1
|
Onicas A, Deighton S, Yeates KO, Bray S, Graff K, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson BH, Craig W, Dehaes M, Deschenes S, Dennis EL, Doan Q, Freedman SB, Goodyear BG, Gravel J, Lebel C, Ledoux AA, Zemek R, Ware AL. Brain Network Functional Connectivity in Children With a Concussion. Neurology 2025; 104:e213502. [PMID: 40168632 PMCID: PMC11962048 DOI: 10.1212/wnl.0000000000213502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/29/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Pediatric concussion can disrupt functional brain network connectivity, but prospective longitudinal research is needed to clarify recovery and identify moderators of change. This study investigated network functional connectivity (FC) up to 6 months after pediatric concussion. METHODS This prospective longitudinal concurrent cohort observational study consecutively recruited children (aged 8 to 17 years) at 5 Canadian pediatric hospital emergency departments within 48 hours of sustaining a concussion or mild orthopaedic injury (OI). Children completed 3T MRI scanning postacutely (2 to 33 days) and at either 3 or 6 months after injury (randomly assigned at the postacute visit). Reliable change between retrospective preinjury (based on parent report) and 1-month postinjury symptom ratings based on parent and child report was used to classify concussion with or without persisting symptoms. Within-network and between-network FC was computed for 8 brain networks from resting-state fMRI scans and analyzed using linear mixed-effects models, with multiple comparison correction. RESULTS Groups (385 with concussion/198 with OI; 59% male; 69% White; age 12.42 ± 2.29 years) did not differ in within-network FC. Relative to OI, connectivity between the visual and ventral attention networks was lower after concussion, d (95% CI) = -0.46 (-0.79 to -0.14), across time. Connectivity between the visual and default mode networks was lower at 6 months after concussion, -0.60 (-0.92 to -0.27). At 3 months after concussion, connectivity between the frontoparietal and ventral attention networks was lower in younger children, -0.98 (-1.58 to -0.37), but higher in older children, 0.81 (0.20 to 1.42). For symptom groups based on parent report, connectivity between the dorsal and ventral attention networks was higher in female children at 3 months after concussion without persisting symptoms relative to concussion with persisting symptoms, 1.25 (2.05 to 0.46), and OI, 0.87 (0.25 to 1.49). DISCUSSION Time after injury, age at injury, biological sex, and persistent symptom status are important moderators of FC after pediatric concussion for children seen in emergency department settings. Postacute FC may not enhance clinical diagnosis. Although within-network connectivity is preserved, between-network connectivity differences emerge after most children clinically recover and persist up to 6 months after pediatric concussion, providing a potential objective biomarker for lasting changes in brain function.
Collapse
Affiliation(s)
- Adrian Onicas
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Stephanie Deighton
- Department of Psychology, Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Keith O Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Signe Bray
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Kirk Graff
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Nishard Abdeen
- Department of Radiology, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montréal & CHU Sainte-Justine Hospital Research Center, Québec, Canada
| | - Christian Beaulieu
- Department of Radiology and Diagnostic Imaging, and Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Bruce H Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montréal and CHU Sainte-Justine Research Center, Québec, Canada
| | - Sylvain Deschenes
- Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Québec, Canada
| | - Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B Freedman
- Departments of Pediatric and Emergency Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine, CHU Sainte-Justine, University of Montréal, Québec, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular Molecular Medicine, University of Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Department of Pediatrics, University of Ottawa, Ontario, Canada; and
| | - Ashley L Ware
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- Department of Psychology, Georgia State University, Atlanta
| |
Collapse
|
2
|
van Tonder R, Viljoen H, Ackermann C. Radiological Correlates of Head Injuries in School-Level Rugby Union: A 10-Year Retrospective Cross-Sectional Analysis. Sports Med 2025:10.1007/s40279-025-02195-5. [PMID: 40133692 DOI: 10.1007/s40279-025-02195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Sport-related concussion (SRC) in rugby union is common and carries a high injury burden, especially among children. Computed tomography (CT) imaging is commonly used to assess rugby-related head injuries, including SRC, subjecting children to ionising radiation. In addition, there is concern about the relationship between SRC, repetitive head impacts and neurodegeneration. OBJECTIVE To review and correlate the imaging findings of head injuries in school-level rugby players from a public tertiary referral centre and a private multi-centre radiology service. DESIGN Descriptive, retrospective cross-sectional correlational study for the 2014-2023 period. METHODS Anonymised data were collected from the radiological information systems of a tertiary referral centre and a private radiology provider. Data included participant age, imaging modality, study type, date, findings and SRC status. The public and private datasets were analysed using descriptive and comparative statistics. RESULTS A total of 369 cases were identified (public n = 132, 36%). Mean participant age was 15 (± 2.5) years, with 78% (n = 289) clinically deemed to have an SRC. CT was performed in 347 (94%) cases, with abnormal findings reported in 50 studies (public n = 32). The most common findings were craniofacial fractures (n = 28) and intracranial injuries (n = 19). The sensitivity of CT for detecting SRC was 14%. Public sector participants were more likely to have an SRC (odds ratio: 8.39; 95% CI 8.37-8.41, p < 0.001). CONCLUSIONS CT demonstrates limited utility in the context of SRC beyond detecting craniofacial fractures or surgical emergencies, reinforcing clinical assessment as the diagnostic cornerstone. Protocol optimisation should prioritise radiation risk mitigation through strict adherence to paediatric low-dose guidelines.
Collapse
Affiliation(s)
- Riaan van Tonder
- Division of Radiodiagnosis, Stellenbosch University, Cape Town, South Africa.
| | | | | |
Collapse
|
3
|
van der Horn HJ, Wick TV, Ling JM, McQuaid JR, Nathaniel U, Miller SD, Kumar DS, Zotev V, Vakhtin AA, Ryman SG, Cabral J, Phillips JP, Campbell RA, Sapien RE, Mayer AR. Trajectories of intrinsic connectivity one year post pediatric mild traumatic brain injury: Neural injury superimposed on neurodevelopment. Cortex 2025; 184:120-130. [PMID: 39855053 PMCID: PMC11908916 DOI: 10.1016/j.cortex.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
The developing brain undergoes rapid changes throughout middle childhood and adolescence. The disambiguation of long-term changes in intrinsic activity following pediatric mild traumatic brain injury (pmTBI) from typical development can therefore only be ascertained in longitudinal studies with large sample size and at least three serial assessments. A comprehensive clinical battery and resting-state fMRI data were collected approximately 1-week (N = 263; 8-18 years old), 4-months (N = 192) and 1-year (N = 153) post-injury, with identical visits in a large cohort (N = 228) of age- and sex-matched healthy controls (HC). Results indicated persistent frontocerebellar and thalamic connectivity changes up to 1-year post-injury in pmTBI relative to controls (P's < .001), with similar longitudinal connectivity trajectories (i.e., typical neurodevelopment). Alterations in precuneal midline connectivity (p's < .05) and occupancy of a default mode/limbic dynamic brain state were present only up to 4-months (p's < .001) rather than 1-year (p's > .44) post-injury. However, absent group differences at 1-year post-injury may be explained as pseudo-normalization due to altered longitudinal connectivity trajectories in pmTBI associated with neurodevelopment. Persistent alterations of precuneal connectivity were also associated with lower executive function and long-term memory scores. In conclusion, pmTBI may result in chronic changes to both static and dynamic intrinsic connectivity which further interact with typical neurodevelopment. Longer follow-up studies may be needed to unravel this interaction.
Collapse
Affiliation(s)
- Harm J van der Horn
- The Mind Research Network/LBRI, Albuquerque, NM, USA; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Tracey V Wick
- The Mind Research Network/LBRI, Albuquerque, NM, USA
| | - Josef M Ling
- The Mind Research Network/LBRI, Albuquerque, NM, USA
| | | | | | | | | | - Vadim Zotev
- The Mind Research Network/LBRI, Albuquerque, NM, USA
| | | | | | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | | | - Richard A Campbell
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Andrew R Mayer
- The Mind Research Network/LBRI, Albuquerque, NM, USA; Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
4
|
May HG, Tsikonofilos K, Donat CK, Sastre M, Kozlov AS, Sharp DJ, Bruyns-Haylett M. EEG hyperexcitability and hyperconnectivity linked to GABAergic inhibitory interneuron loss following traumatic brain injury. Brain Commun 2024; 6:fcae385. [PMID: 39605970 PMCID: PMC11600960 DOI: 10.1093/braincomms/fcae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Traumatic brain injury represents a significant global health burden and has the highest prevalence among neurological disorders. Even mild traumatic brain injury can induce subtle, long-lasting changes that increase the risk of future neurodegeneration. Importantly, this can be challenging to detect through conventional neurological assessment. This underscores the need for more sensitive diagnostic tools, such as electroencephalography, to uncover opportunities for therapeutic intervention. Progress in the field has been hindered by a lack of studies linking mechanistic insights at the microscopic level from animal models to the macroscale phenotypes observed in clinical imaging. Our study addresses this gap by investigating a rat model of mild blast traumatic brain injury using both immunohistochemical staining of inhibitory interneurons and translationally relevant electroencephalography recordings. Although we observed no pronounced effects immediately post-injury, chronic time points revealed broadband hyperexcitability and increased connectivity, accompanied by decreased density of inhibitory interneurons. This pattern suggests a disruption in the balance between excitation and inhibition, providing a crucial link between cellular mechanisms and clinical hallmarks of injury. Our findings have significant implications for the diagnosis, monitoring, and treatment of traumatic brain injury. The emergence of electroencephalography abnormalities at chronic time points, despite the absence of immediate effects, highlights the importance of long-term monitoring in traumatic brain injury patients. The observed decrease in inhibitory interneuron density offers a potential cellular mechanism underlying the electroencephalography changes and may represent a target for therapeutic intervention. This study demonstrates the value of combining cellular-level analysis with macroscale neurophysiological recordings in animal models to elucidate the pathophysiology of traumatic brain injury. Future research should focus on translating these findings to human studies and exploring potential therapeutic strategies targeting the excitation-inhibition imbalance in traumatic brain injury.
Collapse
Affiliation(s)
- Hazel G May
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Konstantinos Tsikonofilos
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Department of Medicinal Radiochemistry, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Andriy S Kozlov
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Michael Bruyns-Haylett
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Institut Quimic de Sarria, Universitat Ramon Llul, Barcelona 08017, Spain
- Department of Quantitative Methods, Institut Quimic de Sarria, Universitat Ramon Llul, Barcelona 08017, Spain
| |
Collapse
|
5
|
Kashou AW, Frees DM, Kang K, Parks CO, Harralson H, Fischer JT, Rosenbaum PE, Baham M, Sheridan C, Bickart KC. Drivers of resting-state fMRI heterogeneity in traumatic brain injury across injury characteristics and imaging methods: a systematic review and semiquantitative analysis. Front Neurol 2024; 15:1487796. [PMID: 39664747 PMCID: PMC11631856 DOI: 10.3389/fneur.2024.1487796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
Traumatic brain injury (TBI) is common and costly. Although neuroimaging modalities such as resting-state functional MRI (rsfMRI) promise to differentiate injured from healthy brains and prognosticate long-term outcomes, the field suffers from heterogeneous findings. To assess whether this heterogeneity stems from variability in the TBI populations studied or the imaging methods used, and to determine whether a consensus exists in this literature, we performed the first systematic review of studies comparing rsfMRI functional connectivity (FC) in patients with TBI to matched controls for seven canonical brain networks across injury severity, age, chronicity, population type, and various imaging methods. Searching PubMed, Web of Science, Google Scholar, and ScienceDirect, 1,105 manuscripts were identified, 50 fulfilling our criteria. Across these manuscripts, 179 comparisons were reported between a total of 1,397 patients with TBI and 1,179 matched controls. Collapsing across injury characteristics, imaging methods, and networks, there were roughly equal significant to null findings and increased to decreased connectivity differences reported. Whereas most factors did not explain these mixed findings, stratifying across severity and chronicity, separately, showed a trend of increased connectivity at higher severities and greater chronicities of TBI. Among methodological factors, studies were more likely to find connectivity differences when scans were longer than 360 s, custom image processing pipelines were used, and when patients kept their eyes open versus closed during scans. We offer guidelines to address this variability, focusing on aspects of study design and rsfMRI acquisition to move the field toward reproducible results with greater potential for clinical translation.
Collapse
Affiliation(s)
- Alexander W. Kashou
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel M. Frees
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Kaylee Kang
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Christian O. Parks
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hunter Harralson
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jesse T. Fischer
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Kinesiology, Occidental College, Los Angeles, CA, United States
| | - Philip E. Rosenbaum
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael Baham
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Christopher Sheridan
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kevin C. Bickart
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
6
|
Yang D, Nie BB, He JG, Lv ZQ, Mo FF, Ouyang SY, Wang J, Chen J, Tao T. Exploring cerebral structural and functional abnormalities in a mouse model of post-traumatic headache induced by mild traumatic brain injury. Zool Res 2024; 45:648-662. [PMID: 38766747 PMCID: PMC11188605 DOI: 10.24272/j.issn.2095-8137.2023.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 05/22/2024] Open
Abstract
Mild traumatic brain injury (mTBI)-induced post-traumatic headache (PTH) is a pressing public health concern and leading cause of disability worldwide. Although PTH is often accompanied by neurological disorders, the exact underlying mechanism remains largely unknown. Identifying potential biomarkers may prompt the diagnosis and development of effective treatments for mTBI-induced PTH. In this study, a mouse model of mTBI-induced PTH was established to investigate its effects on cerebral structure and function during short-term recovery. Results indicated that mice with mTBI-induced PTH exhibited balance deficits during the early post-injury stage. Metabolic kinetics revealed that variations in neurotransmitters were most prominent in the cerebellum, temporal lobe/cortex, and hippocampal regions during the early stages of PTH. Additionally, variations in brain functional activities and connectivity were further detected in the early stage of PTH, particularly in the cerebellum and temporal cortex, suggesting that these regions play central roles in the mechanism underlying PTH. Moreover, our results suggested that GABA and glutamate may serve as potential diagnostic or prognostic biomarkers for PTH. Future studies should explore the specific neural circuits involved in the regulation of PTH by the cerebellum and temporal cortex, with these two regions potentially utilized as targets for non-invasive stimulation in future clinical treatment.
Collapse
Affiliation(s)
- Dan Yang
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524045, China
| | - Bin-Bin Nie
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Gang He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430071, China
| | - Zong-Qiang Lv
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - Feng-Feng Mo
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Si-Yi Ouyang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430071, China
- Institute of Neuroscience and Brain Diseases
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China. E-mail:
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200082, China. E-mail:
| | - Tao Tao
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524045, China
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| |
Collapse
|
7
|
Lima Santos JP, Kontos AP, Holland CL, Suss SJ, Stiffler RS, Bitzer HB, Colorito AT, Shaffer M, Skeba A, Iyengar S, Manelis A, Brent D, Shirtcliff EA, Ladouceur CD, Phillips ML, Collins MW, Versace A. The Role of Puberty and Sex on Brain Structure in Adolescents With Anxiety Following Concussion. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:285-297. [PMID: 36517369 DOI: 10.1016/j.bpsc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Adolescence represents a window of vulnerability for developing psychological symptoms following concussion, especially in girls. Concussion-related lesions in emotion regulation circuits may help explain these symptoms. However, the contribution of sex and pubertal maturation remains unclear. Using the neurite density index (NDI) in emotion regulation tracts (left/right cingulum bundle [CB], forceps minor [FMIN], and left/right uncinate fasciculus), we sought to elucidate these relationships. METHODS No adolescent had a history of anxiety and/or depression. The Screen for Child Anxiety Related Emotional Disorders and Children's Depression Rating Scale were used at scan to assess anxiety and depressive symptoms in 55 concussed adolescents (41.8% girls) and 50 control adolescents with no current/history of concussion (44% girls). We evaluated if a mediation-moderation model including the NDI (mediation) and sex or pubertal status (moderation) could help explain this relationship. RESULTS Relative to control adolescents, concussed adolescents showed higher anxiety (p = .003) and lower NDI, with those at more advanced pubertal maturation showing greater abnormalities in 4 clusters: the left CB frontal (p = .002), right CB frontal (p = .011), FMIN left-sided (p = .003), and FMIN right-sided (p = .003). Across all concussed adolescents, lower NDI in the left CB frontal and FMIN left-sided clusters partially mediated the association between concussion and anxiety, with the CB being specific to female adolescents. These effects did not explain depressive symptoms. CONCLUSIONS Our findings indicate that lower NDI in the CB and FMIN may help explain anxiety following concussion and that adolescents at more advanced (vs less advanced) status of pubertal maturation may be more vulnerable to concussion-related injuries, especially in girls.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony P Kontos
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Cynthia L Holland
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Stephen J Suss
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hannah B Bitzer
- Department of Psychology, Florida International University, Miami, Florida
| | - Adam T Colorito
- Department of Psychology, Florida International University, Miami, Florida
| | - Madelyn Shaffer
- Department of Psychology, Florida International University, Miami, Florida
| | - Alexander Skeba
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Satish Iyengar
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David Brent
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania
| | - Elizabeth A Shirtcliff
- Center for Translational Neuroscience and Department of Psychology, University of Oregon, Eugene, Oregon
| | - Cecile D Ladouceur
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Collins
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
La PL, Walker R, Bell TK, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Longitudinal changes in brain metabolites following pediatric concussion. Sci Rep 2024; 14:3242. [PMID: 38331924 PMCID: PMC10853495 DOI: 10.1038/s41598-024-52744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Concussion is commonly characterized by a cascade of neurometabolic changes following injury. Magnetic Resonance Spectroscopy (MRS) can be used to quantify neurometabolites non-invasively. Longitudinal changes in neurometabolites have rarely been studied in pediatric concussion, and fewer studies consider symptoms. This study examines longitudinal changes of neurometabolites in pediatric concussion and associations between neurometabolites and symptom burden. Participants who presented with concussion or orthopedic injury (OI, comparison group) were recruited. The first timepoint for MRS data collection was at a mean of 12 days post-injury (n = 545). Participants were then randomized to 3 (n = 243) or 6 (n = 215) months for MRS follow-up. Parents completed symptom questionnaires to quantify somatic and cognitive symptoms at multiple timepoints following injury. There were no significant changes in neurometabolites over time in the concussion group and neurometabolite trajectories did not differ between asymptomatic concussion, symptomatic concussion, and OI groups. Cross-sectionally, Choline was significantly lower in those with persistent somatic symptoms compared to OI controls at 3 months post-injury. Lower Choline was also significantly associated with higher somatic symptoms. Although overall neurometabolites do not change over time, choline differences that appear at 3 months and is related to somatic symptoms.
Collapse
Affiliation(s)
- Parker L La
- Department of Radiology, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Robyn Walker
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - William Craig
- Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada
| | - Quynh Doan
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Miriam H Beauchamp
- Department of Psychology, Ste Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- Childrens' Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
9
|
van der Horn HJ, Ling JM, Wick TV, Dodd AB, Robertson-Benta CR, McQuaid JR, Zotev V, Vakhtin AA, Ryman SG, Cabral J, Phillips JP, Campbell RA, Sapien RE, Mayer AR. Dynamic Functional Connectivity in Pediatric Mild Traumatic Brain Injury. Neuroimage 2024; 285:120470. [PMID: 38016527 PMCID: PMC10815936 DOI: 10.1016/j.neuroimage.2023.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.
Collapse
Affiliation(s)
| | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Tracey V Wick
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Vadim Zotev
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | | | - Richard A Campbell
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131
| | - Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM 87106; Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131; Department of Psychology, University of New Mexico, Albuquerque, NM 87131; Department of Neurology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
10
|
Mayer AR, Dodd AB, Robertson-Benta CR, Zotev V, Ryman SG, Meier TB, Campbell RA, Phillips JP, van der Horn HJ, Hogeveen J, Tarawneh R, Sapien RE. Multifaceted neural and vascular pathologies after pediatric mild traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:118-130. [PMID: 37724718 PMCID: PMC10905640 DOI: 10.1177/0271678x231197188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Dynamic changes in neurodevelopment and cognitive functioning occur during adolescence, including a switch from reactive to more proactive forms of cognitive control, including response inhibition. Pediatric mild traumatic brain injury (pmTBI) affects these cognitions immediately post-injury, but the role of vascular versus neural injury in cognitive dysfunction remains debated. This study consecutively recruited 214 sub-acute pmTBI (8-18 years) and age/sex-matched healthy controls (HC; N = 186), with high retention rates (>80%) at four months post-injury. Multimodal imaging (functional MRI during response inhibition, cerebral blood flow and cerebrovascular reactivity) assessed for pathologies within the neurovascular unit. Patients exhibited increased errors of commission and hypoactivation of motor circuitry during processing of probes. Evidence of increased/delayed cerebrovascular reactivity within motor circuitry during hypercapnia was present along with normal perfusion. Neither age-at-injury nor post-concussive symptom load were strongly associated with imaging abnormalities. Collectively, mild cognitive impairments and clinical symptoms may continue up to four months post-injury. Prolonged dysfunction within the neurovascular unit was observed during proactive response inhibition, with preliminary evidence that neural and pure vascular trauma are statistically independent. These findings suggest pmTBI is characterized by multifaceted pathologies during the sub-acute injury stage that persist several months post-injury.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | | | - Vadim Zotev
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | | | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard A Campbell
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - John P Phillips
- The Mind Research Network/LBERI, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | | | - Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Rawan Tarawneh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
11
|
Ware AL, Lebel C, Onicas A, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson BH, Craig W, Dehaes M, Doan Q, Deschenes S, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Yeates KO. Longitudinal Gray Matter Trajectories in Pediatric Mild Traumatic Brain Injury. Neurology 2023; 101:e728-e739. [PMID: 37353339 PMCID: PMC10437012 DOI: 10.1212/wnl.0000000000207508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This prospective, longitudinal cohort study examined trajectories of brain gray matter macrostructure after pediatric mild traumatic brain injury (mTBI). METHODS Children aged 8-16.99 years with mTBI or mild orthopedic injury (OI) were recruited from 5 pediatric emergency departments. Reliable change between preinjury and 1 month postinjury symptom ratings was used to classify mTBI with or without persistent symptoms. Children completed postacute (2-33 days) and/or chronic (3 or 6 months) postinjury T1-weighted MRI, from which macrostructural metrics were derived using automated segmentation. Linear mixed-effects models were used, with multiple comparisons correction. RESULTS Groups (N = 623; 407 mTBI/216 OI; 59% male; age mean = 12.03, SD = 2.38 years) did not differ in total brain, white, or gray matter volumes or regional subcortical gray matter volumes. However, time postinjury, age at injury, and biological sex-moderated differences among symptom groups in cortical thickness of the angular gyrus, basal forebrain, calcarine cortex, gyrus rectus, medial and posterior orbital gyrus, and the subcallosal area all corrected p < 0.05. Gray matter macrostructural metrics did not differ between groups postacutely. However, cortical thinning emerged chronically after mTBI relative to OI in the angular gyrus in older children (d [95% confidence interval] = -0.61 [-1.15 to -0.08]); and in the basal forebrain (-0.47 [-0.94 to -0.01]), subcallosal area (-0.55 [-1.01 to -0.08]), and the posterior orbital gyrus (-0.55 [-1.02 to -0.08]) in females. Cortical thinning was demonstrated for frontal and occipital regions 3 months postinjury in males with mTBI with persistent symptoms vs without persistent symptoms (-0.80 [-1.55 to -0.05] to -0.83 [-1.56 to -0.10]) and 6 months postinjury in females and younger children with mTBI with persistent symptoms relative to mTBI without persistent symptoms and OI (-1.42 [-2.29 to -0.45] to -0.91 [-1.81 to -0.01]). DISCUSSION These findings signal little diagnostic and prognostic utility of postacute gray matter macrostructure in pediatric mTBI. However, mTBI altered the typical course of cortical gray matter thinning up to 6 months postinjury, even after symptoms typically abate in most children. Collapsing across symptom status obscured the neurobiological heterogeneity of discrete clinical outcomes after pediatric mTBI. The results illustrate the need to examine neurobiology in relation to clinical outcomes and within a neurodevelopmental framework.
Collapse
Affiliation(s)
- Ashley L Ware
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada.
| | - Catherine Lebel
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Adrian Onicas
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Nishard Abdeen
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Miriam H Beauchamp
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Christian Beaulieu
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Bruce H Bjornson
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - William Craig
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Mathieu Dehaes
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Quynh Doan
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Sylvain Deschenes
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Stephen B Freedman
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Bradley G Goodyear
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Jocelyn Gravel
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Andrée-Anne Ledoux
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Roger Zemek
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Keith Owen Yeates
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| |
Collapse
|
12
|
Takagi M, Ball G, Babl FE, Anderson N, Chen J, Clarke C, Davis GA, Hearps SJC, Pascouau R, Cheng N, Rausa VC, Seal M, Shapiro JS, Anderson V. Examining post-concussion white matter change in a pediatric sample. Neuroimage Clin 2023; 39:103486. [PMID: 37634376 PMCID: PMC10474493 DOI: 10.1016/j.nicl.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Diffusion-Weight Imaging (DWI) is increasingly used to explore a range of outcomes in pediatric concussion, particularly the neurobiological underpinnings of symptom recovery. However, the DWI findings within the broader pediatric concussion literature are mixed, which can largely be explained by methodological heterogeneity. To address some of these limitations, the aim of the present study was to utilize internationally- recognized criteria for concussion and a consistent imaging timepoint to conduct a comprehensive, multi-parametric survey of white matter microstructure after concussion. Forty-three children presenting with concussion to the emergency department of a tertiary level pediatric hospital underwent neuroimaging and were classified as either normally recovering (n = 27), or delayed recovering (n = 14) based on their post-concussion symptoms at 2 weeks post-injury.We combined multiple DWI metrics across four modeling approaches using Linked Independent Component Analysis (LICA) to extract several independent patterns of covariation in tissue microstructure present in the study cohort. Our analysis did not identify significant differences between the symptomatic and asymptomatic groups and no component significantly predicted delayed recovery. If white matter microstructure changes are implicated in delayed recovery from concussion, these findings, alongside previous work, suggest that current diffusion techniques are insufficient to detect those changes at this time.
Collapse
Affiliation(s)
- Michael Takagi
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; Department of Rehabilitation Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia; Monash School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Gareth Ball
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Franz E Babl
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia; Emergency Department, The Royal Children's Hospital, Melbourne, Victoria, Australia.
| | - Nicholas Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jian Chen
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cathriona Clarke
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gavin A Davis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Neurosurgery, Austin and Cabrini Hospitals, Melbourne, Victoria, Australia
| | | | - Renee Pascouau
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
| | - Nicholas Cheng
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Monash School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Vanessa C Rausa
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Marc Seal
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Jesse S Shapiro
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia; Psychology Service, The Royal Children's Hospital, Melbourne, Victoria, Australia; Monash School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Crasta JE, Nebel MB, Svingos A, Tucker RN, Chen HW, Busch T, Caffo BS, Stephens J, Suskauer SJ. Rethinking recovery in adolescent concussions: Network-level functional connectivity alterations associated with motor deficits. Hum Brain Mapp 2023; 44:3271-3282. [PMID: 36999674 PMCID: PMC10171516 DOI: 10.1002/hbm.26280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
Adolescents who are clinically recovered from concussion continue to show subtle motor impairment on neurophysiological and behavioral measures. However, there is limited information on brain-behavior relationships of persistent motor impairment following clinical recovery from concussion. We examined the relationship between subtle motor performance and functional connectivity of the brain in adolescents with a history of concussion, status post-symptom resolution, and subjective return to baseline. Participants included 27 adolescents who were clinically recovered from concussion and 29 never-concussed, typically developing controls (10-17 years); all participants were examined using the Physical and Neurologic Examination of Subtle Signs (PANESS). Functional connectivity between the default mode network (DMN) or dorsal attention network (DAN) and regions of interest within the motor network was assessed using resting-state functional magnetic resonance imaging (rsfMRI). Compared to controls, adolescents clinically recovered from concussion showed greater subtle motor deficits as evaluated by the PANESS and increased connectivity between the DMN and left lateral premotor cortex. DMN to left lateral premotor cortex connectivity was significantly correlated with the total PANESS score, with more atypical connectivity associated with more motor abnormalities. This suggests that altered functional connectivity of the brain may underlie subtle motor deficits in adolescents who have clinically recovered from concussion. More investigation is required to understand the persistence and longer-term clinical relevance of altered functional connectivity and associated subtle motor deficits to inform whether functional connectivity may serve as an important biomarker related to longer-term outcomes after clinical recovery from concussion.
Collapse
Affiliation(s)
- Jewel E. Crasta
- Occupational Therapy DivisionThe Ohio State UniversityColumbusOhioUSA
| | - Mary Beth Nebel
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Adrian Svingos
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Robert N. Tucker
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
- Carle Illinois College of MedicineUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Hsuan Wei Chen
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Tyler Busch
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Brian S. Caffo
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Jaclyn Stephens
- Department of Occupational TherapyColorado State UniversityFort CollinsColoradoUSA
| | - Stacy J. Suskauer
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of Physical Medicine and RehabilitationJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
14
|
Huang MX, Angeles-Quinto A, Robb-Swan A, De-la-Garza BG, Huang CW, Cheng CK, Hesselink JR, Bigler ED, Wilde EA, Vaida F, Troyer EA, Max JE. Assessing Pediatric Mild Traumatic Brain Injury and Its Recovery Using Resting-State Magnetoencephalography Source Magnitude Imaging and Machine Learning. J Neurotrauma 2023; 40:1112-1129. [PMID: 36884305 PMCID: PMC10259613 DOI: 10.1089/neu.2022.0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
The objectives of this machine-learning (ML) resting-state magnetoencephalography (rs-MEG) study involving children with mild traumatic brain injury (mTBI) and orthopedic injury (OI) controls were to define a neural injury signature of mTBI and to delineate the pattern(s) of neural injury that determine behavioral recovery. Children ages 8-15 years with mTBI (n = 59) and OI (n = 39) from consecutive admissions to an emergency department were studied prospectively for parent-rated post-concussion symptoms (PCS) at: 1) baseline (average of 3 weeks post-injury) to measure pre-injury symptoms and also concurrent symptoms; and 2) at 3-months post-injury. rs-MEG was conducted at the baseline assessment. The ML algorithm predicted cases of mTBI versus OI with sensitivity of 95.5 ± 1.6% and specificity of 90.2 ± 2.7% at 3-weeks post-injury for the combined delta-gamma frequencies. The sensitivity and specificity were significantly better (p < 0.0001) for the combined delta-gamma frequencies compared with the delta-only and gamma-only frequencies. There were also spatial differences in rs-MEG activity between mTBI and OI groups in both delta and gamma bands in frontal and temporal lobe, as well as more widespread differences in the brain. The ML algorithm accounted for 84.5% of the variance in predicting recovery measured by PCS changes between 3 weeks and 3 months post-injury in the mTBI group, and this was significantly lower (p < 10-4) in the OI group (65.6%). Frontal lobe pole (higher) gamma activity was significantly (p < 0.001) associated with (worse) PCS recovery exclusively in the mTBI group. These findings demonstrate a neural injury signature of pediatric mTBI and patterns of mTBI-induced neural injury related to behavioral recovery.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Department of Radiology, University of California, San Diego, California, USA
- Radiology and Research Services, VA San Diego Healthcare System, San Diego, California, USA
| | - Annemarie Angeles-Quinto
- Department of Radiology, University of California, San Diego, California, USA
- Radiology and Research Services, VA San Diego Healthcare System, San Diego, California, USA
| | - Ashley Robb-Swan
- Department of Radiology, University of California, San Diego, California, USA
- Radiology and Research Services, VA San Diego Healthcare System, San Diego, California, USA
| | | | - Charles W. Huang
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Chung-Kuan Cheng
- Department of Computer Science and Engineering, University of California, San Diego, California, USA
| | - John R. Hesselink
- Department of Radiology, University of California, San Diego, California, USA
| | - Erin D. Bigler
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | - Florin Vaida
- Herbert Wertheim School of Public Health, Division of Biostatistics and Bioinformatics, University of California, San Diego, California, USA
| | - Emily A. Troyer
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Jeffrey E. Max
- Department of Psychiatry, University of California, San Diego, California, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
15
|
Ryan D, Mirbagheri S, Yahyavi-Firouz-Abadi N. The Current State of Functional MR Imaging for Trauma Prognostication. Neuroimaging Clin N Am 2023; 33:299-313. [PMID: 36965947 DOI: 10.1016/j.nic.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
In this review, we discuss the basics of functional MRI (fMRI) techniques including task-based and resting state fMRI, and overview the major findings in patients with traumatic brain injury. We summarize the studies that have longitudinally evaluated the changes in brain connectivity and task-related activation in trauma patients during different phases of trauma. We discuss how these data may potentially be used for prognostication, treatment planning, or monitoring and management of trauma patients.
Collapse
Affiliation(s)
- Daniel Ryan
- Southern Illinois University School of Medicine, 401 East Carpenter Street, Springfield, IL, USA
| | - Saeedeh Mirbagheri
- University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401, USA
| | | |
Collapse
|
16
|
La PL, Joyce JM, Bell TK, Mauthner M, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Brain metabolites measured with magnetic resonance spectroscopy in pediatric concussion and orthopedic injury: An Advancing Concussion Assessment in Pediatrics (A-CAP) study. Hum Brain Mapp 2023; 44:2493-2508. [PMID: 36763547 PMCID: PMC10028643 DOI: 10.1002/hbm.26226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Millions of children sustain a concussion annually. Concussion disrupts cellular signaling and neural pathways within the brain but the resulting metabolic disruptions are not well characterized. Magnetic resonance spectroscopy (MRS) can examine key brain metabolites (e.g., N-acetyl Aspartate (tNAA), glutamate (Glx), creatine (tCr), choline (tCho), and myo-Inositol (mI)) to better understand these disruptions. In this study, we used MRS to examine differences in brain metabolites between children and adolescents with concussion versus orthopedic injury. Children and adolescents with concussion (n = 361) or orthopedic injury (OI) (n = 184) aged 8 to 17 years were recruited from five emergency departments across Canada. MRS data were collected from the left dorsolateral prefrontal cortex (L-DLPFC) using point resolved spectroscopy (PRESS) at 3 T at a mean of 12 days post-injury (median 10 days post-injury, range 2-33 days). Univariate analyses for each metabolite found no statistically significant metabolite differences between groups. Within each analysis, several covariates were statistically significant. Follow-up analyses designed to account for possible confounding factors including age, site, scanner, vendor, time since injury, and tissue type (and interactions as appropriate) did not find any metabolite group differences. In the largest sample of pediatric concussion studied with MRS to date, we found no metabolite differences between concussion and OI groups in the L-DLPFC. We suggest that at 2 weeks post-injury in a general pediatric concussion population, brain metabolites in the L-DLPFC are not specifically affected by brain injury.
Collapse
Affiliation(s)
- Parker L La
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Julie M Joyce
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Micaela Mauthner
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - William Craig
- Department of Pediatrics, University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and Ste Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Childrens' Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Diffusion-Weighted Imaging in Mild Traumatic Brain Injury: A Systematic Review of the Literature. Neuropsychol Rev 2023; 33:42-121. [PMID: 33721207 DOI: 10.1007/s11065-021-09485-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.
Collapse
|
18
|
Merkley TL. Introduction to the Special Section of Neuropsychology Review: Advanced Neuroimaging Findings in Mild Traumatic Brain Injury. Neuropsychol Rev 2023; 33:1-4. [PMID: 36006581 DOI: 10.1007/s11065-022-09557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Tricia L Merkley
- Department of Psychology & Neuroscience Center, Brigham Young University, Provo, UT, USA. .,Department of Neurology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
20
|
Sharma B, Nowikow C, DeMatteo C, Noseworthy MD, Timmons BW. Sex-specific differences in resting-state functional brain activity in pediatric concussion. Sci Rep 2023; 13:3284. [PMID: 36841854 PMCID: PMC9968337 DOI: 10.1038/s41598-023-30195-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Pediatric concussion has a rising incidence and can lead to long-term symptoms in nearly 30% of children. Resting state functional magnetic resonance imaging (rs-fMRI) disturbances are a common pathological feature of pediatric concussion, though no studies have explicitly examined sex-differences with respect to this outcome, precluding a sex-specific understanding of the functional neuropathology of pediatric concussion. Therefore, we performed a secondary data analysis of rs-fMRI data collected on children with concussion (n = 29) recruited from in a pediatric hospital setting, with greater than 12:1 matched control data accessed from the open-source ABIDE-II database. Seed-based and region of interest (ROI) analyses were used to examine sex-based rs-fMRI differences; threshold-free cluster enhancement (TFCE) and a family-wise error (FWE) corrected p-values were used to identify significantly different clusters. In comparing females with concussion to healthy females, groupwise differences were observed irrespective of seed selected. Notably, we observed (in order of largest effect) hypo-connectivity between the anterior cingulate cortex of the salience network and the thalamus and precuneus (TFCE = 1473.5, p-FWE < 0.001) and the cingulate gyrus (TFCE = 769.3, p-FWE = 0.009), and the seed (posterior cingulate cortex (PCC)) of the default mode network and the paracingulate gyrus (TFCE = 1275.7, p-FWE < 0.001), occipital pole right (TFCE = 1045.0, p-FWE = 0.001), and sub-callosal cortex (TFCE = 844.9, p-FWE = 0.005). Hyper-connectivity was observed between the salience network seed and the cerebellum (TFCE = 1719.3, p-FWE < 0.001) and the PCC and the thalamus (TFCE = 1198.3, p-FWE < 0.001), cuneal cortex (1070.9, p-FWE = 0.001), and lateral occipital cortex left (TFCE = 832.8, p-FWE = 0.006). ROI analyses showed 10 and 5 significant clusters of hypo- and hyper-connectivity in females, respectively. Only one cluster of difference was found between males with concussion and healthy males on seed-based analyses, and 3 clusters on ROI analyses. There are alterations in rs-fMRI in females with concussion at one-month post-injury that are minimally present in males, which provides further evidence that recovery timelines in pediatric concussion may differ by sex.
Collapse
Affiliation(s)
- Bhanu Sharma
- grid.25073.330000 0004 1936 8227Child Health and Exercise Medicine Program, Department of Pediatrics, McMaster University, 1280 Main Street West, Hamilton, ON L8S4L8 Canada ,grid.416721.70000 0001 0742 7355Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Electrical & Computer Engineering, McMaster University, Hamilton, Canada
| | - Cameron Nowikow
- grid.416721.70000 0001 0742 7355Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227McMaster School of Biomedical Engineering, McMaster University, Hamilton, Canada
| | - Carol DeMatteo
- grid.25073.330000 0004 1936 8227School of Rehabilitation Science, McMaster University, Hamilton, Canada ,grid.25073.330000 0004 1936 8227CanChild Centre for Childhood Disability Research, McMaster University, Hamilton, Canada
| | - Michael D. Noseworthy
- grid.416721.70000 0001 0742 7355Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Electrical & Computer Engineering, McMaster University, Hamilton, Canada ,grid.25073.330000 0004 1936 8227McMaster School of Biomedical Engineering, McMaster University, Hamilton, Canada ,grid.25073.330000 0004 1936 8227Department of Radiology, McMaster University, Hamilton, Canada
| | - Brian W. Timmons
- grid.25073.330000 0004 1936 8227Child Health and Exercise Medicine Program, Department of Pediatrics, McMaster University, 1280 Main Street West, Hamilton, ON L8S4L8 Canada ,grid.25073.330000 0004 1936 8227CanChild Centre for Childhood Disability Research, McMaster University, Hamilton, Canada
| |
Collapse
|
21
|
Sheldrake E, Lam B, Al-Hakeem H, Wheeler AL, Goldstein BI, Dunkley BT, Ameis S, Reed N, Scratch SE. A Scoping Review of Magnetic Resonance Modalities Used in Detection of Persistent Postconcussion Symptoms in Pediatric Populations. J Child Neurol 2023; 38:85-102. [PMID: 36380680 PMCID: PMC10061627 DOI: 10.1177/08830738221120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Up to 30% of youth with concussion experience PPCSs (PPCS) lasting 4 weeks or longer, and can significantly impact quality of life. Magnetic resonance imaging (MRI) has the potential to increase understanding of causal mechanisms underlying PPCS. However, there are no clear modalities to assist in detecting PPCS. This scoping review aims to synthesize findings on utilization of MRI among children and youth with PPCS, and summarize progress and limitations. Thirty-six studies were included from 4907 identified papers. Many studies used multiple modalities, including (1) structural (n = 27) such as T1-weighted imaging, diffusion weighted imaging, and susceptibility weighted imaging; and (2) functional (n = 23) such as functional MRI and perfusion-weighted imaging. Findings were heterogeneous among modalities and regions of interest, which warrants future reviews that report on the patterns and potential advancements in the field. Consideration of modalities that target PPCS prediction and sensitive modalities that can supplement a biopsychosocial approach to PPCS would benefit future research.
Collapse
Affiliation(s)
- Elena Sheldrake
- Bloorview Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Brendan Lam
- Bloorview Research Institute, Toronto, Ontario, Canada
| | | | - Anne L. Wheeler
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin I. Goldstein
- Centre for Addiction and Mental Health, Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin T. Dunkley
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Ameis
- Centre for Addiction and Mental Health, Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nick Reed
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Shannon E. Scratch
- Bloorview Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Raikes AC, Hernandez GD, Mullins VA, Wang Y, Lopez C, Killgore WDS, Chilton FH, Brinton RD. Effects of docosahexaenoic acid and eicosapentaoic acid supplementation on white matter integrity after repetitive sub-concussive head impacts during American football: Exploratory neuroimaging findings from a pilot RCT. Front Neurol 2022; 13:891531. [PMID: 36188406 PMCID: PMC9521411 DOI: 10.3389/fneur.2022.891531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Context Repetitive sub-concussive head impacts (RSHIs) are common in American football and result in changes to the microstructural integrity of white matter. Both docosahexaenoic acid (DHA) and eicosapentaoic acid (EPA) supplementation exerted neuroprotective effects against RSHIs in animal models and in a prior study in football players supplemented with DHA alone. Objective Here, we present exploratory neuroimaging outcomes from a randomized controlled trial of DHA + EPA supplementation in American football players. We hypothesized that supplementation would result in less white matter integrity loss on diffusion weighted imaging over the season. Design setting participants We conducted a double-blind placebo-controlled trial in 38 American football players between June 2019 and January 2020. Intervention Participants were randomized to the treatment (2.442 g/day DHA and 1.020 g/day EPA) or placebo group for five times-per-week supplementation for 7 months. Of these, 27 participants were included in the neuroimaging data analysis (n = 16 placebo; n = 11 DHA + EPA). Exploratory outcome measures Changes in white matter integrity were quantified using both voxelwise diffusion kurtosis scalars and deterministic tractography at baseline and end of season. Additional neuroimaging outcomes included changes in regional gray matter volume as well as intra-regional, edge-wise, and network level functional connectivity. Serum neurofilament light (NfL) provided a peripheral biomarker of axonal damage. Results No voxel-wise between-group differences were identified on diffusion tensor metrics. Deterministic tractography using quantitative anisotropy (QA) revealed increased structural connectivity in ascending corticostriatal fibers and decreased connectivity in long association and commissural fibers in the DHA+EPA group compared to the placebo group. Serum NfL increases were correlated with increased mean (ρ = 0.47), axial (ρ = 0.44), and radial (ρ = 0.51) diffusivity and decreased QA (ρ = -0.52) in the corpus callosum and bilateral corona radiata irrespective of treatment group. DHA + EPA supplementation did preserve default mode/frontoparietal control network connectivity (g = 0.96, p = 0.024). Conclusions These exploratory findings did not provide strong evidence that DHA + EPA prevented or protected against axonal damage as quantified via neuroimaging. Neuroprotective effects on functional connectivity were observed despite white matter damage. Further studies with larger samples are needed to fully establish the relationship between omega-3 supplementation, RSHIs, and neuroimaging biomarkers. Trial registration ClinicalTrials.gov-NCT04796207.
Collapse
Affiliation(s)
- Adam C. Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Veronica A. Mullins
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Claudia Lopez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - William D. S. Killgore
- Social, Cognitive, and Affective Neuroscience Lab, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Floyd H. Chilton
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
23
|
Lima Santos JP, Kontos AP, Holland CL, Stiffler RS, Bitzer HB, Caviston K, Shaffer M, Suss SJ, Martinez L, Manelis A, Iyengar S, Brent D, Ladouceur CD, Collins MW, Phillips ML, Versace A. The role of sleep quality on white matter integrity and concussion symptom severity in adolescents. Neuroimage Clin 2022; 35:103130. [PMID: 35917722 PMCID: PMC9421495 DOI: 10.1016/j.nicl.2022.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sleep problems are common after concussion; yet, to date, no study has evaluated the relationship between sleep, white matter integrity, and post-concussion symptoms in adolescents. Using self-reported quality of sleep measures within the first 10 days of injury, we aimed to determine if quality of sleep exerts a main effect on white matter integrity in major tracts, as measured by diffusion Magnetic Resonance Imaging (dMRI), and further examine whether this effect can help explain the variance in post-concussion symptom severity in 12- to 17.9-year-old adolescents. METHODS dMRI data were collected in 57 concussed adolescents (mean age[SD] = 15.4[1.5] years; 41.2 % female) with no history of major psychiatric diagnoses. Severity of post-concussion symptoms was assessed at study entry (mean days[SD] = 3.7[2.5] days since injury). Using the Pittsburgh Sleep Quality Index (PSQI), concussed adolescents were divided into two groups based on their quality of sleep in the days between injury and scan: good sleepers (PSQI global score ≤ 5; N = 33) and poor sleepers (PSQI global score > 5; N = 24). Neurite Orientation Dispersion and Dispersion Index (NODDI), specifically the Neurite Density Index (NDI), was used to quantify microstructural properties in major tracts, including 18 bilateral and one interhemispheric tract, and identify whether dMRI differences existed in good vs poor sleepers. Since the interval between concussion and neuroimaging acquisition varied among concussed adolescents, this interval was included in the analysis along with an interaction term with sleep groups. Regularized regression was used to identify if quality of sleep-related dMRI measures correlated with post-concussion symptom severity. Due to higher reported concussion symptom severity in females, interaction terms between dMRI and sex were included in the regularized regression model. Data collected in 33 sex- and age-matched non-concussed controls (mean age[SD] = 15.2[1.5]; 45.5 % female) served as healthy reference and sex and age were covariates in all analyses. RESULTS Relative to good sleepers, poor sleepers demonstrated widespread lower NDI (18 of the 19 tracts; FDR corrected P < 0.048). This group effect was only significant with at least seven days between concussion and neuroimaging acquisition. Post-concussion symptoms severity was negatively correlated with NDI in four of these tracts: cingulum bundle, optic radiation, striato-fronto-orbital tract, and superior longitudinal fasciculus I. The multiple linear regression model combining sex and NDI of these four tracts was able to explain 33.2 % of the variability in symptom severity (F[7,49] = 4.9, P < 0.001, Adjusted R2 = 0.332). Relative to non-concussed controls, poor sleepers demonstrated lower NDI in the cingulum bundle, optic radiation, and superior longitudinal fasciculus I (FDR corrected P < 0.040). CONCLUSIONS Poor quality of sleep following concussion is associated with widespread lower integrity of major white matter tracts, that in turn helped to explain post-concussion symptom severity in 12-17.9-year-old adolescents. The effect of sleep on white matter integrity following concussion was significant after one week, suggesting that acute sleep interventions may need this time to begin to take effect. Our findings may suggest an important relationship between good quality of sleep in the days following concussion and integrity of major white matter tracts. Moving forward, researchers should evaluate the effectiveness of sleep interventions on white matter integrity and clinical outcomes following concussion.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Anthony P Kontos
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Cynthia L Holland
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah B Bitzer
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Kaitlin Caviston
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Madelyn Shaffer
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Stephen J Suss
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laramie Martinez
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Brent
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cecile D Ladouceur
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael W Collins
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Sharma B, Obeid J, DeMatteo C, Noseworthy MD, Timmons BW. Exploring the relationship between resting state intra-network connectivity and accelerometer-measured physical activity in pediatric concussion: A cohort study. Appl Physiol Nutr Metab 2022; 47:1014-1022. [PMID: 35858484 DOI: 10.1139/apnm-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to explore the association between resting state functional connectivity and accelerometer-measured physical activity in pediatric concussion. Fourteen children with concussion (aged 14.54 ± 2.39 years, 8 female) were included in this secondary data analysis of a larger study. Participants had neuroimaging at 15.3 ± 6.7 days post-injury and subsequently a mean of 11.1 ± 5.0 days of accelerometer data. Intra-network connectivity of the default mode network (DMN), sensorimotor network (SMN), salience network (SN), and fronto-parietal network (FPN) was computed using resting state functional MRI. We found that per general linear models, only intra-network connectivity of the DMN was associated with physical activity levels. More specifically, increased intra-network connectivity of the DMN was significantly associated with higher levels of subsequent accelerometer-measured light physical activity (F(2, 11) = 7.053, p = 0.011, Ra2 = 0.562; β = 0.469), moderate physical activity (F(2, 11) = 7.053, p = 0.011, Ra2 = 0.562; β = 0.725), and vigorous physical activity (F(2, 11) = 10.855, p = 0.002, Ra2 = 0.664; β = 0.79). Intra-network connectivity of the DMN did not significantly predict sedentary time. Therefore, these preliminary findings suggest that there is a positive association between the intra-network connectivity of the DMN and device-measured physical activity in children with concussion.
Collapse
Affiliation(s)
- Bhanu Sharma
- McMaster University, 3710, Department of Pediatrics, Hamilton, Canada;
| | - Joyce Obeid
- McMaster University, Kinesiology, Hamilton, Ontario, Canada;
| | | | - Michael D Noseworthy
- McMaster University, Electrical and Computer Engineering, Hamilton, Ontario, Canada;
| | | |
Collapse
|
25
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
26
|
Ware AL, Yeates KO, Tang K, Shukla A, Onicas AI, Guo S, Goodrich-Hunsaker N, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson B, Craig W, Dehaes M, Doan Q, Deschenes S, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Lebel C. Longitudinal white matter microstructural changes in pediatric mild traumatic brain injury: An A-CAP study. Hum Brain Mapp 2022; 43:3809-3823. [PMID: 35467058 PMCID: PMC9294335 DOI: 10.1002/hbm.25885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023] Open
Abstract
In the largest sample studied to date, white matter microstructural trajectories and their relation to persistent symptoms were examined after pediatric mild traumatic brain injury (mTBI). This prospective, longitudinal cohort study recruited children aged 8–16.99 years with mTBI or mild orthopedic injury (OI) from five pediatric emergency departments. Children's pre‐injury and 1‐month post‐injury symptom ratings were used to classify mTBI with or without persistent symptoms. Children completed diffusion‐weighted imaging at post‐acute (2–33 days post‐injury) and chronic (3 or 6 months via random assignment) post‐injury assessments. Mean diffusivity (MD) and fractional anisotropy (FA) were derived for 18 white matter tracts in 560 children (362 mTBI/198 OI), 407 with longitudinal data. Superior longitudinal fasciculus FA was higher in mTBI without persistent symptoms relative to OI, d (95% confidence interval) = 0.31 to 0.37 (0.02, 0.68), across time. In younger children, MD of the anterior thalamic radiations was higher in mTBI with persistent symptoms relative to both mTBI without persistent symptoms, 1.43 (0.59, 2.27), and OI, 1.94 (1.07, 2.81). MD of the arcuate fasciculus, −0.58 (−1.04, −0.11), and superior longitudinal fasciculus, −0.49 (−0.90, −0.09) was lower in mTBI without persistent symptoms relative to OI at 6 months post‐injury. White matter microstructural changes suggesting neuroinflammation and axonal swelling occurred chronically and continued 6 months post injury in children with mTBI, especially in younger children with persistent symptoms, relative to OI. White matter microstructure appears more organized in children without persistent symptoms, consistent with their better clinical outcomes.
Collapse
Affiliation(s)
- Ashley L Ware
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Keith Owen Yeates
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ken Tang
- Independent Statistical Consulting, Richmond, British Columbia, Canada
| | - Ayushi Shukla
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Adrian I Onicas
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Sunny Guo
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Nishard Abdeen
- Department of Radiology, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal & CHU Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; 2. BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Quynh Doan
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sylvain Deschenes
- CHU Sainte-Justine Research Center; Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada
| | - Stephen B Freedman
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine, Department of Pediatrics, CHU Sainte-Justine, University of Montréal, Montréal, Québec, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular and Molecular Medicine, University of Ottawa, & Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Catherine Lebel
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
27
|
Vike NL, Bari S, Stetsiv K, Walter A, Newman S, Kawata K, Bazarian JJ, Martinovich Z, Nauman EA, Talavage TM, Papa L, Slobounov SM, Breiter HC. A preliminary model of football-related neural stress that integrates metabolomics with transcriptomics and virtual reality. iScience 2022; 25:103483. [PMID: 35106455 PMCID: PMC8786649 DOI: 10.1016/j.isci.2021.103483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/06/2022] Open
Abstract
Research suggests contact sports affect neurological health. This study used permutation-based mediation statistics to integrate measures of metabolomics, neuroinflammatory miRNAs, and virtual reality (VR)-based motor control to investigate multi-scale relationships across a season of collegiate American football. Fourteen significant mediations (six pre-season, eight across-season) were observed where metabolites always mediated the statistical relationship between miRNAs and VR-based motor control (pSobelperm≤ 0.05; total effect > 50%), suggesting a hypothesis that metabolites sit in the statistical pathway between transcriptome and behavior. Three results further supported a model of chronic neuroinflammation, consistent with mitochondrial dysfunction: (1) Mediating metabolites were consistently medium-to-long chain fatty acids, (2) tricarboxylic acid cycle metabolites decreased across-season, and (3) accumulated head acceleration events statistically moderated pre-season metabolite levels to directionally model post-season metabolite levels. These preliminary findings implicate potential mitochondrial dysfunction and highlight probable peripheral blood biomarkers underlying repetitive head impacts in otherwise healthy collegiate football athletes. Permutation-based mediation statistics can be applied to multi-scale biology problems Fatty acids were a critical link between elevated miRNAs and motor control HAEs interacted with pre-season metabolite levels to model post-season levels Together, our observations point to brain-related mitochondrial dysfunction
Collapse
Affiliation(s)
- Nicole L Vike
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sumra Bari
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Khrystyna Stetsiv
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexa Walter
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16801, USA
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA.,Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Zoran Martinovich
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas M Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL 32806, USA
| | - Semyon M Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16801, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA 02114, USA
| |
Collapse
|
28
|
Miller MR, Robinson M, Fischer L, DiBattista A, Patel MA, Daley M, Bartha R, Dekaban GA, Menon RS, Shoemaker JK, Diamandis EP, Prassas I, Fraser DD. Putative Concussion Biomarkers Identified in Adolescent Male Athletes Using Targeted Plasma Proteomics. Front Neurol 2021; 12:787480. [PMID: 34987469 PMCID: PMC8721148 DOI: 10.3389/fneur.2021.787480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Sport concussions can be difficult to diagnose and if missed, they can expose athletes to greater injury risk and long-lasting neurological disabilities. Discovery of objective biomarkers to aid concussion diagnosis is critical to protecting athlete brain health. To this end, we performed targeted proteomics on plasma obtained from adolescent athletes suffering a sports concussion. A total of 11 concussed male athletes were enrolled at our academic Sport Medicine Concussion Clinic, as well as 24 sex-, age- and activity-matched healthy control subjects. Clinical evaluation was performed and blood was drawn within 72 h of injury. Proximity extension assays were performed for 1,472 plasma proteins; a total of six proteins were considered significantly different between cohorts (P < 0.01; five proteins decreased and one protein increased). Receiver operating characteristic curves on the six individual protein biomarkers identified had areas-under-the-curves (AUCs) for concussion diagnosis ≥0.78; antioxidant 1 copper chaperone (ATOX1; AUC 0.81, P = 0.003), secreted protein acidic and rich in cysteine (SPARC; AUC 0.81, P = 0.004), cluster of differentiation 34 (CD34; AUC 0.79, P = 0.006), polyglutamine binding protein 1 (PQBP1; AUC 0.78, P = 0.008), insulin-like growth factor-binding protein-like 1 (IGFBPL1; AUC 0.78, P = 0.008) and cytosolic 5'-nucleotidase 3A (NT5C3A; AUC 0.78, P = 0.009). Combining three of the protein biomarkers (ATOX1, SPARC and NT5C3A), produced an AUC of 0.98 for concussion diagnoses (P < 0.001; 95% CI: 0.95, 1.00). Despite a paucity of studies on these three identified proteins, the available evidence points to their roles in modulating tissue inflammation and regulating integrity of the cerebral microvasculature. Taken together, our exploratory data suggest that three or less novel proteins, which are amenable to a point-of-care immunoassay, may be future candidate biomarkers for screening adolescent sport concussion. Validation with protein assays is required in larger cohorts.
Collapse
Affiliation(s)
- Michael R. Miller
- Department of Pediatrics, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| | - Michael Robinson
- School of Health Studies, Western University, London, ON, Canada
- School of Kinesiology, Western University, London, ON, Canada
- Department of Family Medicine, Western University, London, ON, Canada
| | - Lisa Fischer
- Department of Family Medicine, Western University, London, ON, Canada
| | - Alicia DiBattista
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Neurolytixs Inc., Toronto, ON, Canada
| | - Maitray A. Patel
- Department of Epidemiology, Western University, London, ON, Canada
| | - Mark Daley
- Department of Epidemiology, Western University, London, ON, Canada
- Department of Computer Science, Western University, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Western University, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| | - Gregory A. Dekaban
- Robarts Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Ravi S. Menon
- Department of Medical Biophysics, Western University, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| | | | | | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, ON, Canada
| | - Douglas D. Fraser
- Department of Pediatrics, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- Neurolytixs Inc., Toronto, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Depatment of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
29
|
Examining brain white matter after pediatric mild traumatic brain injury using neurite orientation dispersion and density imaging: An A-CAP study. Neuroimage Clin 2021; 32:102887. [PMID: 34911193 PMCID: PMC8633364 DOI: 10.1016/j.nicl.2021.102887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022]
Abstract
We examined white matter microstructure after pediatric mTBI using NODDI and DTI. Children with mTBI did not significantly differ from those with OI on any metrics. Minor alterations, if any, may be present in children at the post-acute stage after mTBI. Large longitudinal studies are needed to understand long-term brain changes post injury.
Background Pediatric mild traumatic brain injury (mTBI) affects millions of children annually. Diffusion tensor imaging (DTI) is sensitive to axonal injuries and white matter microstructure and has been used to characterize the brain changes associated with mild traumatic brain injury (mTBI). Neurite orientation dispersion and density imaging (NODDI) is a diffusion model that can provide additional insight beyond traditional DTI metrics, but has not been examined in pediatric mTBI. The goal of this study was to employ DTI and NODDI to gain added insight into white matter alterations in children with mTBI compared to children with mild orthopedic injury (OI). Methods Children (mTBI n = 320, OI n = 176) aged 8–16.99 years (12.39 ± 2.32 years) were recruited from emergency departments at five hospitals across Canada and underwent 3 T MRI on average 11 days post-injury. DTI and NODDI metrics were calculated for seven major white matter tracts and compared between groups using univariate analysis of covariance controlling for age, sex, and scanner type. False discovery rate (FDR) was used to correct for multiple comparisons. Results Univariate analysis revealed no significant group main effects or interactions in DTI or NODDI metrics. Fractional anisotropy and neurite density index in all tracts exhibited a significant positive association with age and mean diffusivity in all tracts exhibited a significant negative association with age in the whole sample. Conclusions Overall, there were no significant differences between mTBI and OI groups in brain white matter microstructure from either DTI or NODDI in the seven tracts. This indicates that mTBI is associated with relatively minor white matter differences, if any, at the post-acute stage. Brain differences may evolve at later stages of injury, so longitudinal studies with long-term follow-up are needed.
Collapse
|
30
|
Thanjavur K, Hristopulos DT, Babul A, Yi KM, Virji-Babul N. Deep Learning Recurrent Neural Network for Concussion Classification in Adolescents Using Raw Electroencephalography Signals: Toward a Minimal Number of Sensors. Front Hum Neurosci 2021; 15:734501. [PMID: 34899212 PMCID: PMC8654150 DOI: 10.3389/fnhum.2021.734501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Artificial neural networks (ANNs) are showing increasing promise as decision support tools in medicine and particularly in neuroscience and neuroimaging. Recently, there has been increasing work on using neural networks to classify individuals with concussion using electroencephalography (EEG) data. However, to date the need for research grade equipment has limited the applications to clinical environments. We recently developed a deep learning long short-term memory (LSTM) based recurrent neural network to classify concussion using raw, resting state data using 64 EEG channels and achieved high accuracy in classifying concussion. Here, we report on our efforts to develop a clinically practical system using a minimal subset of EEG sensors. EEG data from 23 athletes who had suffered a sport-related concussion and 35 non-concussed, control athletes were used for this study. We tested and ranked each of the original 64 channels based on its contribution toward the concussion classification performed by the original LSTM network. The top scoring channels were used to train and test a network with the same architecture as the previously trained network. We found that with only six of the top scoring channels the classifier identified concussions with an accuracy of 94%. These results show that it is possible to classify concussion using raw, resting state data from a small number of EEG sensors, constituting a first step toward developing portable, easy to use EEG systems that can be used in a clinical setting.
Collapse
Affiliation(s)
- Karun Thanjavur
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | | - Arif Babul
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Kwang Moo Yi
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Naznin Virji-Babul
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Application of Magnetic Resonance Imaging of Patients with Concussion in Clinical Emergency. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7749540. [PMID: 34899970 PMCID: PMC8654544 DOI: 10.1155/2021/7749540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Abstract
Concussion syndrome is a common disease in neurosurgery, and its incidence ranks first among all traumatic brain injuries. Cognitive dysfunction is one of the most common functional impairments in concussion syndrome. Neuroimaging and content assessments on concussion patients and healthy control subjects are used in this study, which uses MRI technology to evaluate brain pictures of concussion patients. Moreover, this paper separately evaluates the scores of the concussion syndrome group and the healthy control group in multiple functional aspects and performs independent sample t-test after statistics of the two scores. In addition, this paper uses resting-state fMRI to study the changes in the functional connectivity of the medial prefrontal lobe in patients with PCS, which has certain significance in revealing cognitive dysfunction after concussion and has a certain effect on improving the clinical emergency diagnosis and treatment of concussion.
Collapse
|
32
|
Lunkova E, Guberman GI, Ptito A, Saluja RS. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Hum Brain Mapp 2021; 42:5477-5494. [PMID: 34427960 PMCID: PMC8519871 DOI: 10.1002/hbm.25630] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI), frequently referred to as concussion, is one of the most common neurological disorders. The underlying neural mechanisms of functional disturbances in the brains of concussed individuals remain elusive. Novel forms of brain imaging have been developed to assess patients postconcussion, including functional magnetic resonance imaging (fMRI), susceptibility-weighted imaging (SWI), diffusion MRI (dMRI), and perfusion MRI [arterial spin labeling (ASL)], but results have been mixed with a more common utilization in the research environment and a slower integration into the clinical setting. In this review, the benefits and drawbacks of the methods are described: fMRI is an effective method in the diagnosis of concussion but it is expensive and time-consuming making it difficult for regular use in everyday practice; SWI allows detection of microhemorrhages in acute and chronic phases of concussion; dMRI is primarily used for the detection of white matter abnormalities, especially axonal injury, specific for mTBI; and ASL is an alternative to the BOLD method with its ability to track cerebral blood flow alterations. Thus, the absence of a universal diagnostic neuroimaging method suggests a need for the adoption of a multimodal approach to the neuroimaging of mTBI. Taken together, these methods, with their underlying functional and structural features, can contribute from different angles to a deeper understanding of mTBI mechanisms such that a comprehensive diagnosis of mTBI becomes feasible for the clinician.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Guido I. Guberman
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Alain Ptito
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Montreal Neurological InstituteMontrealQuebecCanada
- Department of PsychologyMcGill University Health CentreMontrealQuebecCanada
| | - Rajeet Singh Saluja
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- McGill University Health Centre Research InstituteMontrealQuebecCanada
| |
Collapse
|
33
|
Morelli N, Johnson NF, Kaiser K, Andreatta RD, Heebner NR, Hoch MC. Resting state functional connectivity responses post-mild traumatic brain injury: a systematic review. Brain Inj 2021; 35:1326-1337. [PMID: 34487458 DOI: 10.1080/02699052.2021.1972339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mild traumatic brain injuries (mTBI) are associated with functional network connectivity alterations throughout recovery. Yet, little is known about the adaptive or maladaptive nature of post-mTBI connectivity and which networks are predisposed to altered function and adaptation. The objective of this review was to determine functional connectivity changes post-mTBI and to determine the adaptive or maladaptive nature of connectivity through direct comparisons of connectivity and behavioral data. Literature was systematically searched and appraised for methodological quality. A total of 16 articles were included for review. There was conflicting evidence of post-mTBI connectivity responses as decreased connectivity was noted in 4 articles, 6 articles reported increased connectivity, 5 reported a mixture of increased and decreased connectivity, while 1 found no differences in connectivity. Supporting evidence for adaptive post-mTBI increases in connectivity were found, particularly in the frontoparietal, cerebellar, and default mode networks. Although initial results are promising, continued longitudinal research that systematically controls for confounding variables and that standardizes methodologies is warranted to adequately understand the neurophysiological recovery trajectory of mTBI.
Collapse
Affiliation(s)
- Nathan Morelli
- Department of Physical Therapy, High Point University, High Point, North Carolina, USA
| | - Nathan F Johnson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Kaiser
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Richard D Andreatta
- Rehabilitation Sciences Doctoral Program, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas R Heebner
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew C Hoch
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
34
|
Huibregtse ME, Bazarian JJ, Shultz SR, Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neurosci Biobehav Rev 2021; 130:433-447. [PMID: 34474049 DOI: 10.1016/j.neubiorev.2021.08.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
HUIBREGTSE, M.E, Bazarian, J.J., Shultz, S.R., and Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. NEUROSCI BIOBEHAV REV XX (130) 433-447, 2021.- Blood biomarkers can serve as objective measures to gauge traumatic brain injury (TBI) severity, identify patients at risk for adverse outcomes, and predict recovery duration, yet the clinical use of blood biomarkers for TBI is limited to a select few and only to rule out the need for CT scanning. The biomarkers often examined in neurotrauma research are proteomic markers, which can reflect a range of pathological processes such as cellular damage, astrogliosis, or neuroinflammation. However, proteomic blood biomarkers are vulnerable to degradation, resulting in short half-lives. Emerging biomarkers for TBI may reflect the complex genetic and neurometabolic alterations that occur following TBI that are not captured by proteomics, are less vulnerable to degradation, and are comprised of microRNA, extracellular vesicles, and neurometabolites. Therefore, this review aims to summarize our understanding of how biomarkers for brain injury escape the brain parenchymal space and appear in the bloodstream, update recent research findings in several proteomic biomarkers, and characterize biological significance and examine clinical utility of microRNA, extracellular vesicles, and neurometabolites.
Collapse
Affiliation(s)
- Megan E Huibregtse
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA.
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester Medical Center, 200 E River Rd, Rochester, NY 14623, USA.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, University of Melbourne, Clinical Sciences Building, 4th Floor, 300 Grattan St, Parkville, VIC 3050, Australia.
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA; Program in Neuroscience, College of Arts and Sciences, Indiana University, 1101 E 10th St, Bloomington, IN 47405, USA.
| |
Collapse
|
35
|
Shapiro JS, Takagi M, Silk T, Anderson N, Clarke C, Davis GA, Hearps SJ, Ignjatovic V, Rausa V, Seal ML, Babl FE, Anderson V. No Evidence of a Difference in Susceptibility-Weighted Imaging Lesion Burden or Functional Network Connectivity between Children with Typical and Delayed Recovery Two Weeks Post-Concussion. J Neurotrauma 2021; 38:2384-2390. [PMID: 33823646 PMCID: PMC8881952 DOI: 10.1089/neu.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Susceptibility weighted imaging (SWI) and resting state functional magnetic resonance imaging have been highlighted as two novel neuroimaging modalities that have been underutilized when attempting to predict whether a child with concussion will recover normally or have a delayed recovery course. This study aimed to investigate whether there was a difference between children who recover normally from a concussion and children with delayed recovery in terms of SWI lesion burden and resting state network makeup. Forty-one children who presented to the emergency department of a tertiary level pediatric hospital with concussion participated in this study as a part of a larger prospective, longitudinal observational cohort study into concussion assessment and recovery. Children underwent neuroimaging 2 weeks post-injury and were classified as either normally recovering (n = 27), or delayed recovering (n = 14) based on their post-concussion symptoms at 2 weeks post-injury. No participants showed lesions detected using SWI; therefore, no group differences could be assessed. No between-group resting state network differences were uncovered using dual regression analysis. These findings, alongside previously published work, suggest that potential causes of delayed recovery from concussion may not be found using current neuroimaging paradigms.
Collapse
Affiliation(s)
- Jesse S. Shapiro
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Monash School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael Takagi
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Monash School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Tim Silk
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Psychology, Deakin University, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
| | - Nicholas Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cathriona Clarke
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gavin A. Davis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | - Vera Ignjatovic
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
| | - Vanessa Rausa
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Marc L. Seal
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
| | - Franz E. Babl
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
- Emergency Department, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
- Psychology Service, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Lees B, Earls NE, Meares S, Batchelor J, Oxenham V, Rae CD, Jugé L, Cysique LA. Diffusion Tensor Imaging in Sport-Related Concussion: A Systematic Review Using an a priori Quality Rating System. J Neurotrauma 2021; 38:3032-3046. [PMID: 34309410 DOI: 10.1089/neu.2021.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffusion tensor imaging (DTI) of brain white matter (WM) may be useful for characterizing the nature and degree of brain injury after sport-related concussion (SRC) and assist in establishing objective diagnostic and prognostic biomarkers. This study aimed to conduct a systematic review using an a priori quality rating strategy to determine the most consistent DTI-WM changes post-SRC. Articles published in English (until June 2020) were retrieved by standard research engine and gray literature searches (N = 4932), using PRISMA guidelines. Eligible studies were non-interventional naturalistic original studies that conducted DTI within 6 months of SRC in current athletes from all levels of play, types of sports, and sex. A total of 29 articles were included in the review, and after quality appraisal by two raters, data from 10 studies were extracted after being identified as high quality. High-quality studies showed widespread moderate-to-large WM differences when SRC samples were compared to controls during the acute to early chronic stage (days to weeks) post-SRC, including both increased and decreased fractional anisotropy and axial diffusivity and decreased mean diffusivity and radial diffusivity. WM differences remained stable in the chronic stage (2-6 months post-SRC). DTI metrics were commonly associated with SRC symptom severity, although standardized SRC diagnostics would improve future research. This indicates that microstructural recovery is often incomplete at return to play and may lag behind clinically assessed recovery measures. Future work should explore interindividual trajectories to improve understanding of the heterogeneous and dynamic WM patterns post-SRC.
Collapse
Affiliation(s)
- Briana Lees
- The Matilda Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicola E Earls
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Susanne Meares
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer Batchelor
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Vincent Oxenham
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lauriane Jugé
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lucette A Cysique
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,St. Vincent's Hospital Applied Medical Research Centre, Peter Duncan Neuroscience, Sydney, New South Wales, Australia.,School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Zimmerman KA, Laverse E, Samra R, Yanez Lopez M, Jolly AE, Bourke NJ, Graham NSN, Patel MC, Hardy J, Kemp S, Morris HR, Sharp DJ. White matter abnormalities in active elite adult rugby players. Brain Commun 2021; 3:fcab133. [PMID: 34435188 PMCID: PMC8381344 DOI: 10.1093/braincomms/fcab133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The recognition, diagnosis and management of mild traumatic brain injuries are difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries, such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here, we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. Eighteen rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large-scale studies are needed to understand the impact of both repeated sports-related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation.
Collapse
Affiliation(s)
- Karl A Zimmerman
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Etienne Laverse
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - Ravjeet Samra
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
| | - Maria Yanez Lopez
- Centre for the Developing Brain, School of
Biomedical Engineering and Imaging Sciences, King’s College
London, London SE1 7EH, UK
| | - Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Neil S N Graham
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Maneesh C Patel
- Imaging Department, Imperial College Healthcare NHS
Trust, Charing Cross Hospital, London W6 8RF, UK
| | - John Hardy
- Department of Neurodegenerative Disease, Reta Lila
Weston Laboratories, Queen Square Genomics, UCL Dementia Research
Institute, London WC1N 3BG, UK
| | - Simon Kemp
- Rugby Football Union, Twickenham,
London TW2 7BA, UK
- Faculty of Epidemiology and Public Health, London
School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
- The Royal British Legion Centre for Blast Injury
Studies, Imperial College London SW7 2AZ, UK
| |
Collapse
|
38
|
Thanjavur K, Babul A, Foran B, Bielecki M, Gilchrist A, Hristopulos DT, Brucar LR, Virji-Babul N. Recurrent neural network-based acute concussion classifier using raw resting state EEG data. Sci Rep 2021; 11:12353. [PMID: 34117309 PMCID: PMC8196170 DOI: 10.1038/s41598-021-91614-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Concussion is a global health concern. Despite its high prevalence, a sound understanding of the mechanisms underlying this type of diffuse brain injury remains elusive. It is, however, well established that concussions cause significant functional deficits; that children and youths are disproportionately affected and have longer recovery time than adults; and that individuals suffering from a concussion are more prone to experience additional concussions, with each successive injury increasing the risk of long term neurological and mental health complications. Currently, the most significant challenge in concussion management is the lack of objective, clinically- accepted, brain-based approaches for determining whether an athlete has suffered a concussion. Here, we report on our efforts to address this challenge. Specifically, we introduce a deep learning long short-term memory (LSTM)-based recurrent neural network that is able to distinguish between non-concussed and acute post-concussed adolescent athletes using only short (i.e. 90 s long) samples of resting state EEG data as input. The athletes were neither required to perform a specific task nor expected to respond to a stimulus during data collection. The acquired EEG data were neither filtered, cleaned of artefacts, nor subjected to explicit feature extraction. The LSTM network was trained and validated using data from 27 male, adolescent athletes with sports related concussion, benchmarked against 35 non-concussed adolescent athletes. During rigorous testing, the classifier consistently identified concussions with an accuracy of > 90% and achieved an ensemble median Area Under the Receiver Operating Characteristic Curve (ROC/AUC) equal to 0.971. This is the first instance of a high-performing classifier that relies only on easy-to-acquire resting state, raw EEG data. Our concussion classifier represents a promising first step towards the development of an easy-to-use, objective, brain-based, automatic classification of concussion at an individual level.
Collapse
Affiliation(s)
- Karun Thanjavur
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| | - Arif Babul
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Brandon Foran
- Department of Computer Science, Middlesex College, Western University, London, ON, N6A 5B7, Canada
| | - Maya Bielecki
- Department of Computer Science, Middlesex College, Western University, London, ON, N6A 5B7, Canada
| | - Adam Gilchrist
- Department of Computer Science, Middlesex College, Western University, London, ON, N6A 5B7, Canada
| | - Dionissios T Hristopulos
- School of Electrical and Computer Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Leyla R Brucar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Naznin Virji-Babul
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
39
|
Smith AM, Alford PA, Aubry M, Benson B, Black A, Brooks A, Burke C, D'Arcy R, Dodick D, Eaves M, Eickhoff C, Erredge K, Farrell K, Finnoff J, Fraser DD, Giza C, Greenwald RM, Hoshizaki B, Huston J, Jorgensen J, Joyner M, Krause D, LaVoi N, Leaf M, Leddy J, Margarucci K, Margulies S, Mihalik J, Munce T, Oeur A, Prideaux C, Roberts WO, Shen F, Soma D, Tabrum M, Stuart MB, Wethe J, Whitehead J, Wiese-Bjornstal D, Stuart MJ. Proceedings From the Ice Hockey Summit III: Action on Concussion. Clin J Sport Med 2021; 31:e150-e160. [PMID: 31842055 DOI: 10.1097/jsm.0000000000000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/28/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The Ice Hockey Summit III provided updated scientific evidence on concussions in hockey to inform these 5 objectives: (1) describe sport related concussion (SRC) epidemiology; (2) classify prevention strategies; (3) define objective, diagnostic tests; (4) identify treatment; and (5) integrate science and clinical care into prioritized action plans and policy. METHODS Our action plan evolved from 40 scientific presentations. The 155 attendees (physicians, athletic trainers, physical therapists, nurses, neuropsychologists, scientists, engineers, coaches, and officials) voted to prioritize these action items in the final Summit session. RESULTS To (1) establish a national and international hockey database for SRCs at all levels; (2) eliminate body checking in Bantam youth hockey games; (3) expand a behavior modification program (Fair Play) to all youth hockey levels; (4) enforce game ejection penalties for fighting in Junior A and professional hockey leagues; (5) establish objective tests to diagnose concussion at point of care; and (6) mandate baseline testing to improve concussion diagnosis for all age groups. CONCLUSIONS Expedient implementation of the Summit III prioritized action items is necessary to reduce the risk, severity, and consequences of concussion in the sport of ice hockey.
Collapse
Affiliation(s)
| | - Patrick A Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Mark Aubry
- Ottawa Sports Medicine Center, Ottawa, ON, Canada
| | - Brian Benson
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Amanda Black
- Sport Injury Prevention Research Center, University of Calgary, Calgary, AB, Canada
| | - Alison Brooks
- Department of Orthopedic Surgery, University of Wisconsin, Madison, Wisconsin
| | - Charles Burke
- Brook & Bradley Orthopedics, University of Pittsburgh at St. Margaret, Pittsburgh, Pennsylvania
| | - Ryan D'Arcy
- School of Engineering Science, Advances Neuroimaging, Siman Fraser University, Burnaby, BC, Canada
| | - David Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona
| | - Michael Eaves
- Men's Ice Hockey, St. Olaf College, Northfield, Minnesota
| | - Chad Eickhoff
- Sports Medicine Center, Mayo Clinic, Rochester, Minnesota
| | | | | | - Jonathan Finnoff
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Douglas D Fraser
- Department of Pediatrics, Physiology/Pharmacology/Clinical Neuroscience, University of Western Ontario, London, ON, Canada
| | - Christopher Giza
- Department of Neurosurgery, Brain Research Institute, University of California Los Angeles Health, Los Angeles, California
| | - Richard M Greenwald
- Department of Biomechanics, Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Michael Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - David Krause
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Nicole LaVoi
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Leaf
- Officiating Program, USA Hockey, Colorado Springs, Colorado
| | - John Leddy
- Department of Orthopedics, University at Buffalo, Jacobs School of Medicine and Biomedical Science, Buffalo, New York
| | | | - Susan Margulies
- Department of Biomedical Engineering, Georgia School of Technology, Atlanta, Georgia
| | - Jason Mihalik
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thayne Munce
- Sports Medicine Center, Sanford Medical Center, Sioux Falls, South Dakota
| | - Anna Oeur
- Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Cara Prideaux
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - William O Roberts
- Department of Family Medicine and Community Health University of Minnesota, Minneapolis, Minnesota
| | - Francis Shen
- University of Minnesota Law School, University of Minnesota, Minneapolis, Minnesota
| | - David Soma
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mark Tabrum
- Coaching Education, USA Hockey, Colorado Springs, Colorado
| | | | | | | | | | | |
Collapse
|
40
|
Tayebi M, Holdsworth SJ, Champagne AA, Cook DJ, Nielsen P, Lee TR, Wang A, Fernandez J, Shim V. The role of diffusion tensor imaging in characterizing injury patterns on athletes with concussion and subconcussive injury: a systematic review. Brain Inj 2021; 35:621-644. [PMID: 33843389 DOI: 10.1080/02699052.2021.1895313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is a major public health problem. The majority of TBIs are in the form of mild TBI (also known as concussion) with sports-related concussion (SRC) receiving public attention in recent years.Here we have performed a systematic review of the literature on the use of Diffusion Tensor Imaging (DTI) on sports-related concussion and subconcussive injuries. Our review found different patterns of change in DTI parameters between concussed and subconcussed groups. The Fractional Anisotropy (FA) was either unchanged or increased for the concussion group, while the subconcussed group generally experienced a decrease in FA. A reverse pattern was observed for Mean Diffusivity (MD) - where the concussed group experienced a decrease in MD while the subconcussed group showed an increase in MD. However, in general, discrepancies were observed in the results reported in the literature - likely due to the huge variations in DTI acquisition parameters, and image processing and analysis methods used in these studies. This calls for more comprehensive and well-controlled studies in this field, including those that combine the advanced brain imaging with biomechancial modeling and kinematic sensors - to shed light on the underlying mechanisms behind the structural changes observed from the imaging studies.
Collapse
Affiliation(s)
- Maryam Tayebi
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Insitute, Gisborne, New Zealand
| | - Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Poul Nielsen
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Tae-Rin Lee
- Advanced Institute of Convergence Technology, Seoul National University, Seoul, Republic of Korea
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Bartnik-Olson BL, Alger JR, Babikian T, Harris AD, Holshouser B, Kirov II, Maudsley AA, Thompson PM, Dennis EL, Tate DF, Wilde EA, Lin A. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging Behav 2021; 15:504-525. [PMID: 32797399 PMCID: PMC7882010 DOI: 10.1007/s11682-020-00330-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.
Collapse
Affiliation(s)
| | - Jeffry R Alger
- Departments of Neurology and Radiology, University of California Los Angeles, Los Angeles, CA, USA
- NeuroSpectroScopics LLC, Sherman Oaks, Los Angeles, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Development of brain atlases for early-to-middle adolescent collision-sport athletes. Sci Rep 2021; 11:6440. [PMID: 33742031 PMCID: PMC7979742 DOI: 10.1038/s41598-021-85518-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Human brains develop across the life span and largely vary in morphology. Adolescent collision-sport athletes undergo repetitive head impacts over years of practices and competitions, and therefore may exhibit a neuroanatomical trajectory different from healthy adolescents in general. However, an unbiased brain atlas targeting these individuals does not exist. Although standardized brain atlases facilitate spatial normalization and voxel-wise analysis at the group level, when the underlying neuroanatomy does not represent the study population, greater biases and errors can be introduced during spatial normalization, confounding subsequent voxel-wise analysis and statistical findings. In this work, targeting early-to-middle adolescent (EMA, ages 13-19) collision-sport athletes, we developed population-specific brain atlases that include templates (T1-weighted and diffusion tensor magnetic resonance imaging) and semantic labels (cortical and white matter parcellations). Compared to standardized adult or age-appropriate templates, our templates better characterized the neuroanatomy of the EMA collision-sport athletes, reduced biases introduced during spatial normalization, and exhibited higher sensitivity in diffusion tensor imaging analysis. In summary, these results suggest the population-specific brain atlases are more appropriate towards reproducible and meaningful statistical results, which better clarify mechanisms of traumatic brain injury and monitor brain health for EMA collision-sport athletes.
Collapse
|
43
|
Miller MR, Robinson M, Bartha R, Charyk Stewart T, Fischer L, Dekaban GA, Menon RS, Shoemaker JK, Fraser DD. Concussion Acutely Decreases Plasma Glycerophospholipids in Adolescent Male Athletes. J Neurotrauma 2021; 38:1608-1614. [PMID: 33176582 DOI: 10.1089/neu.2020.7125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Concussions are frequent in sports and can contribute to significant and long-lasting neurological disability. Adolescents are particularly susceptible to concussions, with accurate determination of the injury challenging. Our previous study demonstrated that concussion diagnoses could be aided by metabolomics profiling and machine learning, with particular weighting on changes in plasma glycerophospholipids (PCs). Here, our aim was to report directional change of PCs after concussion and develop a diagnostic concussion panel utilizing a minimum number of plasma PCs. To this end, we enrolled 12 concussed male athletes at our academic Sport Medicine Concussion Clinic, as well as 17 sex-, age-, and activity-matched healthy controls. Blood was drawn and 71 plasma PCs were measured for statistically significant changes within 72 h of injury, and individual PCs were further analyzed with receiver operating characteristic (ROC) curves. Our data demonstrated that 26 of 71 PCs measured were significantly decreased after sports-related concussion (p < 0.01). None of the PCs increased in plasma after concussion. ROC curve analyses identified the top four PCs with areas under the curve (AUCs) ≥0.86 for concussion diagnosis: PCaeC36:0 (0.92; p < 0.001); PCaaC42:6 (0.90; p < 0.001); PCaeC36:2 (0.86; p = 0.001), and PCaaC32:0 (0.86; p = 0.001). Cut-off values in μM were ≤0.31, 0.22, 5.07, and 4.63, respectively. Importantly, combining these four PCs produced an AUC of 0.96 for concussion diagnoses (p < 0.001; 95% confidence interval, 0.89, 1.00). Our data suggest that as few as four circulating PCs may provide excellent diagnostic potential for adolescent concussion. External validation is required in larger cohorts.
Collapse
Affiliation(s)
- Michael R Miller
- Pediatrics, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| | | | - Robert Bartha
- Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | | | - Lisa Fischer
- Family Medicine, Western University, London, Ontario, Canada
| | - Gregory A Dekaban
- Microbiology and Immunology, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - Ravi S Menon
- Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | | | - Douglas D Fraser
- Pediatrics, Western University, London, Ontario, Canada.,Physiology and Pharmacology, Western University, London, Ontario, Canada.,Clinical Neurological Sciences, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Neurolytixs, Inc., Toronto, Ontario, Canada
| |
Collapse
|
44
|
Fong AK, Allen MD, Waltzman D, Sarmiento K, Yeates KO, Suskauer S, Wintermark M, Lindberg DM, Tate DF, Wilde EA, Loewen JL. Neuroimaging in Pediatric Patients with Mild Traumatic Brain Injury: Relating the Current 2018 Centers for Disease Control Guideline and the Potential of Advanced Neuroimaging Modalities for Research and Clinical Biomarker Development. J Neurotrauma 2020; 38:44-52. [PMID: 32640874 DOI: 10.1089/neu.2020.7100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Center for Disease Control and Prevention (CDC)'s 2018 Guideline for current practices in pediatric mild traumatic brain injury (mTBI; also referred to as concussion herein) systematically identified the best up-to-date practices based on current evidence and, specifically, identified recommended practices regarding computed tomography (CT), magnetic resonance imaging (MRI), and skull radiograph imaging. In this article, we discuss types of neuroimaging not discussed in the guideline in terms of their safety for pediatric populations, their potential application, and the research investigating the future use of certain modalities to aid in the diagnosis and treatment of mTBI in children. The role of neuroimaging in pediatric mTBI cases should be considered for the potential contribution to children's neural and social development, in addition to the immediate clinical value (as in the case of acute structural findings). Selective use of specific neuroimaging modalities in research has already been shown to detect aspects of diffuse brain injury, disrupted cerebral blood flow, and correlate physiological factors with persistent symptoms, such as fatigue, cognitive decline, headache, and mood changes, following mTBI. However, these advanced neuroimaging modalities are currently limited to the research arena, and any future clinical application of advanced imaging modalities in pediatric mTBI will require robust evidence for each modality's ability to provide measurement of the subtle conditions of brain development, disease, damage, or degeneration, while accounting for variables at both non-injury and time-post-injury epochs. Continued collaboration and communication between researchers and healthcare providers is essential to investigate, develop, and validate the potential of advanced imaging modalities in pediatric mTBI diagnostics and management.
Collapse
Affiliation(s)
| | | | - Dana Waltzman
- Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA
| | - Kelly Sarmiento
- Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, California, USA
| | - Daniel M Lindberg
- Emergency Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - David F Tate
- Missouri Institute of Mental Health, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Elizabeth A Wilde
- Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
45
|
Rausa VC, Shapiro J, Seal ML, Davis GA, Anderson V, Babl FE, Veal R, Parkin G, Ryan NP, Takagi M. Neuroimaging in paediatric mild traumatic brain injury: a systematic review. Neurosci Biobehav Rev 2020; 118:643-653. [PMID: 32905817 DOI: 10.1016/j.neubiorev.2020.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/02/2020] [Accepted: 08/29/2020] [Indexed: 01/05/2023]
Abstract
Neuroimaging is being increasingly applied to the study of paediatric mild traumatic brain injury (mTBI) to uncover the neurobiological correlates of delayed recovery post-injury. The aims of this systematic review were to: (i) evaluate the neuroimaging research investigating neuropathology post-mTBI in children and adolescents from 0-18 years, (ii) assess the relationship between advanced neuroimaging abnormalities and PCS in children, (iii) assess the quality of the evidence by evaluating study methodology and reporting against best practice guidelines, and (iv) provide directions for future research. A literature search of MEDLINE, PsycINFO, EMBASE, and PubMed was conducted. Abstracts and titles were screened, followed by full review of remaining articles where specific eligibility criteria were applied. This systematic review identified 58 imaging studies which met criteria. Based on several factors including methodological heterogeneity and relatively small sample sizes, the literature currently provides insufficient evidence to draw meaningful conclusions about the relationship between MRI findings and clinical outcomes. Future research is needed which incorporates prospective, longitudinal designs, minimises potential confounds and utilises multimodal imaging techniques.
Collapse
Affiliation(s)
- Vanessa C Rausa
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Jesse Shapiro
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia.
| | - Marc L Seal
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia.
| | - Gavin A Davis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; Psychology Service, The Royal Children's Hospital, Melbourne, Australia.
| | - Franz E Babl
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Emergency Department, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia.
| | - Ryan Veal
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Georgia Parkin
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Nicholas P Ryan
- Department of Paediatrics, University of Melbourne, Victoria, Australia; Cognitive Neuroscience Unit, Deakin University, Geelong, Australia.
| | - Michael Takagi
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia.
| |
Collapse
|
46
|
Puig J, Ellis MJ, Kornelsen J, Figley TD, Figley CR, Daunis-i-Estadella P, Mutch WAC, Essig M. Magnetic Resonance Imaging Biomarkers of Brain Connectivity in Predicting Outcome after Mild Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2020; 37:1761-1776. [PMID: 32228145 DOI: 10.1089/neu.2019.6623] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Josep Puig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Radiology (IDI), Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Michael J. Ellis
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Department of Surgery and Pediatrics and Child Health, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Concussion Program, Winnipeg, Manitoba, Canada
- Childrens Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa D. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| | - Chase R. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pepus Daunis-i-Estadella
- Department of Computer Science, Applied Mathematics and Statistics, Universitat de Girona, Girona, Spain
| | - W. Alan C. Mutch
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marco Essig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| |
Collapse
|
47
|
Adams MS, Niechwiej-Szwedo E, McIlroy WE, Staines WR. A History of Concussion Affects Relevancy-Based Modulation of Cortical Responses to Tactile Stimuli. Front Integr Neurosci 2020; 14:33. [PMID: 32719591 PMCID: PMC7350857 DOI: 10.3389/fnint.2020.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Abstract
Modulating cortical excitability based on a stimulus’ relevance to the task at hand is a component of sensory gating, and serves to protect higher cortical centers from being overwhelmed with irrelevant information (McIlroy et al., 2003; Kumar et al., 2005; Wasaka et al., 2005). This study examined relevancy-based modulation of cortical excitability, and corresponding behavioral responses, in the face of distracting stimuli in participants with and without a history of concussion (mean age 22 ± 3 SD years; most recent concussion 39.1 ± 30 SD months). Participants were required to make a scaled motor response to the amplitudes of visual and tactile stimuli presented individually or concurrently. Task relevance was manipulated, and stimuli were occasionally presented with irrelevant distractors. Electroencephalography (EEG) and task accuracy data were collected from participants with and without a history of concussion. The somatosensory-evoked N70 event-related potential (ERP) was significantly modulated by task relevance in the control group but not in those with a history of concussion, and there was a significantly greater cost to task accuracy in the concussion history group when relevant stimuli were presented with an irrelevant distractor. This study demonstrated that relevancy-based modulation of electrophysiological responses and behavioral correlates of sensory gating differ in people with and without a history of concussion, even after patients were symptom-free and considered recovered from their injuries.
Collapse
Affiliation(s)
- Meaghan S Adams
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | | - William E McIlroy
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - William R Staines
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
48
|
Manning KY, Brooks JS, Dickey JP, Harriss A, Fischer L, Jevremovic T, Blackney K, Barreira C, Brown A, Bartha R, Doherty T, Fraser D, Holmes J, Dekaban GA, Menon RS. Longitudinal changes of brain microstructure and function in nonconcussed female rugby players. Neurology 2020; 95:e402-e412. [PMID: 32554762 PMCID: PMC7455316 DOI: 10.1212/wnl.0000000000009821] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To longitudinally assess brain microstructure and function in female varsity athletes participating in contact and noncontact sports. METHODS Concussion-free female rugby players (n = 73) were compared to age-matched (ages 18-23) female swimmers and rowers (n = 31) during the in- and off-season. Diffusion and resting-state fMRI (rs-fMRI) measures were the primary outcomes. The Sports Concussion Assessment Tool and head impact accelerometers were used to monitor symptoms and impacts, respectively. RESULTS We found cross-sectional (contact vs noncontact) and longitudinal (in- vs off-season) changes in white matter diffusion measures and rs-fMRI network connectivity in concussion-free contact athletes relative to noncontact athletes. In particular, mean, axial, and radial diffusivities were increased with decreased fractional anisotropy in multiple white matter tracts of contact athletes accompanied with default mode and visual network hyperconnectivity (p < 0.001). Longitudinal diffusion changes in the brainstem between the in- and off-season were observed for concussion-free contact athletes only, with progressive changes observed in a subset of athletes over multiple seasons. Axial diffusivity was significantly lower in the genu and splenium of the corpus callosum in those contact athletes with a history of concussion. CONCLUSIONS Together, these findings demonstrate longitudinal changes in the microstructure and function of the brain in otherwise healthy, asymptomatic athletes participating in contact sport. Further research to understand the long-term brain health and biological implications of these changes is required, in particular to what extent these changes reflect compensatory, reparative, or degenerative processes.
Collapse
Affiliation(s)
- Kathryn Y Manning
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Jeffrey S Brooks
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - James P Dickey
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Alexandra Harriss
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Lisa Fischer
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Tatiana Jevremovic
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Kevin Blackney
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Christy Barreira
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Arthur Brown
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Robert Bartha
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Tim Doherty
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Douglas Fraser
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Jeff Holmes
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Gregory A Dekaban
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Ravi S Menon
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| |
Collapse
|
49
|
Gazdzinski LM, Mellerup M, Wang T, Adel SAA, Lerch JP, Sled JG, Nieman BJ, Wheeler AL. White Matter Changes Caused by Mild Traumatic Brain Injury in Mice Evaluated Using Neurite Orientation Dispersion and Density Imaging. J Neurotrauma 2020; 37:1818-1828. [PMID: 32242488 DOI: 10.1089/neu.2020.6992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is common and can lead to persistent cognitive and behavioral symptoms. Although diffusion tensor imaging (DTI) has demonstrated some sensitivity to changes in white matter following mTBI, recent studies have suggested that more complex geometric models of diffusion, including the neurite orientation dispersion and density imaging (NODDI) model, may be more sensitive and specific. Here, we evaluate microstructural changes in white matter following mTBI using DTI and NODDI in a mouse model, and compare the time course of these changes to behavioral impairment and recovery. We also assess volumetric changes for a comprehensive picture of the structural alterations in the brain and histological staining to identify cellular changes that may contribute to the differences detected in the imaging data. Increased orientation dispersion index (ODI) was observed in the optic tracts of mTBI mice compared with shams. Changes in fractional anisotropy (FA) were not statistically significant. Volume deficits were detected in the optic tract as well as in several gray matter regions: the lateral geniculate nuclei of the thalamus, the entorhinal cortex, and the superior colliculi. Glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) staining was increased in the optic tracts of mTBI brains, and this staining correlated with ODI values. A transient impairment in working memory was observed, which resolved by 6 weeks, whereas increased ODI, GFAP, and Iba1 persisted to 18 weeks post-injury. We conclude that the optic tracts are particularly vulnerable to damage from the closed-skull impact model used in this study, and that ODI may be a more sensitive metric to this damage than FA. Differences in ODI and in histological measures of astrogliosis, neuroinflammation, and axonal degeneration persist beyond behavioral impairment in this model.
Collapse
Affiliation(s)
- Lisa M Gazdzinski
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Miranda Mellerup
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology and University of Toronto, Toronto, Ontario, Canada
| | - Tong Wang
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology and University of Toronto, Toronto, Ontario, Canada
| | - Seyed Amir Ali Adel
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology and University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - John G Sled
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Mouse Imaging Centre at The Centre for Phenogenomics, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brian J Nieman
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Mouse Imaging Centre at The Centre for Phenogenomics, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Brett BL, Wu YC, Mustafi SM, Saykin AJ, Koch KM, Nencka AS, Giza CC, Goldman J, Guskiewicz KM, Mihalik JP, Duma SM, Broglio SP, McAllister TW, McCrea MA, Meier TB. The Association Between Persistent White-Matter Abnormalities and Repeat Injury After Sport-Related Concussion. Front Neurol 2020; 10:1345. [PMID: 32038451 PMCID: PMC6990104 DOI: 10.3389/fneur.2019.01345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/05/2019] [Indexed: 12/04/2022] Open
Abstract
Objective: A recent systematic review determined that the physiological effects of concussion may persist beyond clinical recovery. Preclinical models suggest that ongoing physiological effects are accompanied by increased cerebral vulnerability that is associated with risk for subsequent, more severe injury. This study examined the association between signal alterations on diffusion tensor imaging following clinical recovery of sport-related concussion in athletes with and without a subsequent second concussion. Methods: Average mean diffusivity (MD) was calculated in a region of interest (ROI) in which concussed athletes (n = 82) showed significantly elevated MD acutely after injury (<48 h), at an asymptomatic time point, 7 days post-return to play (RTP), and 6 months relative to controls (n = 69). The relationship between MD in the identified ROI and likelihood of sustaining a subsequent concussion over a 1-year period was examined with a binary logistic regression (re-injured, yes/no). Results: Eleven of 82 concussed athletes (13.4%) sustained a second concussion within 12 months of initial injury. Mean MD at 7 days post-RTP was significantly higher in those athletes who went on to sustain a repeat concussion within 1 year of initial injury than those who did not (p = 0.048; d = 0.75). In this underpowered sample, the relationship between MD at 7 days post-RTP and likelihood of sustaining a secondary injury approached significance [χ2 (1) = 4.17, p = 0.057; B = 0.03, SE = 0.017; OR = 1.03, CI = 0.99, 1.07]. Conclusions: These preliminary findings raise the hypothesis that persistent signal abnormalities in diffusion imaging metrics at RTP following concussion may be predictive of a repeat concussion. This may reflect a window of cerebral vulnerability or increased susceptibility following concussion, though understanding the clinical significance of these findings requires further study.
Collapse
Affiliation(s)
- Benjamin L. Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sourajit M. Mustafi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin M. Koch
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andrew S. Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher C. Giza
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Joshua Goldman
- Division of Sports Medicine, Departments of Family Medicine and Orthopedics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin M. Guskiewicz
- Department of Exercise and Sport Science, Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason P. Mihalik
- Department of Exercise and Sport Science, Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stefan M. Duma
- School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University, Blacksburg, VA, United States
| | - Steven P. Broglio
- Michigan Concussion Center, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Bloomington, IN, United States
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|