1
|
Zhang D, Lu L, Huang X, Zhao X, Zhang Y, Fu T, Li F, Wu X. Abnormal Functional Network Centrality and Causal Connectivity in Migraine Without Aura: A Resting-State fMRI Study. Brain Behav 2025; 15:e70414. [PMID: 40079637 PMCID: PMC11904957 DOI: 10.1002/brb3.70414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE The pathophysiological mechanism of migraine is still not clear. Thus, this study aimed to evaluate the changes in effective connectivity (EC) in the brain functional network underlying migraine and its association with clinical measures of migraine. BACKGROUND Fifty patients with episodic migraine without aura (MwoA) and 48 healthy controls (HCs) were enrolled in this study. Spontaneous activity in the brain was evaluated using the degree centrality (DC) method, and the brain regions with obvious signal differences between the two groups were taken as seed points for whole brain Granger causality analysis (GCA) analysis. The values of the brain regions with differences in DC and GCA were extracted and correlated with clinical measures of migraine. RESULTS Compared to the HCs, the MwoA patients showed decreased DC in the left inferior temporal gyrus (ITG) and increased DC in the right precuneus and exhibited significantly decreased EC from the left ITG to the left inferior parietal gyrus and right inferior occipital gyrus (IOG) as well as significantly increased EC from the left postcentral gyrus and left cerebellum posterior lobe to the left ITG. Moreover, decreased EC from the left thalamus to the right precuneus was found in the MwoA patients compared to the HCs. The DC values in the right precuneus were significantly negatively correlated with the duration of headache. Additionally, we found a significantly positive correlation between the Migraine Disability Assessment questionnaire score and the EC from the left ITG to the right IOG, as well as between the intensity of headache and the EC from the left thalamus to the right precuneus. CONCLUSIONS This study found changes in the EC of the brain functional network underlying migraine and their associations with migraine-related parameters. These findings are helpful for understanding the pathophysiological mechanism in migraine patients.
Collapse
Affiliation(s)
- Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaobin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaojing Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yamei Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tong Fu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Pan X, Ren H, Xie L, Zou Y, Li F, Sui X, Cui L, Cheng Z, Wu J, Shi F, Zhao H, Ma S. Analysis of the relationships between the degree of migraine with right-to-left shunts and changes in white matter lesions and brain structural volume. Sci Rep 2025; 15:1145. [PMID: 39774196 PMCID: PMC11707276 DOI: 10.1038/s41598-025-85205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
To investigate the location of white matter lesions (WMLs) in migraineurs with right‒to‒left shunts (RLS); the relationships among the severity of WMLs, changes in brain structural volume and RLS shunts; and the relationships among the severity of WMLs, changes in brain structural volume and degree of headache in RLS migraine patients. A total of 102 migraineurs with RLS admitted to the affiliated Central Hospital of Dalian University of Technology from December 2018 to December 2022 were enrolled in this study. RLS flow and the 6-item Headache Impact Test (HIT-6) scores were recorded to reflect the degree of headache. The brain structural volumes of 102 migraineurs with RLS were calculated from T1-weighted images via artificial intelligence, and the brain structural volumes of healthy controls matched according to age and sex were also calculated. The correlations among WML location, RLS, headache degree, WML severity and brain structural volume changes in migraineurs were analyzed. (1) The WMLs of migraineurs with RLS were concentrated mainly in the white matter of the lateral ventricular margin and deep white matter. Subcortical WMLs were concentrated mainly in the parietal lobe, occipital lobe and frontal lobe. (2) There were no significant differences in the WML variables of cerebral white matter high signal volume, ratio of high-signal white matter volume to whole-brain white matter volume (%) or Fazekas score among migraineurs with different RLS flows, but there were significant differences in WML variables among migraineurs with RLS with different HIT-6 grades and MIDAS grades. RLS flow, HIT-6 score and MIDAS grade were not correlated with the WML variables measured in this study. (3) There was a significant difference in the volume of the precentral gyrus between migraineurs with RLS and normal controls (P < 0.001), and there was a significant difference between migraineurs with different RLS flows and different HIT-6 scores and peripheral cerebrospinal fluid volumes. There was also a positive correlation between frontal pole structural volume and RLS flow. The volume of the precentral gyrus was negatively correlated with RLS flow, whereas the volume of the pons gyrus was positively correlated with the HIT-6 score. The volume of the temporal pole was negatively correlated with the HIT-6 score. (1) The WMLs of migraineurs with RLS were concentrated mainly in the white matter of the lateral ventricular margin and deep white matter. Subcortical WMLs were concentrated mainly in the parietal lobe, occipital lobe and frontal lobe. (2) There was no correlation between WML severity and RLS flow in migraineurs with RLS. (3) There was no correlation between WML severity and migraine severity in migraineurs with RLS. (4) Volume changes occurred in some brain structures of migraineurs with RLS. (5) Shunt flow and the degree of headache in migraineurs with RLS were correlated with structural volume changes in specific brain regions.
Collapse
Affiliation(s)
- Xin Pan
- Department of Neurology, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China
| | - Haoran Ren
- Department of Neurology, The Third People' s Hospital of Datong Affiliated with Shanxi Medical University, Datong, 037046, Shanxi, China
| | - Lili Xie
- Department of Neurology, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China
| | - Yu Zou
- Department of Neurology, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China
| | - Furong Li
- Department of Neurology, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China
| | - Xiaowen Sui
- Department of Neurology, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China
| | - Li Cui
- Department of Neurology, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China
| | - Zhengping Cheng
- Department of Neurology, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China
| | - Jiaojiao Wu
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, 200232, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, 200232, China
| | - Hongling Zhao
- Department of Neurology, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China.
- Stroke Center, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China.
| | - Shubei Ma
- Department of Neurology, Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, China.
| |
Collapse
|
3
|
Mammadkhanli O, Kehaya S, Solak S, Yağmurlu K. Insular cortex involvement in migraine patients with chronic pain: A volumetric radiological and clinical study. J Clin Neurosci 2024; 123:157-161. [PMID: 38579522 DOI: 10.1016/j.jocn.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND This study aimed to assess abnormalities in the insular cortex of individuals suffering from migraines and examine their associations with pain duration, medication usage, and clinical symptoms. METHODS We analyzed radiological data from 38 migraine patients who had undergone 3D iso T1-weighted brain MRI at our university hospital between 2019 and 2023. Structured questionnaires were used to collect information on participants' age, migraine type, disease duration, clinical symptoms, and medication use. Volumetric analysis was performed on the insular regions using Volbrain and 3DSlicer. The results were statistically analyzed. RESULTS Comparing groups with chronic pain to normal groups revealed significant differences in several insular regions, including the posterior insula (p = 0.034), parietal operculum (p = 0.04), and the entire insular cortex (p = 0.023). Further group comparisons (Group 1, 2, and 3) showed significant differences in specific insular regions. For instance, the anterior insula (p = 0.032) was associated with taste changes, the posterior insula (p = 0.010) with smell-related changes, and the central operculum (p = 0.046) with sensations of nausea. Additionally, significant changes were observed in the parietal operculum concerning nausea, photophobia, phonophobia, and changes in smell. CONCLUSION To the best of our knowledge, there have been no studies investigating the relationship between clinical manifestations and volumetric correlation. This study provides insights into abnormalities in the insular cortex among migraine patients and their potential relevance to pain duration, severity, and migraine type. The results suggest that understanding alterations in insular regions possibly linked to pain could contribute to the development of innovative approaches to managing chronic pain.
Collapse
Affiliation(s)
- Orkhan Mammadkhanli
- Trakya University, Department of Neurosurgery, Edirne, Turkey; Hacettepe University, Department of Anatomy, Ankara, Turkey.
| | - Sezgin Kehaya
- Trakya University, Department of Neurology, Edirne, Turkey
| | - Serdar Solak
- Trakya University, Department of Radiology, Edirne, Turkey
| | - Kaan Yağmurlu
- University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Liu S, Hou X, Shi M, Shen Y, Li Z, Hu Z, Yang D. Cortical Sulcal Abnormalities Revealed by Sulcal Morphometry in Patients with Chronic and Episodic Migraine. J Pain Res 2024; 17:477-488. [PMID: 38318330 PMCID: PMC10843978 DOI: 10.2147/jpr.s447148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose Previous studies have reported mixed results regarding the importance of cortical abnormalities in patients with migraines. However, cortical sulci, as a component of the cerebral cortex, have not been specifically investigated in migraine patients. Therefore, we aim to evaluate alterations in cortical sulcal morphology among patients with chronic migraine (CM), episodic migraine (EM), and healthy controls (HCs). Patients and Methods In this cross-sectional study, structural magnetic resonance images were acquired from 35 patients with CM, 35 with EM, and 35 HCs. Cortical sulci were identified and reconstructed using the BrainVisa 5.0.4 software. We focused on regions involved in pain processing in which abnormal cortical structure were identified in previous neuroimaging studies. Morphometric analysis was performed to calculate sulcal parameters including mean depth, cortical thickness, and opening width. Partial correlation analyses of clinical characteristics and sulcal parameters were performed for CM, EM and the combined migraine (CM + EM) groups. Results In comparison with HCs, both CM and EM groups showed increased opening width in bilateral insula. In comparison with HC and EM groups, CM patients showed increased cortical thickness in bilateral superior postcentral sulcus, bilateral median frontal sulcus and left superior parietal sulcus, as well as increased mean depth in the left anterior callosomarginal fissure and decreased mean depth in bilateral superior frontal sulcus and left median frontal sulcus. Migraine frequency and disease duration were both correlated with cortical thickness in bilateral superior postcentral sulcus. Conclusion Abnormal sulcal morphometry primarily affected areas associated with pain processing in patients with migraine, with CM exhibiting more extensive abnormalities in areas related to sensory and affective processing. These changes may contribute to understanding the pathology of EM and CM.
Collapse
Affiliation(s)
- Shanyu Liu
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaolin Hou
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Min Shi
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yuling Shen
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhaoying Li
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhenzhu Hu
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Dongdong Yang
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Liu H, Zheng R, Zhang Y, Zhang B, Hou H, Cheng J, Han S. Two distinct neuroanatomical subtypes of migraine without aura revealed by heterogeneity through discriminative analysis. Brain Imaging Behav 2023; 17:715-724. [PMID: 37776418 DOI: 10.1007/s11682-023-00802-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
The neurobiological heterogeneity in migraine is poorly studied, resulting in conflicting neuroimaging findings. This study used a newly proposed method based on gray matter volumes (GMVs) to investigate objective neuroanatomical subtypes of migraine. Structural MRI and clinical measures of 31 migraine patients without aura and 33 matched healthy controls (HCs) were explored. Firstly, we investigated whether migraine patients exhibited higher interindividual variability than HCs in terms of GMVs. Then, heterogeneity through discriminative analysis (HYDRA) was applied to categorize migraine patients into distinct subtypes by regional volumetric measures of GMVs. Voxel-wise volume and clinical characteristics among different subtypes were also explored. Migraine patients without aura exhibited higher interindividual GMVs variability. Two distinct and reproducible neuroanatomical subtypes of migraine were revealed. These two subtypes exhibited opposite neuroanatomical aberrances compared to HCs. Subtype 1 showed widespread decreased GMVs, while Subtype 2 showed increased GMVs in limited regions. The total intracranial volume was significantly positively correlated with cognitive function in Subtype 2. Subtype 1 showed significantly longer illness duration and less cognitive scores compared to Subtype 2. The present study shows that migraine patients without aura have high structural heterogeneity and uncovers two distinct and robust neuroanatomical subtypes, which provide a possible explanation for conflicting neuroimaging findings.
Collapse
Affiliation(s)
- Hao Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Rd, Zhengzhou, 450000, Henan, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Rd, Zhengzhou, 450000, Henan, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Rd, Zhengzhou, 450000, Henan, China
| | - Beibei Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Rd, Zhengzhou, 450000, Henan, China
| | - Haiman Hou
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Rd, Zhengzhou, 450000, Henan, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Rd, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
6
|
Huang SY, Salomon M, Eikermann-Haerter K. Advanced brain MRI may help understand the link between migraine and multiple sclerosis. J Headache Pain 2023; 24:113. [PMID: 37596546 PMCID: PMC10439604 DOI: 10.1186/s10194-023-01645-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND There is a clinical association between migraine and multiple sclerosis. MAIN BODY Migraine and MS patients share similar demographics, with the highest incidence among young, female and otherwise healthy patients. The same hormonal constellations/changes trigger disease exacerbation in both entities. Migraine prevalence is increased in MS patients, which is further enhanced by disease-modifying treatment. Clinical data show that onset of migraine typically starts years before the clinical diagnosis of MS, suggesting that there is either a unidirectional relationship with migraine predisposing to MS, and/or a "shared factor" underlying both conditions. Brain imaging studies show white matter lesions in both MS and migraine patients. Neuroinflammatory mechanisms likely play a key role, at least as a shared downstream pathway. In this review article, we provide an overview of the literature about 1) the clinical association between migraine and MS as well as 2) brain MRI studies that help us better understand the mechanistic relationship between both diseases with implications on their underlying pathophysiology. CONCLUSION Studies suggest a migraine history predisposes patients to develop MS. Advanced brain MR imaging may shed light on shared and distinct features, while helping us better understand mechanisms underlying both disease entities.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc Salomon
- Department of Radiology, New York University Langone Medical Center, 660 First Ave, New York, NY, 10016, USA
| | - Katharina Eikermann-Haerter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, New York University Langone Medical Center, 660 First Ave, New York, NY, 10016, USA.
| |
Collapse
|
7
|
Affatato O, Dahlén AD, Rukh G, Schiöth HB, Mwinyi J. Assessing volumetric brain differences in migraine and depression patients: a UK Biobank study. BMC Neurol 2023; 23:284. [PMID: 37507671 PMCID: PMC10375767 DOI: 10.1186/s12883-023-03336-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Migraine and depression are two of the most common and debilitating conditions. From a clinical perspective, they are mostly prevalent in women and manifest a partial overlapping symptomatology. Despite the high level of comorbidity, previous studies hardly investigated possible common patterns in brain volumetric differences compared to healthy subjects. Therefore, the current study investigates and compares the volumetric difference patterns in sub-cortical regions between participants with migraine or depression in comparison to healthy controls. METHODS The study included data from 43 930 participants of the large UK Biobank cohort. Using official ICD10 diagnosis, we selected 712 participants with migraine, 1 853 with depression and 23 942 healthy controls. We estimated mean volumetric difference between the groups for the different sub-cortical brain regions using generalized linear regression models, conditioning the model within the levels of BMI, age, sex, ethnical background, diastolic blood pressure, current tobacco smoking, alcohol intake frequency, Assessment Centre, Indices of Multiple Deprivation, comorbidities and total brain volume. RESULTS We detected larger overall volume of the caudate (mean difference: 66, 95% CI [-3, 135]) and of the thalamus (mean difference: 103 mm3, 95% CI [-2, 208]) in migraineurs than healthy controls. We also observed that individuals with depression appear to have also larger overall (mean difference: 47 mm3, 95% CI [-7, 100]) and gray matter (mean difference: 49 mm3, 95% CI [2, 95]) putamen volumes than healthy controls, as well as larger amygdala volume (mean difference: 17 mm3, 95% CI [-7, 40]). CONCLUSION Migraineurs manifested larger overall volumes at the level of the nucleus caudate and of the thalamus, which might imply abnormal pain modulation and increased migraine susceptibility. Larger amygdala and putamen volumes in participants with depression than controls might be due to increased neuronal activity in these regions.
Collapse
Affiliation(s)
- Oreste Affatato
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
- Uppsala University's Centre for Women's Mental Health During the Reproductive Lifespan - WoMHeR, University of Uppsala, Uppsala, Sweden.
| | - Amelia D Dahlén
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Uppsala University's Centre for Women's Mental Health During the Reproductive Lifespan - WoMHeR, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
8
|
Zhang X, Zhou J, Guo M, Cheng S, Chen Y, Jiang N, Li X, Hu S, Tian Z, Li Z, Zeng F. A systematic review and meta-analysis of voxel-based morphometric studies of migraine. J Neurol 2023; 270:152-170. [PMID: 36098838 DOI: 10.1007/s00415-022-11363-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To comprehensively summarize and meta-analyze the concurrence across voxel-based morphometric (VBM) neuroimaging studies of migraine. METHODS Neuroimaging studies published from origin to August 1, 2021 were searched in six databases including PubMed, Web of Science, Excerpta Medica Database (EMBASE), China National Knowledge Infrastructure (CNKI), Wanfang Database, and Chongqing VIP. Study selection, quality assessment, and data extraction were conducted by two independent researchers. Anisotropic effect size-signed differential mapping (AES-SDM) and activation likelihood estimation (ALE) were used to perform the meta-analysis of available studies reporting whole-brain gray matter (GM) structural data in migraine patients. Clinical variables correlation analysis and migraine subgroup analysis were also conducted. RESULTS 40 articles were included after the strict screening, containing 1616 migraine patients and 1681 matched healthy subjects (HS) in total. Using the method of AES-SDM, migraine patients showed GM increase in the bilateral amygdala, the bilateral parahippocampus, the bilateral temporal poles, the bilateral superior temporal gyri, the left hippocampus, the right superior frontal gyrus, and the left middle temporal gyrus, as well as GM decrease in the left insula, the bilateral cerebellum (hemispheric lobule IX), the right dorsal medulla, the bilateral rolandic operculum, the right middle frontal gyrus, and the right inferior parietal gyrus. Using the method of ALE, migraine patients showed GM increase in the left parahippocampus and GM decrease in the left insula. The results of correlation analysis showed that many of these brain regions were associated with migraine headache frequency and migraine disease duration. Migraine patients in different subtypes (such as migraine without aura (MwoA), migraine with aura (MwA), episodic migraine (EM), chronic migraine (CM), vestibular migraine (VM), etc.), and in different periods (in the ictal and interictal periods) presented not entirely consistent GM alterations. CONCLUSION Migraine patients have GM alterations in multiple brain regions associated with sensation, affection, cognition, and descending modulation aspects of pain. These changes might be a consequence of repeated migraine attacks. Further studies are required to determine how these GM changes can be used to diagnose, monitor disease progression, or exploit potential therapeutic interventions for migraine patients.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jun Zhou
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mengyuan Guo
- Institute College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Shirui Cheng
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yilin Chen
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Nannan Jiang
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinling Li
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shengjie Hu
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zilei Tian
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengjie Li
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China. .,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Fang Zeng
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China. .,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Henn AT, Larsen B, Frahm L, Xu A, Adebimpe A, Scott JC, Linguiti S, Sharma V, Basbaum AI, Corder G, Dworkin RH, Edwards RR, Woolf CJ, Habel U, Eickhoff SB, Eickhoff CR, Wagels L, Satterthwaite TD. Structural imaging studies of patients with chronic pain: an anatomical likelihood estimate meta-analysis. Pain 2023; 164:e10-e24. [PMID: 35560117 PMCID: PMC9653511 DOI: 10.1097/j.pain.0000000000002681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Neuroimaging is a powerful tool to investigate potential associations between chronic pain and brain structure. However, the proliferation of studies across diverse chronic pain syndromes and heterogeneous results challenges data integration and interpretation. We conducted a preregistered anatomical likelihood estimate meta-analysis on structural magnetic imaging studies comparing patients with chronic pain and healthy controls. Specifically, we investigated a broad range of measures of brain structure as well as specific alterations in gray matter and cortical thickness. A total of 7849 abstracts of experiments published between January 1, 1990, and April 26, 2021, were identified from 8 databases and evaluated by 2 independent reviewers. Overall, 103 experiments with a total of 5075 participants met the preregistered inclusion criteria. After correction for multiple comparisons using the gold-standard family-wise error correction ( P < 0.05), no significant differences associated with chronic pain were found. However, exploratory analyses using threshold-free cluster enhancement revealed several spatially distributed clusters showing structural alterations in chronic pain. Most of the clusters coincided with regions implicated in nociceptive processing including the amygdala, thalamus, hippocampus, insula, anterior cingulate cortex, and inferior frontal gyrus. Taken together, these results suggest that chronic pain is associated with subtle, spatially distributed alterations of brain structure.
Collapse
Affiliation(s)
- Alina T. Henn
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| | - Lennart Frahm
- Institute of Neuroscience and Medicine (INM7), Forschungszentrum Jülich, Jülich, Germany
| | - Anna Xu
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
- Department of Psychology, Stanford University, Stanford, Carlifornia, US
| | - Azeez Adebimpe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| | - J. Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA (Veterans Affairs) Medical Center, Philadelphia, Pennsylvania, US
| | - Sophia Linguiti
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| | - Vaishnavi Sharma
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| | - Allan I. Basbaum
- Department of Anatomy, University of California, San Francisco, US
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
| | - Robert H. Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, US
| | - Robert R. Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, US
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, US
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, US
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM7), Forschungszentrum Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia R. Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM1), Forschungszentrum Jülich, Jülich, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
10
|
Messina R, Filippi M. What imaging has revealed about migraine and chronic migraine. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:105-116. [PMID: 38043956 DOI: 10.1016/b978-0-12-823356-6.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although migraine pathophysiology is not yet entirely understood, it is now established that migraine should be viewed as a complex neurological disease, which involves the interplay of different brain networks and the release of signaling molecules, instead of a pure vascular disorder. The field of migraine research has also progressed significantly due to the advancement of brain imaging techniques. Numerous studies have investigated the relation between migraine pathophysiology and cerebral hemodynamic changes, showing that vascular changes are neither necessary nor sufficient to cause the migraine pain. Abnormal function and structure of key cortical, subcortical, and brainstem regions involved in multisensory, including pain, processing have been shown to occur in migraine patients during both an acute attack and the interictal phase. Whether brain imaging alterations represent a predisposing trait or are the consequence of the recurrence of headache attacks is still a matter of debate. It is highly likely that brain functional and structural alterations observed in migraine patients derive from the interaction between predisposing brain traits and experience-dependent responses. Neuroimaging studies have also enriched our knowledge of the mechanisms responsible for migraine chronification and have shed light on the mechanisms of actions of acute and preventive migraine treatments.
Collapse
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
11
|
Van Laere K, Ceccarini J, Gebruers J, Goffin K, Boon E. Simultaneous 18F-FDG PET/MR metabolic and structural changes in visual snow syndrome and diagnostic use. EJNMMI Res 2022; 12:77. [PMID: 36583806 PMCID: PMC9803799 DOI: 10.1186/s13550-022-00949-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Visual snow syndrome (VSS) is a recently recognized chronic neurologic condition characterized by the constant perceiving of tiny flickering dots throughout the entire visual field. Metabolic overactivity and grey matter volume increase in the lingual gyrus has been reported. We investigated this by 18F-FDG PET/MR in comparison to healthy controls. Aside from voxel-based characterization, the classification accuracy of volume-of-interest (VOI)-based multimodal assessment was evaluated, also in comparison with visual analysis. METHODS Simultaneous 18F-FDG PET and MR imaging was performed in 7 patients with VSS (24.6 ± 5.7 years; 5 M/2F) and 15 age-matched healthy controls (CON) (28.0 ± 5.3 years; 8 M/7F). SPM12 and voxel-based morphometric analysis was performed. A VOI-based discriminant analysis was performed with relative 18F-FDG uptake, MR grey matter (GM) volumes and their combination. A visual analysis was done by two blinded experienced readers. RESULTS Relative increased hypermetabolism was found in VSS patients in the lingual gyrus and cuneus (pFWE < 0.05, peak change + 24%), and hypometabolism in the mesiotemporal cortex (pheight,uncorr < 0.001, peak change - 14%). VSS patients also had increased GM volume in the limbic system and frontotemporal cortex bilaterally (pFWE < 0.05), and in the left secondary and associative visual cortex and in the left lingual gyrus (pheight,uncorr < 0.001). Discriminant analysis resulted in 100% correct classification accuracy for 18F-FDG with lingual gyrus, cuneus and lateral occipital lobe (BA 17 and BA 18) as main discriminators. Unimodal MR- and combined 18F-FDG + MR classification resulted in an accuracy of 91% and 95%, respectively. Visual analysis of 18F-FDG was highly observer dependent. CONCLUSION Patients with VSS have highly significant structural and metabolic abnormalities in the visual and limbic system. VOI-based discriminant analysis of 18F-FDG PET allows reliable individual classification versus controls, whereas visual analysis of experienced observers was highly variable. Further investigation in larger series, also in comparison to VSS mimicking disorders such as migraine, is warranted. TRAIL REGISTRATION Retrospectively registered at clinicaltrials.gov under NCT05569733 on Oct 5, 2022.
Collapse
Affiliation(s)
- Koen Van Laere
- grid.410569.f0000 0004 0626 3338Nuclear Medicine, University Hospitals Leuven, UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- grid.5596.f0000 0001 0668 7884Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Juanito Gebruers
- grid.410569.f0000 0004 0626 3338Nuclear Medicine, University Hospitals Leuven, UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, 3000 Leuven, Belgium
| | - Karolien Goffin
- grid.410569.f0000 0004 0626 3338Nuclear Medicine, University Hospitals Leuven, UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Elizabet Boon
- grid.410569.f0000 0004 0626 3338Division of Neurology and Psychiatry, University Hospitals Leuven and UPC Kortenberg, Leuven, Belgium
| |
Collapse
|
12
|
Lin YK, Tsai CL, Lin GY, Chou CH, Yang FC. Pathophysiology of Chronic Migraine: Insights from Recent Neuroimaging Research. Curr Pain Headache Rep 2022; 26:843-854. [PMID: 36207509 DOI: 10.1007/s11916-022-01087-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Chronic migraine (CM) is a highly disabling primary headache disorder with a substantial impact on patients' quality of life. Episodic migraine (EM) and CM are dynamic states; CM usually evolves from EM alongside increased headache frequency, comorbidities, and medication overuse, supporting the notion that migraine is a spectrum disorder. This narrative review aims to summarize neuroimaging studies to better understand the pathophysiology of CM. RECENT FINDINGS Positron emission tomography studies have revealed abnormal energy metabolism and metabolic changes in the dorsal rostral pons in individuals with CM, suggesting that this structure has a key role in the pathophysiology of migraine generation and chronification. Magnetic resonance spectroscopy studies have suggested that thalamocortical pathway dysfunction may contribute to migraine chronification, while functional magnetic resonance imaging studies have highlighted that hypothalamic activity may be involved. Recent evidence highlights functional and structural alterations in cortical and subcortical pain-related brain regions in patients with CM. Whether these functional and structural abnormalities of the brain cause migraine chronification or are a consequence of repeated attacks is still debated. In the future, imaging patterns that predict the transformation from EM to CM should be identified.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Section 2, Cheng-Kung Road, Neihu 114, No. 325, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Section 2, Cheng-Kung Road, Neihu 114, No. 325, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Section 2, Cheng-Kung Road, Neihu 114, No. 325, Taipei, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Section 2, Cheng-Kung Road, Neihu 114, No. 325, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Section 2, Cheng-Kung Road, Neihu 114, No. 325, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
13
|
Tajerian M, Amrami M, Betancourt JM. Is there hemispheric specialization in the chronic pain brain? Exp Neurol 2022; 355:114137. [PMID: 35671801 PMCID: PMC10723052 DOI: 10.1016/j.expneurol.2022.114137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Organismal bilateral symmetry is associated with near-identical halves of the central nervous system, with certain functions displaying specialization through one brain hemisphere. The processing of pain in the brain as well as brain plasticity in the context of painful injuries have garnered much attention in recent decades. Noninvasive brain imaging studies in pain-free human subjects have identified multiple brain regions that are linked to the sensory and affective components of pain. Longlasting adaptations in brains of chronic pain sufferers have likewise been described, suggesting a mechanism for pain chronification. Invasive molecular and biochemical studies in animal models have expanded on these findings, with added emphasis on the role of specific genes and molecules involved. To date, the extent of hemispheric asymmetry in the context of pain is not well-understood. This topical review evaluates the evidence of hemispheric specialization observed in humans and rodent models of pain and compares it to findings where such asymmetry is absent. Our review shows conflicting information regarding the existence of pain-related asymmetry, and if so, the side to which it can be localized. This could be due to the heterogeneity of pain processing pathways, heterogeneity in study parameters, as well as differences in data reporting. With the advent of progressively sophisticated non-invasive tools that can be used in human subjects, in addition to more precise methods to visualize and control specific brain regions or neuronal ensembles in animal models, we predict that the next few decades will witness a better understanding of the supraspinal control and processing of chronic pain, including the role of each of its hemispheres.
Collapse
Affiliation(s)
- Maral Tajerian
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA; The Graduate Center, City University of New York, New York, NY 10016, USA.
| | - Michael Amrami
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA
| | - John Michael Betancourt
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
14
|
The Patent Foramen Ovale and Migraine: Associated Mechanisms and Perspectives from MRI Evidence. Brain Sci 2022; 12:brainsci12070941. [PMID: 35884747 PMCID: PMC9313384 DOI: 10.3390/brainsci12070941] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Migraine is a common neurological disease with a still-unclear etiology and pathogenesis. Patent foramen ovale (PFO) is a kind of congenital heart disease that leads to a right-to-left shunt (RLS). Although previous studies have shown that PFO has an effect on migraine, a clear conclusion about the link between PFO and migraine is lacking. We first summarized the PFO potential mechanisms associated with migraine, including microembolus-triggered cortical spreading depression (CSD), the vasoactive substance hypothesis, impaired cerebral autoregulation (CA), and a common genetic basis. Further, we analyzed the changes in brain structure and function in migraine patients and migraine patients with PFO. We found that in migraine patients with PFO, the presence of PFO may affect the structure of the cerebral cortex and the integrity of white matter, which is mainly locked in subcortical, deep white matter, and posterior circulation, and may lead to changes in brain function, such as cerebellum and colliculus, which are involved in the processing and transmission of pain. In summary, this paper provides neuroimaging evidence and new insights into the correlation between PFO and migraine, which will help to clarify the etiology and pathogenesis of migraine, and aid in the diagnosis and treatment of migraine in the future.
Collapse
|
15
|
Strik M, Clough M, Solly EJ, Glarin R, White OB, Kolbe SC, Fielding J. Microstructure in patients with visual snow syndrome: an ultra-high field morphological and quantitative MRI study. Brain Commun 2022; 4:fcac164. [PMID: 35974797 PMCID: PMC9373960 DOI: 10.1093/braincomms/fcac164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Visual snow syndrome is a neurological condition characterized by continuous visual disturbance and a range of non-visual symptoms, including tinnitus and migraine. Little is known about the pathological mechanisms underlying visual snow syndrome. Here, we assessed brain morphometry and microstructure in visual snow syndrome patients using high-resolution structural and quantitative MRI. Forty visual snow syndrome patients (22 with migraine) and 43 controls underwent 7-Tesla MRI (MP2RAGE, 0.75 mm isotropic resolution). Volumetric and quantitative T1 values were extracted for white and grey matter regions and compared between groups. Where regions were significantly different between groups (false discovery rate corrected for multiple comparisons), post hoc comparisons were examined between patients with and without migraine. For visual snow syndrome patients, significant MRI variables were correlated with clinical severity (number of visual symptoms, perceived visual snow intensity, disruptiveness, fatigue and quality of life) and psychiatric symptoms prevalent in visual snow syndrome (depression, anxiety and depersonalization). Finally, cortical regions and individual thalamic nuclei were studied. Compared with controls, visual snow syndrome patients demonstrated a trend towards larger brain and white matter volumes and significantly lower T1 values for the entire cortex (P < 0.001), thalamus (P = 0.001) and pallidum (P = 0.001). For the patient group, thalamic T1 correlated with number of visual symptoms (P = 0.019, r = 0.390) and perceived disruptiveness of visual snow (P = 0.010, r = 0.424). These correlations did not survive multiple comparison corrections. As for specificity in visual snow syndrome group, T1 changes were most evident in caudal regions (occipital cortices) followed by parietal, temporal and prefrontal cortices. T1 values differed between groups for most individual thalamic nuclei. No differences were revealed between patients with and without migraine. In visual snow syndrome patients, we observed no changes in morphometry, instead widespread changes in grey matter microstructure, which followed a caudal-rostral pattern and affected the occipital cortices most profoundly. Migraine did not appear to independently affect these changes. Lower T1 values may potentially result from higher neurite density, myelination or increased iron levels in the visual snow syndrome brain. Further investigation of these changes may enhance our understanding of the pathogenesis of visual snow syndrome, ultimately leading to new treatment strategies.
Collapse
Affiliation(s)
- Myrte Strik
- Melbourne Brain Centre Imaging Unit, Department of Radiology, Melbourne Medical School, University of Melbourne , Melbourne, VIC 3010 , Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
| | - Emma J Solly
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
| | - Rebecca Glarin
- Melbourne Brain Centre Imaging Unit, Department of Radiology, Melbourne Medical School, University of Melbourne , Melbourne, VIC 3010 , Australia
| | - Owen B White
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
| | - Scott C Kolbe
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
| |
Collapse
|
16
|
Lan L, Liu Y, Xu JJ, Ma D, Yin X, Wu Y, Chen YC, Cai Y. Aberrant Modulations of Neurocognitive Network Dynamics in Migraine Comorbid With Tinnitus. Front Aging Neurosci 2022; 14:913191. [PMID: 35813956 PMCID: PMC9257523 DOI: 10.3389/fnagi.2022.913191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe possible relationship between migraine and tinnitus still remains elusive although migraine is often accompanied by chronic tinnitus. Several neuroimaging studies have reinforced the cognitive network abnormality in migraine and probably as well as tinnitus. The present work aims to investigate the dynamic neurocognitive network alterations of migraine comorbid with tinnitus.Materials and MethodsParticipants included migraine patients (n = 32), tinnitus patients (n = 20), migraine with tinnitus (n = 27), and healthy controls (n = 47), matched for age and gender. Resting-state functional magnetic resonance imaging (rs-fMRI) with independent component analysis (ICA), sliding window cross-correlation, and clustering state analysis was used to detect the dynamic functional network connectivity (dFNC) of each group. Correlation analyses illustrated the association between clinical symptoms and abnormal dFNC in migraine as well as tinnitus.ResultsCompared with healthy controls, migraine patients exhibited decreased cerebellar network and visual network (CN-VN) connectivity in State 2; migraine with tinnitus patients showed not only decreased CN-VN connectivity in State 2 but also decreased cerebellar network and executive control network (CN-ECN) connectivity in State 2 and increased cerebellar network and somatomotor network (SMN-VN) connectivity in State 1. The abnormal cerebellum dFNC with the executive control network (CN-ECN) was negatively correlated with headache frequency of migraine (rho = −0.776, p = 0.005).ConclusionBrain network characteristics of migraine with tinnitus patients may indicate different mechanisms for migraine and tinnitus. Our results demonstrated a transient pathologic state with atypical cerebellar-cortical connectivity in migraine with tinnitus patients, which might be used to identify the neuro-pathophysiological mechanisms in migraine accompanied by tinnitus.
Collapse
Affiliation(s)
- Liping Lan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Di Ma
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yu-Chen Chen,
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Yuexin Cai,
| |
Collapse
|
17
|
Wei XY, Luo SL, Chen H, Liu SS, Gong ZG, Zhan SH. Functional connectivity changes during migraine treatment with electroacupuncture at Shuaigu (GB8). JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:237-243. [PMID: 35219625 DOI: 10.1016/j.joim.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the changes in the functional connectivity (FC) in the right insula between migraine without aura (MWoA) and healthy controls by using resting-state functional magnetic resonance imaging (rs-fMRI), and to observe the instant alteration of FC in MWoA during electroacupuncture (EA) stimulation at Shuaigu (GB8). METHODS A total of 30 patients with MWoA (PM group) and 30 healthy controls (HC group) underwent rs-fMRI scans. The PM group underwent a second rs-fMRI scan while receiving EA at GB8. The right insula subregions, including the ventral anterior insula (vAI), dorsal anterior insula (dAI) and posterior insula (PI), were selected as the seed points for FC analysis. RESULTS Aberrant FC, including dAI with right postcentral gyrus, PI with left precuneus, was found among PM before EA (PMa), PM during EA (PMb) and HC. Meanwhile, decreased FC between dAI and the right postcentral gyrus was found in the PMa compared to the HC and PMb. Increased FC between the PI and left precuneus was found in the PMa compared to the HC and PMb. Correlation analysis showed that the FC value of the right postcentral gyrus in PMa was negatively correlated with the scores of Hamilton Rating Scale for Depression and Hamilton Rating Scale for Anxiety. The FC value of the left precuneus in PMa was positively correlated with the visual analogue scale score. CONCLUSION The alteration of FC between the right insula subregions and multiple brain regions may be an important index for MWoA. EA at GB8 was able to adjust the FC between the right insula subregions and parietal lobe, namely, the right dAI and right postcentral gyrus, and the right PI and left precuneus, thereby rendering an instant effect in the management of MWoA.
Collapse
Affiliation(s)
- Xiang-Yu Wei
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shi-Lei Luo
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Chen
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shan-Shan Liu
- Department of Acupuncture & Moxibustion, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Gang Gong
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Song-Hua Zhan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
18
|
Raviskanthan S, Ray JC, Mortensen PW, Lee AG. Neuroimaging in Visual Snow - A Review of the Literature. FRONTIERS IN OPHTHALMOLOGY 2022; 2:758963. [PMID: 38983561 PMCID: PMC11182151 DOI: 10.3389/fopht.2022.758963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/17/2022] [Indexed: 07/11/2024]
Abstract
Since the first description of visual snow syndrome (VSS) in 1995, there has been increasing interest particularly within the past 5-10 years in phenotyping the condition and differentiating it from conditions such as migraine with aura and hallucinogen persisting perception disorder. Structural and functional neuroimaging has provided valuable insights in this regard, yielding functional networks and anatomical regions of interest, of which the right lingual gyrus is of particular note. Various modalities, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT), have all been studied in patients with visual snow. In this article, we conduct a comprehensive literature review of neuroimaging in VSS.
Collapse
Affiliation(s)
- Subahari Raviskanthan
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuro-Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jason C. Ray
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, Clayton, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Peter W. Mortensen
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Andrew G. Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, United States
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY, United States
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Ophthalmology, Texas A and M College of Medicine, Bryan, TX, United States
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
19
|
Unal-Cevik I. The role of occipital cortex hyperexcitability in visual snow syndrome. NEUROL SCI NEUROPHYS 2022. [DOI: 10.4103/nsn.nsn_193_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
20
|
Analysis of cerebellum with magnetic resonance 3D T1 sequence in individuals with chronic subjective tinnitus. Acta Neurol Belg 2021; 121:1641-1647. [PMID: 32748247 DOI: 10.1007/s13760-020-01451-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Tinnitus is a symptom in which the patient can hear ringing, buzzing and similar sounds in the ear for 3 months longer. In our study, we aimed to analyse the cerebellum volume and cerebellum connections in patients with chronic tinnitus using VolBrain program. A total number of 10 patients and 10 otherwise healthy peoples records were then enrolled. Volumetric analysis was performed with automated segmentation of the cerebellum and its lobules, using magnetic resonance imaging (MRI). The mean volumes of 10 cerebellar volume were compared between the tinnitus and control groups. Quadrangular lobular portion of the cerebellum, the flocculonodular part and the volume of the central cerebellar lobule were decreased in the tinnitus group. White and grey matter decreased and the amygdala size was increased. We found statistically important volumetric changes in our study. VolBrain can be used in the future for analysing, diagnosis and treatment tinnitus patients. We recommend to use this practical, free of charge and easy programme to analyse for tinnitus patients. This may provide us with practical and useful information about the disease. In patients with tinnitus, the volume loss was 17.48% in the quadrangular lobe, 21% in the central lobule, and 9.33% in the total cerebellum volume.
Collapse
|
21
|
Dai W, Liu RH, Qiu E, Liu Y, Chen Z, Chen X, Ao R, Zhuo M, Yu S. Cortical mechanisms in migraine. Mol Pain 2021; 17:17448069211050246. [PMID: 34806494 PMCID: PMC8606910 DOI: 10.1177/17448069211050246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Migraine is the second most prevalent disorder in the world; yet, its underlying mechanisms are still poorly understood. Cumulative studies have revealed pivotal roles of cerebral cortex in the initiation, propagation, and termination of migraine attacks as well as the interictal phase. Investigation of basic mechanisms of the cortex in migraine not only brings insight into the underlying pathophysiology but also provides the basis for designing novel treatments. We aim to summarize the current research literatures and give a brief overview of the cortex and its role in migraine, including the basic structure and function; structural, functional, and biochemical neuroimaging; migraine-related genes; and theories related to cortex in migraine pathophysiology. We propose that long-term plasticity of synaptic transmission in the cortex encodes migraine.
Collapse
Affiliation(s)
- Wei Dai
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China
| | - Enchao Qiu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Yinglu Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Zhiye Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Ran Ao
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Department of Physiology, 1 King's College Circle, University of Toronto, Toronto, ON, Canada
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Schading S, Pohl H, Gantenbein A, Luechinger R, Sandor P, Riederer F, Freund P, Michels L. Tracking tDCS induced grey matter changes in episodic migraine: a randomized controlled trial. J Headache Pain 2021; 22:139. [PMID: 34800989 PMCID: PMC8605508 DOI: 10.1186/s10194-021-01347-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Occipital transcranial direct current stimulation (tDCS) is an effective and safe treatment for migraine attack prevention. Structural brain alterations have been found in migraineurs in regions related to pain modulation and perception, including occipital areas. However, whether these structural alterations can be dynamically modulated through tDCS treatment is understudied. OBJECTIVE To track longitudinally grey matter volume changes in occipital areas in episodic migraineurs during and up to five months after occipital tDCS treatment in a single-blind, and sham-controlled study. METHODS 24 episodic migraineurs were randomized to either receive verum or sham occipital tDCS treatment for 28 days. To investigate dynamic grey matter volume changes patients underwent structural MRI at baseline (prior to treatment), 1.5 months and 5.5 months (after completion of treatment). 31 healthy controls were scanned with the same MRI protocol. Morphometry measures assessed rate of changes over time and between groups by means of tensor-based morphometry. RESULTS Before treatment, migraineurs reported 5.6 monthly migraine days on average. A cross-sectional analysis revealed grey matter volume increases in the left lingual gyrus in migraineurs compared to controls. Four weeks of tDCS application led to a reduction of 1.9 migraine days/month and was paralleled by grey matter volume decreases in the left lingual gyrus in the treatment group; its extent overlapping with that seen at baseline. CONCLUSION This study shows that migraineurs have increased grey matter volume in the lingual gyrus, which can be modified by tDCS. Tracking structural plasticity in migraineurs provides a potential neuroimaging biomarker for treatment monitoring. TRIAL REGISTRATION ClinicalTrials.gov , NCT03237754 . Registered 03 August 2017 - retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03237754 .
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Centre Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Heiko Pohl
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Gantenbein
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- ZURZACH Care, Bad Zurzach, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Peter Sandor
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- ZURZACH Care, Bad Zurzach, Switzerland
| | - Franz Riederer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Neurological Center Rosenhügel and Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Patrick Freund
- Spinal Cord Injury Centre Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| |
Collapse
|
23
|
Zhu Y, Dai L, Zhao H, Ji B, Yu Y, Dai H, Hu C, Wang X, Ke J. Alterations in Effective Connectivity of the Hippocampus in Migraine without Aura. J Pain Res 2021; 14:3333-3343. [PMID: 34707401 PMCID: PMC8544273 DOI: 10.2147/jpr.s327945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Neuroimaging studies on migraine have revealed structural and functional alterations in the hippocampus, a region involved in pain processing and stress response. This study was designed to investigate whether effective connectivity of this region is disrupted in migraine and relates to chronicity of this disease. Patients and Methods In 39 episodic migraine (EM) patients, 17 chronic migraine (CM) patients, and 35 healthy controls, we investigated differences in the directional influences between the hippocampus and the rest of the brain by combining resting-state functional magnetic resonance imaging and Granger causality analysis (GCA), with bilateral hippocampus as seed regions. The associations between directional influences and the clinical variables were also examined. Results Comparing each patient group to the control group, we found increased and decreased negative influence on the hippocampus exerted by the bilateral visual areas and right dorsolateral prefrontal cortex (dlPFC), respectively. The hippocampus showed increased positive influence on the right posterior insula and medial prefrontal cortex (mPFC), as well as increased negative influence on the left cerebellum in CM patients relative to EM patients and healthy controls. Furthermore, across all patients, the migraine frequency exhibited a positive and negative association with causal influence from the hippocampus to mPFC and left cerebellum, respectively. Conclusion Migraine patients have abnormal effective connectivity between the hippocampus and multiple brain regions involved in the sensory and cognitive processing of pain. Disrupted directional influences to the hippocampus exerted by dlPFC and bilateral visual areas were common features of EM and CM patients. Directional influences from the hippocampus to mPFC and left cerebellum may be useful imaging biomarkers for assessing migraine frequency.
Collapse
Affiliation(s)
- Yadi Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Lingling Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Hongru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Boan Ji
- Medical School of Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Yang Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| |
Collapse
|
24
|
Klein A, Schankin CJ. Visual snow syndrome, the spectrum of perceptual disorders, and migraine as a common risk factor: A narrative review. Headache 2021; 61:1306-1313. [PMID: 34570907 PMCID: PMC9293285 DOI: 10.1111/head.14213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this narrative review is to explore the relationship between visual snow syndrome (VSS), migraine, and a group of other perceptual disorders. BACKGROUND VSS is characterized by visual snow and additional visual and nonvisual disturbances. The clinical picture suggests a hypersensitivity to internal and external stimuli. Imaging and electrophysiological findings indicate a hyperexcitability of the primary and secondary visual areas of the brain possibly due to an impairment of inhibitory feedback mechanisms. Migraine is the most frequent comorbidity. Epidemiological and clinical studies indicate that other perceptual disorders, such as tinnitus, fibromyalgia, and dizziness, are associated with VSS. Clinical overlaps and parallels in pathophysiology might exist in relation to migraine. METHODS We performed a PubMed and Google Scholar search with the following terms: visual snow syndrome, entoptic phenomenon, fibromyalgia, tinnitus, migraine, dizziness, persistent postural-perceptual dizziness (PPPD), comorbidities, symptoms, pathophysiology, thalamus, thalamocortical dysrhythmia, and salience network. RESULTS VSS, fibromyalgia, tinnitus, and PPPD share evidence of a central disturbance in the processing of different stimuli (visual, somatosensory/pain, acoustic, and vestibular) that might lead to hypersensitivity. Imaging and electrophysiological findings hint toward network disorders involving the sensory networks and other large-scale networks involved in the management of attention and emotional processing. There are clinical and epidemiological overlaps between these disorders. Similarly, migraine exhibits a multisensory hypersensitivity even in the interictal state with fluctuation during the migraine cycle. All the described perceptual disorders are associated with migraine suggesting that having migraine, that is, a disorder of sensory processing, is a common link. CONCLUSION VSS, PPPD, fibromyalgia, and chronic tinnitus might lie on a spectrum of perceptual disorders with similar pathophysiological mechanisms and the common risk factor migraine. Understanding the underlying network disturbances might give insights into how to improve these currently very difficult to treat conditions.
Collapse
Affiliation(s)
- Antonia Klein
- Department of NeurologyInselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Christoph J. Schankin
- Department of NeurologyInselspitalBern University HospitalUniversity of BernBernSwitzerland
| |
Collapse
|
25
|
Kim SK, Nikolova S, Schwedt TJ. Structural aberrations of the brain associated with migraine: A narrative review. Headache 2021; 61:1159-1179. [PMID: 34407215 DOI: 10.1111/head.14189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To summarize major results from imaging studies investigating brain structure in migraine. BACKGROUND Neuroimaging studies, using several different imaging and analysis techniques, have demonstrated aberrations in brain structure associated with migraine. This narrative review summarizes key imaging findings and relates imaging findings with clinical features of migraine. METHODS We searched PubMed for English language articles using the key words "neuroimaging" AND/OR "MRI" combined with "migraine" through August 20, 2020. The titles and abstracts of resulting articles were reviewed for their possible inclusion in this manuscript, followed by examination of the full texts and reference lists of relevant articles. RESULTS Migraine is associated with structural brain aberrations within regions that participate in pain processing, the processing of other sensory stimuli, multisensory integration, and in white matter fiber tracts. Furthermore, migraine is associated with magnetic resonance imaging T2/fluid-attenuated inversion recovery white matter hyperintensities. Some structural aberrations are correlated with the severity and clinical features of migraine, whereas others are not. These findings suggest that some structural abnormalities are associated with or amplified by recurrent migraine attacks, whereas others are intrinsic to the migraine brain. CONCLUSIONS Migraine is associated with aberrant brain structure. Structural neuroimaging studies contribute to understanding migraine pathophysiology and identification of brain regions associated with migraine and its individual symptoms. Additional work is needed to determine the extent to which structural aberrations are a result of recurrent migraine attacks, and perhaps reversible with effective treatment or migraine resolution, versus being intrinsic traits of the migraine brain.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Neurology and Institute of Health Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, South Korea
| | | | | |
Collapse
|
26
|
Arca KN, VanderPluym JH, Halker Singh RB. Narrative review of neuroimaging in migraine with aura. Headache 2021; 61:1324-1333. [PMID: 34309848 DOI: 10.1111/head.14191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To improve the understanding of the role and utility of various neuroimaging modalities (clinical and research) for the evaluation of migraine aura (MA) and hemiplegic migraine during the ictal and interictal phases. BACKGROUND MA is defined by reversible neurologic symptoms and is considered a manifestation of a primary condition. As such, most patients with MA do not require imaging. However, if there are atypical features, change in symptom pattern, or it is a first-time presentation, neuroimaging may be used to evaluate for secondary conditions. Neuroimaging includes many modalities, and it is important to consider what information is being captured by these modalities (i.e., structural vs. functional). Imaging abnormalities may be noted both during (ictal) and between (interictal) MA attacks, and it is important for clinicians to be familiar with neuroimaging findings reported in migraine with aura (MWA) compared with other conditions. METHODS With the assistance of a medical librarian, we performed a review of the literature pertaining to MWA and neuroimaging in PubMed. Search terms included were magnetic resonance imaging, positron-emission tomography, single photon-emission computed tomography, functional magnetic resonance imaging, and migraine with aura. We hand-searched these references to inform our subsequent literature review. RESULTS Acute MA can be associated with several unique neuroimaging findings-reversible cortical diffusion restriction, cortical venous engorgement, and a "biphasic" transition from hypoperfusion to hyperperfusion. Imaging findings during MA tend to span more than one vascular territory. Between acute attacks, neuroimaging in people with MWA can resemble migraine without aura in terms of white matter abnormalities and "infarct-like lesions." Research imaging modalities such as volumetric analysis and functional imaging have demonstrated unique findings in migraine with aura. CONCLUSION Although migraine is a clinical diagnosis, understanding of neuroimaging findings in MWA can help clinicians interpret imaging findings and improve patient care.
Collapse
Affiliation(s)
- Karissa N Arca
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | |
Collapse
|
27
|
Karsan N, Goadsby PJ. Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems? Front Hum Neurosci 2021; 15:646692. [PMID: 34149377 PMCID: PMC8209296 DOI: 10.3389/fnhum.2021.646692] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine is a symptomatically heterogeneous condition, of which headache is just one manifestation. Migraine is a disorder of altered sensory thresholding, with hypersensitivity among sufferers to sensory input. Advances in functional neuroimaging have highlighted that several brain areas are involved even prior to pain onset. Clinically, patients can experience symptoms hours to days prior to migraine pain, which can warn of impending headache. These symptoms can include mood and cognitive change, fatigue, and neck discomfort. Some epidemiological studies have suggested that migraine is associated in a bidirectional fashion with other disorders, such as mood disorders and chronic fatigue, as well as with other pain conditions such as fibromyalgia. This review will focus on the literature surrounding alterations in fatigue, mood, and cognition in particular, in association with migraine, and the suggested links to disorders such as chronic fatigue syndrome and depression. We hypothesize that migraine should be considered a neural disorder of brain function, in which alterations in aminergic networks integrating the limbic system with the sensory and homeostatic systems occur early and persist after headache resolution and perhaps interictally. The associations with some of these other disorders may allude to the inherent sensory sensitivity of the migraine brain and shared neurobiology and neurotransmitter systems rather than true co-morbidity.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Eikermann-Haerter K, Huang SY. White Matter Lesions in Migraine. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1955-1962. [PMID: 33636178 DOI: 10.1016/j.ajpath.2021.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/16/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Migraine, the third most common disease worldwide, is a well-known independent risk factor for subclinical focal deep white matter lesions (WMLs), even in young and otherwise healthy individuals with no cardiovascular risk factors. These WMLs are more commonly seen in migraine patients with transient neurologic symptoms preceding their headaches, the so-called aura, and those with a high attack frequency. The pathophysiology of migraine-related deep white matter hyperintensities remains poorly understood despite their prevalence. Characteristic differences in their distribution related to chronic small vessel ischemic disease compared with that of common periventricular WMLs in the elderly suggest a different underlying mechanism. Both ischemic and inflammatory mechanisms have been proposed, as there is increased cerebral vulnerability to ischemia in migraineurs, whereas there is also evidence of blood-brain barrier disruption with associated release of proinflammatory substances during migraine attacks. An enhanced susceptibility to spreading depolarization, the electrophysiological event underlying migraine, may be the mechanism that causes repetitive episodes of cerebral hypoperfusion and neuroinflammation during migraine attacks. WMLs can negatively affect both physical and cognitive function, underscoring the public health importance of migraine, and suggesting that migraine is an important contributor to neurologic deficits in the general population.
Collapse
Affiliation(s)
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
29
|
Masson R, Demarquay G, Meunier D, Lévêque Y, Hannoun S, Bidet-Caulet A, Caclin A. Is Migraine Associated to Brain Anatomical Alterations? New Data and Coordinate-Based Meta-analysis. Brain Topogr 2021; 34:384-401. [PMID: 33606142 DOI: 10.1007/s10548-021-00824-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
A growing number of studies investigate brain anatomy in migraine using voxel- (VBM) and surface-based morphometry (SBM), as well as diffusion tensor imaging (DTI). The purpose of this article is to identify consistent patterns of anatomical alterations associated with migraine. First, 19 migraineurs without aura and 19 healthy participants were included in a brain imaging study. T1-weighted MRIs and DTI sequences were acquired and analyzed using VBM, SBM and tract-based spatial statistics. No significant alterations of gray matter (GM) volume, cortical thickness, cortical gyrification, sulcus depth and white-matter tract integrity could be observed. However, migraineurs displayed decreased white matter (WM) volume in the left superior longitudinal fasciculus. Second, a systematic review of the literature employing VBM, SBM and DTI was conducted to investigate brain anatomy in migraine. Meta-analysis was performed using Seed-based d Mapping via permutation of subject images (SDM-PSI) on GM volume, WM volume and cortical thickness data. Alterations of GM volume, WM volume, cortical thickness or white-matter tract integrity were reported in 72%, 50%, 56% and 33% of published studies respectively. Spatial distribution and direction of the disclosed effects were highly inconsistent across studies. The SDM-PSI analysis revealed neither significant decrease nor significant increase of GM volume, WM volume or cortical thickness in migraine. Overall there is to this day no strong evidence of specific brain anatomical alterations reliably associated to migraine. Possible explanations of this conflicting literature are discussed. Trial registration number: NCT02791997, registrated February 6th, 2015.
Collapse
Affiliation(s)
- Rémy Masson
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
| | - Geneviève Demarquay
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Neurological Hospital Pierre Wertheimer, Functional Neurology and Epilepsy Department, Hospices Civils de Lyon and Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - David Meunier
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Yohana Lévêque
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Aurélie Bidet-Caulet
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
30
|
Abstract
Migraine is a prevalent primary headache disorder and is usually considered as benign. However, structural and functional changes in the brain of individuals with migraine have been reported. High frequency of white matter abnormalities, silent infarct-like lesions, and volumetric changes in both gray and white matter in individuals with migraine compared to controls have been demonstrated. Functional magnetic resonance imaging (MRI) studies found altered connectivity in both the interictal and ictal phase of migraine. MR spectroscopy and positron emission tomography studies suggest abnormal energy metabolism and mitochondrial dysfunction, as well as other metabolic changes in individuals with migraine. In this review, we provide a brief overview of neuroimaging studies that have helped us to characterize some of these changes and discuss their limitations, including small sample sizes and poorly defined control groups. A better understanding of alterations in the brains of patients with migraine could help not only in the diagnosis but may potentially lead to the optimization of a targeted anti-migraine therapy.
Collapse
|
31
|
Puledda F, Bruchhage M, O'Daly O, Ffytche D, Williams SCR, Goadsby PJ. Occipital cortex and cerebellum gray matter changes in visual snow syndrome. Neurology 2020; 95:e1792-e1799. [PMID: 32759201 PMCID: PMC7682819 DOI: 10.1212/wnl.0000000000010530] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To determine whether regional gray and white matter differences characterize the brain of patients with visual snow syndrome, a newly defined neurologic condition, we used a voxel-based morphometry approach. Methods In order to investigate whole brain morphology directly, we performed an MRI study on patients with visual snow syndrome (n = 24) and on age- and sex-matched healthy volunteers (n = 24). Voxel-based morphometry was used to determine volumetric differences in patients with visual snow. We further analyzed cerebellar anatomy directly using the high-resolution spatially unbiased atlas template of the cerebellum. Results Compared to healthy controls, patients with visual snow syndrome had increased gray matter volume in the left primary and secondary visual cortices, the left visual motion area V5, and the left cerebellar crus I/lobule VI area. These anatomical alterations could not be explained by clinical features of the condition. Conclusion Patients with visual snow syndrome have subtle, significant neuroanatomical differences in key visual and lateral cerebellar areas, which may in part explain the pathophysiologic basis of the disorder.
Collapse
Affiliation(s)
- Francesca Puledda
- From the Headache Group, Department of Basic and Clinical Neuroscience (F.P., P.J.G.), Centre for Neuroimaging Sciences, Department of Neuroimaging (M.B., O.O., S.C.R.W.), and Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (D.F.), King's College London; NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre (F.P., P.J.G.), King's College Hospital, London, UK; and Advanced Baby Imaging Laboratory (M.B.), Warren Alpert School of Medicine at Brown University, Providence, RI.
| | - Muriel Bruchhage
- From the Headache Group, Department of Basic and Clinical Neuroscience (F.P., P.J.G.), Centre for Neuroimaging Sciences, Department of Neuroimaging (M.B., O.O., S.C.R.W.), and Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (D.F.), King's College London; NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre (F.P., P.J.G.), King's College Hospital, London, UK; and Advanced Baby Imaging Laboratory (M.B.), Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Owen O'Daly
- From the Headache Group, Department of Basic and Clinical Neuroscience (F.P., P.J.G.), Centre for Neuroimaging Sciences, Department of Neuroimaging (M.B., O.O., S.C.R.W.), and Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (D.F.), King's College London; NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre (F.P., P.J.G.), King's College Hospital, London, UK; and Advanced Baby Imaging Laboratory (M.B.), Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Dominic Ffytche
- From the Headache Group, Department of Basic and Clinical Neuroscience (F.P., P.J.G.), Centre for Neuroimaging Sciences, Department of Neuroimaging (M.B., O.O., S.C.R.W.), and Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (D.F.), King's College London; NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre (F.P., P.J.G.), King's College Hospital, London, UK; and Advanced Baby Imaging Laboratory (M.B.), Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Steven C R Williams
- From the Headache Group, Department of Basic and Clinical Neuroscience (F.P., P.J.G.), Centre for Neuroimaging Sciences, Department of Neuroimaging (M.B., O.O., S.C.R.W.), and Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (D.F.), King's College London; NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre (F.P., P.J.G.), King's College Hospital, London, UK; and Advanced Baby Imaging Laboratory (M.B.), Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Peter J Goadsby
- From the Headache Group, Department of Basic and Clinical Neuroscience (F.P., P.J.G.), Centre for Neuroimaging Sciences, Department of Neuroimaging (M.B., O.O., S.C.R.W.), and Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (D.F.), King's College London; NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre (F.P., P.J.G.), King's College Hospital, London, UK; and Advanced Baby Imaging Laboratory (M.B.), Warren Alpert School of Medicine at Brown University, Providence, RI
| |
Collapse
|
32
|
Schankin CJ, Maniyar FH, Chou DE, Eller M, Sprenger T, Goadsby PJ. Structural and functional footprint of visual snow syndrome. Brain 2020; 143:1106-1113. [PMID: 32211752 PMCID: PMC7534145 DOI: 10.1093/brain/awaa053] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/28/2022] Open
Abstract
Patients with visual snow syndrome suffer from a continuous pan-field visual disturbance, additional visual symptoms, tinnitus, and non-perceptional symptoms. The pathophysiology of visual symptoms might involve dysfunctional visual cortex. So far, the extra-visual system has not been investigated. We aimed at identifying structural and functional correlates for visual and non-visual symptoms in visual snow syndrome. Patients were compared to age- and sex-matched controls using 18F-2-fluoro-2-deoxy-d-glucose PET (n = 20 per group) and voxel-based morphometry (n = 17 per group). Guided by the PET results, region of interest analysis was done in voxel-based morphometry to identify structural-functional correspondence. Grey matter volume was assessed globally. Patients had corresponding hypermetabolism and cortical volume increase in the extrastriate visual cortex at the junction of the right lingual and fusiform gyrus. There was hypometabolism in the right superior temporal gyrus and the left inferior parietal lobule. Patients had grey matter volume increases in the temporal and limbic lobes and decrease in the superior temporal gyrus. The corresponding structural and functional alterations emphasize the relevance of the visual association cortex for visual snow syndrome. The broad structural and functional footprint, however, confirms the clinical impression that the disorder extends beyond the visual system.
Collapse
Affiliation(s)
- Christoph J Schankin
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Farooq H Maniyar
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, The Royal London Hospital (Barts and the London NHS Trust), London, UK
| | - Denise E Chou
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Amgen Inc., Thousand Oaks, CA USA
| | - Michael Eller
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, Monash Medical Centre, Monash University, Melbourne, Australia
| | - Till Sprenger
- Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
| | - Peter J Goadsby
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Center, King's College London, London, UK
| |
Collapse
|
33
|
Wang HZ, Wang WH, Shi HC, Yuan CH. Is there a reliable brain morphological signature for migraine? J Headache Pain 2020; 21:89. [PMID: 32652927 PMCID: PMC7353790 DOI: 10.1186/s10194-020-01158-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Voxel-based morphometry (VBM) is a popular non-invasive magnetic resonance imaging technique to investigate brain gray matter (GM) differences between groups. Recently, two VBM studies in migraine have been published in The Journal of Headache and Pain. Reviewing the two and those previous published VBM studies, we found considerable variations of the results. Spatially diverse brain regions with decreased and increased GM alterations and null findings have been reported. It is interesting to know whether there is a reliable brain morphological signature for migraine. Coordinate-based meta-analysis (CBMA) is increasingly used to quantitatively pool individual neuroimaging studies to identify consistent and reliable findings. Several CBMA have been conducted, however, their results were inconsistent. The algorithms for CBMA have evolved and more eligible VBM studies in migraine have been published. We therefore conducted an updated CBMA using the latest algorithms for CBMA, seed-based d mapping with permutation of subject images (SDM-PSI). The present CBMA of 32 VBM studies (41 datasets comprising 1252 patients and 1025 healthy controls) found no evidence of consistent GM alterations in migraine. Sensitivity analysis, subgroup meta-analyses, and meta-regression analyses revealed that the result was robust. This negative result indicates that there is no reliable brain morphological signature for migraine. VBM investigations in migraine remain a heterogeneous field. Many potential confounding factors, such as underpowered sample sizes, variations in demographic and clinical characteristics, and differences in MRI scanners, head coils, scanning parameters, preprocessing procedures, and statistical strategies may cause the inconsistences of the results. Future VBM studies are warranted to enroll well-characterized and homogeneous subtype samples with appropriate sample sizes, comprehensively assess comorbidities and medication status, and use well-validated and standardized imaging protocols and processing and analysis pipelines to produce robust and replicable results in migraine.
Collapse
Affiliation(s)
- Hong Zhou Wang
- Department of Neurology, Kunshan Hospital, Affiliated to Jiangsu University, Kunshan, People's Republic of China
| | - Wan Hua Wang
- Department of Neurology, Kunshan Hospital, Affiliated to Jiangsu University, Kunshan, People's Republic of China
| | - Hai Cun Shi
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, People's Republic of China
| | - Cong Hu Yuan
- Department of Anesthesia and Pain Management, Affiliated Yancheng Hospital, School of Medicine, Southeast University, West Xindu Road 2#, Yancheng, Jiangsu Province, 224001, People's Republic of China.
| |
Collapse
|
34
|
Sheng L, Zhao P, Ma H, Yuan C, Zhong J, Dai Z, Pan P. A lack of consistent brain grey matter alterations in migraine. Brain 2020; 143:e45. [PMID: 32363400 DOI: 10.1093/brain/awaa123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- LiQin Sheng
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - PanWen Zhao
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - HaiRong Ma
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - CongHu Yuan
- Department of Anesthesia and Pain Management, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - JianGuo Zhong
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - ZhenYu Dai
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - PingLei Pan
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| |
Collapse
|
35
|
Zhang D, Huang X, Su W, Chen Y, Wang P, Mao C, Miao Z, Liu C, Xu C, Yin X, Wu X. Altered lateral geniculate nucleus functional connectivity in migraine without aura: a resting-state functional MRI study. J Headache Pain 2020; 21:17. [PMID: 32066379 PMCID: PMC7025412 DOI: 10.1186/s10194-020-01086-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/07/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES To investigate the structural and functional connectivity changes of lateral geniculate nucleus (LGN) and their relationships with clinical characteristics in patients without aura. METHODS Conventional MRI, 3D structure images and resting state functional MRI were performed in 30 migraine patients without aura (MwoA) and 22 healthy controls (HC). The lateral geniculate nucleus volumes and the functional connectivity (FC) of bilateral lateral geniculate nucleus were computed and compared between groups. RESULTS The lateral geniculate nucleus volumes in patient groups did not differ from the controls. The brain regions with increased FC of the left LGN mainly located in the left cerebellum and right lingual gyrus in MwoA compared with HC. The increased FC of right LGN located in left inferior frontal gyrus in MwoA compared with HC. The correlation analysis showed a positive correlation between VLSQ-8 score and the increased FC of left cerebellum and right lingual gyrus. CONCLUSIONS Photophobia in MwoA could be mediated by abnormal resting state functional connectivity in visual processing regions, the pain perception regulatory network and emotion regulation network. This result is valuable to further understanding about the clinical manifestation and pathogenesis of migraine.
Collapse
Affiliation(s)
- Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Xiaobin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Wen Su
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Yuchen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Cunnan Mao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Zhengfei Miao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Chunmei Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Chenjie Xu
- Department of Pain Treatment, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China.
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China.
| |
Collapse
|
36
|
Chen XY, Chen ZY, Dong Z, Liu MQ, Yu SY. Regional volume changes of the brain in migraine chronification. Neural Regen Res 2020; 15:1701-1708. [PMID: 32209774 PMCID: PMC7437590 DOI: 10.4103/1673-5374.276360] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pathophysiology of migraine is complex. Neuroimaging studies reveal functional and structural changes in the brains of migraine patients. We sought to explore regional volume differences in intracranial structures in patients with episodic and chronic migraine. Sixteen episodic migraine patients, 16 chronic migraine patients, and 24 normal controls were recruited and underwent 3.0 T MRI scanning. The volumes of 142 brain regions were calculated by an automatic volumetric algorithm and compared with clinical variables. Results demonstrated that the volumes of specific regions in the frontal and occipital lobes, and the right putamen, were increased and the volume of the fourth ventricle was decreased in the episodic migraine patients compared with controls. The volumes of the left basal forebrain, optic chiasm, and, the fourth ventricle were decreased in the chronic migraine patients, while the occipital cortex and the right putamen were larger. Compared to episodic migraine patiants, chronic migraine patients displayed larger left thalamus and smaller frontal regions. Correlation analysis showed that headache frequency was negatively correlated with the volume of the right frontal pole, right lateral orbital gyrus, and medial frontal lobes and positively correlated with the volume of the left thalamus. The sleep disturbance score was negatively correlated with the volume of the left basal forebrain. This suggests that migraine patients have structural changes in regions associated with pain processing and modulation, affective and cognitive processing, and visual perception. The remodeling of selective intracranial structures may be involved in migraine attacks. This study was approved by the Ethics Committee of Chinese PLA General Hospital (approval No. S2018-027-02) on May 31, 2018.
Collapse
Affiliation(s)
- Xiao-Yan Chen
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi-Ye Chen
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing; Department of Radiology, Hainan Hospital of First Medical Center of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Zhao Dong
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meng-Qi Liu
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing; Department of Radiology, Hainan Hospital of First Medical Center of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Sheng-Yuan Yu
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Puledda F, Ffytche D, O'Daly O, Goadsby PJ. Imaging the Visual Network in the Migraine Spectrum. Front Neurol 2019; 10:1325. [PMID: 31920945 PMCID: PMC6923266 DOI: 10.3389/fneur.2019.01325] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/29/2019] [Indexed: 01/13/2023] Open
Abstract
The involvement of the visual network in migraine pathophysiology has been well-known for more than a century. Not only is the aura phenomenon linked to cortical alterations primarily localized in the visual cortex; but also migraine without aura has shown distinct dysfunction of visual processing in several studies in the past. Further, the study of photophobia, a hallmark migraine symptom, has allowed unraveling of distinct connections that link retinal pathways to the trigeminovascular system. Finally, visual snow, a recently recognized neurological disorder characterized by a continuous visual disturbance, is highly comorbid with migraine and possibly shares with it some common pathophysiological mechanisms. Here, we review the most relevant neuroimaging literature to date, considering studies that have either attempted to investigate the visual network or have indirectly shown visual processing dysfunctions in migraine. We do this by taking into account the broader spectrum of migrainous biology, thus analyzing migraine both with and without aura, focusing on light sensitivity as the most relevant visual symptom in migraine, and finally analyzing the visual snow syndrome. We also present possible hypotheses on the underlying pathophysiology of visual snow, for which very little is currently known.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, SLaM NIHR Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Dominic Ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, SLaM NIHR Biomedical Research Centre, King's College Hospital, London, United Kingdom
| |
Collapse
|
38
|
Tolner EA, Chen SP, Eikermann-Haerter K. Current understanding of cortical structure and function in migraine. Cephalalgia 2019; 39:1683-1699. [PMID: 30922081 PMCID: PMC6859601 DOI: 10.1177/0333102419840643] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To review and discuss the literature on the role of cortical structure and function in migraine. DISCUSSION Structural and functional findings suggest that changes in cortical morphology and function contribute to migraine susceptibility by modulating dynamic interactions across cortical and subcortical networks. The involvement of the cortex in migraine is well established for the aura phase with the underlying phenomenon of cortical spreading depolarization, while increasing evidence suggests an important role for the cortex in perception of head pain and associated sensations. As part of trigeminovascular pain and sensory processing networks, cortical dysfunction is likely to also affect initiation of attacks. CONCLUSION Morphological and functional changes identified across cortical regions are likely to contribute to initiation, cyclic recurrence and chronification of migraine. Future studies are needed to address underlying mechanisms, including interactions between cortical and subcortical regions and effects of internal (e.g. genetics, gender) and external (e.g. sensory inputs, stress) modifying factors, as well as possible clinical and therapeutic implications.
Collapse
Affiliation(s)
- Else A Tolner
- Departments of Neurology and Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Shih-Pin Chen
- Insitute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei
| | | |
Collapse
|
39
|
Soheili-Nezhad S, Sedghi A, Schweser F, Eslami Shahr Babaki A, Jahanshad N, Thompson PM, Beckmann CF, Sprooten E, Toghae M. Structural and Functional Reorganization of the Brain in Migraine Without Aura. Front Neurol 2019; 10:442. [PMID: 31133962 PMCID: PMC6515892 DOI: 10.3389/fneur.2019.00442] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023] Open
Abstract
It remains unknown whether migraine headache has a progressive component in its pathophysiology. Quantitative MRI may provide valuable insight into abnormal changes in the migraine interictum and assist in identifying disrupted brain networks. We carried out a data-driven study of structural integrity and functional connectivity of the resting brain in migraine without aura. MRI scanning was performed in 36 patients suffering from episodic migraine without aura and 33 age-matched healthy subjects. Voxel-wise analysis of regional brain volume was performed by registration of the T1-weighted MRI scans into a common study brain template using the tensor-based morphometry (TBM) method. Changes in functional synchronicity of the brain networks were assessed using probabilistic independent component analysis (ICA). TBM revealed that migraine is associated with reduced volume of the medial prefrontal cortex (mPFC). Among 375 functional brain networks, resting-state connectivity was decreased between two components spanning the visual cortex, posterior insula, and parietal somatosensory cortex. Our study reveals structural and functional alterations of the brain in the migraine interictum that may stem from underlying disease risk factors and the "silent" aura phenomenon. Longitudinal studies will be needed to investigate whether interictal brain changes are progressive and associated with clinical disease trajectories.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Alireza Sedghi
- Medical Informatics Laboratory, Queen's University, Kingston, ON, Canada
| | - Ferdinand Schweser
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, Buffalo, NY, United States
- Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, Buffalo, NY, United States
| | | | - Neda Jahanshad
- Keck School of Medicine of USC, Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Paul M. Thompson
- Keck School of Medicine of USC, Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
- John Radcliffe Hospital, Oxford Centre for Functional MRI of the Brain, Oxford, United Kingdom
| | - Emma Sprooten
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Mansoureh Toghae
- Headache Department, Iranian Center of Neurological Research, Neuroscience Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Aktürk T, Tanık N, Serin Hİ, Saçmacı H, İnan LE. Olfactory bulb atrophy in migraine patients. Neurol Sci 2018; 40:127-132. [PMID: 30280362 DOI: 10.1007/s10072-018-3597-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/29/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Osmophobia and headache triggered by odors are commonly seen in migraine, and these are symptoms that differentiate migraine from other primary headaches. Since these odor-related symptoms are disease-specific, we aimed to measure the volume of olfactory bulb and depth of olfactory sulcus in migraine patients. PATIENTS AND METHOD A total of 93 subjects, consisting of 62 episodic migraine (32 with osmophobia, 30 without osmophobia) patients and 31 healthy controls, were included in this study. Diagnosis and classification of migraine were performed according to the beta version criteria of International Classification of Headache Disorders (ICHD-3 Beta version). Beck depression and beck anxiety inventory were applied to the patients, and the measurement of bilateral olfactory bulb volume (OBV) and olfactory sulcus depth (OSD) was performed manually in the brain magnetic resonance imaging (MRI). RESULTS More significantly in the left OBV, low OBV has been determined in migraine patients compared to the control group (p < 0.001, p = 0.020). When migraine patients with or without osmophobia were compared to the control group; OBV was determined to be the lowest in migraine group with osmophobia, and left-weighted bilateral OBV was determined to be low (p < 0.001, p = 0.046). No statistically significant difference was determined between groups in OSD measurements (p = 0.646, p = 0.490). CONCLUSION Left-weighted bilateral OBV atrophy determined in migraine patients may be guiding for the clarification of migraine pathophysiology and enlightening of the relation between migraine and odor.
Collapse
Affiliation(s)
- Tülin Aktürk
- Department of Neurology, Bozok University Medical School, Yozgat, Turkey.
| | - Nermin Tanık
- Department of Neurology, Bozok University Medical School, Yozgat, Turkey
| | | | - Hikmet Saçmacı
- Department of Neurology, Bozok University Medical School, Yozgat, Turkey
| | - Levent Ertuğrul İnan
- Department of Neurology, Ministry of Health Ankara Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
41
|
|
42
|
Russo A, Silvestro M, Tessitore A, Tedeschi G. Advances in migraine neuroimaging and clinical utility: from the MRI to the bedside. Expert Rev Neurother 2018; 18:533-544. [PMID: 29883214 DOI: 10.1080/14737175.2018.1486708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION In current migraine clinical practice, no specific diagnostic investigations are available and therefore the diagnosis is an eminently clinical process where instrumental examinations may have a part to exclude possible causes of secondary headaches. While migraine clinical phenotype has been widely characterized, migraine pathophysiology has still a gap that might be partly bridged by structural and functional neuroimaging investigations. Areas covered: This article aims to review the recent advances in functional neuroimaging, the consequent progress in the knowledge of migraine pathophysiology and their putative application and impact in the clinical setting. A comprehensive review was conducted of PubMed citations by entering the key word 'MRI' combined with 'migraine' AND/OR 'headache.' Other key words included 'gray matter' OR 'white matter,' 'structural' OR 'functional.' The only restriction was English-language publication. The abstracts of all articles meeting these criteria were reviewed, and full texts were examined for relevant references. Expert commentary: Advanced magnetic resonance imaging (MRI) techniques are tremendously improving our knowledge about brain abnormalities in migraine patients. However, advanced MRI could nowadays overcome the limits linked to the clinicians' judgment through the identification of objectively measurable neuroimaging findings (quantitative biomarkers) concerning the diagnosis, the prognosis and 'tailored' therapeutic-care pathways.
Collapse
Affiliation(s)
- Antonio Russo
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Marcello Silvestro
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Alessandro Tessitore
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Gioacchino Tedeschi
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy.,c Institute for Diagnosis and Care ''Hermitage Capodimonte'', Neurology Department , Naples , Italy
| |
Collapse
|
43
|
Messina R, Rocca MA, Colombo B, Pagani E, Falini A, Goadsby PJ, Filippi M. Gray matter volume modifications in migraine. Neurology 2018; 91:e280-e292. [DOI: 10.1212/wnl.0000000000005819] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/16/2018] [Indexed: 01/03/2023] Open
Abstract
ObjectiveTo explore cross-sectional and longitudinal gray matter (GM) volume changes in patients with migraine and their association with patients' clinical characteristics and disease activity.MethodsBrain T2-weighted and 3-dimensional T1-weighted scans were acquired from 73 episodic migraineurs and 46 age- and sex-matched nonmigraine controls at baseline. Twenty-four migraineurs and 25 controls agreed to be reexamined after a mean follow-up of 4 years. Using a general linear model and SPM12, a whole-brain analysis was performed to assess GM volume modifications.ResultsAt baseline, compared to controls, patients with migraine showed lower cerebellar GM volume and higher volume of regions of the frontotemporal lobes. At follow-up, migraineurs were significantly older than controls. Over the follow-up, migraineurs developed an increased volume of frontotemporoparietal regions, which was more prominent in patients with a higher baseline disease activity: long disease duration and high attack frequency. Migraineurs also developed decreased GM volume of visual areas, which was related to higher pain severity. Patients with an increased attack frequency at follow-up experienced both increased and decreased volume of nociceptive regions. In migraineurs, reduced GM volume of extrastriate visual areas during the follow-up was significantly correlated to baseline disease activity: shorter disease duration and lower attack frequency.ConclusionIn this cohort, the migraine brain changes dynamically over time, and different pathophysiologic mechanisms can occur in response to patients' disease severity. The interaction between predisposing brain traits and experience-dependent responses might vary across different nociceptive and visual areas, thus leading to distinct patterns of longitudinal GM volume changes.
Collapse
|