1
|
Uslu MF, Uslu EY, Yıldız S, Tabara MF. Low Serum Asprosin Levels in Fibromyalgia Syndrome: Insights from a Cross-Sectional Study. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:410. [PMID: 40142221 PMCID: PMC11944249 DOI: 10.3390/medicina61030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/13/2025]
Abstract
Background and Objectives: This study aimed to evaluate serum asprosin levels in female patients with fibromyalgia syndrome (FM), investigate their associations with clinical parameters such as disease severity, anxiety, and depression, and evaluate the potential of serum asprosin levels as a biomarker for fibromyalgia diagnosis. Materials and Methods: A total of 80 participants were included in the study, 40 women aged 18-60 years who were diagnosed with FM according to the American College of Rheumatology (ACR) 2016 criteria and 40 healthy women with similar sociodemographic characteristics to the patient group. All participants were measured for hemograms, biochemistry tests, and serum asprosin levels. Additionally, the Fibromyalgia Impact Questionnaire (FIQ), Beck Anxiety Inventory (BAI), and Beck Depression Inventory (BDI) were administered to the patient group. Results: The median asprosin level in the case group was 15.01 (SD = 10.08-31.42), while in the control group it was 31.03 (SD = 25.14-35.7). The asprosin levels in the case group were significantly lower than those in the control group (p = 0.001). In contrast, AST, vitamin B12, and folic acid levels were significantly higher in the case group than in the control group. When all participants were evaluated, asprosin levels showed a significant positive correlation with systolic arterial blood pressure (Rho = 0.337, p = 0.002) and diastolic arterial blood pressure (Rho = 0.238, p = 0.033). A cut-off value of 17.72 ng/mL for asprosin levels in the diagnosis of fibromyalgia demonstrated a sensitivity of 60% and a specificity of 90%. Conclusions: Low asprosin levels may serve as a potential biomarker for the diagnosis of fibromyalgia in women.
Collapse
Affiliation(s)
- Muhammed Fuad Uslu
- Department of Internal Medicine, Elazığ Fethi Sekin City Hospital, Elazığ 23280, Turkey
| | - Emine Yıldırım Uslu
- Department of Physical Medicine and Rehabilitation, Elazığ Fethi Sekin City Hospital, Elazığ 23280, Turkey
| | - Sevler Yıldız
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, Elazığ 23280, Turkey;
| | | |
Collapse
|
2
|
Samavarchitehrani A, Mercantepe F, Behnoush AH, Klisic A. Exploring the TyG Index and the Homeostasis Model Assessment of Insulin Resistance as Insulin Resistance Markers: Implications for Fibromyalgia Management and Understanding-A Narrative Review. Diagnostics (Basel) 2025; 15:494. [PMID: 40002645 PMCID: PMC11854647 DOI: 10.3390/diagnostics15040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Fibromyalgia (FM) is a chronic musculoskeletal disease with a higher prevalence among women. To date, there has been no definitive laboratory or imaging assessment for FM, and hence, the diagnosis criteria for FM remained based on subjective assessment of symptoms with high overlap with other rheumatological disorders. Many patients with FM suffer from metabolic disorders leading to insulin resistance (IR). There have been several methods to assess IR, among which the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and the triglyceride-glucose (TyG) index have been used more frequently, with the latter being more available and cost-effective. As higher IR has been reported for patients with FM with various mechanisms, in this review, we sought to investigate the association between IR and FM using the current evidence. One of the possible underlying mechanisms of this association might be mitochondrial dysfunction and oxidative stress observed in IR conditions and its role in FM. Studies have also shown that IR indices are higher in patients with FM, compared to healthy controls, while higher HOMA-IR levels were also reported for higher severities of FM based on Fibromyalgia Impact Questionnaire-Revised (FIQR) scores. While these findings suggest the possible involvement of IR in FM pathophysiology and add to the value of IR measurement in FM clinical assessment, further large-scale studies are needed to establish a definitive causal association between them.
Collapse
Affiliation(s)
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey;
| | | | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro;
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| |
Collapse
|
3
|
Soleimanzad H, Morisset C, Montaner M, Pain F, Magnan C, Tanter M, Gurden H. Western diet since adolescence impairs brain functional hyperemia at adulthood in mice: rescue by a balanced ω-3:ω-6 polyunsaturated fatty acids ratio. Int J Obes (Lond) 2025:10.1038/s41366-025-01711-x. [PMID: 39910250 DOI: 10.1038/s41366-025-01711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND/OBJECTIVE Obesity is a devastating worldwide metabolic disease, with the highest prevalence in children and adolescents. Obesity impacts neuronal function but the fate of functional hyperemia, a vital mechanism making possible cerebral blood supply to active brain areas, is unknown in organisms fed a high-caloric Western Diet (WD) since adolescence. SUBJECTS/METHODS We mapped changes in cerebral blood volume (CBV) in the somatosensory cortex in response to whisker stimulation in adolescent, adult, and middle-aged mice fed a WD since adolescence. To this aim, we used non-invasive and high-resolution functional ultrasound imaging (fUS). RESULTS We efficiently mimicked the metabolic syndrome of adolescents in young mice with early weight gain, dysfunctional glucose homeostasis, and insulinemia. Functional hyperemia is compromised as early as 3 weeks of WD and remains impaired after that in adolescent mice. These findings highlight the cerebrovascular vulnerability to WD during adolescence. In WD, ω-6:ω-3 polyunsaturated fatty acids (PUFAs) ratio is unbalanced towards proinflammatory ω-6. A balanced ω-6:ω-3 PUFAs ratio in WD achieved by docosahexaenoic acid supplementation efficiently restores glucose homeostasis and functional hyperemia in adults. CONCLUSIONS WD triggers a rapid impairment in cerebrovascular activity in adolescence, which is maintained at older ages, and can be rescued by a PUFA-based nutraceutical approach.
Collapse
Affiliation(s)
- Haleh Soleimanzad
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, 75015, Paris, France
| | - Clémentine Morisset
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, 75015, Paris, France
| | - Mireia Montaner
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, 75013, Paris, France
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Frédéric Pain
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France
| | - Christophe Magnan
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, 75013, Paris, France
| | - Mickaël Tanter
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, 75015, Paris, France.
| | - Hirac Gurden
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, 75013, Paris, France.
| |
Collapse
|
4
|
Sadler JR, Thapaliya G, Ranganath K, Gabay A, Chen L, Smith KR, Osorio RS, Convit A, Carnell S. Paediatric obesity and metabolic syndrome associations with cognition and the brain in youth: Current evidence and future directions. Pediatr Obes 2023; 18:e13042. [PMID: 37202148 PMCID: PMC10826337 DOI: 10.1111/ijpo.13042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Obesity and components of the metabolic syndrome (MetS) are associated with differences in brain structure and function and in general and food-related cognition in adults. Here, we review evidence for similar phenomena in children and adolescents, with a focus on the implications of extant research for possible underlying mechanisms and potential interventions for obesity and MetS in youth. Current evidence is limited by a relative reliance on small cross-sectional studies. However, we find that youth with obesity and MetS or MetS components show differences in brain structure, including alterations in grey matter volume and cortical thickness across brain regions subserving reward, cognitive control and other functions, as well as in white matter integrity and volume. Children with obesity and MetS components also show some evidence for hyperresponsivity of food reward regions and hyporesponsivity of cognitive control circuits during food-related tasks, altered brain responses to food tastes, and altered resting-state connectivity including between cognitive control and reward processing networks. Potential mechanisms for these findings include neuroinflammation, impaired vascular reactivity, and effects of diet and obesity on myelination and dopamine function. Future observational research using longitudinal measures, improved sampling strategies and study designs, and rigorous statistical methods, promises to further illuminate dynamic relationships and causal mechanisms. Intervention studies targeted at modifiable biological and behavioural factors associated with paediatric obesity and MetS can further inform mechanisms, as well as test whether brain and behaviour can be altered for beneficial outcomes.
Collapse
Affiliation(s)
- Jennifer R. Sadler
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kushi Ranganath
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Gabay
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Liuyi Chen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly R. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - Antonio Convit
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Wang C, Reid G, Mackay CE, Hayes G, Bulte DP, Suri S. A Systematic Review of the Association Between Dementia Risk Factors and Cerebrovascular Reactivity. Neurosci Biobehav Rev 2023; 148:105140. [PMID: 36944391 DOI: 10.1016/j.neubiorev.2023.105140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Cumulative evidence suggests that impaired cerebrovascular reactivity (CVR), a regulatory response critical for maintaining neuronal health, is amongst the earliest pathological changes in dementia. However, we know little about how CVR is affected by dementia risk, prior to disease onset. Understanding this relationship would improve our knowledge of disease pathways and help inform preventative interventions. This systematic review investigates 59 studies examining how CVR (measured by magnetic resonance imaging) is affected by modifiable, non-modifiable, and clinical risk factors for dementia. We report that non-modifiable risk (older age and apolipoprotein ε4), some modifiable factors (diabetes, traumatic brain injury, hypertension) and some clinical factors (stroke, carotid artery occlusion, stenosis) were consistently associated with reduced CVR. We also note a lack of conclusive evidence on how other behavioural factors such as physical inactivity, obesity, or depression, affect CVR. This review explores the biological mechanisms underpinning these brain- behaviour associations, highlights evident gaps in the literature, and identifies the risk factors that could be managed to preserve CVR in an effort to prevent dementia.
Collapse
Affiliation(s)
- Congxiyu Wang
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Graham Reid
- Department of Psychiatry, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Clare E Mackay
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Genevieve Hayes
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Daniel P Bulte
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.
| |
Collapse
|
6
|
Cui Y, Tang TY, Lu CQ, Ju S. Insulin Resistance and Cognitive Impairment: Evidence From Neuroimaging. J Magn Reson Imaging 2022; 56:1621-1649. [PMID: 35852470 DOI: 10.1002/jmri.28358] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/04/2023] Open
Abstract
Insulin is a peptide well known for its role in regulating glucose metabolism in peripheral tissues. Emerging evidence from human and animal studies indicate the multifactorial role of insulin in the brain, such as neuronal and glial metabolism, glucose regulation, and cognitive processes. Insulin resistance (IR), defined as reduced sensitivity to the action of insulin, has been consistently proposed as an important risk factor for developing neurodegeneration and cognitive impairment. Although the exact mechanism of IR-related cognitive impairment still awaits further elucidation, neuroimaging offers a versatile set of novel contrasts to reveal the subtle cerebral abnormalities in IR. These imaging contrasts, including but not limited to brain volume, white matter (WM) microstructure, neural function and brain metabolism, are expected to unravel the nature of the link between IR, cognitive decline, and brain abnormalities, and their changes over time. This review summarizes the current neuroimaging studies with multiparametric techniques, focusing on the cerebral abnormalities related to IR and therapeutic effects of IR-targeting treatments. According to the results, brain regions associated with IR pathophysiology include the medial temporal lobe, hippocampus, prefrontal lobe, cingulate cortex, precuneus, occipital lobe, and the WM tracts across the globe. Of these, alterations in the temporal lobe are highly reproducible across different imaging modalities. These structures have been known to be vulnerable to Alzheimer's disease (AD) pathology and are critical in cognitive processes such as memory and executive functioning. Comparing to asymptomatic subjects, results are more mixed in patients with metabolic disorders such as type 2 diabetes and obesity, which might be attributed to a multifactorial mechanism. Taken together, neuroimaging, especially MRI, is beneficial to reveal early abnormalities in cerebral structure and function in insulin-resistant brain, providing important evidence to unravel the underlying neuronal substrate that reflects the cognitive decline in IR. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Glodzik L, Rusinek H, Butler T, Li Y, Storey P, Sweeney E, Osorio RS, Biskaduros A, Tanzi E, Harvey P, Woldstad C, Maloney T, de Leon MJ. Higher body mass index is associated with worse hippocampal vasoreactivity to carbon dioxide. Front Aging Neurosci 2022; 14:948470. [PMID: 36158536 PMCID: PMC9491849 DOI: 10.3389/fnagi.2022.948470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background and objectives Obesity is a risk factor for cognitive decline. Probable mechanisms involve inflammation and cerebrovascular dysfunction, leading to diminished cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). The hippocampus, crucially involved in memory processing and thus relevant to many types of dementia, poses a challenge in studies of perfusion and CVR, due to its location, small size, and complex shape. We examined the relationships between body mass index (BMI) and hippocampal resting CBF and CVR to carbon dioxide (CVRCO2) in a group of cognitively normal middle-aged and older adults. Methods Our study was a retrospective analysis of prospectively collected data. Subjects were enrolled for studies assessing the role of hippocampal hemodynamics as a biomarker for AD among cognitively healthy elderly individuals (age > 50). Participants without cognitive impairment, stroke, and active substance abuse were recruited between January 2008 and November 2017 at the NYU Grossman School of Medicine, former Center for Brain Health. All subjects underwent medical, psychiatric, and neurological assessments, blood tests, and MRI examinations. To estimate CVR, we increased their carbon dioxide levels using a rebreathing protocol. Relationships between BMI and brain measures were tested using linear regression. Results Our group (n = 331) consisted of 60.4% women (age 68.8 ± 7.5 years; education 16.8 ± 2.2 years) and 39.6% men (age 70.4 ± 6.4 years; education 16.9 ± 2.4 years). Approximately 22% of them (n = 73) were obese. BMI was inversely associated with CVRCO2 (β = -0.12, unstandardized B = -0.06, 95% CI -0.11, -0.004). A similar relationship was observed after excluding subjects with diabetes and insulin resistance (β = -0.15, unstandardized B = -0.08, 95% CI -0.16, -0.000). In the entire group, BMI was more strongly related to hippocampal CVRCO2 in women (β = -0.20, unstandardized B = -0.08, 95% CI -0.13, -0.02). Discussion These findings lend support to the notion that obesity is a risk factor for hippocampal hemodynamic impairment and suggest targeting obesity as an important prevention strategy. Prospective studies assessing the effects of weight loss on brain hemodynamic measures and inflammation are warranted.
Collapse
Affiliation(s)
- Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Henry Rusinek
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Pippa Storey
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Elizabeth Sweeney
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Adrienne Biskaduros
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Patrick Harvey
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Christopher Woldstad
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
8
|
Yu W, Li Y, Hu J, Wu J, Huang Y. A Study on the Pathogenesis of Vascular Cognitive Impairment and Dementia: The Chronic Cerebral Hypoperfusion Hypothesis. J Clin Med 2022; 11:jcm11164742. [PMID: 36012981 PMCID: PMC9409771 DOI: 10.3390/jcm11164742] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The pathogenic mechanisms underlying vascular cognitive impairment and dementia (VCID) remain controversial due to the heterogeneity of vascular causes and complexity of disease neuropathology. However, one common feature shared among all these vascular causes is cerebral blood flow (CBF) dysregulation, and chronic cerebral hypoperfusion (CCH) is the universal consequence of CBF dysregulation, which subsequently results in an insufficient blood supply to the brain, ultimately contributing to VCID. The purpose of this comprehensive review is to emphasize the important contributions of CCH to VCID and illustrate the current findings about the mechanisms involved in CCH-induced VCID pathological changes. Specifically, evidence is mainly provided to support the molecular mechanisms, including Aβ accumulation, inflammation, oxidative stress, blood-brain barrier (BBB) disruption, trophic uncoupling and white matter lesions (WMLs). Notably, there are close interactions among these multiple mechanisms, and further research is necessary to elucidate the hitherto unsolved questions regarding these interactions. An enhanced understanding of the pathological features in preclinical models could provide a theoretical basis, ultimately achieving the shift from treatment to prevention.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
| | - Yao Li
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
- Correspondence: (J.W.); (Y.H.); Tel.: +86-0755-8392-2833 (J.W.); +86-010-83572857 (Y.H.)
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street Xicheng District, Beijing 100034, China
- Correspondence: (J.W.); (Y.H.); Tel.: +86-0755-8392-2833 (J.W.); +86-010-83572857 (Y.H.)
| |
Collapse
|
9
|
Smith PJ, Sherwood A, Hinderliter AL, Mabe S, Tyson C, Avorgbedor F, Watkins LL, Lin PH, Kraus WE, Blumenthal JA. Cerebrovascular Function, Vascular Risk, and Lifestyle Patterns in Resistant Hypertension. J Alzheimers Dis 2022; 87:345-357. [PMID: 35275539 DOI: 10.3233/jad-215522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Impaired cerebrovascular reactivity (CVR) and blunted cerebral hemodynamic recruitment are thought to be important mechanisms linking hypertension to cerebrovascular and cognitive outcomes. Few studies have examined cardiovascular or dietary correlates of CVR among hypertensives. OBJECTIVE To delineate associations between cardiometabolic risk, diet, and cerebrovascular functioning among individuals with resistant hypertension from the TRIUMPH trial (n = 140). METHODS CVR was assessed by examining changes in tissue oxygenation (tissue oxygenation index [TOI] and oxygenated hemoglobin [HBO2]) using functional near-infrared spectroscopy (fNIRS) during a breath holding test, a standardized CVR assessment to elicit a hypercapnic response. Participants also underwent fNIRS during three cognitive challenge tasks. Vascular function was assessed by measurement of brachial artery flow mediated dilation and hyperemic flow response. Cardiometabolic fitness was assessed from peak VO2 on an exercise treadmill test and body mass index. Dietary patterns were quantified using the DASH eating score. Cognitive function was assessed using a 45-minute test battery assessing Executive Function, Processing Speed, and Memory. RESULTS Greater levels fitness (B = 0.30, p = 0.011), DASH compliance (B = 0.19, p = 0.045), and lower obesity (B = -0.30, p = 0.004), associated with greater changes in TOI, whereas greater flow-mediated dilation (B = 0.19, p = 0.031) and lower stroke risk (B = -0.19, p = 0.049) associated with greater HBO2. Similar associations were found for cerebral hemodynamic recruitment, and associations between CVR and cognition were moderated by duration of hypertension. CONCLUSION Impaired CVR elevated cardiometabolic risk, obesity, vascular function, and fitness among hypertensives.
Collapse
Affiliation(s)
- Patrick J Smith
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Andrew Sherwood
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Alan L Hinderliter
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie Mabe
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Crystal Tyson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Forgive Avorgbedor
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Lana L Watkins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Pao-Hwa Lin
- Department of Medicine and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - William E Kraus
- Department of Medicine and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - James A Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Olsthoorn L, Vreeken D, Kiliaan AJ. Gut Microbiome, Inflammation, and Cerebrovascular Function: Link Between Obesity and Cognition. Front Neurosci 2021; 15:761456. [PMID: 34938153 PMCID: PMC8685335 DOI: 10.3389/fnins.2021.761456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity affects 13% of the adult population worldwide and this number is only expected to increase. Obesity is known to have a negative impact on cardiovascular and metabolic health, but it also impacts brain structure and function; it is associated with both gray and white matter integrity loss, as well as decreased cognitive function, including the domains of executive function, memory, inhibition, and language. Especially midlife obesity is associated with both cognitive impairment and an increased risk of developing dementia at later age. However, underlying mechanisms are not yet fully revealed. Here, we review recent literature (published between 2010 and March 2021) and discuss the effects of obesity on brain structure and cognition, with a main focus on the contributions of the gut microbiome, white adipose tissue (WAT), inflammation, and cerebrovascular function. Obesity-associated changes in gut microbiota composition may cause increased gut permeability and inflammation, therewith affecting cognitive function. Moreover, excess of WAT in obesity produces pro-inflammatory adipokines, leading to a low grade systemic peripheral inflammation, which is associated with decreased cognition. The blood-brain barrier also shows increased permeability, allowing among others, peripheral pro-inflammatory markers to access the brain, leading to neuroinflammation, especially in the hypothalamus, hippocampus and amygdala. Altogether, the interaction between the gut microbiota, WAT inflammation, and cerebrovascular integrity plays a significant role in the link between obesity and cognition. Future research should focus more on the interplay between gut microbiota, WAT, inflammation and cerebrovascular function to obtain a better understanding about the complex link between obesity and cognitive function in order to develop preventatives and personalized treatments.
Collapse
Affiliation(s)
- Lisette Olsthoorn
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Debby Vreeken
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands.,Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| |
Collapse
|
11
|
Liu CH, Sung PS, Li YR, Huang WK, Lee TW, Huang CC, Lee TH, Chen TH, Wei YC. Telmisartan use and risk of dementia in type 2 diabetes patients with hypertension: A population-based cohort study. PLoS Med 2021; 18:e1003707. [PMID: 34280191 PMCID: PMC8289120 DOI: 10.1371/journal.pmed.1003707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Angiotensin receptor blockers (ARBs) may have protective effects against dementia occurrence in patients with hypertension (HTN). However, whether telmisartan, an ARB with peroxisome proliferator-activated receptor γ (PPAR-γ)-modulating effects, has additional benefits compared to other ARBs remains unclear. METHODS AND FINDINGS Between 1997 and 2013, 2,166,944 type 2 diabetes mellitus (T2DM) patients were identified from the National Health Insurance Research Database of Taiwan. Patients with HTN using ARBs were included in the study. Patients with a history of stroke, traumatic brain injury, or dementia were excluded. Finally, 65,511 eligible patients were divided into 2 groups: the telmisartan group and the non-telmisartan ARB group. Propensity score matching (1:4) was used to balance the distribution of baseline characteristics and medications. The primary outcome was the diagnosis of dementia. The secondary outcomes included the diagnosis of Alzheimer disease and occurrence of symptomatic ischemic stroke (IS), any IS, and all-cause mortality. The risks between groups were compared using a Cox proportional hazard model. Statistical significance was set at p < 0.05. There were 2,280 and 9,120 patients in the telmisartan and non-telmisartan ARB groups, respectively. Patients in the telmisartan group had a lower risk of dementia diagnosis (telmisartan versus non-telmisartan ARBs: 2.19% versus 3.20%; HR, 0.72; 95% CI, 0.53 to 0.97; p = 0.030). They also had lower risk of dementia diagnosis with IS as a competing risk (subdistribution HR, 0.70; 95% CI, 0.51 to 0.95; p = 0.022) and with all-cause mortality as a competing risk (subdistribution HR, 0.71; 95% CI, 0.53 to 0.97; p = 0.029). In addition, the telmisartan users had a lower risk of any IS (6.84% versus 8.57%; HR, 0.79; 95% CI, 0.67 to 0.94; p = 0.008) during long-term follow-up. Study limitations included potential residual confounding by indication, interpretation of causal effects in an observational study, and bias caused by using diagnostic and medication codes to represent real clinical data. CONCLUSIONS The current study suggests that telmisartan use in hypertensive T2DM patients may be associated with a lower risk of dementia and any IS events in an East-Asian population.
Collapse
Affiliation(s)
- Chi-Hung Liu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Rong Li
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Kuan Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tay-Wey Lee
- Biostatistical Consultation Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tien-Hsing Chen
- Division of Cardiology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Keelung, Taiwan
- * E-mail: (THC); (YCW)
| | - Yi-Chia Wei
- Department of Neurology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- * E-mail: (THC); (YCW)
| |
Collapse
|
12
|
Pappolla MA, Manchikanti L, Candido KD, Grieg N, Seffinger M, Ahmed F, Fang X, Andersen C, Trescot AM. Insulin Resistance is Associated with Central Pain in Patients with Fibromyalgia. Pain Physician 2021; 24:175-184. [PMID: 33740353 PMCID: PMC10450756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to insulin. IR has been associated with multiple conditions, including chronic pain. Fibromyalgia (FM) is one of the common generalized chronic painful conditions with an incidence rate affecting 3% to 6% of the population. Substantial interest and investigation into FM continue to generate many hypotheses.The relationship between IR and FM has not been explored. IR is known to cause abnormalities in the cerebral microvasculature, leading to focal hypoperfusion. IR also has been shown to cause cognitive impairment in FM patients, as in parkinsonism. As demonstrated by advanced imaging methods, similar brain perfusion abnormalities occur in the brain of patients with FM as with IR. OBJECTIVES To determine the potential association between FM and IR. SETTING Subspecialty pain medicine clinics. STUDY DESIGN Observational cross-sectional study. METHODS Laboratory data was extracted through a retrospective review of medical records from patients who had met the American College of Rheumatology (ACR) criteria for FM. The Hemoglobin A1c (HbA1c) values from 33 patients with FM were compared with the means of the glycated HbA1c levels of 2 control populations. In addition, established indices of IR [Quantitative Insulin Sensitivity Check Index (QUICKI) and the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)] were calculated in a subgroup of patients in whom the analytes necessary for these calculations were available. To assess for confounding factors, the associations between HbA1c, QUICKI, HOMA-IR, fasting insulin levels, and glucose, after controlling for age, were explored by multiple analyses of variance with relation to gender and ethnicity. RESULTS We found an association between IR and FM that was independent of age, gender, and ethnicity. We found that patients with FM belong to a distinct population that can be segregated from the control groups by their HbA1c levels, a surrogate marker of IR. This was demonstrated by analyzing the data after introducing an age correction into a linear regression model. This strategy showed significant differences between patients with FM and control subjects (P < 0.0001 and P = 0.0002, for 2 separate control populations, respectively). A subgroup analysis using the QUICKI and HOMA-IR showed that all patients with FM in this subgroup (100%) exhibited laboratory abnormalities pointing to IR. LIMITATIONS Small observational cross-sectional study. There are also intrinsic limitations that are attributed to cross-sectional studies. CONCLUSION The association demonstrated in this study warrant further investigation, including the pursuit of randomized, double-blind clinical trials to determine the effect of improving insulin sensitivity in FM related pain scores. Such studies could unveil a potential pathogenetic relationship between FM, central pain, and IR. Based on these initial findings, we present the hypothesis that IR may underlie pathological mechanisms leading to central pain. If confirmed, this may lead to a paradigm shift in the management of central pain.
Collapse
Affiliation(s)
| | | | | | - Nigel Grieg
- Drug Design & Development Section, National Institutes of Health, Bethesda, MD
| | - Michael Seffinger
- Western University of Health Sciences College of Osteopathic Medicine of the Pacific, Pomona, CA
| | - Fauwad Ahmed
- St. Michaels Pain and Spine Clinics, Houston, TX
| | - Xiang Fang
- University of Texas Medical Branch at Galveston, Galveston, TX
| | - Clark Andersen
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
13
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Kim YS, van der Ster BJP, Brassard P, Secher NH, van Lieshout JJ. Cerebral vs. Cardiovascular Responses to Exercise in Type 2 Diabetic Patients. Front Physiol 2021; 11:583155. [PMID: 33519500 PMCID: PMC7844205 DOI: 10.3389/fphys.2020.583155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The human brain is constantly active and even small limitations to cerebral blood flow (CBF) may be critical for preserving oxygen and substrate supply, e.g., during exercise and hypoxia. Exhaustive exercise evokes a competition for the supply of oxygenated blood between the brain and the working muscles, and inability to increase cardiac output sufficiently during exercise may jeopardize cerebral perfusion of relevance for diabetic patients. The challenge in diabetes care is to optimize metabolic control to slow progression of vascular disease, but likely because of a limited ability to increase cardiac output, these patients perceive aerobic exercise to be more strenuous than healthy subjects and that limits the possibility to apply physical activity as a preventive lifestyle intervention. In this review, we consider the effects of functional activation by exercise on the brain and how it contributes to understanding the control of CBF with the limited exercise tolerance experienced by type 2 diabetic patients. Whether a decline in cerebral oxygenation and thereby reduced neural drive to working muscles plays a role for "central" fatigue during exhaustive exercise is addressed in relation to brain's attenuated vascular response to exercise in type 2 diabetic subjects.
Collapse
Affiliation(s)
- Yu-Sok Kim
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Internal Medicine, Medisch Centrum Leeuwarden, Leeuwarden, Netherlands
| | - Björn J. P. van der Ster
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Niels H. Secher
- Department of Anesthesia, The Copenhagen Muscle Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Johannes J. van Lieshout
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham, United Kingdom
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Abstract
Brain insulin signaling contributes to memory function and might be a viable target in the prevention and treatment of memory impairments including Alzheimer's disease. This short narrative review explores the potential of central nervous system (CNS) insulin administration via the intranasal pathway to improve memory performance in health and disease, with a focus on the most recent results. Proof-of-concept studies and (pilot) clinical trials in individuals with mild cognitive impairment or Alzheimer's disease indicate that acute and prolonged intranasal insulin administration enhances memory performance, and suggest that brain insulin resistance is a pathophysiological factor in Alzheimer's disease with or without concomitant metabolic dysfunction. Intranasally administered insulin is assumed to trigger improvements in synaptic plasticity and regional glucose uptake as well as alleviations of Alzheimer's disease neuropathology; additional contributions of changes in hypothalamus-pituitary-adrenocortical axis activity and sleep-related mechanisms are discussed. While intranasal insulin delivery has been conclusively demonstrated to be effective and safe, the recent outcomes of large-scale clinical studies underline the need for further investigations, which might also yield new insights into sex differences in the response to intranasal insulin and contribute to the optimization of delivery devices to grasp the full potential of intranasal insulin for Alzheimer's disease.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Blair GW, Thrippleton MJ, Shi Y, Hamilton I, Stringer M, Chappell F, Dickie DA, Andrews P, Marshall I, Doubal FN, Wardlaw JM. Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology 2020; 94:e2258-e2269. [PMID: 32366534 PMCID: PMC7357294 DOI: 10.1212/wnl.0000000000009483] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Objective To investigate cerebrovascular reactivity (CVR), blood flow, vascular and CSF pulsatility, and their independent relationship with cerebral small vessel disease (SVD) features in patients with minor ischemic stroke and MRI evidence of SVD. Methods We recruited patients with minor ischemic stroke and assessed CVR using blood oxygen level–dependent MRI during a hypercapnic challenge, cerebral blood flow (CBF), vascular and CSF pulsatility using phase-contrast MRI, and structural magnetic resonance brain imaging to quantify white matter hyperintensities (WMHs) and perivascular spaces (PVSs). We used multiple regression to identify parameters associated with SVD features, controlling for patient characteristics. Results Fifty-three of 60 patients completed the study with a full data set (age 68.0% ± 8.8 years, 74% male, 75% hypertensive). After controlling for age, sex, and systolic blood pressure, lower white matter CVR was associated with higher WMH volume (−0.01%/mm Hg per log10 increase in WMH volume, p = 0.02), basal ganglia PVS (−0.01%/mm Hg per point increase in the PVS score, p = 0.02), and higher venous pulsatility (superior sagittal sinus −0.03%/mm Hg, p = 0.02, per unit increase in the pulsatility index) but not with CBF (p = 0.58). Lower foramen magnum CSF stroke volume was associated with worse white matter CVR (0.04%/mm Hg per mL increase in stroke volume, p = 0.04) and more severe basal ganglia PVS (p = 0.09). Conclusions Lower CVR, higher venous pulsatility, and lower foramen magnum CSF stroke volume indicate that dynamic vascular dysfunctions underpin PVS dysfunction and WMH development. Further exploration of microvascular dysfunction and CSF dynamics may uncover new mechanisms and intervention targets to reduce SVD lesion development, cognitive decline, and stroke.
Collapse
Affiliation(s)
- Gordon W Blair
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Michael J Thrippleton
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Yulu Shi
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Iona Hamilton
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Michael Stringer
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Francesca Chappell
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - David Alexander Dickie
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Peter Andrews
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Ian Marshall
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Fergus N Doubal
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom.
| |
Collapse
|
17
|
Tucker WJ, Thomas BP, Puzziferri N, Samuel TJ, Zaha VG, Lingvay I, Almandoz J, Wang J, Gonzales EA, Brothers RM, Nelson MD. Impact of bariatric surgery on cerebral vascular reactivity and cognitive function: a non-randomized pilot study. Pilot Feasibility Stud 2020; 6:21. [PMID: 32082607 PMCID: PMC7017515 DOI: 10.1186/s40814-020-00569-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/06/2020] [Indexed: 01/03/2023] Open
Abstract
Background Bariatric surgery is an effective long-term weight loss strategy yielding improvements in neurocognitive function; however, the mechanism(s) responsible for these improvements remains unclear. Here, we assessed the feasibility of using magnetic resonance imaging (MRI) to evaluate whether cerebral vascular reactivity (CVR) is impaired in severely obese bariatric surgery candidates compared with normal weight healthy controls and whether CVR improves following bariatric surgery. We also investigated whether changes in CVR were associated with changes in cognitive function. Methods Bariatric surgery candidates (n = 6) were compared with normal weight healthy controls of a similar age (n = 10) at baseline, and then reassessed 2 weeks and 14 weeks following sleeve gastrectomy bariatric surgery. Young reference controls (n = 7) were also studied at baseline to establish the range of normal for each outcome measure. Microvascular and macrovascular CVR to hypercapnia (5% CO2) were assessed using blood-oxygen-level-dependent (BOLD) MRI, and changes in the middle cerebral artery (MCA) cross-sectional area, respectively. Cognitive function was assessed using a validated neurocognitive software. Results Compliance with the CVR protocol was high. Both macro- and micro-cerebrovascular function were highest in the young reference controls. Cognitive function was lower in obese bariatric surgery candidates compared with normal weight controls, and improved by 17% at 2 weeks and 21% by 14 weeks following bariatric surgery. To our surprise, whole-brain CVR BOLD did not differ between obese bariatric surgery candidates and normal weight controls of similar age (0.184 ± 0.101 vs. 0.192 ± 0.034 %BOLD/mmHgCO2), and did not change after bariatric surgery. In contrast, we observed vasoconstriction of the MCA during hypercapnia in 60% of the obese patients prior to surgery, which appeared to be abolished following bariatric surgery. Improvements in cognitive function were not associated with improvements in either CVR BOLD or MCA vasodilation after bariatric surgery. Conclusions Assessing CVR responses to a hypercapnic challenge with MRI was feasible in severely obese bariatric patients. However, no changes in whole-brain BOLD CVR were observed following bariatric surgery despite improvements in cognitive function. We recommend that future large trials assess CVR responses to cognitive tasks (rather than hypercapnia) to better define the mechanisms responsible for cognitive function improvements following bariatric surgery.
Collapse
Affiliation(s)
- Wesley J Tucker
- 1Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, University of Texas at Arlington, Science & Engineering Innovation & Research Building, 701 S. Nedderman Drive, Room 105, Arlington, TX 76019 USA.,2Department of Nutrition & Food Sciences, Texas Woman's University, Houston, TX USA
| | - Binu P Thomas
- 3Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX USA.,4Department of Bioengineering, University of Texas at Arlington, Arlington, TX USA
| | - Nancy Puzziferri
- 5Department of Surgery, Oregon Health & Science University, Portland, OR USA
| | - T Jake Samuel
- 1Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, University of Texas at Arlington, Science & Engineering Innovation & Research Building, 701 S. Nedderman Drive, Room 105, Arlington, TX 76019 USA
| | - Vlad G Zaha
- 3Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX USA.,6Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Ildiko Lingvay
- 7Division of Endocrinology, Diabetes, and Metabolism, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jaime Almandoz
- 7Division of Endocrinology, Diabetes, and Metabolism, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jing Wang
- 8College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX USA
| | - Edward A Gonzales
- 1Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, University of Texas at Arlington, Science & Engineering Innovation & Research Building, 701 S. Nedderman Drive, Room 105, Arlington, TX 76019 USA.,8College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX USA
| | - R Matthew Brothers
- 1Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, University of Texas at Arlington, Science & Engineering Innovation & Research Building, 701 S. Nedderman Drive, Room 105, Arlington, TX 76019 USA
| | - Michael D Nelson
- 1Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, University of Texas at Arlington, Science & Engineering Innovation & Research Building, 701 S. Nedderman Drive, Room 105, Arlington, TX 76019 USA.,4Department of Bioengineering, University of Texas at Arlington, Arlington, TX USA
| |
Collapse
|
18
|
Zhang J, Liu Y, Zheng Y, Luo Y, Du Y, Zhao Y, Guan J, Zhang X, Fu J. TREM-2-p38 MAPK signaling regulates neuroinflammation during chronic cerebral hypoperfusion combined with diabetes mellitus. J Neuroinflammation 2020; 17:2. [PMID: 31900229 PMCID: PMC6942413 DOI: 10.1186/s12974-019-1688-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Diabetes mellitus (DM) and chronic cerebral hypoperfusion(CCH)are both risk factors for cognitive impairment. However, whether DM and CCH can synergistically promote cognitive impairment and the related pathological mechanisms remain unknown. Methods To investigate the effect of DM and CCH on cognitive function, rats fed with high-fat diet (HFD) and injected with low-dose streptozotocin (STZ) followed by bilateral common carotid artery occlusion (BCCAO) were induced to mimic DM and CCH in vivo and mouse BV2 microglial cells were exposed to hypoxia and/or high glucose to mimic CCH complicated with DM pathologies in vitro. To further explore the underlying mechanism, TREM-2-specific small interfering RNA and TREM-2 overexpression lentivirus were used to knock out and overexpress TREM-2, respectively. Results Cognitive deficits, neuronal cell death, neuroinflammation with microglial activation, and TREM-2-MAPK signaling were enhanced when DM was superimposed on CCH both in vivo and in vitro. Manipulating TREM-2 expression levels markedly regulated the p38 MAPK signaling and the inflammatory response in vitro. TREM-2 knockout intensified while TREM-2 overexpression suppressed the p38 MAPK signaling and subsequent pro-inflammatory mediator production under high glucose and hypoxia condition. Conclusions These results suggest that TREM-2 negatively regulates p38 MAPK-mediated inflammatory response when DM was synergistically superimposed on CCH and highlight the importance of TREM-2 as a potential target of immune regulation in DM and CCH.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yu Liu
- Department of Medicine, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Yaling Zheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yan Luo
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yu Du
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yao Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
19
|
Wen F, Zhuge W, Wang J, Lu X, You R, Liu L, Zhuge Q, Ding S. Oridonin prevents insulin resistance-mediated cognitive disorder through PTEN/Akt pathway and autophagy in minimal hepatic encephalopathy. J Cell Mol Med 2019; 24:61-78. [PMID: 31568638 PMCID: PMC6933371 DOI: 10.1111/jcmm.14546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Minimal hepatic encephalopathy (MHE) was characterized for cognitive dysfunction. Insulin resistance (IR) has been identified to be correlated with the pathogenesis of MHE. Oridonin (Ori) is an active terpenoid, which has been reported to rescue synaptic loss and restore insulin sensitivity. In this study, we found that intraperitoneal injection of Ori rescued IR, reduced the autophagosome formation and synaptic loss and improved cognitive dysfunction in MHE rats. Moreover, in insulin‐resistant PC12 cells and N2a cells, we found that Ori blocked IR‐induced synaptic deficits via the down‐regulation of PTEN, the phosphorylation of Akt and the inhibition of autophagy. Taken together, these results suggested that Ori displays therapeutic efficacy towards memory deficits via improvement of IR in MHE and represents a novel bioactive therapeutic agent for treating MHE.
Collapse
Affiliation(s)
- Fangfang Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weishan Zhuge
- Gastrointestinal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoai Lu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruimin You
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leping Liu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichuan Zhuge
- Neurosurgery Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Pappolla MA, Manchikanti L, Andersen CR, Greig NH, Ahmed F, Fang X, Seffinger MA, Trescot AM. Is insulin resistance the cause of fibromyalgia? A preliminary report. PLoS One 2019; 14:e0216079. [PMID: 31059525 PMCID: PMC6502334 DOI: 10.1371/journal.pone.0216079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Fibromyalgia (FM) is one of the most frequent generalized pain disorders with poorly understood neurobiological mechanisms. This condition accounts for an enormous proportion of healthcare costs. Despite extensive research, the etiology of FM is unknown and thus, there is no disease modifying therapy available for this condition. We show that most (if not all) patients with FM belong to a distinct population that can be segregated from a control group by their glycated hemoglobin A1c (HbA1c) levels, a surrogate marker of insulin resistance (IR). This was demonstrated by analyzing the data after introducing an age stratification correction into a linear regression model. This strategy showed highly significant differences between FM patients and control subjects (p < 0.0001 and p = 0.0002, for two separate control populations, respectively). A subgroup of patients meeting criteria for pre-diabetes or diabetes (patients with HbA1c values of 5.7% or greater) who had undergone treatment with metformin showed dramatic improvements of their widespread myofascial pain, as shown by their scores using a pre and post-treatment numerical pain rating scale (NPRS) for evaluation. Although preliminary, these findings suggest a pathogenetic relationship between FM and IR, which may lead to a radical paradigm shift in the management of this disorder.
Collapse
Affiliation(s)
- Miguel A. Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- St. Michael’s Pain & Spine Clinics, Houston, Texas, United States of America
- * E-mail:
| | - Laxmaiah Manchikanti
- Department of Anesthesiology, LSU School of Medicine Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Clark R. Andersen
- Office of Biostatistics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nigel H. Greig
- Drug Design and Development Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fawad Ahmed
- St. Michael’s Pain & Spine Clinics, Houston, Texas, United States of America
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael A. Seffinger
- Department of Neuromusculoskeletal Medicine, College of Osteopathic Medicine of the Pacific, Pomona, California, United States of America
| | - Andrea M. Trescot
- Pain and Headache Center, Eagle River, Alaska, United States of America
| |
Collapse
|
21
|
Santiago JCP, Hallschmid M. Outcomes and clinical implications of intranasal insulin administration to the central nervous system. Exp Neurol 2019; 317:180-190. [PMID: 30885653 DOI: 10.1016/j.expneurol.2019.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Insulin signaling in the brain plays a critical role in metabolic control and cognitive function. Targeting insulinergic pathways in the central nervous system via peripheral insulin administration is feasible, but associated with systemic effects that necessitate tight supervision or countermeasures. The intranasal route of insulin administration, which largely bypasses the circulation and thereby greatly reduces these obstacles, has now been repeatedly tested in proof-of-concept studies in humans as well as animals. It is routinely used in experimental settings to investigate the impact on eating behavior, peripheral metabolism, memory function and brain activation of acute or long-term enhancements in central nervous system insulin signaling. Epidemiological and experimental evidence linking deteriorations in metabolic control such as diabetes with neurodegenerative diseases imply pathophysiological relevance of dysfunctional brain insulin signaling or brain insulin resistance, and suggest that targeting insulin in the brain holds some promise as a therapy or adjunct therapy. This short narrative review gives an overview over recent findings on brain insulin signaling as derived from human studies deploying intranasal insulin, and evaluates the potential of therapeutic interventions that target brain insulin resistance.
Collapse
Affiliation(s)
- João C P Santiago
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Espeland MA, Carmichael O, Yasar S, Hugenschmidt C, Hazzard W, Hayden KM, Rapp SR, Neiberg R, Johnson KC, Hoscheidt S, Mielke MM. Sex-related differences in the prevalence of cognitive impairment among overweight and obese adults with type 2 diabetes. Alzheimers Dement 2018; 14:1184-1192. [PMID: 30201101 PMCID: PMC6338071 DOI: 10.1016/j.jalz.2018.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/01/2018] [Accepted: 05/10/2018] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus and obesity may increase risks for cognitive decline as individuals age. It is unknown whether this results in different prevalences of cognitive impairment for women and men. METHODS The Action for Health in Diabetes, a randomized controlled clinical trial of a 10-year intensive lifestyle intervention, adjudicated cases of cross-sectional cognitive impairment (mild cognitive impairment or dementia) 10-13 years after enrollment in 3802 individuals (61% women). RESULTS The cross-sectional prevalences of cognitive impairment were 8.3% (women) and 14.8% (men): adjusted odds ratio 0.55, 95% confidence interval [0.43, 0.71], P < .001. Demographic, clinical, and lifestyle risk factors varied between women and men but did not account for this difference, which was limited to individuals without apolipoprotein E (APOE)-ε4 alleles (interaction P = .034). CONCLUSIONS Among overweight and obese adults with type 2 diabetes mellitus, traditional risk factors did not account for the lower prevalence of cognitive impairment observed in women compared with men.
Collapse
Affiliation(s)
- Mark A Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | | | - Sevil Yasar
- Departrment of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - William Hazzard
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kathleen M Hayden
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen R Rapp
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Rebecca Neiberg
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Karen C Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Siobhan Hoscheidt
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michelle M Mielke
- Departments of Epidemiology and Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Benedict C, Grillo CA. Insulin Resistance as a Therapeutic Target in the Treatment of Alzheimer's Disease: A State-of-the-Art Review. Front Neurosci 2018; 12:215. [PMID: 29743868 PMCID: PMC5932355 DOI: 10.3389/fnins.2018.00215] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
Research in animals and humans has shown that type 2 diabetes and its prodromal state, insulin resistance, promote major pathological hallmarks of Alzheimer's disease (AD), such as the formation of amyloid plaques and neurofibrillary tangles (NFT). Worrisomely, dysregulated amyloid beta (Aβ) metabolism has also been shown to promote central nervous system insulin resistance; although the role of tau metabolism remains controversial. Collectively, as proposed in this review, these findings suggest the existence of a mechanistic interplay between AD pathogenesis and disrupted insulin signaling. They also provide strong support for the hypothesis that pharmacologically restoring brain insulin signaling could represent a promising strategy to curb the development and progression of AD. In this context, great hopes have been attached to the use of intranasal insulin. This drug delivery method increases cerebrospinal fluid concentrations of insulin in the absence of peripheral side effects, such as hypoglycemia. With this in mind, the present review will also summarize current knowledge on the efficacy of intranasal insulin to mitigate major pathological symptoms of AD, i.e., cognitive impairment and deregulation of Aβ and tau metabolism.
Collapse
Affiliation(s)
| | - Claudia A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina-School of Medicine, Columbia, SC, United States
| |
Collapse
|
24
|
Mosconi L, Walters M, Sterling J, Quinn C, McHugh P, Andrews RE, Matthews DC, Ganzer C, Osorio RS, Isaacson RS, De Leon MJ, Convit A. Lifestyle and vascular risk effects on MRI-based biomarkers of Alzheimer's disease: a cross-sectional study of middle-aged adults from the broader New York City area. BMJ Open 2018; 8:e019362. [PMID: 29574441 PMCID: PMC5875649 DOI: 10.1136/bmjopen-2017-019362] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To investigate the effects of lifestyle and vascular-related risk factors for Alzheimer's disease (AD) on in vivo MRI-based brain atrophy in asymptomatic young to middle-aged adults. DESIGN Cross-sectional, observational. SETTING Broader New York City area. Two research centres affiliated with the Alzheimer's disease Core Center at New York University School of Medicine. PARTICIPANTS We studied 116 cognitively normal healthy research participants aged 30-60 years, who completed a three-dimensional T1-weighted volumetric MRI and had lifestyle (diet, physical activity and intellectual enrichment), vascular risk (overweight, hypertension, insulin resistance, elevated cholesterol and homocysteine) and cognition (memory, executive function, language) data. Estimates of cortical thickness for entorhinal (EC), posterior cingulate, orbitofrontal, inferior and middle temporal cortex were obtained by use of automated segmentation tools. We applied confirmatory factor analysis and structural equation modelling to evaluate the associations between lifestyle, vascular risk, brain and cognition. RESULTS Adherence to a Mediterranean-style diet (MeDi) and insulin sensitivity were both positively associated with MRI-based cortical thickness (diet: βs≥0.26, insulin sensitivity βs≥0.58, P≤0.008). After accounting for vascular risk, EC in turn explained variance in memory (P≤0.001). None of the other lifestyle and vascular risk variables were associated with brain thickness. In addition, the path associations between intellectual enrichment and better cognition were significant (βs≥0.25 P≤0.001), as were those between overweight and lower cognition (βs≥-0.22, P≤0.01). CONCLUSIONS In cognitively normal middle-aged adults, MeDi and insulin sensitivity explained cortical thickness in key brain regions for AD, and EC thickness predicted memory performance in turn. Intellectual activity and overweight were associated with cognitive performance through different pathways. Our findings support further investigation of lifestyle and vascular risk factor modification against brain ageing and AD. More studies with larger samples are needed to replicate these research findings in more diverse, community-based settings.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York City, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York City, New York, USA
- Department of Nutrition and Food Studies, New York University Steinhardt School of Public Health, New York City, New York, USA
| | - Michelle Walters
- Department of Nutrition and Food Studies, New York University Steinhardt School of Public Health, New York City, New York, USA
| | - Joanna Sterling
- Department of Psychology, New York University, New York City, New York, USA
| | - Crystal Quinn
- Department of Psychiatry, New York University School of Medicine, New York City, New York, USA
| | - Pauline McHugh
- Department of Psychiatry, New York University School of Medicine, New York City, New York, USA
| | | | | | - Christine Ganzer
- Hunter-Bellevue School of Nursing, Hunter College, The City University of New York, New York City, New York, USA
| | - Ricardo S Osorio
- Department of Psychiatry, New York University School of Medicine, New York City, New York, USA
| | - Richard S Isaacson
- Department of Neurology, Weill Cornell Medical College, New York City, New York, USA
| | - Mony J De Leon
- Department of Psychiatry, New York University School of Medicine, New York City, New York, USA
| | - Antonio Convit
- Department of Psychiatry, New York University School of Medicine, New York City, New York, USA
| |
Collapse
|