1
|
Doering E, Hoenig MC, Giehl K, Dzialas V, Andrassy G, Bader A, Bauer A, Elmenhorst D, Ermert J, Frensch S, Jäger E, Jessen F, Krapf P, Kroll T, Lerche C, Lothmann J, Matusch A, Neumaier B, Onur OA, Ramirez A, Richter N, Sand F, Tellmann L, Theis H, Zeyen P, van Eimeren T, Drzezga A, Bischof GN, Weintraub E. "Fill States": PET-derived Markers of the Spatial Extent of Alzheimer Disease Pathology. Radiology 2025; 314:e241482. [PMID: 40131110 PMCID: PMC11950890 DOI: 10.1148/radiol.241482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025]
Abstract
Background Alzheimer disease (AD) progression can be monitored by tracking intensity changes in PET standardized uptake value (SUV) ratios of amyloid, tau, and neurodegeneration. The spatial extent ("fill state") of these three hallmark pathologic abnormalities may serve as critical pathophysiologic information, pending further investigation. Purpose To examine the clinical utility and increase the accessibility of PET-derived fill states. Materials and Methods This secondary analysis of two prospective studies used data from two independent cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Tau Propagation over Time study (T-POT). Each cohort comprised amyloid-negative cognitively normal individuals (controls) and patients with subjective cognitive decline, mild cognitive impairment, or probable-AD dementia. Fill states of amyloid, tau, and neurodegeneration were computed as the percentages of significantly abnormal voxels relative to controls across PET scans. Fill states and SUV ratios were compared across stages (Kruskal-Wallis H test, area under the receiver operating characteristic curve analysis) and tested for association with the severity of cognitive impairment (Spearman correlation, multivariate regression analysis). Additionally, a convolutional neural network (CNN) was developed to estimate fill states from patients' PET scans without requiring controls. Results The ADNI cohort included 324 individuals (mean age, 72 years ± 6.8 [SD]; 173 [53%] female), and the T-POT cohort comprised 99 individuals (mean age, 66 years ± 8.7; 63 [64%] female). Higher fill states were associated with higher stages of cognitive impairment (P < .001), and tau and neurodegeneration fill states showed higher diagnostic performance for cognitive impairment compared with SUV ratio (P < .05) across cohorts. Similarly, all fill states were negatively correlated with cognitive performance (P < .001) and uniquely characterized the degree of cognitive impairment even after adjustment for SUV ratio (P < .05). The CNN estimated amyloid and tau accurately, but not neurodegeneration fill states. Conclusion Fill states provided reliable markers of AD progression, potentially improving early detection, staging, and monitoring of AD in clinical practice and trials beyond SUV ratio. Clinical trial registration no. NCT00106899 © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Yun and Kim in this issue.
Collapse
Affiliation(s)
- Elena Doering
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- German Center for Neurodegenerative Diseases (DZNE),
Bonn, Germany
| | - Merle C. Hoenig
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- Institute of Neuroscience and Medicine–Molecular
Organization of the Brain (INM-2), Forschungszentrum Jülich,
Jülich, Germany
| | - Kathrin Giehl
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- Institute of Neuroscience and Medicine–Molecular
Organization of the Brain (INM-2), Forschungszentrum Jülich,
Jülich, Germany
| | - Verena Dzialas
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- Faculty of Mathematics and Natural Sciences, University
of Cologne, Cologne, Germany
| | - Grégory Andrassy
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
| | - Abdelmajid Bader
- Department of Psychiatry, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine–Molecular
Organization of the Brain (INM-2), Forschungszentrum Jülich,
Jülich, Germany
| | - David Elmenhorst
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- Institute of Neuroscience and Medicine–Molecular
Organization of the Brain (INM-2), Forschungszentrum Jülich,
Jülich, Germany
| | - Johannes Ermert
- Institute of Neuroscience and Medicine–Nuclear
Chemistry (INM-5), Forschungszentrum Jülich, Jülich, Germany
| | - Silke Frensch
- Institute of Neuroscience and
Medicine–Imaging-Core-Facility (ICF), Forschungszentrum Jülich,
Jülich, Germany
| | - Elena Jäger
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE),
Bonn, Germany
- Department of Psychiatry, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
| | - Philipp Krapf
- Institute of Neuroscience and Medicine–Nuclear
Chemistry (INM-5), Forschungszentrum Jülich, Jülich, Germany
| | - Tina Kroll
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine–Medical
Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich,
Germany
| | - Julia Lothmann
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
| | - Andreas Matusch
- Institute of Neuroscience and Medicine–Molecular
Organization of the Brain (INM-2), Forschungszentrum Jülich,
Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine–Nuclear
Chemistry (INM-5), Forschungszentrum Jülich, Jülich, Germany
- Department of Nuclear Chemistry, Faculty of Mathematics
and Natural Sciences, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne,
Institute of Radiochemistry and Experimental Molecular Imaging, University of
Cologne, Cologne, Germany
| | - Oezguer A. Onur
- Department of Neurology, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE),
Bonn, Germany
- Cologne Excellence Cluster for Aging and
Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Division of
Neurogenetics and Molecular Psychiatry, University of Cologne, Medical Faculty,
Cologne, Germany
- Department for Neurodegenerative Diseases and Geriatric
Psychiatry, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for
Alzheimer’s and Neurodegenerative Diseases, University of Texas Health
Science Center at San Antonio, San Antonio, Tex
| | - Nils Richter
- Department of Neurology, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine–Cognitive
Neuroscience (INM-3), Forschungszentrum Jülich, Jülich,
Germany
| | - Frederik Sand
- Department of Psychiatry, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
| | - Lutz Tellmann
- Institute of Neuroscience and Medicine–Medical
Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich,
Germany
| | - Hendrik Theis
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- Department of Neurology, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
| | - Philip Zeyen
- Department of Psychiatry, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- Department of Neurology, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- German Center for Neurodegenerative Diseases (DZNE),
Bonn, Germany
- Institute of Neuroscience and Medicine–Molecular
Organization of the Brain (INM-2), Forschungszentrum Jülich,
Jülich, Germany
| | - Gérard N. Bischof
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- Institute of Neuroscience and Medicine–Molecular
Organization of the Brain (INM-2), Forschungszentrum Jülich,
Jülich, Germany
| | | | - Elizabeth Weintraub
- Department of Nuclear Medicine, Faculty of Medicine and
University Hospital, University of Cologne, Kerpener Str 62, 50937 Cologne,
Germany
- German Center for Neurodegenerative Diseases (DZNE),
Bonn, Germany
- Institute of Neuroscience and Medicine–Molecular
Organization of the Brain (INM-2), Forschungszentrum Jülich,
Jülich, Germany
- Faculty of Mathematics and Natural Sciences, University
of Cologne, Cologne, Germany
- Department of Psychiatry, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine–Nuclear
Chemistry (INM-5), Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and
Medicine–Imaging-Core-Facility (ICF), Forschungszentrum Jülich,
Jülich, Germany
- Institute of Neuroscience and Medicine–Medical
Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich,
Germany
- Department of Nuclear Chemistry, Faculty of Mathematics
and Natural Sciences, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne,
Institute of Radiochemistry and Experimental Molecular Imaging, University of
Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and
University Hospital, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Aging and
Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Division of
Neurogenetics and Molecular Psychiatry, University of Cologne, Medical Faculty,
Cologne, Germany
- Department for Neurodegenerative Diseases and Geriatric
Psychiatry, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for
Alzheimer’s and Neurodegenerative Diseases, University of Texas Health
Science Center at San Antonio, San Antonio, Tex
- Institute of Neuroscience and Medicine–Cognitive
Neuroscience (INM-3), Forschungszentrum Jülich, Jülich,
Germany
| |
Collapse
|
2
|
Argiris G, Akinci M, Peña-Gómez C, Palpatzis E, Garcia-Prat M, Shekari M, Blennow K, Zetterberg H, Kollmorgen G, Quijano-Rubio C, Ashton NJ, Karikari TK, Brinkmalm-Westman A, Lantero-Rodriguez J, Fauria K, Sánchez-Benavides G, Grau-Rivera O, Suárez-Calvet M, Arenaza-Urquijo EM, Study FTA. Data-driven CSF biomarker profiling: imaging and clinical outcomes in a cohort at risk of Alzheimer's disease. Alzheimers Res Ther 2024; 16:274. [PMID: 39716329 PMCID: PMC11667858 DOI: 10.1186/s13195-024-01629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers of synaptic dysfunction, neuroinflammation, and glial response, complementing Alzheimer's disease (AD) core biomarkers, have improved the pathophysiological characterization of the disease. Here, we tested the hypothesis that the co-expression of multiple CSF biomarkers will help the identification of AD-like phenotypes when biomarker positivity thresholds are not met yet. METHODS Two hundred and seventy cognitively unimpaired adults with family history (FH) of sporadic AD (mean age = 60.6 ± 4.85 years, 64.8% women) underwent lumbar puncture, magnetic resonance imaging (n = 266) and positron emission tomography imaging (n = 239) protocols, and clinical evaluations. CSF Aβ42, Aβ40, p-tau181, p-tau217, p-tau231, NfL, neurogranin, sTREM2, YKL40, GFAP, S100, α-Synuclein, SYT1, and SNAP25 were measured. Participants were clustered based on CSF biomarker co-expression with an agglomerative algorithm. The predictive value of the classification against brain and cognitive outcomes was evaluated. RESULTS Three clusters (C) were identified. Higher Aβ burden and CSF p-tau was the hallmark of C1. The other two clusters showed lower Aβ burden but higher expression of glial (C2) or synaptic markers (C3). Participants in C1 showed an AD-like clinical phenotype, comprising participants with the overall highest percentage of two parent FH and APOE-ε4 carriers, in addition to comprising more females compared to C2. C3 displayed better vascular health compared to C1. C2 were older and comprised a lower percentage of females compared to C3. C1 showed an AD-like gray matter reduction in medial temporal (notably hippocampus) and frontal regions that were not observed in Aβ42/40 + compared with Aβ42/40 - . Furthermore, Aβ42/40 - participants in C1 showed GM reduction in inferior temporal areas compared with Aβ42/40 + participants overall. C1 membership also predicted cognitive decline in executive function, but not memory, beyond Aβ + status, overall suggesting a better prognosis in Aβ42/40 + participants without C1 membership. Additionally, C1 displayed a higher rate of conversion to Aβ + (25%) over time. CONCLUSIONS Our results suggest that examining multiple CSF biomarkers reflecting diverse pathological pathways may complement and/or outperform AD core biomarkers and thresholding approaches to identify individuals showing a clinical and cognitive AD-like phenotype, including higher conversion to Aβ + , GM reductions and cognitive decline. The clinical utility of this approach warrants further investigation and replication in other cohorts.
Collapse
Affiliation(s)
| | - Muge Akinci
- Barcelona Institute of Global Health (ISGlobal), Health and Environment Over the Lifecourse Programme, Barcelona, Spain
- University of Pompeu Fabra (UPF), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Cleofé Peña-Gómez
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Eleni Palpatzis
- Barcelona Institute of Global Health (ISGlobal), Health and Environment Over the Lifecourse Programme, Barcelona, Spain
- University of Pompeu Fabra (UPF), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Marina Garcia-Prat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Mahnaz Shekari
- University of Pompeu Fabra (UPF), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann Brinkmalm-Westman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelona Institute of Global Health (ISGlobal), Health and Environment Over the Lifecourse Programme, Barcelona, Spain.
- University of Pompeu Fabra (UPF), Barcelona, Spain.
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | | |
Collapse
|
3
|
Kim YJ, Yun J, Seo SW, Kim JP, Jang H, Kim HJ, Na DL, Woo S, Chun MY. Difference in trajectories according to early amyloid accumulation in cognitively unimpaired elderly. Eur J Neurol 2024; 31:e16482. [PMID: 39275969 PMCID: PMC11555158 DOI: 10.1111/ene.16482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024]
Abstract
BACKGROUND AND PURPOSE Amyloid β (Aβ), a major biomarker of Alzheimer's disease, leads to tau accumulation, neurodegeneration and cognitive decline. Modelling the trajectory of Aβ accumulation in cognitively unimpaired (CU) individuals is crucial, as treatments targeting Aβ are anticipated. The evolution of Aβ levels was investigated to determine whether it could lead to classification into different groups by studying longitudinal Aβ changes in older CU individuals, and differences between the groups were compared. METHODS A total of 297 CU participants were included from the Alzheimer's Disease Neuroimaging Initiative database, and these participants underwent apolipoprotein E (APOE) genotyping, neuropsychological testing, brain magnetic resonance imaging, and an average of 3.03 follow-up 18F-florbetapir positron emission tomography scans. Distinct Aβ trajectory patterns were classified using latent class growth analysis, and longitudinal cognitive performances across these patterns were assessed with a linear mixed effects model. RESULTS The optimal model consisted of three classes, with a high entropy value of 0.947. The classes were designated as follows: class 1, non-accumulation group (n = 197); class 2, late accumulation group (n = 70); and class 3, early accumulation group (n = 30). The late accumulation and early accumulation groups had more APOE ε4 carriers than the non-accumulation group. The longitudinal analysis of cognitive performance revealed that the early accumulation group showed the steepest decline (modified Preclinical Alzheimer's Cognitive Composite with digit symbol substitution [mPACCdigit], p < 0.001; modified Preclinical Alzheimer's Cognitive Composite with trails B [mPACCtrailsB], p < 0.001) and the late accumulation group showed a steeper decline (mPACCdigit, p = 0.014; mPACCtrailsB, p = 0.007) compared to the non-accumulation group. CONCLUSIONS Our study showed the heterogeneity of Aβ accumulation trajectories in CU older individuals. The prognoses for cognitive decline differ according to the Aβ trajectory patterns.
Collapse
Affiliation(s)
- Young Ju Kim
- Department of Neurology, Samsung Medical CentreSungkyunkwan University School of MedicineSeoulSouth Korea
- Neuroscience CentreSamsung Medical CentreSeoulSouth Korea
| | - Jihwan Yun
- Department of Neurology, Samsung Medical CentreSungkyunkwan University School of MedicineSeoulSouth Korea
- Department of Neurology, Soonchunhyang University Bucheon HospitalSoonchunhyang University School of MedicineBucheonSouth Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical CentreSungkyunkwan University School of MedicineSeoulSouth Korea
- Neuroscience CentreSamsung Medical CentreSeoulSouth Korea
- Department of Digital Health, SAIHSTSungkyunkwan UniversitySeoulSouth Korea
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical CentreSungkyunkwan University School of MedicineSeoulSouth Korea
- Neuroscience CentreSamsung Medical CentreSeoulSouth Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical CentreSungkyunkwan University School of MedicineSeoulSouth Korea
- Department of Neurology, Seoul National University HospitalSeoul National University School of MedicineSeoulSouth Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical CentreSungkyunkwan University School of MedicineSeoulSouth Korea
- Neuroscience CentreSamsung Medical CentreSeoulSouth Korea
- Department of Digital Health, SAIHSTSungkyunkwan UniversitySeoulSouth Korea
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical CentreSungkyunkwan University School of MedicineSeoulSouth Korea
- Neuroscience CentreSamsung Medical CentreSeoulSouth Korea
| | - Sookyoung Woo
- Biostatistics TeamSamsung Biomedical Research InstituteSeoulSouth Korea
| | - Min Young Chun
- Department of Neurology, Samsung Medical CentreSungkyunkwan University School of MedicineSeoulSouth Korea
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
- Department of Neurology, Yongin Severance HospitalYonsei University Health SystemYonginSouth Korea
| | | |
Collapse
|
4
|
Bettcher BM, Lopez Paniagua D, Wang Y, McConnell BV, Coughlan C, Carlisle TC, Thaker AA, Lippitt W, Filley CM, Pelak VS, Shapiro AL, Heffernan KS, Potter H, Solano A, Boyd J, Carlson NE. Synergistic effects of GFAP and Aβ42: Implications for white matter integrity and verbal memory across the cognitive spectrum. Brain Behav Immun Health 2024; 40:100834. [PMID: 39206431 PMCID: PMC11357780 DOI: 10.1016/j.bbih.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Background Plasma glial fibrillary acidic protein (GFAP), an astrocytic biomarker, has previously been linked with Alzheimer's disease (AD) status, amyloid levels, and memory performance in older adults. The neuroanatomical pathways by which astrogliosis/astrocyte reactivity might impact cognitive outcomes remains unclear. We evaluated whether plasma GFAP and amyloid levels had a synergistic effect on fornix structure, which is critically involved in AD-associated cholinergic pathways. We also examined whether fornix structure mediates associations between GFAP and verbal memory. Methods In a cohort of both asymptomatic and symptomatic older adults (total n = 99), we assessed plasma GFAP, amyloid-β42 (Aβ42), other AD-related proteins, and vascular markers, and we conducted comprehensive memory testing. Tractography-based methods were used to assess fornix structure with whole brain diffusion metrics to control for diffuse alterations in brain white matter. Results In individuals in the low plasma amyloid-β42 (Aβ42) group, higher plasma GFAP was associated with lower fractional anisotropy (FA; p = 0.007), higher mean diffusivity (MD; p < 0.001), higher radial diffusivity (RD; p < 0.001), and higher axial diffusivity (DA; p = 0.001) in the left fornix. These associations were independent of APOE gene status, plasma levels of total tau and neurofilament light, plasma vascular biomarkers, and whole brain diffusion metrics. In a sub-analysis of participants in the low plasma Aβ42 group (n = 33), fornix structure mediated the association between higher plasma GFAP levels and lower verbal memory performance. Discussion Higher plasma GFAP was associated with altered fornix microstructure in the setting of greater amyloid deposition. We also expanded on our prior GFAP-verbal memory findings by demonstrating that in the low plasma Aβ42 group, left fornix integrity may be a primary white matter conduit for the negative associations between GFAP and verbal memory performance. Overall, these findings suggest that astrogliosis/astrocyte reactivity may play an early, pivotal role in AD pathogenesis, and further demonstrate that high GFAP and low Aβ42 in plasma may reflect a particularly detrimental synergistic role in forniceal-memory pathways.
Collapse
Affiliation(s)
- Brianne M. Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Lopez Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yue Wang
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V. McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tara C. Carlisle
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ashesh A. Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Radiology, Denver Health, Denver, CO, USA
| | - William Lippitt
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher M. Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S. Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Allison L.B. Shapiro
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S. Heffernan
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jada Boyd
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E. Carlson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Engels-Domínguez N, Riphagen JM, Van Egroo M, Koops EA, Smegal LF, Becker JA, Prokopiou PC, Bueichekú E, Kwong KK, Rentz DM, Salat DH, Sperling RA, Johnson KA, Jacobs HIL. Lower Locus Coeruleus Integrity Signals Elevated Entorhinal Tau and Clinical Progression in Asymptomatic Older Individuals. Ann Neurol 2024; 96:650-661. [PMID: 39007398 PMCID: PMC11534559 DOI: 10.1002/ana.27022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Elevated entorhinal cortex (EC) tau in low beta-amyloid individuals can predict accumulation of pathology and cognitive decline. We compared the accuracy of magnetic resonance imaging (MRI)-derived locus coeruleus integrity, neocortical beta-amyloid burden by positron emission tomography (PET), and hippocampal volume in identifying elevated entorhinal tau signal in asymptomatic individuals who are considered beta-amyloid PET-negative. METHODS We included 188 asymptomatic individuals (70.78 ± 11.51 years, 58% female) who underwent 3T-MRI of the locus coeruleus, Pittsburgh compound-B (PiB), and Flortaucipir (FTP) PET. Associations between elevated EC tau and neocortical PiB, hippocampal volume, or locus coeruleus integrity were evaluated and compared using logistic regression and receiver operating characteristic analyses in the PiB- sample with a clinical dementia rating (CDR) of 0. Associations with clinical progression (CDR-sum-of-boxes) over a time span of 6 years were evaluated with Cox proportional hazard models. RESULTS We identified 26 (21%) individuals with high EC FTP in the CDR = 0/PiB- sample. Locus coeruleus integrity was a significantly more sensitive and specific predictor of elevated EC FTP (area under the curve [AUC] = 85%) compared with PiB (AUC = 77%) or hippocampal volume (AUC = 76%). Based on the Youden-index, locus coeruleus integrity obtained a sensitivity of 77% and 85% specificity. Using the resulting locus coeruleus Youden cut-off, lower locus coeruleus integrity was associated with a two-fold increase in clinical progression, including mild cognitive impairment. INTERPRETATION Locus coeruleus integrity has promise as a low-cost, non-invasive screening instrument to detect early cortical tau deposition and associated clinical progression in asymptomatic, low beta-amyloid individuals. ANN NEUROL 2024;96:650-661.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Joost M Riphagen
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elouise A Koops
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lindsay F Smegal
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - J Alex Becker
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Prokopis C Prokopiou
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Kenneth K Kwong
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dorene M Rentz
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David H Salat
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Kim BH, Seo SW, Park YH, Kim J, Kim HJ, Jang H, Yun J, Kim M, Kim JP. Clinical application of sparse canonical correlation analysis to detect genetic associations with cortical thickness in Alzheimer's disease. Front Neurosci 2024; 18:1428900. [PMID: 39381682 PMCID: PMC11458562 DOI: 10.3389/fnins.2024.1428900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cerebral cortex atrophy. In this study, we used sparse canonical correlation analysis (SCCA) to identify associations between single nucleotide polymorphisms (SNPs) and cortical thickness in the Korean population. We also investigated the role of the SNPs in neurological outcomes, including neurodegeneration and cognitive dysfunction. Methods We recruited 1125 Korean participants who underwent neuropsychological testing, brain magnetic resonance imaging, positron emission tomography, and microarray genotyping. We performed group-wise SCCA in Aβ negative (-) and Aβ positive (+) groups. In addition, we performed mediation, expression quantitative trait loci, and pathway analyses to determine the functional role of the SNPs. Results We identified SNPs related to cortical thickness using SCCA in Aβ negative and positive groups and identified SNPs that improve the prediction performance of cognitive impairments. Among them, rs9270580 was associated with cortical thickness by mediating Aβ uptake, and three SNPs (rs2271920, rs6859, rs9270580) were associated with the regulation of CHRNA2, NECTIN2, and HLA genes. Conclusion Our findings suggest that SNPs potentially contribute to cortical thickness in AD, which in turn leads to worse clinical outcomes. Our findings contribute to the understanding of the genetic architecture underlying cortical atrophy and its relationship with AD.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Yu Hyun Park
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - JiHyun Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyemin Jang
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jihwan Yun
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Mansu Kim
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jun Pyo Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Ho SK, Hsiao IT, Lin KJ, Wu YM, Wu KY. Relationships among tumor necrosis factor-alpha levels, beta-amyloid accumulation, and hippocampal atrophy in patients with late-life major depressive disorder. Brain Behav 2024; 14:e70016. [PMID: 39236111 PMCID: PMC11376440 DOI: 10.1002/brb3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by hippocampal volume reduction, impacting cognitive function. Inflammation, particularly elevated tumor necrosis factor-alpha (TNF-α) levels, is consistently implicated in MDD pathophysiology. This study investigates the relationships between TNF-α levels, hippocampal volume, beta-amyloid (Aβ) burden, and cognitive abilities in MDD patients, aiming to illuminate the complex interplay among inflammatory markers, pathology indicators, structural brain alterations, and cognitive performance in non-demented MDD individuals. METHOD Fifty-two non-demented MDD patients, comprising 25 with mild cognitive impairment (MCI), were recruited along with 10 control subjects. Each participant underwent a thorough assessment encompassing TNF-α blood testing, 18F-florbetapir positron emission tomography, magnetic resonance imaging scans, and neuropsychological testing. Statistical analyses, adjusted for age and education, were performed to investigate the associations between TNF-α levels, adjusted hippocampal volume (HVa), global Aβ burden, and cognitive performance. RESULTS MCI MDD patients displayed elevated TNF-α levels and reduced HVa relative to controls. Correlation analyses demonstrated inverse relationships between TNF-α level and HVa in MCI MDD, all MDD, and all subjects groups. Both TNF-α level and HVa exhibited significant correlations with processing speed across all MDD and all subjects. Notably, global 18F-florbetapir standardized uptake value ratio did not exhibit significant correlations with TNF-α level, HVa, and cognitive measures. CONCLUSION This study highlights elevated TNF-α levels and reduced hippocampal volume in MCI MDD patients, indicating a potential association between peripheral inflammation and structural brain alterations in depression. Furthermore, our results suggest that certain cases of MDD may be affected by non-amyloid-mediated process, which impacts their TNF-α and hippocampal volume. These findings emphasize the importance of further investigating the complex interplay among inflammation, neurodegeneration, and cognitive function in MDD.
Collapse
Affiliation(s)
- Szu-Kai Ho
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Quenon L, Collij LE, Garcia DV, Lopes Alves I, Gérard T, Malotaux V, Huyghe L, Gispert JD, Jessen F, Visser PJ, den Braber A, Ritchie CW, Boada M, Marquié M, Vandenberghe R, Luckett ES, Schöll M, Frisoni GB, Buckley C, Stephens A, Altomare D, Ford L, Birck C, Mett A, Gismondi R, Wolz R, Grootoonk S, Manber R, Shekari M, Lhommel R, Dricot L, Ivanoiu A, Farrar G, Barkhof F, Hanseeuw BJ. Amyloid-PET imaging predicts functional decline in clinically normal individuals. Alzheimers Res Ther 2024; 16:130. [PMID: 38886831 PMCID: PMC11181677 DOI: 10.1186/s13195-024-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND There is good evidence that elevated amyloid-β (Aβ) positron emission tomography (PET) signal is associated with cognitive decline in clinically normal (CN) individuals. However, it is less well established whether there is an association between the Aβ burden and decline in daily living activities in this population. Moreover, Aβ-PET Centiloids (CL) thresholds that can optimally predict functional decline have not yet been established. METHODS Cross-sectional and longitudinal analyses over a mean three-year timeframe were performed on the European amyloid-PET imaging AMYPAD-PNHS dataset that phenotypes 1260 individuals, including 1032 CN individuals and 228 participants with questionable functional impairment. Amyloid-PET was assessed continuously on the Centiloid (CL) scale and using Aβ groups (CL < 12 = Aβ-, 12 ≤ CL ≤ 50 = Aβ-intermediate/Aβ± , CL > 50 = Aβ+). Functional abilities were longitudinally assessed using the Clinical Dementia Rating (Global-CDR, CDR-SOB) and the Amsterdam Instrumental Activities of Daily Living Questionnaire (A-IADL-Q). The Global-CDR was available for the 1260 participants at baseline, while baseline CDR-SOB and A-IADL-Q scores and longitudinal functional data were available for different subsamples that had similar characteristics to those of the entire sample. RESULTS Participants included 765 Aβ- (61%, Mdnage = 66.0, IQRage = 61.0-71.0; 59% women), 301 Aβ± (24%; Mdnage = 69.0, IQRage = 64.0-75.0; 53% women) and 194 Aβ+ individuals (15%, Mdnage = 73.0, IQRage = 68.0-78.0; 53% women). Cross-sectionally, CL values were associated with CDR outcomes. Longitudinally, baseline CL values predicted prospective changes in the CDR-SOB (bCL*Time = 0.001/CL/year, 95% CI [0.0005,0.0024], p = .003) and A-IADL-Q (bCL*Time = -0.010/CL/year, 95% CI [-0.016,-0.004], p = .002) scores in initially CN participants. Increased clinical progression (Global-CDR > 0) was mainly observed in Aβ+ CN individuals (HRAβ+ vs Aβ- = 2.55, 95% CI [1.16,5.60], p = .020). Optimal thresholds for predicting decline were found at 41 CL using the CDR-SOB (bAβ+ vs Aβ- = 0.137/year, 95% CI [0.069,0.206], p < .001) and 28 CL using the A-IADL-Q (bAβ+ vs Aβ- = -0.693/year, 95% CI [-1.179,-0.208], p = .005). CONCLUSIONS Amyloid-PET quantification supports the identification of CN individuals at risk of functional decline. TRIAL REGISTRATION The AMYPAD PNHS is registered at www.clinicaltrialsregister.eu with the EudraCT Number: 2018-002277-22.
Collapse
Affiliation(s)
- Lisa Quenon
- Institute of Neuroscience, UCLouvain, Brussels, Belgium.
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - David Vállez Garcia
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Brain Research Center, Amsterdam, The Netherlands
| | - Thomas Gérard
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Vincent Malotaux
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lara Huyghe
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
| | - Anouk den Braber
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center for Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center for Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Louvain, Belgium
- Neurology Service, University Hospital Leuven, Louvain, Belgium
| | - Emma S Luckett
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Louvain, Belgium
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, University Hospital of Geneva, Geneva, Switzerland
| | | | | | - Daniele Altomare
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lisa Ford
- Johnson & Johnson Innovative Medicine, Titusville, NJ, USA
| | | | - Anja Mett
- GE HealthCare, Glattbrugg, Switzerland
| | | | | | | | | | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Renaud Lhommel
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Adrian Ivanoiu
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Bernard J Hanseeuw
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Gordon Center for Medical Imaging, Department of Radiology, Mass General Brigham, Boston, MA, USA
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
9
|
Shang C, Sakurai K, Nihashi T, Arahata Y, Takeda A, Ishii K, Ishii K, Matsuda H, Ito K, Kato T, Toyama H, Nakamura A. Comparison of consistency in centiloid scale among different analytical methods in amyloid PET: the CapAIBL, VIZCalc, and Amyquant methods. Ann Nucl Med 2024; 38:460-467. [PMID: 38512444 PMCID: PMC11108942 DOI: 10.1007/s12149-024-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE The Centiloid (CL) scale is a standardized measure for quantifying amyloid deposition in amyloid positron emission tomography (PET) imaging. We aimed to assess the agreement among 3 CL calculation methods: CapAIBL, VIZCalc, and Amyquant. METHODS This study included 192 participants (mean age: 71.5 years, range: 50-87 years), comprising 55 with Alzheimer's disease, 65 with mild cognitive impairment, 13 with non-Alzheimer's dementia, and 59 cognitively normal participants. All the participants were assessed using the three CL calculation methods. Spearman's rank correlation, linear regression, Friedman tests, Wilcoxon signed-rank tests, and Bland-Altman analysis were employed to assess data correlations, linear associations, method differences, and systematic bias, respectively. RESULTS Strong correlations (rho = 0.99, p < .001) were observed among the CL values calculated using the three methods. Scatter plots and regression lines visually confirmed these strong correlations and met the validation criteria. Despite the robust correlations, a significant difference in CL value between CapAIBL and Amyquant was observed (36.1 ± 39.7 vs. 34.9 ± 39.4; p < .001). In contrast, no significant differences were found between CapAIBL and VIZCalc or between VIZCalc and Amyquant. The Bland-Altman analysis showed no observable systematic bias between the methods. CONCLUSIONS The study demonstrated strong agreement among the three methods for calculating CL values. Despite minor variations in the absolute values of the Centiloid scores obtained using these methods, the overall agreement suggests that they are interchangeable.
Collapse
Affiliation(s)
- Cong Shang
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Takashi Nihashi
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Yutaka Arahata
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akinori Takeda
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kazunari Ishii
- Department of Radiology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Kenji Ishii
- Team for Neuroimaging Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan.
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan.
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Biomarker Research, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
10
|
Bachmann D, Buchmann A, Studer S, Saake A, Rauen K, Zuber I, Gruber E, Nitsch RM, Hock C, Gietl A, Treyer V. Age-, sex-, and pathology-related variability in brain structure and cognition. Transl Psychiatry 2023; 13:278. [PMID: 37574523 PMCID: PMC10423720 DOI: 10.1038/s41398-023-02572-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
This work aimed to investigate potential pathways linking age and imaging measures to early age- and pathology-related changes in cognition. We used [18F]-Flutemetamol (amyloid) and [18F]-Flortaucipir (tau) positron emission tomography (PET), structural MRI, and neuropsychological assessment from 232 elderly individuals aged 50-89 years (46.1% women, 23% APOE-ε4 carrier, 23.3% MCI). Tau-PET was available for a subsample of 93 individuals. Structural equation models were used to evaluate cross-sectional pathways between age, amyloid and tau burden, grey matter thickness and volumes, white matter hyperintensity volume, lateral ventricle volume, and cognition. Our results show that age is associated with worse outcomes in most of the measures examined and had similar negative effects on episodic memory and executive functions. While increased lateral ventricle volume was consistently associated with executive function dysfunction, participants with mild cognitive impairment drove associations between structural measures and episodic memory. Both age and amyloid-PET could be associated with medial temporal lobe tau, depending on whether we used a continuous or a dichotomous amyloid variable. Tau burden in entorhinal cortex was related to worse episodic memory in individuals with increased amyloid burden (Centiloid >12) independently of medial temporal lobe atrophy. Testing models for sex differences revealed that amyloid burden was more strongly associated with regional atrophy in women compared with men. These associations were likely mediated by higher tau burden in women. These results indicate that influences of pathological pathways on cognition and sex-specific vulnerabilities are dissociable already in early stages of neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Baik K, Cha J, Park M, Lee Y, Chung SJ, Yoo HS, Sohn YH, Lee PH. Distinct amyloid-dependent patterns of nigra dopamine depletion in Lewy body diseases. Front Aging Neurosci 2023; 15:1196602. [PMID: 37614472 PMCID: PMC10442581 DOI: 10.3389/fnagi.2023.1196602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Concomitant amyloid pathology is not uncommon and contributes to the clinical characteristics of Lewy body disease (LBD). We investigated the effect of amyloid on striatal18F-FP-CIT uptake patterns in LBD, including Parkinson's disease (PD) and dementia with Lewy bodies. Methods We enrolled 125 patients with LBD who underwent18F-florbetaben positron emission tomography (PET) and18F-FP-CIT PET. Patients were divided into amyloid-positive and amyloid-negative groups. We investigated the effect of amyloid on striatal dopamine transporter (DAT) availability, depending on the type of LBD, using general linear models with interaction analysis after controlling for age, sex, education, deep white matter hyperintensity (WMH), periventricular WMH, and cognitive status. Results There was a significant interaction effect between the disease group and the presence of amyloid on DAT availability in the anterior putamen, posterior putamen, caudate, and ventral striatum. In the presence of amyloid, only the PD group exhibited decreased DAT availability in the anterior and posterior putamen. In both groups, the presence of amyloid was not associated with DAT availability in the caudate and ventral striatum. The presence of amyloid was not directly related to the worse parkinsonian motor symptoms in both groups. However, there was a significant indirect effect of amyloid on parkinsonian motor symptoms, which was mediated by anterior and posterior putaminal DAT availability in the PD group alone. Discussion This study demonstrates different amyloid-dependent or amyloid-independent18F-FP-CIT PET patterns in patients with LBD, suggesting distinctive interactions between α-synuclein and amyloid pathology based on the type of LBD.
Collapse
Affiliation(s)
- Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mincheol Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Chung-Ang University College of Medicine and Graduate School of Medicine, Gwangmyeong Hospital, Gwangmyeong, Republic of Korea
| | - Younggun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young H. Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Rafii MS, Sperling RA, Donohue MC, Zhou J, Roberts C, Irizarry MC, Dhadda S, Sethuraman G, Kramer LD, Swanson CJ, Li D, Krause S, Rissman RA, Walter S, Raman R, Johnson KA, Aisen PS. The AHEAD 3-45 Study: Design of a prevention trial for Alzheimer's disease. Alzheimers Dement 2023; 19:1227-1233. [PMID: 35971310 PMCID: PMC9929028 DOI: 10.1002/alz.12748] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The Alzheimer's disease (AD) continuum begins with a long asymptomatic or preclinical stage, during which amyloid beta (Aβ) is accumulating for more than a decade prior to widespread cortical tauopathy, neurodegeneration, and manifestation of clinical symptoms. The AHEAD 3-45 Study (BAN2401-G000-303) is testing whether intervention with lecanemab (BAN2401), a humanized immunoglobulin 1 (IgG1) monoclonal antibody that preferentially targets soluble aggregated Aβ, initiated during this asymptomatic stage can slow biomarker changes and/or cognitive decline. The AHEAD 3-45 Study is conducted as a Public-Private Partnership of the Alzheimer's Clinical Trial Consortium (ACTC), funded by the National Institute on Aging, National Institutes of Health (NIH), and Eisai Inc. METHODS The AHEAD 3-45 Study was launched on July 14, 2020, and consists of two sister trials (A3 and A45) in cognitively unimpaired (CU) individuals ages 55 to 80 with specific dosing regimens tailored to baseline brain amyloid levels on screening positron emission tomography (PET) scans: intermediate amyloid (≈20 to 40 Centiloids) for A3 and elevated amyloid (>40 Centiloids) for A45. Both trials are being conducted under a single protocol, with a shared screening process and common schedule of assessments. A3 is a Phase 2 trial with PET-imaging end points, whereas A45 is a Phase 3 trial with a cognitive composite primary end point. The treatment period is 4 years. The study utilizes innovative approaches to enriching the sample with individuals who have elevated brain amyloid. These include recruiting from the Trial-Ready Cohort for Preclinical and Prodromal Alzheimer's disease (TRC-PAD), the Australian Dementia Network (ADNeT) Registry, and the Japanese Trial Ready Cohort (J-TRC), as well as incorporation of plasma screening with the C2N mass spectrometry platform to quantitate the Aβ 42/40 ratio (Aβ 42/40), which has been shown previously to reliably identify cognitively normal participants not likely to have elevated brain amyloid levels. A blood sample collected at a brief first visit is utilized to "screen out" individuals who are less likely to have elevated brain amyloid, and to determine the participant's eligibility to proceed to PET imaging. Eligibility to randomize into the A3 Trial or A45 Trial is based on the screening PET imaging results. RESULT The focus of this article is on the innovative design of the study. DISCUSSION The AHEAD 3-45 Study will test whether with lecanemab (BAN2401) can slow the accumulation of tau and prevent the cognitive decline associated with AD during its preclinical stage. It is specifically targeting both the preclinical and the early preclinical (intermediate amyloid) stages of AD and is the first secondary prevention trial to employ plasma-based biomarkers to accelerate the screening process and potentially substantially reduce the number of screening PET scans.
Collapse
Affiliation(s)
- Michael S. Rafii
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| | - Reisa A. Sperling
- Brigham and Women’s Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael C. Donohue
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| | - Jin Zhou
- Eisai, Inc., Woodcliff Lake, New Jersey, USA
| | | | | | | | - Gopalan Sethuraman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| | | | | | - David Li
- Eisai, Inc., Woodcliff Lake, New Jersey, USA
| | | | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
- Department of Neurosciences, UC San Diego, La Jolla, California, USA
| | - Sarah Walter
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| | - Rema Raman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| | - Keith A. Johnson
- Brigham and Women’s Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul S. Aisen
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| |
Collapse
|
13
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
14
|
Kang DW, Wang SM, Um YH, Kim NY, Lee CU, Lim HK. Associations Between Sub-Threshold Amyloid-β Deposition, Cortical Volume, and Cognitive Function Modulated by APOE ɛ4 Carrier Status in Cognitively Normal Older Adults. J Alzheimers Dis 2022; 89:1003-1016. [PMID: 35964194 PMCID: PMC9535581 DOI: 10.3233/jad-220427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: There has been renewed interest in the deteriorating effects of sub-threshold amyloid-β (Aβ) accumulation in Alzheimer’s disease (AD). Despite evidence suggesting a synergistic interaction between the APOE ɛ4 allele and Aβ deposition in neurodegeneration, few studies have investigated the modulatory role of this allele in sub-threshold Aβ deposition during the preclinical phase. Objective: We aimed to explore the differential effect of the APOE ɛ4 carrier status on the association between sub-threshold Aβ deposition, cortical volume, and cognitive performance in cognitively normal older adults (CN). Methods: A total of 112 CN with sub-threshold Aβ deposition was included in the study. Participants underwent structural magnetic resonance imaging, [18F] flutemetamol PET-CT, and a neuropsychological battery. Potential interactions between APOE ɛ4 carrier status, Aβ accumulation, and cognitive function for cortical volume were assessed with whole-brain voxel-wise analysis. Results: We found that greater cortical volume was observed with higher regional Aβ deposition in the APOE ɛ4 carriers, which could be attributed to an interaction between the APOE ɛ4 carrier status and regional Aβ deposition in the posterior cingulate cortex/precuneus. Finally, the APOE ɛ4 carrier status-neuropsychological test score interaction demonstrated a significant effect on the gray matter volume of the left middle occipital gyrus. Conclusion: There might be a compensatory response to initiating Aβ in APOE ɛ4 carriers during the earliest AD stage. Despite its exploratory nature, this study offers some insight into recent interests concerning probabilistic AD modeling, focusing on the modulating role of the APOE ɛ4 carrier status during the preclinical period.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nak Young Kim
- Department of Psychiatry, Keyo Hospital, Uiwang, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
15
|
Pemberton HG, Collij LE, Heeman F, Bollack A, Shekari M, Salvadó G, Alves IL, Garcia DV, Battle M, Buckley C, Stephens AW, Bullich S, Garibotto V, Barkhof F, Gispert JD, Farrar G. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging 2022; 49:3508-3528. [PMID: 35389071 PMCID: PMC9308604 DOI: 10.1007/s00259-022-05784-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
Collapse
Affiliation(s)
- Hugh G Pemberton
- GE Healthcare, Amersham, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ariane Bollack
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Research Center, Amsterdam, The Netherlands
| | - David Vallez Garcia
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark Battle
- GE Healthcare, Amersham, UK
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | | |
Collapse
|
16
|
Kim HJ, Oh JS, Lim JS, Lee S, Jo S, Chung EN, Shim WH, Oh M, Kim JS, Roh JH, Lee JH. The impact of subthreshold levels of amyloid deposition on conversion to dementia in patients with amyloid-negative amnestic mild cognitive impairment. Alzheimers Res Ther 2022; 14:93. [PMID: 35821150 PMCID: PMC9277922 DOI: 10.1186/s13195-022-01035-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND About 40-50% of patients with amnestic mild cognitive impairment (MCI) are found to have no significant Alzheimer's pathology based on amyloid PET positivity. Notably, conversion to dementia in this population is known to occur much less often than in amyloid-positive MCI. However, the relationship between MCI and brain amyloid deposition remains largely unknown. Therefore, we investigated the influence of subthreshold levels of amyloid deposition on conversion to dementia in amnestic MCI patients with negative amyloid PET scans. METHODS This study was a retrospective cohort study of patients with amyloid-negative amnestic MCI who visited the memory clinic of Asan Medical Center. All participants underwent detailed neuropsychological testing, brain magnetic resonance imaging, and [18F]-florbetaben (FBB) positron emission tomography scan (PET). Conversion to dementia was determined by a neurologist based on a clinical interview with a detailed neuropsychological test or a decline in the Korean version of the Mini-Mental State Examination score of more than 4 points per year combined with impaired activities of daily living. Regional cortical amyloid levels were calculated, and a receiver operating characteristic (ROC) curve for conversion to dementia was obtained. To increase the reliability of the results of the study, we analyzed the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset together. RESULTS During the follow-up period, 36% (39/107) of patients converted to dementia from amnestic MCI. The dementia converter group displayed increased standardized uptake value ratio (SUVR) values of FBB on PET in the bilateral temporal, parietal, posterior cingulate, occipital, and left precuneus cortices as well as increased global SUVR. Among volume of interests, the left parietal SUVR predicted conversion to dementia with the highest accuracy in the ROC analysis (area under the curve [AUC] = 0.762, P < 0.001). The combination of precuneus, parietal cortex, and FBB composite SUVRs also showed a higher accuracy in predicting conversion to dementia than other models (AUC = 0.763). Of the results of ADNI data, the SUVR of the left precuneus SUVR showed the highest AUC (AUC = 0.596, P = 0.006). CONCLUSION Our findings suggest that subthreshold amyloid levels may contribute to conversion to dementia in patients with amyloid-negative amnestic MCI.
Collapse
Affiliation(s)
- Hyung-Ji Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, South Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jae-Sung Lim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sunju Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sungyang Jo
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - E-Nae Chung
- Health Innovation Bigdata Center, Asan Institute for Lifesciences, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Woo-Hyun Shim
- Health Innovation Bigdata Center, Asan Institute for Lifesciences, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jee Hoon Roh
- Neuroscience Institute, Korea University College of Medicine and School of Medicine, Seoul, South Korea
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
17
|
Patterns of Focal Amyloid Deposition Using 18F-Florbetaben PET in Patients with Cognitive Impairment. Diagnostics (Basel) 2022; 12:diagnostics12061357. [PMID: 35741166 PMCID: PMC9221882 DOI: 10.3390/diagnostics12061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Accumulation of aggregated amyloid-β (Aβ) in the brain is considered the first pathological event within the pathogenesis of Alzheimer’s disease (AD). It is difficult to accurately identify the initial brain regions of Aβ accumulation due to the time-lag between the start of the pathophysiology and symptom onset. However, focal regional amyloid uptake on amyloid PET scans may provide insights into this. Hence, we aimed to evaluate the topographic distribution of amyloid deposition in patients with cognitive impairment and to identify the starting order of amyloid accumulation in the brain using conditional probability. We enrolled 58 patients composed of 9 normal cognition (NC), 32 mild cognitive impairment (MCI), and 17 dementia showing focal regional amyloid deposition corresponding to a brain amyloid plaque load (BAPL) score of 2 among those who visited the Memory Clinic of Asan Medical Center and underwent an 18F-florbetaben PET scan (March 2013 to April 2019). Regions of interest (ROI) included the frontal, parietal, lateral temporal, and occipital cortices, the posterior cingulate/precuneus, and the striatum. The most frequent occurrence of Aβ deposition was in the posterior cingulate/precuneus (n = 41, 68.3%). The second most frequent site was the lateral temporal cortex (n = 24, 40.0%), followed by the lateral parietal cortex (n = 21, 35.6%) and other lesions, such as the frontal and occipital cortices. The striatum was the least frequently affected. Our study found that the posterior cingulate/precuneus and the lateral temporal and parietal cortices may be the earliest areas to be affected by Aβ accumulation. Longitudinal follow-up of focal brain amyloid deposition may help elucidate the evolutionary pattern of Aβ accumulation in the brain of people with AD continuum.
Collapse
|
18
|
Wu KY, Lin KJ, Chen CH, Liu CY, Wu YM, Chen CS, Yen TC, Hsiao IT. Decreased Cerebral Amyloid-β Depositions in Patients With a Lifetime History of Major Depression With Suspected Non-Alzheimer Pathophysiology. Front Aging Neurosci 2022; 14:857940. [PMID: 35721010 PMCID: PMC9204309 DOI: 10.3389/fnagi.2022.857940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebral amyloid-β (Aβ) depositions in depression in old age are controversial. A substantial proportion of individuals with late-life major depressive disorder (MDD) could be classified as having suspected non-Alzheimer’s disease pathophysiology (SNAP) by a negative test for the biomarker amyloid-β (Aβ−) but positive neurodegeneration (ND+). This study aimed to evaluate subthreshold Aβ loads in amyloid-negative MDD, particularly in SNAP MDD patients. This study included 46 amyloid-negative MDD patients: 23 SNAP (Aβ−/ND+) MDD and 23 Aβ−/ND− MDD, and 22 Aβ−/ND− control subjects. All subjects underwent 18F-florbetapir PET, FDG-PET, and MRI. Regions of interest (ROIs) and voxel-wise group comparisons were performed with adjustment for age, gender, and level of education. The SNAP MDD patients exhibited significantly deceased 18F-florbetapir uptakes in most cortical regions but not the parietal and precuneus cortex, as compared with the Aβ−/ND− MDD and control subjects (FDR correction, p < 0.05). No correlations of neuropsychological tests or depression characteristics with global cortical uptakes, but significant positive correlations between cognitive functions and adjusted hippocampal volumes among different groups were observed. The reduced Aβ depositions in the amyloid-negative MDD patients might be attributed mainly to the SNAP MDD patients. Our results indicated that meaningfully low amounts of subclinical Aβ might contain critical information on the non-amyloid-mediated pathogenesis.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine, Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine, Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
- *Correspondence: Ing-Tsung Hsiao,
| |
Collapse
|
19
|
Kang DW, Wang SM, Um YH, Kim NY, Lee CU, Lim HK. Impact of APOE ε4 Carrier Status on Associations Between Subthreshold, Positive Amyloid-β Deposition, Brain Function, and Cognitive Performance in Cognitively Normal Older Adults: A Prospective Study. Front Aging Neurosci 2022; 14:871323. [PMID: 35677201 PMCID: PMC9168227 DOI: 10.3389/fnagi.2022.871323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
BackgroundA growing body of evidence suggests a deteriorating effect of subthreshold amyloid-beta (Aβ) accumulation on cognition before the onset of clinical symptoms of Alzheimer's disease (AD). Despite the association between the Aβ-dependent pathway and the APOE ε4 allele, the impact of this allele on the progression from the subthreshold Aβ deposits to cognitive function impairment is unclear. Furthermore, the comparative analysis of positive Aβ accumulation in the preclinical phase is lacking.ObjectiveThis study aimed to explore the differential effect of the APOE ε4 carrier status on the association between Aβ deposition, resting-state brain function, and cognitive performance in cognitively normal (CN) older adults, depending on the Aβ burden status.MethodsOne hundred and eighty-two older CN adults underwent resting-state functional magnetic resonance imaging, [18F] flutemetamol (FMM) positron emission tomography, a neuropsychological battery, and APOE genotyping. We evaluated the resting-state brain function by measuring the local and remote functional connectivity (FC) and measured the remote FC in the default-mode network (DMN), central-executive network (CEN), and salience network (SN). In addition, the subjects were dichotomized into those with subthreshold and positive Aβ deposits using a neocortical standardized uptake value ratio with the cut-off value of 0.62, which was calculated with respect to the pons.ResultsThe present result showed that APOE ε4 carrier status moderated the relationship between Aβ deposition, local and remote resting-state brain function, and cognitive performance in each CN subthreshold and positive Aβ group. We observed the following: (i) the APOE ε4 carrier status-Aβ deposition and APOE ε4 carrier status-local FC interaction for the executive and memory function; (ii) the APOE ε4 carrier status-regional Aβ accumulation interaction for the local FC; and (iv) the APOE ε4 carrier status-local FC interaction for the remote inter-network FC between the DMN and CEN, contributing higher cognitive performance in the APOE ε4 carrier with higher inter-network FC. Finally, these results were modulated according to Aβ positivity.ConclusionThis study is the first attempt to thoroughly examine the influence of the APOE ε4 carrier status from the subthreshold to positive Aβ accumulation during the preclinical phase.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Nak-Young Kim
- Department of Psychiatry, Keyo Hospital, Uiwang, South Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Hyun Kook Lim
| |
Collapse
|
20
|
Hu X, Liu C, Wang K, Zhao L, Qiu Y, Chen H, Hu J, Xu J. Multifunctional Anti-Alzheimer’s Disease Effects of Natural Xanthone Derivatives: A Primary Structure-Activity Evaluation. Front Chem 2022; 10:842208. [PMID: 35646819 PMCID: PMC9130743 DOI: 10.3389/fchem.2022.842208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Background: A series of α-Mangostin (α-M) derivatives were designed and synthesized. α-M and four analogues were evaluated for their multifunctional anti-Alzheimer’s disease (anti-AD) effects on fibrillogenesis, microglial uptake, microglial degradation, and anti-neurotoxicity of Aβ, as well as LPS-induced neuroinflammation. The differences in bioactivities were analyzed to understand the structure-activity relationship for further modifications. Purpose: This study aims to investigate the anti-AD effects of α-M and elucidate its structure-activity relationship by comparing difference between α-M and several analogues. Methods: Aβ fibrillogenesis was detected by Thioflavin T fluorometric assay. The levels of Aβ1-42 and inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay. Neuron viability was examined by the CCK-8 assay. The morphology of ZO-1 of bEnd.3 cultured in BV-2-conditioned medium was evaluated by immunofluorescence staining. Results: Aβ fibrillogenesis was significantly inhibited by co-incubation with α-M, Zcbd-2 or Zcbd-3. α-M, Zcbd-2, Zcbd-3, and Zcbd-4 decreased the levels of Aβ1-42 and inflammatory cytokines, and promoted Aβ uptake, degradation and anti-inflammation effects inflammation in microglia. α-M and Zcbd-3 protected neuron viability from Aβ-induced neurotoxicity, and preserved tight junction integrity of bEnd.3 against LPS-induced neuroinflammation. Conclusion: Zcbd-3 acted as α-M almost in all effects. The structure-activity analysis indicated that the 3-methyl-2-butenyl group at C-8 is essential for the bioactivity of α-M, while modifying the double hydroxylation at the C-2 position may improve the multifunctional anti-AD effects.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chan Liu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Kaichun Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiangmiao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Jiangmiao Hu, ; Jianrong Xu,
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jiangmiao Hu, ; Jianrong Xu,
| |
Collapse
|
21
|
Pfeil J, Hoenig MC, Doering E, van Eimeren T, Drzezga A, Bischof GN. Unique regional patterns of amyloid burden predict progression to prodromal and clinical stages of Alzheimer's disease. Neurobiol Aging 2021; 106:119-129. [PMID: 34284259 PMCID: PMC8461082 DOI: 10.1016/j.neurobiolaging.2021.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 01/21/2023]
Abstract
Although beta-amyloid (Aβ) positivity has shown to be associated with higher risk of progression to Alzheimer's disease (AD) in mild cognitive impairment (MCI), information on the time to conversion to manifest dementia cannot be readily deduced from this binary classification. Here, we assessed if regional patterns of Aβ deposition measured with 18F-florbetapir may serve as biomarker for progression risk in Aβ-positive cognitively normal (CN) and MCI patients, including clinical follow-up data and cerebrospinal fluid (CSF) biomarkers. Voxel-wise group comparisons between age and sex-matched Aβ-positive groups (i.e., CN-stables [n = 38] vs. CN-to-MCI/AD progressors [n = 38], MCI-stables [n = 104] versus MCI-to-AD progressors [n = 104]) revealed higher Aβ burden in precuneus, subcortical, and parietal regions in CN-to-MCI/AD progressors and cingulate, temporal, and frontal regions in MCI-to-AD progressors. Importantly, these regional patterns predicted progression to advanced stages on the AD spectrum in the short and the long-term beyond global Aβ burden and CSF biomarkers. These results suggest that distinct regional patterns of Aβ burden are a valuable biomarker for risk of disease progression in CN and MCI.
Collapse
Affiliation(s)
- Julia Pfeil
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany.
| | - Merle C Hoenig
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany; Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany
| | - Elena Doering
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany; German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany; German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany; University of Cologne, University Hospital of Cologne, Department of Neurology, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany; Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany; German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| | - Gérard N Bischof
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Gonneaud J, Baria AT, Pichet Binette A, Gordon BA, Chhatwal JP, Cruchaga C, Jucker M, Levin J, Salloway S, Farlow M, Gauthier S, Benzinger TLS, Morris JC, Bateman RJ, Breitner JCS, Poirier J, Vachon-Presseau E, Villeneuve S. Accelerated functional brain aging in pre-clinical familial Alzheimer's disease. Nat Commun 2021; 12:5346. [PMID: 34504080 PMCID: PMC8429427 DOI: 10.1038/s41467-021-25492-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/06/2021] [Indexed: 01/02/2023] Open
Abstract
Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer's disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (Aβ) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18-94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant Aβ pathology.
Collapse
Affiliation(s)
- Julie Gonneaud
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Alex T Baria
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Alexa Pichet Binette
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Brian A Gordon
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmeer P Chhatwal
- Brigham and Women's Hospital-Massachusetts General Hospital, Boston, MA, USA
| | - Carlos Cruchaga
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Mathias Jucker
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johannes Levin
- Ludwig-Maximilians-Universität München, German Center for Neurodegenerative Diseases and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Serge Gauthier
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Tammie L S Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C S Breitner
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Etienne Vachon-Presseau
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
Pegueroles J, Montal V, Bejanin A, Vilaplana E, Aranha M, Santos‐Santos MA, Alcolea D, Carrió I, Camacho V, Blesa R, Lleó A, Fortea J. AMYQ: An index to standardize quantitative amyloid load across PET tracers. Alzheimers Dement 2021; 17:1499-1508. [PMID: 33797846 PMCID: PMC8519100 DOI: 10.1002/alz.12317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Positron emission tomography (PET) amyloid quantification methods require magnetic resonance imaging (MRI) for spatial registration and a priori reference region to scale the images. Furthermore, different tracers have distinct thresholds for positivity. We propose the AMYQ index, a new measure of amyloid burden, to overcome these limitations. METHODS We selected 18F-amyloid scans from ADNI and Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) with the corresponding T1-MRI. A subset also had neuropathological data. PET images were normalized, and the AMYQ was calculated based on an adaptive template. We compared AMYQ with the Centiloid scale on clinical and neuropathological diagnostic performance. RESULTS AMYQ was related with amyloid neuropathological burden and had excellent diagnostic performance to discriminate controls from patients with Alzheimer's disease (AD) (area under the curve [AUC] = 0.86). AMYQ had a high agreement with the Centiloid scale (intraclass correlation coefficient [ICC] = 0.88) and AUC between 0.94 and 0.99 to discriminate PET positivity when using different Centiloid cutoffs. DISCUSSION AMYQ is a new MRI-independent index for standardizing and quantifying amyloid load across tracers.
Collapse
Affiliation(s)
- Jordi Pegueroles
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Victor Montal
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Eduard Vilaplana
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Mateus Aranha
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Miguel Angel Santos‐Santos
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ignasi Carrió
- Department of Nuclear MedicineHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Valle Camacho
- Department of Nuclear MedicineHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | | | | |
Collapse
|
24
|
Collij LE, Mastenbroek SE, Salvadó G, Wink AM, Visser PJ, Barkhof F, van Berckel BN, Lopes Alves I. Regional amyloid accumulation predicts memory decline in initially cognitively unimpaired individuals. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12216. [PMID: 34368416 PMCID: PMC8327468 DOI: 10.1002/dad2.12216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/04/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The value of quantitative longitudinal and regional amyloid beta (Aβ) measurements in predicting cognitive decline in initially cognitively unimpaired (CU) individuals remains to be determined. METHODS We selected 133 CU individuals with two or more [11C]Pittsburgh compound B ([11C]PiB) scans and neuropsychological data from Open Access Series of Imaging Studies (OASIS-3). Baseline and annualized distribution volume ratios were computed for a global composite and four regional clusters. The predictive value of Aβ measurements (baseline, slope, and interaction) on longitudinal cognitive performance was examined. RESULTS Global performance could only be predicted by Aβ burden in an early cluster (precuneus, lateral orbitofrontal, and insula) and the precuneus region of interest (ROI) by itself significantly improved the model. Precuneal Aβ burden was also predictive of immediate and delayed episodic memory performance. In Aβ subjects at baseline (N = 93), lateral orbitofrontal Aβ burden predicted working and semantic memory performance. DISCUSSION Quantifying longitudinal and regional changes in Aβ can improve the prediction of cognitive functioning in initially CU individuals.
Collapse
Affiliation(s)
- Lyduine E. Collij
- Amsterdam UMCDepartment of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Sophie E. Mastenbroek
- Amsterdam UMCDepartment of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Alle Meije Wink
- Amsterdam UMCDepartment of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Pieter Jelle Visser
- Amsterdam UMCAlzheimer Center and department of NeurologyVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Frederik Barkhof
- Amsterdam UMCDepartment of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdamNetherlands
- Medical Physics and Biomedical EngineeringCentre for Medical Image ComputingUCLLondonUK
| | - Bart. N.M. van Berckel
- Amsterdam UMCDepartment of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Isadora Lopes Alves
- Amsterdam UMCDepartment of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdamNetherlands
| |
Collapse
|
25
|
Milà-Alomà M, Shekari M, Salvadó G, Gispert JD, Arenaza-Urquijo EM, Operto G, Falcon C, Vilor-Tejedor N, Grau-Rivera O, Sala-Vila A, Sánchez-Benavides G, González-de-Echávarri JM, Minguillon C, Fauria K, Niñerola-Baizán A, Perissinotti A, Simon M, Kollmorgen G, Zetterberg H, Blennow K, Suárez-Calvet M, Molinuevo JL. Cognitively unimpaired individuals with a low burden of Aβ pathology have a distinct CSF biomarker profile. ALZHEIMERS RESEARCH & THERAPY 2021; 13:134. [PMID: 34315519 PMCID: PMC8314554 DOI: 10.1186/s13195-021-00863-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/20/2021] [Indexed: 12/25/2022]
Abstract
Background Understanding the changes that occur in the transitional stage between absent and overt amyloid-β (Aβ) pathology within the Alzheimer’s continuum is crucial to develop therapeutic and preventive strategies. The objective of this study is to test whether cognitively unimpaired individuals with a low burden of Aβ pathology have a distinct CSF, structural, and functional neuroimaging biomarker profile. Methods Cross-sectional study of 318 middle-aged, cognitively unimpaired individuals from the ALFA+ cohort. We measured CSF Aβ42/40, phosphorylated tau (p-tau), total tau (t-tau), neurofilament light (NfL), neurogranin, sTREM2, YKL40, GFAP, IL6, S100B, and α-synuclein. Participants also underwent cognitive assessments, APOE genotyping, structural MRI, [18F]-FDG, and [18F]-flutemetamol PET. To ensure the robustness of our results, we used three definitions of low burden of Aβ pathology: (1) positive CSF Aβ42/40 and < 30 Centiloids in Aβ PET, (2) positive CSF Aβ42/40 and negative Aβ PET visual read, and (3) 20–40 Centiloid range in Aβ PET. We tested CSF and neuroimaging biomarker differences between the low burden group and the corresponding Aβ-negative group, adjusted by age and sex. Results The prevalence and demographic characteristics of the low burden group differed between the three definitions. CSF p-tau and t-tau were increased in the low burden group compared to the Aβ-negative in all definitions. CSF neurogranin was increased in the low burden group definitions 1 and 3, while CSF NfL was only increased in the low burden group definition 1. None of the defined low burden groups showed signs of atrophy or glucose hypometabolism. Instead, we found slight increases in cortical thickness and metabolism in definition 2. Conclusions There are biologically meaningful Aβ-downstream effects in individuals with a low burden of Aβ pathology, while structural and functional changes are still subtle or absent. These findings support considering individuals with a low burden of Aβ pathology for clinical trials. Trial registration NCT02485730 Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00863-y.
Collapse
Affiliation(s)
- Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Department of Clinical Genetics, ERASMUS MC, Rotterdam, the Netherlands
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Aleix Sala-Vila
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - José Maria González-de-Echávarri
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Aida Niñerola-Baizán
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.,Servei de Medicina Nuclear, Hospital Clínic, Barcelona, Spain
| | - Andrés Perissinotti
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.,Servei de Medicina Nuclear, Hospital Clínic, Barcelona, Spain
| | - Maryline Simon
- Roche Diagnostics International Ltd., Rotkreuz, Switzerland
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain. .,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain. .,Present address: H. Lundbeck A/S, Copenhagen, Denmark.
| | | |
Collapse
|
26
|
Lopes Alves I, Heeman F, Collij LE, Salvadó G, Tolboom N, Vilor-Tejedor N, Markiewicz P, Yaqub M, Cash D, Mormino EC, Insel PS, Boellaard R, van Berckel BNM, Lammertsma AA, Barkhof F, Gispert JD. Strategies to reduce sample sizes in Alzheimer's disease primary and secondary prevention trials using longitudinal amyloid PET imaging. Alzheimers Res Ther 2021; 13:82. [PMID: 33875021 PMCID: PMC8056524 DOI: 10.1186/s13195-021-00819-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/26/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Detecting subtle-to-moderate biomarker changes such as those in amyloid PET imaging becomes increasingly relevant in the context of primary and secondary prevention of Alzheimer's disease (AD). This work aimed to determine if and when distribution volume ratio (DVR; derived from dynamic imaging) and regional quantitative values could improve statistical power in AD prevention trials. METHODS Baseline and annualized % change in [11C]PIB SUVR and DVR were computed for a global (cortical) and regional (early) composite from scans of 237 cognitively unimpaired subjects from the OASIS-3 database ( www.oasis-brains.org ). Bland-Altman and correlation analyses were used to assess the relationship between SUVR and DVR. General linear models and linear mixed effects models were used to determine effects of age, sex, and APOE-ε4 carriership on baseline and longitudinal amyloid burden. Finally, differences in statistical power of SUVR and DVR (cortical or early composite) were assessed considering three anti-amyloid trial scenarios: secondary prevention trials including subjects with (1) intermediate-to-high (Centiloid > 20.1), or (2) intermediate (20.1 < Centiloid ≤ 49.4) amyloid burden, and (3) a primary prevention trial focusing on subjects with low amyloid burden (Centiloid ≤ 20.1). Trial scenarios were set to detect 20% reduction in accumulation rates across the whole population and in APOE-ε4 carriers only. RESULTS Although highly correlated to DVR (ρ = .96), cortical SUVR overestimated DVR cross-sectionally and in annual % change. In secondary prevention trials, DVR required 143 subjects per arm, compared with 176 for SUVR. Both restricting inclusion to individuals with intermediate amyloid burden levels or to APOE-ε4 carriers alone further reduced sample sizes. For primary prevention, SUVR required less subjects per arm (n = 855) compared with DVR (n = 1508) and the early composite also provided considerable sample size reductions (n = 855 to n = 509 for SUVR, n = 1508 to n = 734 for DVR). CONCLUSION Sample sizes in AD secondary prevention trials can be reduced by the acquisition of dynamic PET scans and/or by restricting inclusion to subjects with intermediate amyloid burden or to APOE-ε4 carriers only. Using a targeted early composite only leads to reductions of sample size requirements in primary prevention trials. These findings support strategies to enable smaller Proof-of-Concept Phase II clinical trials to better streamline drug development.
Collapse
Affiliation(s)
- Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Nelleke Tolboom
- Imaging Division, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natàlia Vilor-Tejedor
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Pawel Markiewicz
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - David Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Philip S Insel
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.
| |
Collapse
|
27
|
Collij LE, Ingala S, Top H, Wottschel V, Stickney KE, Tomassen J, Konijnenberg E, ten Kate M, Sudre C, Lopes Alves I, Yaqub MM, Wink AM, Van ‘t Ent D, Scheltens P, van Berckel BN, Visser PJ, Barkhof F, Braber AD. White matter microstructure disruption in early stage amyloid pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12124. [PMID: 33816751 PMCID: PMC8015832 DOI: 10.1002/dad2.12124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ) accumulation is the first pathological hallmark of Alzheimer's disease (AD), and it is associated with altered white matter (WM) microstructure. We aimed to investigate this relationship at a regional level in a cognitively unimpaired cohort. METHODS We included 179 individuals from the European Medical Information Framework for AD (EMIF-AD) preclinAD study, who underwent diffusion magnetic resonance (MR) to determine tract-level fractional anisotropy (FA); mean, radial, and axial diffusivity (MD/RD/AxD); and dynamic [18F]flutemetamol) positron emission tomography (PET) imaging to assess amyloid burden. RESULTS Regression analyses showed a non-linear relationship between regional amyloid burden and WM microstructure. Low amyloid burden was associated with increased FA and decreased MD/RD/AxD, followed by decreased FA and increased MD/RD/AxD upon higher amyloid burden. The strongest association was observed between amyloid burden in the precuneus and body of the corpus callosum (CC) FA and diffusivity (MD/RD) measures. In addition, amyloid burden in the anterior cingulate cortex strongly related to AxD and RD measures in the genu CC. DISCUSSION Early amyloid deposition is associated with changes in WM microstructure. The non-linear relationship might reflect multiple stages of axonal damage.
Collapse
Affiliation(s)
- Lyduine E. Collij
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Silvia Ingala
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Herwin Top
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Viktor Wottschel
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | | | - Jori Tomassen
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | | | - Mara ten Kate
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Carole Sudre
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Isadora Lopes Alves
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Maqsood M. Yaqub
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Alle Meije Wink
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Dennis Van ‘t Ent
- Dept. of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Philip Scheltens
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Bart N.M. van Berckel
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Pieter Jelle Visser
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNS), Alzheimer Centrum LimburgMaastricht UniversityMaastrichtThe Netherlands
- Department of NeurobiologyCare Sciences Division of NeurogeriatricsKarolinska InstitutetStockholmSweden
| | - Frederik Barkhof
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Anouk Den Braber
- Dept. of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| |
Collapse
|
28
|
Bullich S, Roé-Vellvé N, Marquié M, Landau SM, Barthel H, Villemagne VL, Sanabria Á, Tartari JP, Sotolongo-Grau O, Doré V, Koglin N, Müller A, Perrotin A, Jovalekic A, De Santi S, Tárraga L, Stephens AW, Rowe CC, Sabri O, Seibyl JP, Boada M. Early detection of amyloid load using 18F-florbetaben PET. ALZHEIMERS RESEARCH & THERAPY 2021; 13:67. [PMID: 33773598 PMCID: PMC8005243 DOI: 10.1186/s13195-021-00807-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 03/26/2023]
Abstract
BACKGROUND A low amount and extent of Aβ deposition at early stages of Alzheimer's disease (AD) may limit the use of previously developed pathology-proven composite SUVR cutoffs. This study aims to characterize the population with earliest abnormal Aβ accumulation using 18F-florbetaben PET. Quantitative thresholds for the early (SUVRearly) and established (SUVRestab) Aβ deposition were developed, and the topography of early Aβ deposition was assessed. Subsequently, Aβ accumulation over time, progression from mild cognitive impairment (MCI) to AD dementia, and tau deposition were assessed in subjects with early and established Aβ deposition. METHODS The study population consisted of 686 subjects (n = 287 (cognitively normal healthy controls), n = 166 (subjects with subjective cognitive decline (SCD)), n = 129 (subjects with MCI), and n = 101 (subjects with AD dementia)). Three categories in the Aβ-deposition continuum were defined based on the developed SUVR cutoffs: Aβ-negative subjects, subjects with early Aβ deposition ("gray zone"), and subjects with established Aβ pathology. RESULTS SUVR using the whole cerebellum as the reference region and centiloid (CL) cutoffs for early and established amyloid pathology were 1.10 (13.5 CL) and 1.24 (35.7 CL), respectively. Cingulate cortices and precuneus, frontal, and inferior lateral temporal cortices were the regions showing the initial pathological tracer retention. Subjects in the "gray zone" or with established Aβ pathology accumulated more amyloid over time than Aβ-negative subjects. After a 4-year clinical follow-up, none of the Aβ-negative or the gray zone subjects progressed to AD dementia while 91% of the MCI subjects with established Aβ pathology progressed. Tau deposition was infrequent in those subjects without established Aβ pathology. CONCLUSIONS This study supports the utility of using two cutoffs for amyloid PET abnormality defining a "gray zone": a lower cutoff of 13.5 CL indicating emerging Aβ pathology and a higher cutoff of 35.7 CL where amyloid burden levels correspond to established neuropathology findings. These cutoffs define a subset of subjects characterized by pre-AD dementia levels of amyloid burden that precede other biomarkers such as tau deposition or clinical symptoms and accelerated amyloid accumulation. The determination of different amyloid loads, particularly low amyloid levels, is useful in determining who will eventually progress to dementia. Quantitation of amyloid provides a sensitive measure in these low-load cases and may help to identify a group of subjects most likely to benefit from intervention. TRIAL REGISTRATION Data used in this manuscript belong to clinical trials registered in ClinicalTrials.gov ( NCT00928304 , NCT00750282 , NCT01138111 , NCT02854033 ) and EudraCT (2014-000798-38).
Collapse
Affiliation(s)
- Santiago Bullich
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany.
| | - Núria Roé-Vellvé
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | - Marta Marquié
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.,Departments of Medicine and Molecular Imaging, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Ángela Sanabria
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Tartari
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Oscar Sotolongo-Grau
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Vincent Doré
- Departments of Medicine and Molecular Imaging, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.,The Australian e-Health Research Centre, Health and Biosecurity, CSIRO, Melbourne, Victoria, Australia
| | - Norman Koglin
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | - Andre Müller
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | - Audrey Perrotin
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | | | | | - Lluís Tárraga
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrew W Stephens
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | - Christopher C Rowe
- Departments of Medicine and Molecular Imaging, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Mercè Boada
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Therriault J, Pascoal TA, Benedet AL, Tissot C, Savard M, Chamoun M, Lussier F, Kang MS, Berzgin G, Wang T, Fernandes-Arias J, Massarweh G, Soucy JP, Vitali P, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Frequency of Biologically Defined Alzheimer Disease in Relation to Age, Sex, APOE ε4, and Cognitive Impairment. Neurology 2021; 96:e975-e985. [PMID: 33443136 PMCID: PMC8055338 DOI: 10.1212/wnl.0000000000011416] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To assess the frequency of biologically defined Alzheimer disease (AD) in relation to age, sex, APOE ε4, and clinical diagnosis in a prospective cohort study evaluated with amyloid-PET and tau-PET. METHODS We assessed cognitively unimpaired (CU) elderly (n = 166), patients with amnestic mild cognitive impairment (n = 77), and patients with probable AD dementia (n = 62) who underwent evaluation by dementia specialists and neuropsychologists in addition to amyloid-PET with [18F]AZD4694 and tau-PET with [18F]MK6240. Individuals were grouped according to their AD biomarker profile. Positive predictive value for biologically defined AD was assessed in relation to clinical diagnosis. Frequency of AD biomarker profiles was assessed using logistic regressions with odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The clinical diagnosis of probable AD dementia demonstrated good agreement with biologically defined AD (positive predictive value 85.2%). A total of 7.88% of CU were positive for both amyloid-PET and tau-PET. Frequency of biologically defined AD increased with age (OR 1.14; p < 0.0001) and frequency of APOE ε4 allele carriers (single ε4: OR 3.82; p < 0.0001; double ε4: OR 17.55, p < 0.0001). CONCLUSION Whereas we observed strong, but not complete, agreement between clinically defined probable AD dementia and biomarker positivity for both β-amyloid and tau, we also observed that biologically defined AD was not rare in CU elderly. Abnormal tau-PET was almost exclusively observed in individuals with abnormal amyloid-PET. Our results highlight that even in tertiary care memory clinics, detailed evaluation by dementia specialists systematically underestimates the frequency of biologically defined AD and related entities. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that biologically defined AD (abnormal amyloid PET and tau PET) was observed in 85.2% of people with clinically defined AD and 7.88% of CU elderly.
Collapse
Affiliation(s)
- Joseph Therriault
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Tharick A Pascoal
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Andrea L Benedet
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Cecile Tissot
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Melissa Savard
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Mira Chamoun
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Firoza Lussier
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Min Su Kang
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Gleb Berzgin
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Tina Wang
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Jaime Fernandes-Arias
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Gassan Massarweh
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Jean-Paul Soucy
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Paolo Vitali
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Paramita Saha-Chaudhuri
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Serge Gauthier
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Pedro Rosa-Neto
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada.
| |
Collapse
|
30
|
Rodriguez-Vieitez E, Montal V, Sepulcre J, Lois C, Hanseeuw B, Vilaplana E, Schultz AP, Properzi MJ, Scott MR, Amariglio R, Papp KV, Marshall GA, Fortea J, Johnson KA, Sperling RA, Vannini P. Association of cortical microstructure with amyloid-β and tau: impact on cognitive decline, neurodegeneration, and clinical progression in older adults. Mol Psychiatry 2021; 26:7813-7822. [PMID: 34588623 PMCID: PMC8873001 DOI: 10.1038/s41380-021-01290-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Noninvasive biomarkers of early neuronal injury may help identify cognitively normal individuals at risk of developing Alzheimer's disease (AD). A recent diffusion-weighted imaging (DWI) method allows assessing cortical microstructure via cortical mean diffusivity (cMD), suggested to be more sensitive than macrostructural neurodegeneration. Here, we aimed to investigate the association of cMD with amyloid-β and tau pathology in older adults, and whether cMD predicts longitudinal cognitive decline, neurodegeneration and clinical progression. The study sample comprised n = 196 cognitively normal older adults (mean[SD] 72.5 [9.4] years; 114 women [58.2%]) from the Harvard Aging Brain Study. At baseline, all participants underwent structural MRI, DWI, 11C-Pittsburgh compound-B-PET, 18F-flortaucipir-PET imaging, and cognitive assessments. Longitudinal measures of Preclinical Alzheimer Cognitive Composite-5 were available for n = 186 individuals over 3.72 (1.96)-year follow-up. Prospective clinical follow-up was available for n = 163 individuals over 3.2 (1.7) years. Surface-based image analysis assessed vertex-wise relationships between cMD, global amyloid-β, and entorhinal and inferior-temporal tau. Multivariable regression, mixed effects models and Cox proportional hazards regression assessed longitudinal cognition, brain structural changes and clinical progression. Tau, but not amyloid-β, was positively associated with cMD in AD-vulnerable regions. Correcting for baseline demographics and cognition, increased cMD predicted steeper cognitive decline, which remained significant after correcting for amyloid-β, thickness, and entorhinal tau; there was a synergistic interaction between cMD and both amyloid-β and tau on cognitive slope. Regional cMD predicted hippocampal atrophy rate, independently from amyloid-β, tau, and thickness. Elevated cMD predicted progression to mild cognitive impairment. Cortical microstructure is a noninvasive biomarker that independently predicts subsequent cognitive decline, neurodegeneration and clinical progression, suggesting utility in clinical trials.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA ,grid.4714.60000 0004 1937 0626Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Victor Montal
- grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jorge Sepulcre
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.512020.4Gordon Center for Medical Imaging, Boston, MA USA
| | - Cristina Lois
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.512020.4Gordon Center for Medical Imaging, Boston, MA USA
| | - Bernard Hanseeuw
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.512020.4Gordon Center for Medical Imaging, Boston, MA USA ,grid.7942.80000 0001 2294 713XSaint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Eduard Vilaplana
- grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Aaron P. Schultz
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA
| | - Michael J. Properzi
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Matthew R. Scott
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA
| | - Rebecca Amariglio
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XBrigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kathryn V. Papp
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA ,grid.38142.3c000000041936754XBrigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Gad A. Marshall
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA ,grid.38142.3c000000041936754XBrigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Juan Fortea
- grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Keith A. Johnson
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.512020.4Gordon Center for Medical Imaging, Boston, MA USA
| | - Reisa A. Sperling
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA ,grid.38142.3c000000041936754XBrigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Patrizia Vannini
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA. .,Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Goyal MS, Gordon BA, Couture LE, Flores S, Xiong C, Morris JC, Raichle ME, L-S Benzinger T, Vlassenko AG. Spatiotemporal relationship between subthreshold amyloid accumulation and aerobic glycolysis in the human brain. Neurobiol Aging 2020; 96:165-175. [PMID: 33011615 PMCID: PMC7894981 DOI: 10.1016/j.neurobiolaging.2020.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023]
Abstract
In Alzheimer's disease, brain amyloid deposition has a distinct topography that correlates with aerobic glycolysis (AG), that is, the use of glucose beyond that predicted by oxygen consumption. The causes for this relationship remain unclear but might provide crucialinsight into how amyloid deposition begins. Here we develop methods to study the earliest topography of amyloid deposition based on amyloid imaging and investigate its spatiotemporal evolution with respect to the topography of AG in adults. We find that the spatiotemporal dynamics of amyloid deposition are largely explained by 1 factor, defined here as the amyloid topography dissimilarity index (ATDI). ATDI is bimodal, more highly dynamic during early amyloid accumulation, and predicts which individuals will cross a conservative quantitative threshold at least 3-5 years in advance. Using ATDI, we demonstrate that subthreshold amyloid accumulates primarily in regions that have high AG during early adulthood. Our findings suggest that early on-target subthreshold amyloid deposition mirrors its later regional pattern, which best corresponds to the topography of young adult brain AG.
Collapse
Affiliation(s)
- Manu S Goyal
- Neuroimaging Laboratories, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Brian A Gordon
- Neuroimaging Laboratories, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lars E Couture
- Neuroimaging Laboratories, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shaney Flores
- Neuroimaging Laboratories, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcus E Raichle
- Neuroimaging Laboratories, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L-S Benzinger
- Neuroimaging Laboratories, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrei G Vlassenko
- Neuroimaging Laboratories, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
32
|
Clinical Utility of the Pathogenesis-Related Proteins in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21228661. [PMID: 33212853 PMCID: PMC7698353 DOI: 10.3390/ijms21228661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Research on the Aβ cascade and alternations of biomarkers in neuro-inflammation, synaptic dysfunction, and neuronal injury followed by Aβ have progressed. But the question is how to use the biomarkers. Here, we examine the evidence and pathogenic implications of protein interactions and the time order of alternation. After the deposition of Aβ, the change of tau, neurofilament light chain (NFL), and neurogranin (Ng) is the main alternation and connection to others. Neuro-inflammation, synaptic dysfunction, and neuronal injury function is exhibited prior to the structural and metabolic changes in the brain following Aβ deposition. The time order of such biomarkers compared to the tau protein is not clear. Despite the close relationship between biomarkers and plaque Aβ deposition, several factors favor one or the other. There is an interaction between some proteins that can predict the brain amyloid burden. The Aβ cascade hypothesis could be the pathway, but not all subjects suffer from Alzheimer's disease (AD) within a long follow-up, even with very elevated Aβ. The interaction of biomarkers and the time order of change require further research to identify the right subjects and right molecular target for precision medicine therapies.
Collapse
|
33
|
Farrell ME, Jiang S, Schultz AP, Properzi MJ, Price JC, Becker JA, Jacobs HIL, Hanseeuw BJ, Rentz DM, Villemagne VL, Papp KV, Mormino EC, Betensky RA, Johnson KA, Sperling RA, Buckley RF. Defining the Lowest Threshold for Amyloid-PET to Predict Future Cognitive Decline and Amyloid Accumulation. Neurology 2020; 96:e619-e631. [PMID: 33199430 DOI: 10.1212/wnl.0000000000011214] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION As clinical trials move toward earlier intervention, we sought to redefine the β-amyloid (Aβ)-PET threshold based on the lowest point in a baseline distribution that robustly predicts future Aβ accumulation and cognitive decline in 3 independent samples of clinically normal individuals. METHODS Sequential Aβ cutoffs were tested to identify the lowest cutoff associated with future change in cognition (Preclinical Alzheimer Cognitive Composite [PACC]) and Aβ-PET in clinically normal participants from the Harvard Aging Brain Study (n = 342), Australian Imaging, Biomarker and Lifestyle study of aging (n = 157), and Alzheimer's Disease Neuroimaging Initiative (n = 356). RESULTS Within samples, cutoffs derived from future Aβ-PET accumulation and PACC decline converged on the same inflection point, beyond which trajectories diverged from normal. Across samples, optimal cutoffs fell within a short range (Centiloid 15-18.5). DISCUSSION These optimized thresholds can help to inform future research and clinical trials targeting early Aβ. Threshold convergence raises the possibility of contemporaneous early changes in Aβ and cognition. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that among clinically normal individuals a specific Aβ-PET threshold is predictive of cognitive decline.
Collapse
Affiliation(s)
- Michelle E Farrell
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Shu Jiang
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Aaron P Schultz
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Michael J Properzi
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Julie C Price
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - J Alex Becker
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Heidi I L Jacobs
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Bernard J Hanseeuw
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Dorene M Rentz
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Victor L Villemagne
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Kathryn V Papp
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Elizabeth C Mormino
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Rebecca A Betensky
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Keith A Johnson
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Reisa A Sperling
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia
| | - Rachel F Buckley
- From the Departments of Neurology (M.E.F., S.J., A.P.S., M.J.P., D.M.R., K.V.P., R.A.B., K.A.J., R.A.S., R.F.B.) and Radiology (J.C.P., J.A.B., H.I.L.J., B.J.H., K.A.J.), Massachusetts General Hospital, Harvard Medical School; Department of Biostatistics (S.J., R.A.B.), Harvard T.H. Chan School of Public Health, Boston, MA; Division of Public Health Sciences (S.J.), Department of Surgery, Washington University School of Medicine in St. Louis, MO; Faculty of Health (H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Cliniques Universitaires Saint-Luc (B.J.H.), Université Catholique de Louvain, Brussels, Belgium; Center for Alzheimer Research and Treatment (D.M.R., K.V.P., R.A.S., R.F.B.), Brigham and Women's Hospital, Boston, MA; Department of Molecular Imaging & Therapy (V.L.V.), Austin Health, Melbourne, Australia; Department of Neuroscience (E.C.M.), Stanford University, Palo Alto, CA; Department of Biostatistics (R.A.B.), New York University School of Global Public Health, NY; Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA; and Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Australia.
| | | |
Collapse
|
34
|
The preclinical amyloid sensitive composite to determine subtle cognitive differences in preclinical Alzheimer's disease. Sci Rep 2020; 10:13583. [PMID: 32788669 PMCID: PMC7423599 DOI: 10.1038/s41598-020-70386-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, the focus of Alzheimer's disease (AD) research has shifted from the clinical stage to the preclinical stage. We, therefore, aimed to develop a cognitive composite score that can detect the subtle cognitive differences between the amyloid positive (Aβ+) and negative (Aβ-) status in cognitively normal (CN) participants. A total of 423 CN participants with Aβ positron emission tomography images were recruited. The multiple-indicators multiple-causes model found the latent mean difference between the Aβ+ and Aβ- groups in the domains of verbal memory, visual memory, and executive functions. The multivariate analysis of covariance (MANCOVA) showed that the Aβ+ group performed worse in tests related to the verbal and visual delayed recall, semantic verbal fluency, and inhibition of cognitive inference within the three cognitive domains. The Preclinical Amyloid Sensitive Composite (PASC) model we developed using the result of MANCOVA and the MMSE presented a good fit with the data. The accuracy of the PASC score when applied with age, sex, education, and APOE ε4 for distinguishing between Aβ+ and Aβ- was adequate (AUC = 0.764; 95% CI = 0.667-0.860) in the external validation set (N = 179). We conclude that the PASC can eventually contribute to facilitating more prevention trials in preclinical AD.
Collapse
|
35
|
Webb CE, Foster CM, Horn MM, Kennedy KM, Rodrigue KM. Beta-amyloid burden predicts poorer mnemonic discrimination in cognitively normal older adults. Neuroimage 2020; 221:117199. [PMID: 32736001 PMCID: PMC7813158 DOI: 10.1016/j.neuroimage.2020.117199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
One of the earliest indicators of Alzheimer's disease pathology is the presence of beta-amyloid (Αβ) protein deposition. Significant amyloid deposition is evident even in older adults who exhibit little or no overt cognitive or memory impairment. Hippocampal-based processes that help distinguish between highly similar memory representations may be the most susceptible to early disease pathology. Amyloid associations with memory have been difficult to establish, possibly because typical memory assessments do not tax hippocampal operations sufficiently. Thus, the present study utilized a spatial mnemonic discrimination task designed to tax hippocampal pattern separation/completion processes in a sample of cognitively normal middle-aged and older adults (53-98 years old) who underwent PET 18F-Florbetapir Αβ scanning. The degree of interference between studied and new information varied, allowing for an examination of mnemonic discrimination as a function of mnemonic similarity. Results indicated that greater beta-amyloid burden was associated with poorer discrimination across decreasing levels of interference, suggesting that even subtle elevation of beta-amyloid in cognitively normal adults is associated with impoverished performance on a hippocampally demanding memory task. The present study demonstrates that degree of amyloid burden negatively impacts the ability of aging adults to accurately distinguish old from increasingly distinct new information, providing novel insight into the cognitive expression of beta-amyloid neuropathology.
Collapse
Affiliation(s)
- Christina E Webb
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, USA
| | - Chris M Foster
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, USA
| | - Marci M Horn
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, USA.
| |
Collapse
|
36
|
Salvianolic Acid B improves cognitive impairment by inhibiting neuroinflammation and decreasing Aβ level in Porphyromonas gingivalis-infected mice. Aging (Albany NY) 2020; 12:10117-10128. [PMID: 32516126 PMCID: PMC7346047 DOI: 10.18632/aging.103306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Amyloid-β (Aβ) accumulation is one of the main pathological hallmarks of Alzheimer’s disease (AD). Porphyromonas gingivalis (P. gingivalis), the pathogen of chronic periodontitis, could cause Aβ accumulation and was identified in the brain of AD patients. Salvianolic Acid B (SalB) has been proven to have the neuroprotective effect. Whether SalB could protect against P. gingivalis-induced cognitive impairment is still unknown. In this study, a P. gingivalis-infected mouse model was employed to study the neuroprotective role of SalB. The results showed that SalB (20 and 40 mg/kg) treatment for 4 weeks could shorten the escape latency and improve the percentage of spontaneous alternation in the P. gingivalis-infected mice. SalB inhibited the levels of reactive oxygen species and malondialdehyde, while increased the levels of antioxidative enzymes (superoxide dismutase and glutathione peroxidase). SalB decreased the levels of IL-1β and IL-6, increased the mRNA levels of bdnf and ngf in the brain of P. gingivalis-infected mice. In addition, SalB obviously decreased the level of Aβ. SalB elevated the protein expression of ADAM10, while downregulated BACE1 and PS1. SalB increased the protein expression of LRP1, while decreased RAGE. In conclusion, SalB could improve cognitive impairment by inhibiting neuroinflammation and decreasing Aβ level in P. gingivalis-infected mice.
Collapse
|
37
|
Jacobs HIL, Augustinack JC, Schultz AP, Hanseeuw BJ, Locascio J, Amariglio RE, Papp KV, Rentz DM, Sperling RA, Johnson KA. The presubiculum links incipient amyloid and tau pathology to memory function in older persons. Neurology 2020; 94:e1916-e1928. [PMID: 32273431 PMCID: PMC7274925 DOI: 10.1212/wnl.0000000000009362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To identify the hippocampal subregions linking initial amyloid and tau pathology to memory performance in clinically normal older individuals, reflecting preclinical Alzheimer disease (AD). METHODS A total of 127 individuals from the Harvard Aging Brain Study (mean age 76.22 ± 6.42 years, 68 women [53.5%]) with a Clinical Dementia Rating score of 0, a flortaucipir tau-PET scan, a Pittsburgh compound B amyloid-PET scan, a structural MRI scan, and cognitive testing were included. From these images, we calculated neocortical, hippocampal, and entorhinal amyloid pathology; entorhinal and hippocampal tau pathology; and the volumes of 6 hippocampal subregions and total hippocampal volume. Memory was assessed with the selective reminding test. Mediation and moderation analyses modeled associations between regional markers and memory. Analyses included covariates for age, sex, and education. RESULTS Neocortical amyloid, entorhinal tau, and presubiculum volume univariately associated with memory performance. The relationship between neocortical amyloid and memory was mediated by entorhinal tau and presubiculum volume, which was modified by hippocampal amyloid burden. With other biomarkers held constant, presubiculum volume was the only marker predicting memory performance in the total sample and in individuals with elevated hippocampal amyloid burden. CONCLUSIONS The presubiculum captures unique AD-related biological variation that is not reflected in total hippocampal volume. Presubiculum volume may be a promising marker of imminent memory problems and can contribute to understanding the interaction between incipient AD-related pathologies and memory performance. The modulation by hippocampal amyloid suggests that amyloid is a necessary, but not sufficient, process to drive neurodegeneration in memory-related regions.
Collapse
Affiliation(s)
- Heidi I L Jacobs
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| | - Jean C Augustinack
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Aaron P Schultz
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard J Hanseeuw
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Joseph Locascio
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Rebecca E Amariglio
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Kathryn V Papp
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Dorene M Rentz
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Reisa A Sperling
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Keith A Johnson
- From the Department of Radiology (H.I.L.J., A.P.S., K.A.J.), Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (H.I.L.J., J.C.A., A.P.S., B.J.H., R.A.S.), The Athinoula A. Martinos Center for Biomedical Imaging, and Department of Neurology/Biostatistics (J.L., R.A.S., K.A.J.), Massachusetts General Hospital/Harvard Medical School, Boston; Faculty of Health, Medicine and Life Sciences (H.I.L.J.), School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands; Department of Neurology (B.J.H., R.A.E., K.V.P., D.M.R., R.A.S., K.A.J.), Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (B.J.H.), Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
38
|
Riphagen JM, Schmiedek L, Gronenschild EHBM, Yassa MA, Priovoulos N, Sack AT, Verhey FRJ, Jacobs HIL. Associations between pattern separation and hippocampal subfield structure and function vary along the lifespan: A 7 T imaging study. Sci Rep 2020; 10:7572. [PMID: 32371923 PMCID: PMC7200747 DOI: 10.1038/s41598-020-64595-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/20/2020] [Indexed: 12/04/2022] Open
Abstract
Pattern separation (PS) describes the process by which the brain discriminates similar stimuli from previously encoded stimuli. This fundamental process requires the intact processing by specific subfields in the hippocampus and can be examined using mnemonic discrimination tasks. Previous studies reported different patterns for younger and older individuals between mnemonic discrimination performance and hippocampal subfield activation. Here, we investigated the relationship between the lure discrimination index (LDI) and hippocampal subfield volume and activity across the adult lifespan (20-70 years old). Using ultra-high field functional and structural magnetic resonance imaging at 7 T, we found that lower DG volume and higher CA3 activation was associated with worse LDI performance in individuals (>60 years), suggesting that this higher activation may be an indication of aberrant neurodegenerative-related processes. In fact, higher activation in the CA1 and DG was associated with lower volumes in these subfields. For individuals around 40-50 years old, we observed that greater left and right DG volume, and greater activity in the CA3 was associated with lower LDI performance. Taken together, these results suggest that the relationship between memory and hippocampal subfield structure or function varies nonlinearly and possibly reciprocally with age, with midlife being a critically vulnerable period in life.
Collapse
Affiliation(s)
- Joost M Riphagen
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.
| | - Lisa Schmiedek
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Ed H B M Gronenschild
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Michael A Yassa
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Nikos Priovoulos
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Alexander T Sack
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
| | - Frans R J Verhey
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Amyloid Positivity as a Risk Factor for Memory Decline and Lower Memory Performance as an Indicator of Conversion to Amyloid Positivity: Chicken and Egg. Biol Psychiatry 2020; 87:782-784. [PMID: 32299580 PMCID: PMC8422992 DOI: 10.1016/j.biopsych.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 11/21/2022]
|
40
|
Lopes Alves I, Collij LE, Altomare D, Frisoni GB, Saint‐Aubert L, Payoux P, Kivipelto M, Jessen F, Drzezga A, Leeuwis A, Wink AM, Visser PJ, van Berckel BN, Scheltens P, Gray KR, Wolz R, Stephens A, Gismondi R, Buckely C, Gispert JD, Schmidt M, Ford L, Ritchie C, Farrar G, Barkhof F, Molinuevo JL. Quantitative amyloid PET in Alzheimer's disease: the AMYPAD prognostic and natural history study. Alzheimers Dement 2020; 16:750-758. [PMID: 32281303 PMCID: PMC7984341 DOI: 10.1002/alz.12069] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/12/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) Prognostic and Natural History Study (PNHS) aims at understanding the role of amyloid imaging in the earliest stages of Alzheimer's disease (AD). AMYPAD PNHS adds (semi-)quantitative amyloid PET imaging to several European parent cohorts (PCs) to predict AD-related progression as well as address methodological challenges in amyloid PET. METHODS AMYPAD PNHS is an open-label, prospective, multi-center, cohort study recruiting from multiple PCs. Around 2000 participants will undergo baseline amyloid positron emission tomography (PET), half of whom will be invited for a follow-up PET 12 at least 12 months later. RESULTS Primary include several amyloid PET measurements (Centiloid, SUVr, BPND , R1 ), and secondary are their changes from baseline, relationship to other amyloid markers (cerebrospinal fluid and visual assessment), and predictive value of AD-related decline. EXPECTED IMPACT Determining the role of amyloid PET for the understanding of this complex disease and potentially improving secondary prevention trials.
Collapse
Affiliation(s)
- Isadora Lopes Alves
- Department of Radiology and Nuclear MedicineAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Lyduine E. Collij
- Department of Radiology and Nuclear MedicineAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE)University of GenevaGenevaSwitzerland
- Memory ClinicUniversity Hospital of GenevaGenevaSwitzerland
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE)University of GenevaGenevaSwitzerland
- Memory ClinicUniversity Hospital of GenevaGenevaSwitzerland
| | - Laure Saint‐Aubert
- Department of Nuclear MedicineImaging PoleToulouse, University HospitalToulouseFrance
- Toulouse NeuroImaging CenterUniversité de Toulouse, Inserm, UPSToulouseFrance
| | - Pierre Payoux
- Department of Nuclear MedicineImaging PoleToulouse, University HospitalToulouseFrance
- Toulouse NeuroImaging CenterUniversité de Toulouse, Inserm, UPSToulouseFrance
| | - Miia Kivipelto
- Department of Geriatric MedicineKarolinska University Hospital HuddingeStockholmSweden
| | - Frank Jessen
- Department of Nuclear MedicineUniversity of CologneCologneGermany
| | | | - Annebet Leeuwis
- Department of Neurology, Amsterdam UMCVrije Universiteit AmsterdamAlzheimercenterAmsterdamthe Netherlands
| | - Alle Meije Wink
- Department of Radiology and Nuclear MedicineAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Pieter Jelle Visser
- Department of Neurology, Amsterdam UMCVrije Universiteit AmsterdamAlzheimercenterAmsterdamthe Netherlands
| | - Bart N.M. van Berckel
- Department of Radiology and Nuclear MedicineAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Philip Scheltens
- Department of Neurology, Amsterdam UMCVrije Universiteit AmsterdamAlzheimercenterAmsterdamthe Netherlands
| | | | | | | | | | | | - Juan Domingo Gispert
- Barcelona β Brain Research CenterBarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- Universitat Pompeu FabraBarcelonaSpain
| | | | - Lisa Ford
- Janssen Pharmaceutica RNDTitusvilleNew JerseyUSA
| | - Craig Ritchie
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Gill Farrar
- GE HealthcareLife SciencesAmershamUnited Kingdom
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Centre for Medical Image ComputingMedical Physics and Biomedical Engineering, UCLLondonUnited Kingdom
| | - José Luis Molinuevo
- Barcelona β Brain Research CenterBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - the AMYPAD Consortium
- Department of Radiology and Nuclear MedicineAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
41
|
Insel PS, Donohue MC, Sperling R, Hansson O, Mattsson-Carlgren N. The A4 study: β-amyloid and cognition in 4432 cognitively unimpaired adults. Ann Clin Transl Neurol 2020; 7:776-785. [PMID: 32315118 PMCID: PMC7261742 DOI: 10.1002/acn3.51048] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022] Open
Abstract
Objective To clarify the preclinical stage of Alzheimer’s disease by estimating when β‐amyloid accumulation first becomes associated with changes in cognition. Methods Here we studied a large group (N = 4432) of cognitively unimpaired individuals who were screened for inclusion in the A4 trial (age 65–85) to assess the effect of subthreshold levels of β‐amyloid on cognition and to identify which cognitive domains first become affected. Results β‐amyloid accumulation was linked to significant cognitive dysfunction in cognitively unimpaired participants with subthreshold levels of β‐amyloid in multiple measures of memory (Logical Memory Delayed Recall, P = 0.03; Free and Cued Selective Reminding Test, P < 0.001), the Preclinical Alzheimer’s Cognitive Composite (P = 0.01), and was marginally associated with decreased executive function (Digit Symbol Substitution, P = 0.07). Significantly, decreased cognitive scores were associated with suprathreshold levels of β‐amyloid, across all measures (P < 0.05). The Free and Cued Selective Reminding Test, a list recall memory test, appeared most sensitive to β‐amyloid ‐related decreases in average cognitive scores, outperforming all other cognitive domains, including the narrative recall memory test, Logical Memory. Interpretation Clinical trials for cognitively unimpaired β‐amyloid‐positive individuals will include a large number of individuals where mechanisms downstream from β‐amyloid pathology are already activated. These findings have implications for primary and secondary prevention of Alzheimer’s disease.
Collapse
Affiliation(s)
- Philip S Insel
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Psychiatry, University of California, San Francisco, California
| | - Michael C Donohue
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California
| | - Reisa Sperling
- Department of Neurology, Harvard Aging Brain Study, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Park S, Zhang T, Wu X, Yi Qiu J. Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer's disease rat model. J Clin Biochem Nutr 2020; 67:188-198. [PMID: 33041517 PMCID: PMC7533860 DOI: 10.3164/jcbn.19-87] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25–35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria, and AD-CHO improved it by elevating Bacteriodetes. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri Baebang-Yup, Asan-si, Chungchungnam-Do, 336795, Korea
| | - Ting Zhang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri Baebang-Yup, Asan-si, Chungchungnam-Do, 336795, Korea
| | - Xuangao Wu
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri Baebang-Yup, Asan-si, Chungchungnam-Do, 336795, Korea
| | - Jing Yi Qiu
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri Baebang-Yup, Asan-si, Chungchungnam-Do, 336795, Korea
| |
Collapse
|
43
|
McSweeney M, Pichet Binette A, Meyer PF, Gonneaud J, Bedetti C, Ozlen H, Labonté A, Rosa-Neto P, Breitner J, Poirier J, Villeneuve S. Intermediate flortaucipir uptake is associated with Aβ-PET and CSF tau in asymptomatic adults. Neurology 2020; 94:e1190-e1200. [PMID: 32015176 DOI: 10.1212/wnl.0000000000008905] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/27/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To investigate relationships between flortaucipir (FTP) uptake, age, and established Alzheimer disease (AD) markers in asymptomatic adults at increased risk of AD. METHODS One-hundred nineteen individuals with a family history of AD (Presymptomatic Evaluation of Experimental or Novel Treatments of Alzheimer's Disease [PREVENT-AD] cohort, mean age 67 ± 5 years) underwent tau-PET ([18F]FTP), β-amyloid (Aβ)-PET ([18F]NAV4694 [NAV]), and cognitive assessment. Seventy-four participants also had CSF phosphorylated tau and total tau data available. We investigated the association between age and FTP in this relatively young cohort of older adults. We also investigated regional FTP standardized uptake value ratio (SUVR) differences between Aβ-positive and Aβ-negative individuals and regional correlations between FTP and NAV retention. In cortical regions showing consistent associations across analyses, we assessed whether FTP was in addition related to CSF tau and cognitive performance. Lastly, we identified the lowest FTP value at which associations with Aβ-PET, CSF, and cognition were detectable. RESULTS Increased age was associated only with amygdala and transverse temporal lobe FTP retention. Aβ-positive individuals had higher FTP SUVR values in several brain regions, further showing correlation with NAV load through the cortex. Increased FTP SUVRs in medial temporal regions were associated with increased CSF tau values and worse cognition. The SUVRs at which associations between entorhinal FTP SUVR and other AD markers were first detected differed by modality, with a detection point of 1.12 for CSF values, 1.2 for Aβ-PET, and 1.4 for cognition. CONCLUSIONS Relatively low FTP-PET SUVRs are associated with pathologic markers of AD in the preclinical phase of the disease. Adjustment in the tau threshold should be considered, depending on the purpose of the tau classification.
Collapse
Affiliation(s)
- Melissa McSweeney
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - Alexa Pichet Binette
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - Pierre-François Meyer
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - Julie Gonneaud
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - Christophe Bedetti
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - Hazal Ozlen
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - Anne Labonté
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - John Breitner
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - Judes Poirier
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- From the Departments of Psychiatry (M.M., A.P.B., P.-F.M., J.G., H.O., P.R.-N., J.B., J.P., S.V.) and Neurology & Neurosurgery (P.R.-N., S.V.), McGill University; Douglas Mental Health University Institute (M.M., A.P.B., J.G., P.-F.M., C.B., H.O., A.L., P.R.-N., J.B., J.P., S.V.); and McConnell Brain Imaging Center, Montreal Neurological Institute (S.V., P.R.-N.), Montreal, Quebec, Canada.
| | | |
Collapse
|
44
|
Palmqvist S, Insel PS, Stomrud E, Janelidze S, Zetterberg H, Brix B, Eichenlaub U, Dage JL, Chai X, Blennow K, Mattsson N, Hansson O. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer's disease. EMBO Mol Med 2019; 11:e11170. [PMID: 31709776 PMCID: PMC6895602 DOI: 10.15252/emmm.201911170] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Failures in Alzheimer's disease (AD) drug trials highlight the need to further explore disease mechanisms and alterations of biomarkers during the development of AD. Using cross-sectional data from 377 participants in the BioFINDER study, we examined seven cerebrospinal fluid (CSF) and six plasma biomarkers in relation to β-amyloid (Aβ) PET uptake to understand their evolution during AD. In CSF, Aβ42 changed first, closely followed by Aβ42/Aβ40, phosphorylated-tau (P-tau), and total-tau (T-tau). CSF neurogranin, YKL-40, and neurofilament light increased after the point of Aβ PET positivity. The findings were replicated using Aβ42, Aβ40, P-tau, and T-tau assays from five different manufacturers. Changes were seen approximately simultaneously for CSF and plasma biomarkers. Overall, plasma biomarkers had smaller dynamic ranges, except for CSF and plasma P-tau which were similar. In conclusion, using state-of-the-art biomarkers, we identified the first changes in Aβ, closely followed by soluble tau. Only after Aβ PET became abnormal, biomarkers of neuroinflammation, synaptic dysfunction, and neurodegeneration were altered. These findings lend in vivo support of the amyloid cascade hypotheses in humans.
Collapse
Affiliation(s)
- Sebastian Palmqvist
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Department of NeurologySkåne University HospitalLundSweden
| | - Philip S Insel
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Erik Stomrud
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Shorena Janelidze
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | | | | | | | | | - Kaj Blennow
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Niklas Mattsson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Department of NeurologySkåne University HospitalLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| |
Collapse
|