of epilepsy were not correlated with naming decline. The regression model explained 31% of the variance, with fMRI contributing 14%, with a 96% sensitivity, and 44% specificity for predicting meaningful naming decline. Cross-validation resulted in an average prediction error of 6 points. Discussion: An fMRI-based regression model predicted naming outcome after left TLE surgery in a large, prospective multicenter sample, with fMRI as the strongest predictor. These results provide evidence supporting the use of preoperative language fMRI to predict language outcome in patients undergoing left TLE surgery.
Collapse
Affiliation(s)
- Rani A. Sarkis
- Division of Epilepsy, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Role of Posttreatment Nursing Based on Functional Magnetic Resonance Imaging in Breast Cancer Patients with Lymphedema. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5224288. [PMID: 36128173 PMCID: PMC9470330 DOI: 10.1155/2022/5224288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Breast cancer is the tumor disease with the highest incidence in women, especially lymphedema after treatment, which seriously affects the quality of life of women. In order to improve the nursing quality of breast cancer patients, medical staff uses functional magnetic resonance imaging (fMRI) to intervene in breast cancer patients, which greatly improves the recovery speed of patients. In this paper, functional magnetic resonance imaging based on the image registration method is proposed and applied to the follow-up of patients with breast cancer lymphedema after treatment. The powerful imaging effect allows doctors to timely and accurately judge the condition of the patient’s lesions after treatment, which is conducive to nursing care. The experimental results of this paper show that the total number of serious patients in group A before the experiment is 25, accounting for 83.3%. After the experiment, the total number of severe cases was 24, accounting for 80%, indicating that the nursing measures of group A did not have a great effect. The total number of severe cases in group B before the experiment was 27, accounting for 90%. The total number of severe cases after the experiment was 10, accounting for 33.3%. The effect after the experiment was significantly higher than that before the experiment, indicating that the nursing program of group B played a great role.
Collapse
|
35
|
Goldstein HE, Poliakov A, Shaw DW, Barry D, Tran K, Novotny EJ, Saneto RP, Marashly A, Warner MH, Wright JN, Hauptman JS, Ojemann JG, Shurtleff HA. Precision medicine in pediatric temporal epilepsy surgery: optimization of outcomes through functional MRI memory tasks and tailored surgeries. J Neurosurg Pediatr 2022; 30:272-283. [PMID: 35901731 DOI: 10.3171/2022.5.peds22148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of epilepsy surgery is both seizure cessation and maximal preservation of function. In temporal lobe (TL) cases, the lack of functional MRI (fMRI) tasks that effectively activate mesial temporal structures hampers preoperative memory risk assessment, especially in children. This study evaluated pediatric TL surgery outcome optimization associated with tailored resection informed by an fMRI memory task. METHODS The authors identified focal onset TL epilepsy patients with 1) TL resections; 2) viable fMRI memory scans; and 3) pre- and postoperative neuropsychological (NP) evaluations. They retrospectively evaluated preoperative fMRI memory scans, available Wada tests, pre- and postoperative NP scores, postoperative MRI scans, and postoperative Engel class outcomes. To assess fMRI memory task outcome prediction, the authors 1) overlaid preoperative fMRI activation onto postoperative structural images; 2) classified patients as having "overlap" or "no overlap" of activation and resection cavities; and 3) compared these findings with memory improvement, stability, or decline, based on Reliable Change Index calculations. RESULTS Twenty patients met the inclusion criteria. At a median of 2.1 postoperative years, 16 patients had Engel class IA outcomes and 1 each had Engel class IB, ID, IIA, and IID outcomes. Functional MRI activation was linked to NP memory outcome in 19 of 20 cases (95%). Otherwise, heterogeneity characterized the cohort. CONCLUSIONS Functional MRI memory task activation effectively predicted individual NP outcomes in the context of tailored TL resections. Patients had excellent seizure and overall good NP outcomes. This small study adds to extant literature indicating that pediatric TL epilepsy does not represent a single clinical syndrome. Findings support individualized surgical intervention using fMRI memory activation to help guide this precision medicine approach.
Collapse
Affiliation(s)
- Hannah E Goldstein
- 1Neurosciences Center, Seattle Children's Hospital, Seattle
- 2Department of Neurological Surgery, University of Washington School of Medicine, Seattle
- 3Division of Neurosurgery, Seattle Children's Hospital, Seattle
- 9Center for Integrated Brain Research, Seattle Children's Hospital, Seattle, Washington; and
| | - Andrew Poliakov
- 1Neurosciences Center, Seattle Children's Hospital, Seattle
- 3Division of Neurosurgery, Seattle Children's Hospital, Seattle
- 4Department of Radiology, Seattle Children's Hospital, Seattle
| | - Dennis W Shaw
- 4Department of Radiology, Seattle Children's Hospital, Seattle
- 5Department of Radiology, University of Washington School of Medicine, Seattle
| | - Dwight Barry
- 6Clinical Analytics, Seattle Children's Hospital, Seattle
| | - Kieu Tran
- 2Department of Neurological Surgery, University of Washington School of Medicine, Seattle
- 3Division of Neurosurgery, Seattle Children's Hospital, Seattle
| | - Edward J Novotny
- 1Neurosciences Center, Seattle Children's Hospital, Seattle
- 7Division of Pediatric Neurology, Seattle Children's Hospital, Seattle
- 8Department of Neurology, University of Washington School of Medicine, Seattle
- 9Center for Integrated Brain Research, Seattle Children's Hospital, Seattle, Washington; and
| | - Russell P Saneto
- 1Neurosciences Center, Seattle Children's Hospital, Seattle
- 7Division of Pediatric Neurology, Seattle Children's Hospital, Seattle
- 8Department of Neurology, University of Washington School of Medicine, Seattle
- 9Center for Integrated Brain Research, Seattle Children's Hospital, Seattle, Washington; and
| | - Ahmad Marashly
- 10Epilepsy Center, Department of Neurology, The Johns Hopkins University Medical Center, Baltimore, Maryland
| | - Molly H Warner
- 1Neurosciences Center, Seattle Children's Hospital, Seattle
- 7Division of Pediatric Neurology, Seattle Children's Hospital, Seattle
- 9Center for Integrated Brain Research, Seattle Children's Hospital, Seattle, Washington; and
| | - Jason N Wright
- 4Department of Radiology, Seattle Children's Hospital, Seattle
- 5Department of Radiology, University of Washington School of Medicine, Seattle
| | - Jason S Hauptman
- 1Neurosciences Center, Seattle Children's Hospital, Seattle
- 2Department of Neurological Surgery, University of Washington School of Medicine, Seattle
- 3Division of Neurosurgery, Seattle Children's Hospital, Seattle
- 9Center for Integrated Brain Research, Seattle Children's Hospital, Seattle, Washington; and
| | - Jeffrey G Ojemann
- 1Neurosciences Center, Seattle Children's Hospital, Seattle
- 2Department of Neurological Surgery, University of Washington School of Medicine, Seattle
- 3Division of Neurosurgery, Seattle Children's Hospital, Seattle
- 5Department of Radiology, University of Washington School of Medicine, Seattle
- 9Center for Integrated Brain Research, Seattle Children's Hospital, Seattle, Washington; and
| | - Hillary A Shurtleff
- 1Neurosciences Center, Seattle Children's Hospital, Seattle
- 7Division of Pediatric Neurology, Seattle Children's Hospital, Seattle
- 9Center for Integrated Brain Research, Seattle Children's Hospital, Seattle, Washington; and
| |
Collapse
|
36
|
Pasichnik A, Tsuboyama M, Jannati A, Vega C, Kaye HL, Damar U, Bolton J, Stone SSD, Madsen JR, Suarez RO, Rotenberg A. Discrepant expressive language lateralization in children and adolescents with epilepsy. Ann Clin Transl Neurol 2022; 9:1459-1464. [PMID: 36000540 PMCID: PMC9463952 DOI: 10.1002/acn3.51594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronavigated transcranial magnetic stimulation (nTMS) has emerged as a presurgical language mapping tool distinct from the widely used functional magnetic resonance imaging (fMRI). We report fMRI and nTMS language-mapping results in 19 pediatric-epilepsy patients and compare those to definitive testing by electrical cortical stimulation, Wada test, and/or neuropsychological testing. Most discordant results occurred when fMRI found right-hemispheric language. In those cases, when nTMS showed left-hemispheric or bilateral language representation, left-hemispheric language was confirmed by definitive testing. Therefore, we propose nTMS should be considered for pediatric presurgical language-mapping when fMRI shows right-hemispheric language, with nTMS results superseding fMRI results in those scenarios.
Collapse
Affiliation(s)
- Alisa Pasichnik
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Tsuboyama
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Clemente Vega
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Neuropsychology Center, Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Harper L Kaye
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Behavioral Neuroscience Program, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ugur Damar
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Bolton
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scellig S D Stone
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph O Suarez
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Cankurtaran CZ, Templer J, Bandt SK, Avery R, Hijaz T, McComb EN, Liu BP, Schuele S, Nemeth AJ, Korutz AW. Multimodal Presurgical Evaluation of Medically Refractory Focal Epilepsy in Adults: An Update for Radiologists. AJR Am J Roentgenol 2022; 219:488-500. [PMID: 35441531 DOI: 10.2214/ajr.22.27588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surgery is a potentially curative treatment option for patients with medically refractory focal epilepsy. Advanced neuroimaging modalities often improve surgical outcomes by contributing key information during the highly individualized surgical planning process and intraoperative localization. Hence, neuroradiologists play an integral role in the multidisciplinary management team. In this review, we initially present the conceptual background and practical framework of the presurgical evaluation process, including a description of the surgical treatment approaches used for medically refractory focal epilepsy in adults. This background is followed by an overview of the advanced modalities commonly used during the presurgical workup at level IV epilepsy centers, including diffusion imaging techniques, blood oxygenation level-dependent functional MRI (fMRI), PET, SPECT, and subtraction ictal SPECT, and by introductions to 7-T MRI and electrophysiologic techniques including electroencephalography and magnetoencephalography. We also provide illustrative case examples of multimodal neuroimaging including PET/MRI, PET/MRI-diffusion-tensor imaging (DTI), subtraction ictal SPECT, and image-guided stereotactic planning with fMRI-DTI.
Collapse
Affiliation(s)
- Ceylan Z Cankurtaran
- Department of Radiology, Keck School of Medicine of USC, 1500 San Pablo St, HCC2 Radiology, Los Angeles, CA 90033
| | - Jessica Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sarah K Bandt
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ryan Avery
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tarek Hijaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Erin N McComb
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Benjamin P Liu
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Stephan Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alexander J Nemeth
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alexander W Korutz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
38
|
Affiliation(s)
- Joseph I Tracy
- From the Department of Neurology, Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
39
|
Gross WL, Helfand AI, Swanson SJ, Conant LL, Humphries CJ, Raghavan M, Mueller WM, Busch RM, Allen L, Anderson CT, Carlson CE, Lowe MJ, Langfitt JT, Tivarus ME, Drane DL, Loring DW, Jacobs M, Morgan VL, Allendorfer JB, Szaflarski JP, Bonilha L, Bookheimer S, Grabowski T, Vannest J, Binder JR. Prediction of Naming Outcome With fMRI Language Lateralization in Left Temporal Epilepsy Surgery. Neurology 2022; 98:e2337-e2346. [PMID: 35410903 PMCID: PMC9202528 DOI: 10.1212/wnl.0000000000200552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Naming decline after left temporal lobe epilepsy (TLE) surgery is common and difficult to predict. Preoperative language fMRI may predict naming decline, but this application is still lacking evidence. We performed a large multicenter cohort study of the effectiveness of fMRI in predicting naming deficits after left TLE surgery. METHODS At 10 US epilepsy centers, 81 patients with left TLE were prospectively recruited and given the Boston Naming Test (BNT) before and ≈7 months after anterior temporal lobectomy. An fMRI language laterality index (LI) was measured with an auditory semantic decision-tone decision task contrast. Correlations and a multiple regression model were built with a priori chosen predictors. RESULTS Naming decline occurred in 56% of patients and correlated with fMRI LI (r = -0.41, p < 0.001), age at epilepsy onset (r = -0.30, p = 0.006), age at surgery (r = -0.23, p = 0.039), and years of education (r = 0.24, p = 0.032). Preoperative BNT score and duration of epilepsy were not correlated with naming decline. The regression model explained 31% of the variance, with fMRI contributing 14%, with a 96% sensitivity and 44% specificity for predicting meaningful naming decline. Cross-validation resulted in an average prediction error of 6 points. DISCUSSION An fMRI-based regression model predicted naming outcome after left TLE surgery in a large, prospective multicenter sample, with fMRI as the strongest predictor. These results provide evidence supporting the use of preoperative language fMRI to predict language outcome in patients undergoing left TLE surgery. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that fMRI language lateralization can help in predicting naming decline after left TLE surgery.
Collapse
Affiliation(s)
- William Louis Gross
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH.
| | - Alexander I Helfand
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Sara J Swanson
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Lisa L Conant
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Colin J Humphries
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Manoj Raghavan
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Wade M Mueller
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Robyn M Busch
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Linda Allen
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Christopher Todd Anderson
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Chad E Carlson
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Mark J Lowe
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - John T Langfitt
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Madalina E Tivarus
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Daniel L Drane
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - David W Loring
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Monica Jacobs
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Victoria L Morgan
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Jane B Allendorfer
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Jerzy P Szaflarski
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Leonardo Bonilha
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Susan Bookheimer
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Thomas Grabowski
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Jennifer Vannest
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| | - Jeffrey R Binder
- From the Departments of Neurology (W.L.G., A.H., S.J.S., L.L.C., C.H., M.R., L.A., C.T.A., C.E.C., J.R.B.), Anesthesiology (W.L.G.), and Neurosurgery (W.M.M.), Medical College of Wisconsin, Milwaukee; Departments of Neurology (R.M.B.) and Radiology (M.J.L.), Cleveland Clinic Foundation, OH; Departments of Neurology (J.T.L.) and Imaging Sciences (M.E.T.), University of Rochester, NY; Departments of Neurology (D.L.D., D.W.L.) and Pediatrics (D.L.D.), Emory University, Atlanta, GA; Department of Neurology (D.L.D., T.G.), University of Washington, Seattle; Departments of Psychology (M.J.) and Radiology (V.L.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (J.B.A., J.P.S.), University of Alabama at Birmingham; Department of Neurology (L.B.), Medical University of South Carolina, Charleston; Department of Neurology (S.B.), University of California, Los Angeles; and Department of Neurology (J.V.), University of Cincinnati, OH
| |
Collapse
|
40
|
Stasenko A, Schadler A, Kaestner E, Reyes A, Díaz-Santos M, Połczyńska M, McDonald CR. Can bilingualism increase neuroplasticity of language networks in epilepsy? Epilepsy Res 2022; 182:106893. [PMID: 35278806 PMCID: PMC9050932 DOI: 10.1016/j.eplepsyres.2022.106893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
Individuals with left temporal lobe epilepsy (TLE) have a higher rate of atypical (i.e., bilateral or right hemisphere) language lateralization compared to healthy controls. In addition, bilinguals have been observed to have a less left-lateralized pattern of language representation. We examined the combined influence of bilingual language experience and side of seizure focus on language lateralization profiles in TLE to determine whether bilingualism promotes re-organization of language networks. Seventy-two monolingual speakers of English (21 left TLE; LTLE, 22 right TLE; RTLE, 29 age-matched healthy controls; HC) and 24 English-dominant bilinguals (6 LTLE, 7 RTLE, 11 HC) completed a lexical-semantic functional MRI task and standardized measures of language in English. Language lateralization was determined using laterality indices based on activations in left vs right homologous perisylvian regions-of-interest (ROIs). In a fronto-temporal ROI, LTLE showed the expected pattern of weaker left language lateralization relative to HC, and monolinguals showed a trend of weaker left language lateralization relative to bilinguals. Importantly, these effects were qualified by a significant group by language status interaction, revealing that bilinguals with LTLE had greater rightward language lateralization relative to monolingual LTLE, with a large effect size particularly in the lateral temporal region. Rightward language lateralization was associated with better language scores in bilingual LTLE. These preliminary findings suggest a combined effect of bilingual language experience and a left hemisphere neurologic insult, which may together increase the likelihood of language re-organization to the right hemisphere. Our data underscore the need to consider bilingualism as an important factor contributing to language laterality in patients with TLE. Bilingualism may be neuroprotective pre-surgically and may mitigate post-surgical language decline following left anterior temporal lobectomy, which will be important to test in larger samples.
Collapse
Affiliation(s)
- Alena Stasenko
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA.
| | - Adam Schadler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA
| | - Anny Reyes
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Mirella Díaz-Santos
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA; Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Monika Połczyńska
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Carrie R McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
41
|
Pavel DG, Henderson TA, DeBruin S. The Legacy of the TTASAAN Report-Premature Conclusions and Forgotten Promises: A Review of Policy and Practice Part I. Front Neurol 2022; 12:749579. [PMID: 35450131 PMCID: PMC9017602 DOI: 10.3389/fneur.2021.749579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Brain perfusion single photon emission computed tomography (SPECT) scans were initially developed in 1970's. A key radiopharmaceutical, hexamethylpropyleneamine oxime (HMPAO), was originally approved in 1988, but was unstable. As a result, the quality of SPECT images varied greatly based on technique until 1993, when a method of stabilizing HMPAO was developed. In addition, most SPECT perfusion studies pre-1996 were performed on single-head gamma cameras. In 1996, the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (TTASAAN) issued a report regarding the use of SPECT in the evaluation of neurological disorders. Although the TTASAAN report was published in January 1996, it was approved for publication in October 1994. Consequently, the reported brain SPECT studies relied upon to derive the conclusions of the TTASAAN report largely pre-date the introduction of stabilized HMPAO. While only 12% of the studies on traumatic brain injury (TBI) in the TTASAAN report utilized stable tracers and multi-head cameras, 69 subsequent studies with more than 23,000 subjects describe the utility of perfusion SPECT scans in the evaluation of TBI. Similarly, dementia SPECT imaging has improved. Modern SPECT utilizing multi-headed gamma cameras and quantitative analysis has a sensitivity of 86% and a specificity of 89% for the diagnosis of mild to moderate Alzheimer's disease-comparable to fluorodeoxyglucose positron emission tomography. Advances also have occurred in seizure neuroimaging. Lastly, developments in SPECT imaging of neurotoxicity and neuropsychiatric disorders have been striking. At the 25-year anniversary of the publication of the TTASAAN report, it is time to re-examine the utility of perfusion SPECT brain imaging. Herein, we review studies cited by the TTASAAN report vs. current brain SPECT imaging research literature for the major indications addressed in the report, as well as for emerging indications. In Part II, we elaborate technical aspects of SPECT neuroimaging and discuss scan interpretation for the clinician.
Collapse
Affiliation(s)
- Dan G Pavel
- Pathfinder Brain SPECT Imaging, Deerfield, IL, United States.,The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States
| | - Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States
| | - Simon DeBruin
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Good Lion Imaging, Columbia, SC, United States
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW More than 20 new antiseizure medications have been approved by the US Food and Drug Administration (FDA) in the past 3 decades; however, outcomes in newly diagnosed epilepsy have not improved, and epilepsy remains drug resistant in up to 40% of patients. Evidence supports improved seizure outcomes and quality of life in those who have undergone epilepsy surgery, but epilepsy surgery remains underutilized. This article outlines indications for epilepsy surgery, describes the presurgical workup, and summarizes current available surgical approaches. RECENT FINDINGS Class I evidence has demonstrated the superiority of resective surgery compared to medical therapy for seizure control and quality of life in patients with drug-resistant epilepsy. The use of minimally invasive options, such as laser interstitial thermal therapy and stereotactic radiosurgery, are alternatives to resective surgery in well-selected patients. Neuromodulation techniques, such as responsive neurostimulation, deep brain stimulation, and vagus nerve stimulation, offer a suitable alternative, especially in those where resective surgery is contraindicated or where patients prefer nonresective surgery. Although neuromodulation approaches reduce seizure frequency, they are less likely to be associated with seizure freedom than resective surgery. SUMMARY Appropriate patients with drug-resistant epilepsy benefit from epilepsy surgery. If two well-chosen and tolerated medication trials do not achieve seizure control, referral to a comprehensive epilepsy center for a thorough presurgical workup and discussion of surgical options is appropriate. Mounting Class I evidence supports a significantly higher chance of stopping disabling seizures with surgery than with further medication trials.
Collapse
|
43
|
Xiao F, Caciagli L, Wandschneider B, Joshi B, Vos SB, Hill A, Galovic M, Long L, Sone D, Trimmel K, Sander JW, Zhou D, Thompson PJ, Baxendale S, Duncan JS, Koepp MJ. Effect of Anti-seizure Medications on Functional Anatomy of Language: A Perspective From Language Functional Magnetic Resonance Imaging. Front Neurosci 2022; 15:787272. [PMID: 35280343 PMCID: PMC8908426 DOI: 10.3389/fnins.2021.787272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background In epilepsy, cognitive difficulties are common, partly a consequence of anti-seizure medications (ASM), and cognitive side-effects are often considered to be more disabling than seizures and significantly affect quality of life. Functional MRI during verbal fluency tasks demonstrated impaired frontal activation patterns and failed default mode network deactivation in people taking ASM with unfavourable cognitive profiles. The cognitive effect of ASMs given at different dosages in monotherapy, or in different combinations, remains to be determined. Methods Here, we compared the effects of different drug loads on verbal fluency functional MRI (fMRI) in people (i) taking dual therapy of ASMs either considered to be associated with moderate (levetiracetam, lamotrigine, lacosamide, carbamazepine/oxcarbazepine, eslicarbazepine, valproic acid; n = 119, 56 females) or severe (topiramate, zonisamide) side-effects; n = 119, 56 females), (ii) taking moderate ASMs in either mono-, dual- or triple-therapy (60 subjects in each group), or (iii) taking different dosages of ASMs with moderate side-effect profiles (n = 180). “Drug load” was defined as a composite value of numbers and dosages of medications, normalised to account for the highest and lowest dose of each specific prescribed medication. Results In people taking “moderate” ASMs (n = 119), we observed higher verbal-fluency related to left inferior frontal gyrus and right inferior parietal fMRI activations than in people taking “severe” ASMs (n = 119). Irrespective of the specific ASM, people on monotherapy (n = 60), showed greater frontal activations than people taking two (n = 60), or three ASMs (n = 60). People on two ASMs showed less default mode (precuneus) deactivation than those on monotherapy. In people treated with “moderate” ASMs (n = 180), increased drug load correlated with reduced activation of language-related regions and the right piriform cortex. Conclusion Our study delineates the effects of polytherapy and high doses of ASMs when given in monotherapy on the functional anatomy of language. Irrespective of the cognitive profile of individual ASMs, each additional ASM results in additional alterations of cognitive activation patterns. Selection of ASMs with moderate cognitive side effects, and low doses of ASMs when given in polytherapy, could reduce the cognitive effect.
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Neurology, The Royal London Hospital, London, United Kingdom
| | - Bhavini Joshi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Sjoerd B. Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- UCL Centre for Medical Image Computing, London, United Kingdom
- Department of Neuroradiology, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrea Hill
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zürich, Zurich, Switzerland
| | - Lili Long
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Daichi Sone
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Josemir W. Sander
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Pamela J. Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Matthias J. Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- *Correspondence: Matthias J. Koepp,
| |
Collapse
|
44
|
Benjamin CFA. Cognitive Biomarkers in the Clinic: Lessons From Presurgical fMRI. J Clin Neurophysiol 2022; 39:121-128. [PMID: 34366397 DOI: 10.1097/wnp.0000000000000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY Cognitive biomarkers are vital and uniquely challenging clinical tools. There has been marked growth in neuroimaging-based cognitive biomarkers across the past 40 years with more in development (e.g., clinical cognitive EEG). The challenges involved in developing cognitive biomarkers and key milestones in their development are reviewed here using clinical functional MRI's evolution as a case study. It is argued that indexing cognition is uniquely challenging because it requires patients to consistently use specific cognitive processes, and it is difficult or impossible to independently verify this occurred. This limitation can be successfully managed through careful analysis of standardized protocols for acquisition and interpretation, and ensuring the clinical application of biomarkers integrates disciplines with complementary expertise. Factors beneficial to the adoption of a novel cognitive biomarker include a clinical need and inadequate alternatives. Key milestones in the development of functional MRI included (1) demonstration that its performance was equivalent to its predecessor; (2) demonstration it predicted a clinically meaningful outcome; and (3) the establishment of infrastructure for both its execution and billing. Review of functional MRI and its predecessors suggest a cycle whereby successful cognitive biomarkers are validated, experience widespread adoption and customization/fragmentation, go through a period of review, and finally are refined and standardized. Those applying future cognitive biomarkers in the clinic can avoid some of the failures of clinical functional MRI by defining the skills and disciplines the method requires and routinely evaluating patient outcomes.
Collapse
|
45
|
Ailion AS, You X, Mbwana JS, Fanto EJ, Krishnamurthy M, Vaidya CJ, Sepeta LN, Gaillard WD, Berl MM. Functional Connectivity as a Potential Mechanism for Language Plasticity. Neurology 2022; 98:e249-e259. [PMID: 34795045 PMCID: PMC8792810 DOI: 10.1212/wnl.0000000000013071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/02/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Task fMRI is a clinical tool for language lateralization, but has limitations, and cannot provide information about network-level plasticity. Additional methods are needed to improve the precision of presurgical language mapping. We investigate language resting-state functional connectivity (RS fMRI; FC) in typically developing children (TD) and children with epilepsy. Our objectives were to (1) understand how FC components differ between TD children and those with epilepsy; (2) elucidate how the location of disease (frontal/temporal epilepsy foci) affects FC; and (3) investigate the relationship between age and FC. METHODS Our sample included 55 TD children (mean age 12 years, range 7-18) and 31 patients with focal epilepsy (mean age 13 years, range 7-18). All participants underwent RS fMRI. Using a bilateral canonical language map as target, vertex-wise intrahemispheric FC map and interhemispheric FC map for each participant were computed and thresholded at top 10% to compute an FC laterality index (FCLI; [(L - R)/(L + R)]) of the frontal and temporal regions for both integration (intrahemispheric FC; FCLIi) and segregation (interhemispheric FC; FCLIs) maps. RESULTS We found FC differences in the developing language network based on disease, seizure foci location, and age. Frontal and temporal FCLIi was different between groups (t[84] = 2.82, p < 0.01; t[84] = 4.68, p < 0.01, respectively). Frontal epilepsy foci had the largest differences from TD (Cohen d frontal FCLIi = 0.84, FCLIs = 0.51; temporal FCLIi = 1.29). Development and disease have opposing influences on the laterality of FC based on groups. In the frontal foci group, FCLIi decreased with age (r = -0.42), whereas in the temporal foci group, FCLIi increased with age (r = 0.40). Within the epilepsy group, increases in right frontal integration FCLI relates to increased right frontal task activation in our mostly left language dominant group (r = 0.52, p < 0.01). Language network connectivity is associated with higher verbal intelligence in children with epilepsy (r = 0.45, p < 0.05). DISCUSSION These findings lend preliminary evidence that FC reflects network plasticity in the form of adaptation and compensation, or the ability to recruit support and reallocate resources within and outside of the traditional network to compensate for disease. FC expands on task-based fMRI and provides complementary and potentially useful information about the language network that is not captured using task-based fMRI alone.
Collapse
Affiliation(s)
- Alyssa S Ailion
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC.
| | - Xiaozhen You
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Juma S Mbwana
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Eleanor J Fanto
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Manu Krishnamurthy
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Chandan J Vaidya
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Leigh N Sepeta
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - William D Gaillard
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Madison M Berl
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| |
Collapse
|
46
|
Shurtleff HA, Poliakov A, Barry D, Wright JN, Warner MH, Novotny EJ, Marashly A, Buckley R, Goldstein HE, Hauptman JS, Ojemann JG, Shaw DWW. A clinically applicable functional MRI memory paradigm for use with pediatric patients. Epilepsy Behav 2022; 126:108461. [PMID: 34896785 DOI: 10.1016/j.yebeh.2021.108461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Clinically employable functional MRI (fMRI) memory paradigms are not yet established for pediatric patient epilepsy surgery workups. Seeking to establish such a paradigm, we evaluated the effectiveness of memory fMRI tasks we developed by quantifying individual activation in a clinical pediatric setting, analyzing patterns of activation relative to the side of temporal lobe (TL) pathology, and comparing fMRI and Wada test results. METHODS We retrospectively identified 72 patients aged 6.7-20.9 years with pathology (seizure focus and/or tumor) limited to the TL who had attempted memory and language fMRI tasks over a 9-year period as part of presurgical workups. Memory fMRI tasks required visualization of autobiographical memories in a block design alternating with covert counting. Language fMRI protocols involved verb and sentence generation. Scans were both qualitatively interpreted and quantitatively assessed for blood oxygenation level dependent (BOLD) signal change using region of interest (ROI) masks. We calculated the percentage of successfully scanned individual cases, compared 2 memory task activation masks in cases with left versus right TL pathology, and compared fMRI with Wada tests when available. Patients who had viable fMRI and Wada tests had generally concordant results. RESULTS Of the 72 cases, 60 (83%), aged 7.6-20.9 years, successfully performed the memory fMRI tasks and 12 (17%) failed. Eleven of 12 unsuccessful scans were due to motion and/or inability to perform the tasks, and the success of a twelfth was indeterminate due to orthodontic metal artifact. Seven of the successful 60 cases had distorted anatomy that precluded employing predetermined masks for quantitative analysis. Successful fMRI memory studies showed bilateral mesial temporal activation and quantitatively demonstrated: (1) left activation (L-ACT) less than right activation (R-ACT) in cases with left temporal lobe (L-TL) pathology, (2) nonsignificant R-ACT less than L-ACT in cases with right temporal lobe (R-TL) pathology, and (3) lower L-ACT plus R-ACT activation for cases with L-TL versus R-TL pathology. Patients who had viable fMRI and Wada tests had generally concordant results. SIGNIFICANCE This study demonstrates evidence of an fMRI memory task paradigm that elicits reliable activation at the individual level and can generally be accomplished in clinically involved pediatric patients. This autobiographical memory paradigm showed activation in mesial TL structures, and cases with left compared to right TL pathology showed differences in activation consistent with extant literature in TL epilepsy. Further studies will be required to assess outcome prediction.
Collapse
Affiliation(s)
- Hillary A Shurtleff
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States.
| | | | - Dwight Barry
- Clinical Analytics, Seattle Children's Hospital, United States
| | - Jason N Wright
- Radiology, Seattle Children's Hospital, United States; Department of Radiology, University of Washington School of Medicine, United States
| | - Molly H Warner
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States
| | - Edward J Novotny
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States; Neurology, Seattle Children's Hospital, United States; Department of Neurology, University of Washington School of Medicine, United States
| | - Ahmad Marashly
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States; Neurology, Seattle Children's Hospital, United States; Department of Neurology, University of Washington School of Medicine, United States
| | - Robert Buckley
- Department of Neurological Surgery, University of Washington School of Medicine, United States
| | - Hannah E Goldstein
- Neurosciences Institute, Seattle Children's Hospital, United States; Department of Neurological Surgery, University of Washington School of Medicine, United States; Neurological Surgery, Seattle Children's Hospital, United States
| | - Jason S Hauptman
- Neurosciences Institute, Seattle Children's Hospital, United States; Department of Neurological Surgery, University of Washington School of Medicine, United States; Neurological Surgery, Seattle Children's Hospital, United States
| | - Jeffrey G Ojemann
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States; Department of Neurological Surgery, University of Washington School of Medicine, United States; Neurological Surgery, Seattle Children's Hospital, United States
| | - Dennis W W Shaw
- Radiology, Seattle Children's Hospital, United States; Department of Radiology, University of Washington School of Medicine, United States
| |
Collapse
|
47
|
Sollee J, Tang L, Igiraneza AB, Xiao B, Bai HX, Yang L. Artificial Intelligence for Medical Image Analysis in Epilepsy. Epilepsy Res 2022; 182:106861. [DOI: 10.1016/j.eplepsyres.2022.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
|
48
|
Samson S, Denos M. Neuropsychology of temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:519-529. [PMID: 35964990 DOI: 10.1016/b978-0-12-823493-8.00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter focuses on the neuropsychology of adults with temporal lobe epilepsy (TLE). First, a thorough description of the brain-behavior relationship characterizing focal TLE with and without hippocampal sclerosis is presented. Then, the aim and the specificity of the NPA in the care of epilepsy are described. Considering the high frequency of medically intractable TLE that can be treated by surgery, an assessment carried out in the context of pre- and postoperative evaluation is presented and discussed in light of insights from functional neuroimaging findings. Finally, we propose concluding remarks about the place of neuropsychology in the care of epilepsy in improving our understanding of the cognitive and emotional phenotypes associated with TLE.
Collapse
Affiliation(s)
- Séverine Samson
- Department of Psychology, University of Lille, Lille, France; Epilepsy Unit, Neurosciences Department, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | - Marisa Denos
- Rehabilitation Unit, Neurosciences Department, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
49
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
50
|
Lozano‐García A, Hampel KG, Garcés‐Sánchez M, Aparici‐Robles F, Rubio‐Sánchez P, González‐Bono E, Cano‐López I, Villanueva V. Drug load and memory during intracarotid amobarbital procedure in epilepsy. Acta Neurol Scand 2021; 144:585-591. [PMID: 34132388 DOI: 10.1111/ane.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Anti-seizure medications (ASMs) have been related to poor cognitive function, but their relationship with intracarotid amobarbital procedure (IAP) results remains unclear. AIMS OF THE STUDY To elucidate whether the number and drug load of ASMs are associated with memory scores of the IAP and the neuropsychological assessment. METHODS Fifty-nine adult patients with drug-resistant epilepsy (mean age = 36.1, SD = 11.6) underwent bilateral IAP (with drawings and words as memory items) and a neuropsychological assessment to assess the risk of post-surgical memory decline. Total ASM drug load was calculated by summing the daily dose/defined daily dose ratio of every ASM of each patient. Pearson's correlations and hierarchical regressions were computed. RESULTS Total IAP memory score was associated with total ASM drug load (r = -0.30, p = 0.02) and seizure frequency (r = -0.25, p = 0.05). After controlling clinical variables, total ASM drug load explained 16% of the variance of total IAP memory score. This relationship was especially prominent in patients with left hemisphere focus (r = -0.33, p = 0.04). The number of current ASMs was not related to IAP memory score (r = -0.16, p = 0.24). The number or drug load of ASMs were not related to neuropsychological assessment results (for all, p > 0.07). CONCLUSIONS Our findings suggest that total drug load can be a confounding variable in the IAP memory performance that could explain, at least in part, the reverse asymmetries reported in different studies.
Collapse
Affiliation(s)
| | - Kevin G. Hampel
- Refractory Epilepsy Unit, Department of Neurology Hospital Universitario y Politécnico La Fe Valencia Spain
| | - Mercedes Garcés‐Sánchez
- Refractory Epilepsy Unit, Department of Neurology Hospital Universitario y Politécnico La Fe Valencia Spain
| | - Fernando Aparici‐Robles
- Area of Medical Imaging Department of Radiology Hospital Universitario y Politécnico La Fe Valencia Spain
| | - Pilar Rubio‐Sánchez
- Department of Clinical Neurophysiology Hospital Universitario y Politécnico La Fe Valencia Spain
| | | | | | - Vicente Villanueva
- Refractory Epilepsy Unit, Department of Neurology Hospital Universitario y Politécnico La Fe Valencia Spain
| |
Collapse
|