1
|
Muthusamy K, Perez-Ortiz JM, Ligezka AN, Altassan R, Johnsen C, Schultz MJ, Patterson MC, Morava E. Neurological manifestations in PMM2-congenital disorders of glycosylation (PMM2-CDG): Insights into clinico-radiological characteristics, recommendations for follow-up, and future directions. Genet Med 2024; 26:101027. [PMID: 37955240 DOI: 10.1016/j.gim.2023.101027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
PURPOSE In the absence of prospective data on neurological symptoms, disease outcome, or guidelines for system specific management in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG), we aimed to collect and review natural history data. METHODS Fifty-one molecularly confirmed individuals with PMM2-CDG enrolled in the Frontiers of Congenital Disorders of Glycosylation natural history study were reviewed. In addition, we prospectively reviewed a smaller cohort of these individuals with PMM2-CDG on off-label acetazolamide treatment. RESULTS Mean age at diagnosis was 28.04 months. Developmental delay is a constant phenotype. Neurological manifestation included ataxia (90.2%), myopathy (82.4%), seizures (56.9%), neuropathy (52.9%), microcephaly (19.1%), extrapyramidal symptoms (27.5%), stroke-like episodes (SLE) (15.7%), and spasticity (13.7%). Progressive cerebellar atrophy is the characteristic neuroimaging finding. Additionally, supratentorial white matter changes were noted in adult age. No correlation was observed between the seizure severity and SLE risk, although all patients with SLE have had seizures in the past. "Off-label" acetazolamide therapy in a smaller sub-cohort resulted in improvement in speech fluency but did not show statistically significant improvement in objective ataxia scores. CONCLUSION Clinical and radiological findings suggest both neurodevelopmental and neurodegenerative pathophysiology. Seizures may manifest at any age and are responsive to levetiracetam monotherapy in most cases. Febrile seizure is the most common trigger for SLEs. Acetazolamide is well tolerated.
Collapse
Affiliation(s)
| | - Judit M Perez-Ortiz
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Neurology, Mayo Clinic, Rochester, MN
| | - Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Ruqaiah Altassan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Christin Johnsen
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN; Department of Pediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | | | - Marc C Patterson
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Neurology, Mayo Clinic, Rochester, MN; Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN; Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Medical Genetics, University Medical School, Pecs, Hungary
| |
Collapse
|
2
|
Lee HF, Chi CS. Congenital disorders of glycosylation and infantile epilepsy. Epilepsy Behav 2023; 142:109214. [PMID: 37086590 DOI: 10.1016/j.yebeh.2023.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare inherited metabolic disorders caused by defects in various defects of protein or lipid glycosylation pathways. The symptoms and signs of CDG usually develop in infancy. Epilepsy is commonly observed in CDG individuals and is often a presenting symptom. These epilepsies can present across the lifespan, share features of refractoriness to antiseizure medications, and are often associated with comorbid developmental delay, psychomotor regression, intellectual disability, and behavioral problems. In this review, we discuss CDG and infantile epilepsy, focusing on an overview of clinical manifestations and electroencephalographic features. Finally, we propose a tiered approach that will permit a clinician to systematically investigate and identify CDG earlier, and furthermore, to provide genetic counseling for the family.
Collapse
Affiliation(s)
- Hsiu-Fen Lee
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145, Xingda Rd., Taichung 402, Taiwan; Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| | - Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| |
Collapse
|
3
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
4
|
Wang CD, Xu S, Chen S, Chen ZH, Dean N, Wang N, Gao XD. An in vitro assay for enzymatic studies on human ALG13/14 heterodimeric UDP-N-acetylglucosamine transferase. Front Cell Dev Biol 2022; 10:1008078. [PMID: 36200043 PMCID: PMC9527342 DOI: 10.3389/fcell.2022.1008078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The second step of eukaryotic lipid-linked oligosaccharide (LLO) biosynthesis is catalyzed by the conserved ALG13/ALG14 heterodimeric UDP-N-acetylglucosamine transferase (GnTase). In humans, mutations in ALG13 or ALG14 lead to severe neurological disorders with a multisystem phenotype, known as ALG13/14-CDG (congenital disorders of glycosylation). How these mutations relate to disease is unknown because to date, a reliable GnTase assay for studying the ALG13/14 complex is lacking. Here we describe the development of a liquid chromatography/mass spectrometry-based quantitative GnTase assay using chemically synthesized GlcNAc-pyrophosphate-dolichol as the acceptor and purified human ALG13/14 dimeric enzyme. This assay enabled us to demonstrate that in contrast to the literature, only the shorter human ALG13 isoform 2, but not the longer isoform 1 forms a functional complex with ALG14 that participates in LLO synthesis. The longer ALG13 isoform 1 does not form a complex with ALG14 and therefore lacks GnTase activity. Importantly, we further established a quantitative assay for GnTase activities of ALG13- and ALG14-CDG variant alleles, demonstrating that GnTase deficiency is the cause of ALG13/14-CDG phenotypes.
Collapse
Affiliation(s)
- Chun-Di Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Si Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuai Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zheng-Hui Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, New York City, NY, United States
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Xiao-Dong Gao, ; Ning Wang,
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xiao-Dong Gao, ; Ning Wang,
| |
Collapse
|
5
|
van der Meer D, Shadrin AA, O'Connell K, Bettella F, Djurovic S, Wolfers T, Alnæs D, Agartz I, Smeland OB, Melle I, Sánchez JM, Linden DEJ, Dale AM, Westlye LT, Andreassen OA, Frei O, Kaufmann T. Boosting Schizophrenia Genetics by Utilizing Genetic Overlap With Brain Morphology. Biol Psychiatry 2022; 92:291-298. [PMID: 35164939 PMCID: PMC12012303 DOI: 10.1016/j.biopsych.2021.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schizophrenia is a complex polygenic disorder with subtle, distributed abnormalities in brain morphology. There are indications of shared genetic architecture between schizophrenia and brain measures despite low genetic correlations. Through the use of analytical methods that allow for mixed directions of effects, this overlap may be leveraged to improve our understanding of underlying mechanisms of schizophrenia and enrich polygenic risk prediction outcome. METHODS We ran a multivariate genome-wide analysis of 175 brain morphology measures using data from 33,735 participants of the UK Biobank and analyzed the results in a conditional false discovery rate together with schizophrenia genome-wide association study summary statistics of the Psychiatric Genomics Consortium (PGC) Wave 3. We subsequently created a pleiotropy-enriched polygenic score based on the loci identified through the conditional false discovery rate approach and used this to predict schizophrenia in a nonoverlapping sample of 743 individuals with schizophrenia and 1074 healthy controls. RESULTS We found that 20% of the loci and 50% of the genes significantly associated with schizophrenia were also associated with brain morphology. The conditional false discovery rate analysis identified 428 loci, including 267 novel loci, significantly associated with brain-linked schizophrenia risk, with functional annotation indicating high relevance for brain tissue. The pleiotropy-enriched polygenic score explained more variance in liability than conventional polygenic scores across several scenarios. CONCLUSIONS Our results indicate strong genetic overlap between schizophrenia and brain morphology with mixed directions of effect. The results also illustrate the potential of exploiting polygenetic overlap between brain morphology and mental disorders to boost discovery of brain tissue-specific genetic variants and its use in polygenic risk frameworks.
Collapse
Affiliation(s)
- Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin O'Connell
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Wolfers
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jennifer Monereo Sánchez
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - David E J Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Katata Y, Uneoka S, Saijyo N, Aihara Y, Miyazoe T, Koyamaishi S, Oikawa Y, Ito Y, Abe Y, Numata-Uematsu Y, Takayama J, Kikuchi A, Tamiya G, Uematsu M, Kure S. The longest reported sibling survivors of a severe form of congenital myasthenic syndrome with the ALG14 pathogenic variant. Am J Med Genet A 2021; 188:1293-1298. [PMID: 34971077 DOI: 10.1002/ajmg.a.62629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 11/06/2022]
Abstract
Congenital myasthenic syndromes (CMS) is a group of diseases that causes abnormalities at the neuromuscular junction owing to genetic anomalies. The pathogenic variant in ALG14 results in a severe pathological form of CMS causing end-plate acetylcholine receptor deficiency. Here, we report the cases of two siblings with CMS associated with a novel variant in ALG14. Immediately after birth, they showed hypotonia and multiple joint contractures with low Apgar scores. Ptosis, low-set ears, and high-arched palate were noted. Deep tendon reflexes were symmetrical. They showed worsening swallowing and respiratory problems; hence, nasal feeding and tracheotomy were performed. Cranial magnetic resonance imaging scans revealed delayed myelination and cerebral atrophy. Exome sequencing indicated that the siblings had novel compound heterozygous missense variants, c.590T>G (p.Val197Gly) and c.433G>A (p.Gly145Arg), in exon 4 of ALG14. Repetitive nerve stimulation test showed an abnormal decrease in compound muscle action potential. After treatment with pyridostigmine, the time off the respirator increased. Their epileptic seizures were well controlled by anti-epileptic drugs. Their clinical course is stable even now at the ages of 5 and 2 years, making them the longest reported survivors of a severe form of CMS with the ALG14 variant thus far.
Collapse
Affiliation(s)
- Yu Katata
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Saki Uneoka
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Naoya Saijyo
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yu Aihara
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Takamitsu Miyazoe
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Shun Koyamaishi
- Department of Pediatrics, Hachinohe City Hospital, Hachinohe, Japan
| | - Yoshitsugu Oikawa
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yuya Ito
- Department of Pediatrics, Hachinohe City Hospital, Hachinohe, Japan.,Department of Neonatology, Aomori Prefectural Central Hospital, Hachinohe, Japan
| | - Yu Abe
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.,Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Tsuruoka, Japan
| | | | - Jun Takayama
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Gen Tamiya
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Gang Q, Bettencourt C, Brady S, Holton JL, Healy EG, McConville J, Morrison PJ, Ripolone M, Violano R, Sciacco M, Moggio M, Mora M, Mantegazza R, Zanotti S, Wang Z, Yuan Y, Liu WW, Beeson D, Hanna M, Houlden H. Genetic defects are common in myopathies with tubular aggregates. Ann Clin Transl Neurol 2021; 9:4-15. [PMID: 34908252 PMCID: PMC8791796 DOI: 10.1002/acn3.51477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Objective A group of genes have been reported to be associated with myopathies with tubular aggregates (TAs). Many cases with TAs still lack of genetic clarification. This study aims to explore the genetic background of cases with TAs in order to improve our knowledge of the pathogenesis of these rare pathological structures. Methods Thirty‐three patients including two family members with biopsy confirmed TAs were collected. Whole‐exome sequencing was performed on 31 unrelated index patients and a candidate gene search strategy was conducted. The identified variants were confirmed by Sanger sequencing. The wild‐type and the mutant p.Ala11Thr of ALG14 were transfected into human embryonic kidney 293 cells (HEK293), and western blot analysis was performed to quantify protein expression levels. Results Eleven index cases (33%) were found to have pathogenic variant or likely pathogenic variants in STIM1, ORAI1, PGAM2, SCN4A, CASQ1 and ALG14. Among them, the c.764A>T (p.Glu255Val) in STIM1 and the c.1333G>C (p.Val445Leu) in SCN4A were novel. Western blot analysis showed that the expression of ALG14 protein was severely reduced in the mutant ALG14 HEK293 cells (p.Ala11Thr) compared with wild type. The ALG14 variants might be associated with TAs in patients with complex multisystem disorders. Interpretation This study expands the phenotypic and genotypic spectrums of myopathies with TAs. Our findings further confirm previous hypothesis that genes related with calcium signalling pathway and N‐linked glycosylation pathway are the main genetic causes of myopathies with TAs.
Collapse
Affiliation(s)
- Qiang Gang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Stefen Brady
- Oxford Muscle Service, John Radcliffe Hospital, Oxford, UK
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,Queen Square Brain Bank for Neurological Disorders, London, UK
| | - Estelle G Healy
- Department of Neuropathology, Royal Victoria Hospital, Belfast, Northern Ireland
| | - John McConville
- Department of Neurology, Belfast City Hospital, Belfast, BT9 7AB, UK
| | - Patrick J Morrison
- Department of Genetic Medicine, Belfast City Hospital, Belfast, BT9 7AB, UK
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Raffaella Violano
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Isitituto Neurologico C. Besta, Milano, Italy
| | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Isitituto Neurologico C. Besta, Milano, Italy
| | - Simona Zanotti
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Isitituto Neurologico C. Besta, Milano, Italy
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Michael Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,Neurogenetics Laboratory, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| |
Collapse
|
8
|
Palombo F, Piccolo B, Saccani E, Fiorini C, Capristo M, Caporali L, Pisani F, Carelli V. A novel ALG14 missense variant in an alive child with myopathy, epilepsy, and progressive cerebral atrophy. Am J Med Genet A 2021; 185:1918-1921. [PMID: 33751823 DOI: 10.1002/ajmg.a.62153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Benedetta Piccolo
- Child Neuropsychiatric Unit, Mother and Child Department, AOU di Parma, Parma, Italy
| | - Elena Saccani
- Dipartimento di Medicina Generale e Specialistica, U.O Neurologia, AOU di Parma, Parma, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Francesco Pisani
- Child Neuropsychiatric Unit, Medicine and Surgery Department, Neuroscience Section, University of Parma, Parma, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Paprocka J, Jezela-Stanek A, Tylki-Szymańska A, Grunewald S. Congenital Disorders of Glycosylation from a Neurological Perspective. Brain Sci 2021; 11:brainsci11010088. [PMID: 33440761 PMCID: PMC7827962 DOI: 10.3390/brainsci11010088] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post-translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations in the following genes: ALG13, DOLK, DPAGT1, SLC35A2, ST3GAL3, PIGA, PIGW, ST3GAL5. On brain neuroimaging, atrophic changes of the cerebellum and cerebrum are frequently seen. Brain malformations particularly in the group of dystroglycanopathies are reported. Despite the growing number of CDG patients in the world and often neurological symptoms dominating in the clinical picture, the number of performed screening tests eg transferrin isoforms is systematically decreasing as broadened genetic testing is recently more favored. The aim of the review is the summary of selected neurological symptoms in CDG described in the literature in one paper. It is especially important for pediatric neurologists not experienced in the field of metabolic medicine. It may help to facilitate the diagnosis of this expanding group of disorders. Biochemically, this paper focuses on protein glycosylation abnormalities.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-606-415-888
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland;
| | - Stephanie Grunewald
- NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK;
| |
Collapse
|
10
|
Ng BG, Eklund EA, Shiryaev SA, Dong YY, Abbott MA, Asteggiano C, Bamshad MJ, Barr E, Bernstein JA, Chelakkadan S, Christodoulou J, Chung WK, Ciliberto MA, Cousin J, Gardiner F, Ghosh S, Graf WD, Grunewald S, Hammond K, Hauser NS, Hoganson GE, Houck KM, Kohler JN, Morava E, Larson AA, Liu P, Madathil S, McCormack C, Meeks NJ, Miller R, Monaghan KG, Nickerson DA, Palculict TB, Papazoglu GM, Pletcher BA, Scheffer IE, Schenone AB, Schnur RE, Si Y, Rowe LJ, Serrano Russi AH, Russo RS, Thabet F, Tuite A, Mercedes Villanueva M, Wang RY, Webster RI, Wilson D, Zalan A, Wolfe LA, Rosenfeld JA, Rhodes L, Freeze HH. Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions. J Inherit Metab Dis 2020; 43:1333-1348. [PMID: 32681751 PMCID: PMC7722193 DOI: 10.1002/jimd.12290] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.
Collapse
Affiliation(s)
- Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Erik A. Eklund
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, Lund, Sweden
| | - Sergey A. Shiryaev
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yin Y. Dong
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mary-Alice Abbott
- Department of Pediatrics, Baystate Children’s Hospital, University of Massachusetts Medical School - Baystate, Springfield, Massachusetts
| | - Carla Asteggiano
- CEMECO—CONICET, Children Hospital, School of Medicine, National University of Cordoba, Cordoba, Argentina
- Chair of Pharmacology, Catholic University of Cordoba, Cordoba, Argentina
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Eileen Barr
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Jonathan A. Bernstein
- Stanford University School of Medicine, Stanford, California
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | | | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, New York
- Department of Medicine, Columbia University, New York, New York
| | - Michael A. Ciliberto
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Janice Cousin
- Section of Human Biochemical Genetics, National Human Genome Research Institute, Bethesda, Maryland
| | - Fiona Gardiner
- University of Melbourne, Austin Health, Melbourne, Australia
| | - Suman Ghosh
- Department of Pediatrics Division of Pediatric Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - William D. Graf
- Division of Pediatric Neurology, Department of Pediatrics, Connecticut Children’s; University of Connecticut, Farmington, Connecticut
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital, Institute of Child Health University College London, NIHR Biomedical Research Center, London, UK
| | - Katherine Hammond
- Division of Pediatric Neurology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Natalie S. Hauser
- Inova Translational Medicine Institute Division of Medical Genomics Inova Fairfax Hospital Falls Church, Virginia
| | - George E. Hoganson
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Kimberly M. Houck
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jennefer N. Kohler
- Stanford University School of Medicine, Stanford, California
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Austin A. Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Sujana Madathil
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Colleen McCormack
- Stanford University School of Medicine, Stanford, California
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Naomi J.L. Meeks
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rebecca Miller
- Inova Translational Medicine Institute Division of Medical Genomics Inova Fairfax Hospital Falls Church, Virginia
| | | | | | | | - Gabriela Magali Papazoglu
- CEMECO—CONICET, Children Hospital, School of Medicine, National University of Cordoba, Cordoba, Argentina
| | - Beth A. Pletcher
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Ingrid E. Scheffer
- University of Melbourne, Austin Health, Melbourne, Australia
- University of Melbourne, Royal Children’s Hospital, Florey and Murdoch Institutes, Melbourne, Australia
| | | | | | - Yue Si
- GeneDx, Inc. Laboratory, Gaithersburg, Maryland
| | - Leah J. Rowe
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Alvaro H. Serrano Russi
- Division of Medical Genetics Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | - Allysa Tuite
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, New Jersey
| | | | - Raymond Y. Wang
- Division of Metabolic Disorders, Children’s Hospital of Orange County, Orange, California
- Department of Pediatrics, University of California-Irvine, Orange, California
| | - Richard I. Webster
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital, Westmead, Australia
- Kids Neuroscience Centre, The Children’s Hospital, Westmead, Australia
| | - Dorcas Wilson
- Netcare Sunninghill Hospital, Sandton, South Africa
- Nelson Mandela Children’s Hospital, Johannesburg, South Africa
| | - Alice Zalan
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | | | - Lynne A. Wolfe
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, Maryland
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | | | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
11
|
Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: Still "hot" in 2020. Biochim Biophys Acta Gen Subj 2020; 1865:129751. [PMID: 32991969 DOI: 10.1016/j.bbagen.2020.129751] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are inherited metabolic diseases caused by defects in the genes important for the process of protein and lipid glycosylation. With the ever growing number of the known subtypes and discoveries regarding the disease mechanisms and therapy development, it remains a very active field of study. SCOPE OF REVIEW This review brings an update on the CDG-related research since 2017, describing the novel gene defects, pathobiomechanisms, biomarkers and the patients' phenotypes. We also summarize the clinical guidelines for the most prevalent disorders and the current therapeutical options for the treatable CDG. MAJOR CONCLUSIONS In the majority of the 23 new CDG, neurological involvement is associated with other organ disease. Increasingly, different aspects of cellular metabolism (e.g., autophagy) are found to be perturbed in multiple CDG. GENERAL SIGNIFICANCE This work highlights the recent trends in the CDG field and comprehensively overviews the up-to-date clinical recommendations.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Anna Cechova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jaak Jaeken
- Department of Paediatrics and Centre for Metabolic Diseases, KU Leuven and University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Abstract
OBJECTIVES Congenital myasthenic syndromes (CMSs) are a genotypically and phenotypically heterogeneous group of neuromuscular disorders, which have in common an impaired neuromuscular transmission. Since the field of CMSs is steadily expanding, the present review aimed at summarizing and discussing current knowledge and recent advances concerning the etiology, clinical presentation, diagnosis, and treatment of CMSs. METHODS Systematic literature review. RESULTS Currently, mutations in 32 genes are made responsible for autosomal dominant or autosomal recessive CMSs. These mutations concern 8 presynaptic, 4 synaptic, 15 post-synaptic, and 5 glycosilation proteins. These proteins function as ion-channels, enzymes, or structural, signalling, sensor, or transporter proteins. The most common causative genes are CHAT, COLQ, RAPSN, CHRNE, DOK7, and GFPT1. Phenotypically, these mutations manifest as abnormal fatigability or permanent or fluctuating weakness of extra-ocular, facial, bulbar, axial, respiratory, or limb muscles, hypotonia, or developmental delay. Cognitive disability, dysmorphism, neuropathy, or epilepsy are rare. Low- or high-frequency repetitive nerve stimulation may show an abnormal increment or decrement, and SF-EMG an increased jitter or blockings. Most CMSs respond favourably to acetylcholine-esterase inhibitors, 3,4-diamino-pyridine, salbutamol, albuterol, ephedrine, fluoxetine, or atracurium. CONCLUSIONS CMSs are an increasingly recognised group of genetically transmitted defects, which usually respond favorably to drugs enhancing the neuromuscular transmission. CMSs need to be differentiated from neuromuscular disorders due to muscle or nerve dysfunction.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|
13
|
Helman G, Sharma S, Crawford J, Patra B, Jain P, Bent SJ, Urtizberea JA, Saran RK, Taft RJ, van der Knaap MS, Simons C. Leukoencephalopathy due to variants in GFPT1-associated congenital myasthenic syndrome. Neurology 2019; 92:e587-e593. [PMID: 30635494 DOI: 10.1212/wnl.0000000000006886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To determine the molecular etiology of disease in 4 individuals from 2 unrelated families who presented with proximal muscle weakness and features suggestive of mitochondrial disease. METHODS Clinical information and neuroimaging were reviewed. Genome sequencing was performed on affected individuals and biological parents. RESULTS All affected individuals presented with muscle weakness and difficulty walking. In one family, both children had neonatal respiratory distress while the other family had 2 children with episodic deteriorations. In each family, muscle biopsy demonstrated ragged red fibers. MRI was suggestive of a mitochondrial leukoencephalopathy, with extensive deep cerebral white matter T2 hyperintense signal and selective involvement of the middle blade of the corpus callosum. Through genome sequencing, homozygous GFPT1 missense variants were identified in the affected individuals of each family. The variants detected (p.Arg14Leu and p.Thr151Lys) are absent from population databases and predicted to be damaging by in silico prediction tools. Following the genetic diagnosis, nerve conduction studies were performed and demonstrated a decremental response to repetitive nerve stimulation, confirming the diagnosis of myasthenia. Treatment with pyridostigmine was started in one family with favorable response. CONCLUSIONS GFPT1 encodes a widely expressed protein that controls the flux of glucose into the hexosamine-biosynthesis pathway that produces precursors for glycosylation of proteins. GFPT1 variants and defects in other enzymes of this pathway have previously been associated with congenital myasthenia. These findings identify leukoencephalopathy as a previously unrecognized phenotype in GFPT1-related disease and suggest that mitochondrial dysfunction could contribute to this disorder.
Collapse
Affiliation(s)
- Guy Helman
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Suvasini Sharma
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Joanna Crawford
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Bijoy Patra
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Puneet Jain
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Stephen J Bent
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - J Andoni Urtizberea
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ravindra K Saran
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ryan J Taft
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| | - Cas Simons
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Kvarnung M, Taylan F, Nilsson D, Anderlid BM, Malmgren H, Lagerstedt-Robinson K, Holmberg E, Burstedt M, Nordenskjöld M, Nordgren A, Lundberg ES. Genomic screening in rare disorders: New mutations and phenotypes, highlighting ALG14 as a novel cause of severe intellectual disability. Clin Genet 2018; 94:528-537. [PMID: 30221345 DOI: 10.1111/cge.13448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
We have investigated 20 consanguineous families with multiple children affected by rare disorders. Detailed clinical examinations, exome sequencing of affected as well as unaffected family members and further validation of likely pathogenic variants were performed. In 16/20 families, we identified pathogenic variants in autosomal recessive disease genes (ALMS1, PIGT, FLVCR2, TFG, CYP7B1, ALG14, EXOSC3, MEGF10, ASAH1, WDR62, ASPM, PNPO, ERCC5, KIAA1109, RIPK4, MAN1B1). A number of these genes have only rarely been reported previously and our findings thus confirm them as disease genes, further delineate the associated phenotypes and expand the mutation spectrum with reports of novel variants. We highlight the findings in two affected siblings with splice altering variants in ALG14 and propose a new clinical entity, which includes severe intellectual disability, epilepsy, behavioral problems and mild dysmorphic features, caused by biallelic variants in ALG14.
Collapse
Affiliation(s)
- Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Malmgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Holmberg
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Magnus Burstedt
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth S Lundberg
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Ng BG, Underhill HR, Palm L, Bengtson P, Rozet JM, Gerber S, Munnich A, Zanlonghi X, Stevens CA, Kircher M, Nickerson DA, Buckingham KJ, Josephson KD, Shendure J, Bamshad MJ, Freeze HH, Eklund EA. DPAGT1 Deficiency with Encephalopathy (DPAGT1-CDG): Clinical and Genetic Description of 11 New Patients. JIMD Rep 2018; 44:85-92. [PMID: 30117111 DOI: 10.1007/8904_2018_128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic mutations in DPAGT1 cause a rare type of a congenital disorder of glycosylation termed DPAGT1-CDG or, alternatively, a milder version with only myasthenia known as DPAGT1-CMS. Fourteen disease-causing mutations in 28 patients from 10 families have previously been reported to cause the systemic form, DPAGT1-CDG. We here report on another 11 patients from 8 families and add 10 new mutations. Most patients have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. We also present data on three affected females that are young adults and have a somewhat milder, stable disease. Our findings expand both the molecular and clinical knowledge of previously published data but also widen the phenotypic spectrum of DPAGT1-CDG.
Collapse
Affiliation(s)
- Bobby G Ng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hunter R Underhill
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | - Lars Palm
- Division of Pediatrics, Skane University Hospital, Malmö, Sweden
| | - Per Bengtson
- Clinical Chemistry, Skane University Hospital, Lund, Sweden
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, France
| | - Sylvie Gerber
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, France
| | - Arnold Munnich
- Department of Genetics, Hôpital Necker-Enfants Malades, APHP, Paris Descartes University, Paris, France
| | | | - Cathy A Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, TN, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Kati J Buckingham
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Hudson H Freeze
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Erik A Eklund
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA. .,Division of Pediatrics, Lund University, Lund, Sweden.
| |
Collapse
|
16
|
Ng BG, Freeze HH. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet 2018; 34:466-476. [PMID: 29606283 DOI: 10.1016/j.tig.2018.03.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly expanding group of metabolic disorders that result from abnormal protein or lipid glycosylation. They are often difficult to clinically diagnose because they broadly affect many organs and functions and lack clinical uniformity. However, recent technological advances in next-generation sequencing have revealed a treasure trove of new genetic disorders, expanded the knowledge of known disorders, and showed a critical role in infectious diseases. More comprehensive genetic tools specifically tailored for mammalian cell-based models have revealed a critical role for glycosylation in pathogen-host interactions, while also identifying new CDG susceptibility genes. We highlight recent advancements that have resulted in a better understanding of human glycosylation disorders, perspectives for potential future therapies, and mysteries for which we continue to seek new insights and solutions.
Collapse
Affiliation(s)
- Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
O'Connor E, Töpf A, Zahedi RP, Spendiff S, Cox D, Roos A, Lochmüller H. Clinical and research strategies for limb-girdle congenital myasthenic syndromes. Ann N Y Acad Sci 2018; 1412:102-112. [PMID: 29315608 DOI: 10.1111/nyas.13520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Congenital myasthenic syndromes (CMS) are a group of rare disorders that cause fatigable muscle weakness due to defective signal transmission at the neuromuscular junction, a specialized synapse between peripheral motor neurons and their target muscle fibers. There are now over 30 causative genes that have been reported for CMS. Of these, there are 10 that are associated with a limb-girdle pattern of muscle weakness and are thus classed as LG-CMS. Next-generation sequencing and advanced methods of data sharing are likely to uncover further genes that are associated with similar clinical phenotypes, contributing to better diagnosis and effective treatment of LG-CMS patients. This review highlights clinical and pathological hallmarks of LG-CMS in relation to the underlying genetic defects and pathways. Tailored animal and cell models are essential to elucidate the exact function and pathomechanisms at the neuromuscular synapse that underlie LG-CMS. The integration of genomics and proteomics data derived from these models and patients reveals new and often unexpected insights that are relevant beyond the rare genetic disorder of LG-CMS and may extend to the functioning of mammalian synapses in health and disease more generally.
Collapse
Affiliation(s)
- Emily O'Connor
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ana Töpf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V., Dortmund, Germany
| | - Sally Spendiff
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Cox
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Leibniz-Institut für Analytische Wissenschaften, ISAS e.V., Dortmund, Germany
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|