1
|
Luan Y, Rubinski A, Biel D, Otero Svaldi D, Alonzo Higgins I, Shcherbinin S, Pontecorvo M, Franzmeier N, Ewers M. Tau-network mapping of domain-specific cognitive impairment in Alzheimer's disease. Neuroimage Clin 2024; 44:103699. [PMID: 39509992 PMCID: PMC11574813 DOI: 10.1016/j.nicl.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Fibrillar tau gradually progresses in the brain during the course of Alzheimer's disease (AD). However, the contribution of tau accumulation in a given brain region to decline in different cognitive domains and thus phenotypic heterogeneity in AD remains unclear. Here, we leveraged the functional connectome to link the locality of tau accumulation to domain-specific cognitive impairment. In the current study, we mapped regional tau-PET accumulation onto the normative functional connectome. Subsequently, we cross-validated in two samples of AD-patients the associations between the tau-connectivity profiles and cognitive domains (episodic memory, executive function, or language). Lastly, we tested the effect of local tau-PET accumulation on the domain-specific tau-lesion networks and cognition. We identified cognitive-domain-specific tau-lesion networks, where closer topological proximity of tau-PET locations to a network was predictive of worse impairment in that domain. Higher tau-PET was associated with decreased domain-specific network connectivity, and the decrease in connectivity was associated with lower domain-specific cognition. The tau locations' connectivity profile explained domain-specific cognitive impairment, where disrupted connectivity may underlie the effect of tau on cognitive impairment.
Collapse
Affiliation(s)
- Ying Luan
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | | | | | | | | | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
2
|
Ourry V, Binette AP, St-Onge F, Strikwerda-Brown C, Chagnot A, Poirier J, Breitner J, Arenaza-Urquijo EM, Rabin JS, Buckley R, Gonneaud J, Marchant NL, Villeneuve S. How Do Modifiable Risk Factors Affect Alzheimer's Disease Pathology or Mitigate Its Effect on Clinical Symptom Expression? Biol Psychiatry 2024; 95:1006-1019. [PMID: 37689129 DOI: 10.1016/j.biopsych.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Epidemiological studies show that modifiable risk factors account for approximately 40% of the population variability in risk of developing dementia, including sporadic Alzheimer's disease (AD). Recent findings suggest that these factors may also modify disease trajectories of people with autosomal-dominant AD. With positron emission tomography imaging, it is now possible to study the disease many years before its clinical onset. Such studies can provide key knowledge regarding pathways for either the prevention of pathology or the postponement of its clinical expression. The former "resistance pathway" suggests that modifiable risk factors could affect amyloid and tau burden decades before the appearance of cognitive impairment. Alternatively, the resilience pathway suggests that modifiable risk factors may mitigate the symptomatic expression of AD pathology on cognition. These pathways are not mutually exclusive and may appear at different disease stages. Here, in a narrative review, we present neuroimaging evidence that supports both pathways in sporadic AD and autosomal-dominant AD. We then propose mechanisms for their protective effect. Among possible mechanisms, we examine neural and vascular mechanisms for the resistance pathway. We also describe brain maintenance and functional compensation as bases for the resilience pathway. Improved mechanistic understanding of both pathways may suggest new interventions.
Collapse
Affiliation(s)
- Valentin Ourry
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Clinical Memory Research Unit, Department of Clinical Sciences, Lunds Universitet, Malmö, Sweden
| | - Frédéric St-Onge
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cherie Strikwerda-Brown
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Audrey Chagnot
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - John Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Eider M Arenaza-Urquijo
- Environment and Health over the Lifecourse Programme, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Jennifer S Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Buckley
- Melbourne School of Psychological Sciences University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julie Gonneaud
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Natalie L Marchant
- Division of Psychiatry, University College London, London, United Kingdom
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Pahl J, Prokopiou PC, Bueichekú E, Schultz AP, Papp KV, Farrell ME, Rentz DM, Sperling RA, Johnson KA, Jacobs HIL. Locus coeruleus integrity and left frontoparietal connectivity provide resilience against attentional decline in preclinical alzheimer's disease. Alzheimers Res Ther 2024; 16:119. [PMID: 38822365 PMCID: PMC11140954 DOI: 10.1186/s13195-024-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aβ)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aβ)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS Our findings demonstrate that the LC can provide resilience against Aβ-related attention decline. However, when Aβ accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aβ-related cognitive decline.
Collapse
Affiliation(s)
- Jennifer Pahl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Prokopis C Prokopiou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn V Papp
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle E Farrell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dorene M Rentz
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Boyle R, Klinger HM, Shirzadi Z, Coughlan GT, Seto M, Properzi MJ, Townsend DL, Yuan Z, Scanlon C, Jutten RJ, Papp KV, Amariglio RE, Rentz DM, Chhatwal JP, Donohue MC, Sperling RA, Schultz AP, Buckley RF. Left Frontoparietal Control Network Connectivity Moderates the Effect of Amyloid on Cognitive Decline in Preclinical Alzheimer's Disease: The A4 Study. J Prev Alzheimers Dis 2024; 11:881-888. [PMID: 39044497 PMCID: PMC11266218 DOI: 10.14283/jpad.2024.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Stronger resting-state functional connectivity of the default mode and frontoparietal control networks has been associated with cognitive resilience to Alzheimer's disease related pathology and neurodegeneration in smaller cohort studies. OBJECTIVES We investigated whether these networks are associated with longitudinal CR to AD biomarkers of beta-amyloid (Aβ). DESIGN Longitudinal mixed. SETTING The Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) study and its natural history observation arm, the Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) study. PARTICIPANTS A sample of 1,021 cognitively unimpaired older adults (mean age = 71.2 years [SD = 4.7 years], 61% women, 42% APOEε4 carriers, 52% Aβ positive). MEASUREMENTS Global cognitive performance (Preclinical Alzheimer's Cognitive Composite) was assessed over an average 5.4 year follow-up period (SD = 2 years). Cortical Aβ and functional connectivity (left and right frontoparietal control and default mode networks) were estimated from fMRI and PET, respectively, at baseline. Covariates included baseline age, APOEε4 carrier status, years of education, adjusted gray matter volume, head motion, study group, cumulative treatment exposure, and cognitive test version. RESULTS Mixed effects models revealed that functional connectivity of the left frontoparietal control network moderated the negative effect of Aβ on cognitive change (p = .025) such that stronger connectivity was associated with reduced Aβ-related cognitive decline. CONCLUSIONS Our results demonstrate a potential protective effect of functional connectivity in preclinical AD, such that stronger connectivity in this network is associated with slower Aβ-related cognitive decline.
Collapse
Affiliation(s)
- R Boyle
- Rachel F Buckley, Department of Neurology, Harvard Aging Brain Study, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ren X, Dong B, Luan Y, Wu Y, Huang Y. Alterations via inter-regional connective relationships in Alzheimer's disease. Front Hum Neurosci 2023; 17:1276994. [PMID: 38021241 PMCID: PMC10672243 DOI: 10.3389/fnhum.2023.1276994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Disruptions in the inter-regional connective correlation within the brain are believed to contribute to memory impairment. To detect these corresponding correlation networks in Alzheimer's disease (AD), we conducted three types of inter-regional correlation analysis, including structural covariance, functional connectivity and group-level independent component analysis (group-ICA). The analyzed data were obtained from the Alzheimer's Disease Neuroimaging Initiative, comprising 52 cognitively normal (CN) participants without subjective memory concerns, 52 individuals with late mild cognitive impairment (LMCI) and 52 patients with AD. We firstly performed vertex-wise cortical thickness analysis to identify brain regions with cortical thinning in AD and LMCI patients using structural MRI data. These regions served as seeds to construct both structural covariance networks and functional connectivity networks for each subject. Additionally, group-ICA was performed on the functional data to identify intrinsic brain networks at the cohort level. Through a comparison of the structural covariance and functional connectivity networks with ICA networks, we identified several inter-regional correlation networks that consistently exhibited abnormal connectivity patterns among AD and LMCI patients. Our findings suggest that reduced inter-regional connectivity is predominantly observed within a subnetwork of the default mode network, which includes the posterior cingulate and precuneus regions, in both AD and LMCI patients. This disruption of connectivity between key nodes within the default mode network provides evidence supporting the hypothesis that impairments in brain networks may contribute to memory deficits in AD and LMCI.
Collapse
Affiliation(s)
- Xiaomei Ren
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Bowen Dong
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Ying Luan
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yunzhi Huang
- Institute for AI in Medicine, School of Artificial Intelligence (School of Future Technology), Nanjing University of Information Science and Technology, Nanjing, China
| | | |
Collapse
|
6
|
Batista AX, Bazán PR, Martin MDGM, Conforto AB, Hoshino M, Simon SS, Hampstead B, Figueiredo EG, Amaro E, Miotto EC. Perilesional and contralesional brain activations related to associative encoding of unfamiliar face-names pairs in adults with left chronic stroke with or without ischemic infarct on left inferior frontal gyrus. Cortex 2023; 168:27-48. [PMID: 37639907 DOI: 10.1016/j.cortex.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/31/2023] [Accepted: 04/26/2023] [Indexed: 08/31/2023]
Abstract
The study of an Ischemic stroke infarction allows verifying how the lesion produces alterations in the neuronal networks resulting in cognitive deficits. It also allows the verification of adaptive and maladaptive cerebral reorganization related to the injury. In our previous fMRI study, we found that patients without ischemic vascular lesions in left inferior frontal gyrus showed an efficient compensation mechanism during the associative encoding of face name pairs, by the increased activation of ventrolateral and dorsolateral areas of contralesional hemisphere associated with better memory performance. While patients with ischemic vascular lesions on left inferior frontal gyrus (IFG) demonstrated worse memory performance and no signs of compensation mechanism. The present study explores more of these findings by analyzing perilesional and contralesional activations related to unfamiliar face name associative encoding in adults with chronic ischemic stroke, with or without left IFG lesion, compared to healthy controls. The main results showed that stroke survivors without lesions in IFG demonstrated increased activation in perilesional and contralesional prefrontal regions associated with better associative memory recognition, which are indicative of adaptive compensatory mechanisms. However, they also showed a negative correlation between the activation of right anterior prefrontal and inferior parietal regions and the associative memory performance, which may indicate the presence of maladaptive interhemispheric disinhibition. On the other hand, stroke survivors with IFG lesions demonstrated negative correlations in activations of the ipsilesional inferior parietal cortex and positive correlations in activations of the left middle frontal gyrus and left precentral cortex, which demonstrate the simultaneous occurrence of adaptive and maladaptive brain reorganization mechanisms in this group. However, the increase in perilesional prefrontal regions, associated with bilateral activation of the hippocampus and amygdala, was not enough to compensate for the inefficiency of associative memory performance. Finally, the differences in activation observed in stroke survivors reflect their clinical heterogeneity and demonstrate that adaptive or maladaptive compensatory mechanisms can coexist in the same group of patients. Furthermore, they reinforce the importance of the left IFG in the associative encoding of unfamiliar face name pairs and may suggest a deficit in associative memory related to injury in this region.
Collapse
Affiliation(s)
- Alana X Batista
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Neuroimagem Funcional (NIF) - Laboratory of Medical Investigations on Magnetic Resonance Imaging (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Paulo R Bazán
- Neuroimagem Funcional (NIF) - Laboratory of Medical Investigations on Magnetic Resonance Imaging (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria da Graça M Martin
- Neuroimagem Funcional (NIF) - Laboratory of Medical Investigations on Magnetic Resonance Imaging (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana B Conforto
- Neuroimagem Funcional (NIF) - Laboratory of Medical Investigations on Magnetic Resonance Imaging (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maurício Hoshino
- Neuroimagem Funcional (NIF) - Laboratory of Medical Investigations on Magnetic Resonance Imaging (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sharon S Simon
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, USA
| | - Benjamin Hampstead
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Edson Amaro
- Neuroimagem Funcional (NIF) - Laboratory of Medical Investigations on Magnetic Resonance Imaging (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eliane C Miotto
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Neuroimagem Funcional (NIF) - Laboratory of Medical Investigations on Magnetic Resonance Imaging (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Cui L, Zhang Z, Huang YL, Xie F, Guan YH, Lo CYZ, Guo YH, Jiang JH, Guo QH. Brain amyloid-β deposition associated functional connectivity changes of ultra-large structural scale in mild cognitive impairment. Brain Imaging Behav 2023; 17:494-506. [PMID: 37188840 DOI: 10.1007/s11682-023-00780-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
In preclinical Alzheimer's disease, neuro-functional changes due to amyloid-β (Aβ) deposition are not synchronized in different brain lobes and subcortical nuclei. This study aimed to explore the correlation between brain Aβ burden, connectivity changes in an ultra-large structural scale, and cognitive function in mild cognitive impairment. Participants with mild cognitive impairment were recruited and underwent florbetapir (F18-AV45) PET, resting-state functional MRI, and multidomain neuropsychological tests. AV-45 standardized uptake value ratio (SUVR) and functional connectivity of all participants were calculated. Of the total 144 participants, 72 were put in the low Aβ burden group and 72 in the high Aβ burden group. In the low Aβ burden group, all connectivities between lobes and nuclei had no correlation with SUVR. In the high Aβ burden group, SUVR showed negative correlations with the Subcortical-Occipital connectivity (r=-0.36, P = 0.02) and Subcortical-Parietal connectivity (r=-0.26, P = 0.026). Meanwhile, in the high Aβ burden group, SUVR showed positive correlations with the Temporal-Prefrontal connectivity (r = 0.27, P = 0.023), Temporal-Occipital connectivity (r = 0.24, P = 0.038), and Temporal-Parietal connectivity (r = 0.32, P = 0.006). Subcortical to Occipital and Parietal connectivities had positive correlations with general cognition, language, memory, and executive function. Temporal to Prefrontal, Occipital, and Parietal connectivities had negative correlations with memory function, executive function, and visuospatial function, and a positive correlation with language function. In conclusion, Individuals with mild cognitive impairment with high Aβ burden have Aβ-related bidirectional functional connectivity changes between lobes and subcortical nuclei that are associated with cognitive decline in multiple domains. These connectivity changes reflect neurological impairment and failed compensation.
Collapse
Affiliation(s)
- Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhen Zhang
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yan-Lu Huang
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200040, China
| | - Yi-Hui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200040, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yi-Han Guo
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jie-Hui Jiang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Qi-Hao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
8
|
Lv T, You S, Qin R, Hu Z, Ke Z, Yao W, Zhao H, Xu Y, Bai F. Distinct reserve capacity impacts on default-mode network in response to left angular gyrus-navigated repetitive transcranial magnetic stimulation in the prodromal Alzheimer disease. Behav Brain Res 2023; 439:114226. [PMID: 36436729 DOI: 10.1016/j.bbr.2022.114226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Default-mode network (DMN) may be the earliest affected network and is associated with cognitive decline in Alzheimer's disease (AD). Repetitive transcranial magnetic stimulation (rTMS) may help to modulate DMN plasticity. Still, stimulation effects substantially vary across studies and individuals. Global left frontal cortex (gLFC) connectivity, a substitute for reserve capacity, may contribute to the heterogeneous physiological effects of neuro-navigated rTMS. This study investigated the effects of left angular gyrus-navigated rTMS on DMN connectivity in different reserve capacity participants. gLFC connectivity, was computed through resting-state fMRI correlations. Thirty-one prodromal AD patients were divided into low connection group (LCG) and high connection group (HCG) by the median of gLFC connectivity. Distinct reserve capacity impacts on DMN in response to rTMS were identified in these two groups. Then, brain-behavior relationships were examined. gLFC connectivity within a certain range is directly proportional to cognitive reserve ability (i.e., LCG), and the effectiveness of functional connectivity beyond this range decreases (i.e, HCG). Moreover, LCG exhibited increased DMN connectivity and significantly positive memory improvements, while HCG showed a contrary connectivity decline and maintained or slightly improved their cognitive function after neuro-navigated rTMS treatment. The prodromal AD patients with the distinct reserve capacity may benefit differently from left angular gyrus-navigated rTMS, which may lead to increasing attention in defining personalized medicine approach of AD.
Collapse
Affiliation(s)
- Tingyu Lv
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Shengqi You
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China.
| |
Collapse
|
9
|
Ersoezlue E, Perneczky R, Tato M, Utecht J, Kurz C, Häckert J, Guersel S, Burow L, Koller G, Stoecklein S, Keeser D, Papazov B, Totzke M, Ballarini T, Brosseron F, Buerger K, Dechent P, Dobisch L, Ewers M, Fliessbach K, Glanz W, Haynes JD, Heneka MT, Janowitz D, Kilimann I, Kleineidam L, Laske C, Maier F, Munk MH, Peters O, Priller J, Ramirez A, Roeske S, Roy N, Scheffler K, Schneider A, Schott BH, Spottke A, Spruth EJ, Teipel S, Unterfeld C, Wagner M, Wang X, Wiltfang J, Wolfsgruber S, Yakupov R, Duezel E, Jessen F, Rauchmann BS. A Residual Marker of Cognitive Reserve Is Associated with Resting-State Intrinsic Functional Connectivity Along the Alzheimer's Disease Continuum. J Alzheimers Dis 2023; 92:925-940. [PMID: 36806502 DOI: 10.3233/jad-220464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Cognitive reserve (CR) explains inter-individual differences in the impact of the neurodegenerative burden on cognitive functioning. A residual model was proposed to estimate CR more accurately than previous measures. However, associations between residual CR markers (CRM) and functional connectivity (FC) remain unexplored. OBJECTIVE To explore the associations between the CRM and intrinsic network connectivity (INC) in resting-state networks along the neuropathological-continuum of Alzheimer's disease (ADN). METHODS Three hundred eighteen participants from the DELCODE cohort were stratified using cerebrospinal fluid biomarkers according to the A(myloid-β)/T(au)/N(eurodegeneration) classification. CRM was calculated utilizing residuals obtained from a multilinear regression model predicting cognition from markers of disease burden. Using an independent component analysis in resting-state fMRI data, we measured INC of resting-state networks, i.e., default mode network (DMN), frontoparietal network (FPN), salience network (SAL), and dorsal attention network. The associations of INC with a composite memory score and CRM and the associations of CRM with the seed-to-voxel functional connectivity of memory-related were tested in general linear models. RESULTS CRM was positively associated with INC in the DMN in the entire cohort. The A+T+N+ group revealed an anti-correlation between the SAL and the DMN. Furthermore, CRM was positively associated with anti-correlation between memory-related regions in FPN and DMN in ADN and A+T/N+. CONCLUSION Our results provide evidence that INC is associated with CRM in ADN defined as participants with amyloid pathology with or without cognitive symptoms, suggesting that the neural correlates of CR are mirrored in network FC in resting-state.
Collapse
Affiliation(s)
- Ersin Ersoezlue
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,Department of Gerontopsychiatry and Developmental Disorders, kbo-Isar-Amper-Klinikum Haar, University Teaching Hospital of LMU Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, UK.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Maia Tato
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Julia Utecht
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Jan Häckert
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Gabriele Koller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Sophia Stoecklein
- Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Boris Papazov
- Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Marie Totzke
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | | | | | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE Munich), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Germany
| | - Peter Dechent
- MR-Research in Neurosciences Department of Cognitive Neurology, Georg-August-University Goettingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE Munich), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience Charité - Universitätsmedizin Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty of University of Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Oliver Peters
- Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Charité Berlin, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine Technical University of Munich, Germany.,University of Edinburgh and UK DRI Edinburgh, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany.,Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Germany.,Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE) Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Department of Neurology, University of Bonn, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Chantal Unterfeld
- Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Xiao Wang
- Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE) Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Germany.,Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Department of Psychiatry, Medical Faculty of University of Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK.,Department of Neuroradiology, University Hospital, LMU Munich, Germany
| | | |
Collapse
|
10
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
11
|
Dobyns L, Zhuang K, Baker SL, Mungas D, Jagust WJ, Harrison TM. An empirical measure of resilience explains individual differences in the effect of tau pathology on memory change in aging. NATURE AGING 2023; 3:229-237. [PMID: 37118122 PMCID: PMC10148952 DOI: 10.1038/s43587-022-00353-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/19/2022] [Indexed: 04/30/2023]
Abstract
Accurately measuring resilience to preclinical Alzheimer's disease (AD) pathology is essential to understanding an important source of variability in cognitive aging. In a cohort of cognitively normal older adults (n = 123, age 76.75 ± 6.15 yr), we built a multifactorial measure of resilience which moderated the effect of AD pathology on longitudinal cognitive change. Linear residuals-based measures of resilience, along with other proxy measures (education and vocabulary), were entered into a hierarchical partial least-squares path model defining a putative consolidated resilience latent factor (model goodness of fit = 0.77). In a set of validation analyses using linear mixed models predicting longitudinal cognitive change, there was a significant three-way interaction among consolidated resilience, tau and time on episodic memory change (P = 0.001) such that higher resilience blunted the effect of tau pathology on episodic memory decline. Interactions between consolidated resilience and amyloid pathology on non-memory cognition decline suggested that resilience moderates pathology-specific effects on different cognitive domains.
Collapse
Affiliation(s)
- Lindsey Dobyns
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dan Mungas
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Frontzkowski L, Ewers M, Brendel M, Biel D, Ossenkoppele R, Hager P, Steward A, Dewenter A, Römer S, Rubinski A, Buerger K, Janowitz D, Binette AP, Smith R, Strandberg O, Carlgren NM, Dichgans M, Hansson O, Franzmeier N. Earlier Alzheimer’s disease onset is associated with tau pathology in brain hub regions and facilitated tau spreading. Nat Commun 2022; 13:4899. [PMID: 35987901 PMCID: PMC9392750 DOI: 10.1038/s41467-022-32592-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 08/08/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractIn Alzheimer’s disease (AD), younger symptom onset is associated with accelerated disease progression and tau spreading, yet the mechanisms underlying faster disease manifestation are unknown. To address this, we combined resting-state fMRI and longitudinal tau-PET in two independent samples of controls and biomarker-confirmed AD patients (ADNI/BioFINDER, n = 240/57). Consistent across both samples, we found that younger symptomatic AD patients showed stronger tau-PET in globally connected fronto-parietal hubs, i.e., regions that are critical for maintaining cognition in AD. Stronger tau-PET in hubs predicted faster subsequent tau accumulation, suggesting that tau in globally connected regions facilitates connectivity-mediated tau spreading. Further, stronger tau-PET in hubs mediated the association between younger age and faster tau accumulation in symptomatic AD patients, which predicted faster cognitive decline. These independently validated findings suggest that younger AD symptom onset is associated with stronger tau pathology in brain hubs, and accelerated tau spreading throughout connected brain regions and cognitive decline.
Collapse
|
13
|
Liu X, Guo L, Duan B, Wu J, Wang E. Novel benzodiazepine remimazolam tosylate delays neurodegeneration of aged mice via decreasing tau phosphorylation. Neurotoxicology 2022; 92:156-165. [DOI: 10.1016/j.neuro.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
14
|
Perellón-Alfonso R, Redondo-Camós M, Abellaneda-Pérez K, Cattaneo G, Delgado-Gallén S, España-Irla G, Solana Sánchez J, Tormos JM, Pascual-Leone A, Bartrés-Faz D. Prefrontal reactivity to TMS perturbation as a toy model of mental health outcomes during the COVID-19 pandemic. Heliyon 2022; 8:e10208. [PMID: 35991299 PMCID: PMC9383955 DOI: 10.1016/j.heliyon.2022.e10208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three timepoints during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress response, as exemplified by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ruben Perellón-Alfonso
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Redondo-Camós
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Javier Solana Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - José M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA
- Department of Neurology, Harvard Medical School; Boston, MA, USA
| | - David Bartrés-Faz
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| |
Collapse
|
15
|
Veitch DP, Weiner MW, Aisen PS, Beckett LA, DeCarli C, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Okonkwo O, Perrin RJ, Petersen RC, Rivera‐Mindt M, Saykin AJ, Shaw LM, Toga AW, Tosun D, Trojanowski JQ. Using the Alzheimer's Disease Neuroimaging Initiative to improve early detection, diagnosis, and treatment of Alzheimer's disease. Alzheimers Dement 2022; 18:824-857. [PMID: 34581485 PMCID: PMC9158456 DOI: 10.1002/alz.12422] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has accumulated 15 years of clinical, neuroimaging, cognitive, biofluid biomarker and genetic data, and biofluid samples available to researchers, resulting in more than 3500 publications. This review covers studies from 2018 to 2020. METHODS We identified 1442 publications using ADNI data by conventional search methods and selected impactful studies for inclusion. RESULTS Disease progression studies supported pivotal roles for regional amyloid beta (Aβ) and tau deposition, and identified underlying genetic contributions to Alzheimer's disease (AD). Vascular disease, immune response, inflammation, resilience, and sex modulated disease course. Biologically coherent subgroups were identified at all clinical stages. Practical algorithms and methodological changes improved determination of Aβ status. Plasma Aβ, phosphorylated tau181, and neurofilament light were promising noninvasive biomarkers. Prognostic and diagnostic models were externally validated in ADNI but studies are limited by lack of ethnocultural cohort diversity. DISCUSSION ADNI has had a profound impact in improving clinical trials for AD.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Laurel A. Beckett
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Charles DeCarli
- Department of Neurology and Center for NeuroscienceUniversity of California DavisDavisCaliforniaUSA
| | - Robert C. Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Broad Institute, Ariadne Labsand Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | | | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuroimaging, USC Stevens Institute of Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
16
|
Meng X, Fang S, Zhang S, Li H, Ma D, Ye Y, Su J, Sun J. Multidomain lifestyle interventions for cognition and the risk of dementia: A systematic review and meta-analysis. Int J Nurs Stud 2022; 130:104236. [DOI: 10.1016/j.ijnurstu.2022.104236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022]
|
17
|
Perellón-Alfonso R, Redondo-Camós M, Abellaneda-Pérez K, Cattaneo G, Delgado-Gallén S, España-Irla G, Sánchez JS, Tormos JM, Pascual-Leone A, Bartrés-Faz D. TMS-Evoked Prefrontal Perturbation as a Toy Model of Brain Resilience to Stress During the COVID-19 Pandemic. RESEARCH SQUARE 2021:rs.3.rs-1139350. [PMID: 34931185 PMCID: PMC8687479 DOI: 10.21203/rs.3.rs-1139350/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three time points during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress resilience, as exemplified by the COVID-19 pandemic, and point to the L-DLPFC as a promising target for resilience promotion.
Collapse
|
18
|
Du W, Ding C, Jiang J, Han Y. Women Exhibit Lower Global Left Frontal Cortex Connectivity Among Cognitively Unimpaired Elderly Individuals: A Pilot Study from SILCODE. J Alzheimers Dis 2021; 83:653-663. [PMID: 34334398 DOI: 10.3233/jad-210376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mounting evidence suggests that sex differences exist in cognitive reserve (CR) for cognitively unimpaired (CU) elderly individuals. Global left frontal connectivity (gLFC connectivity) is a reliable neural substrate of CR. OBJECTIVE The purpose of this study was to explore sex differences in gLFC connectivity among CU elderly individuals. METHODS One hundred thirteen normal controls (NCs) (women = 66) and 132 individuals with subjective cognitive decline (SCD) (women = 92) were recruited from the Sino Longitudinal Study on Cognitive Decline (SILCODE) (data 1). Among them, 88 subjects underwent amyloid-β (Aβ) imaging, including 32 Aβ+ and 56 Aβ-subjects. Forty-six subjects underwent another rs-fMRI examination (data 2) to validate the repeatability of the calculation of gLFC connectivity, which was determined through seed-based functional connectivity between the LFC and voxels throughout the whole brain. Independent-sample t-tests were used to evaluate the sex differences in gLFC connectivity across different subgroups (NC versus SCD, Aβ+ versus Aβ-). Partial correlation analysis was used to calculate the correlations between gLFC connectivity and cognitive assessments. RESULTS Women exhibited lower gLFC connectivity in both the NC (p = 0.001) and SCD (p = 0.020) subgroups than men. Women also exhibited lower gLFC connectivity in both the Aβ-(p = 0.006) and Aβ+ (p = 0.025) groups. However, the significant difference disappeared in the Aβ+ group when considering the covariates of age, education, total intracranial volume, and APOE4-carrying status. In addition, gLFC connectivity values were negatively correlated with Geriatric Depression Scale scores in the SCD group (r = -0.176, p = 0.047). CONCLUSION Women showed lower gLFC connectivity among CU elderly individuals.
Collapse
Affiliation(s)
- Wenying Du
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Changchang Ding
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Biomedical Engineering Institute, Hainan University, Haikou, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
19
|
Chen S, Song Y, Xu W, Hu G, Ge H, Xue C, Gao J, Qi W, Lin X, Chen J. Impaired Memory Awareness and Loss Integration in Self-Referential Network Across the Progression of Alzheimer's Disease Spectrum. J Alzheimers Dis 2021; 83:111-126. [PMID: 34250942 DOI: 10.3233/jad-210541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Anosognosia, or unawareness of memory deficits, is a common manifestation of Alzheimer's disease (AD), but greatly variable in subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) subjects. Self-referential network (SRN) is responsible for self-referential processing and considered to be related to AD progression. OBJECTIVE Our aim is to explore connectivity changes of SRN and its interaction with memory-related network and primary sensorimotor network (SMN) in the AD spectrum. METHODS About 444 Alzheimer's Disease Neuroimaging Initiative subjects (86 cognitively normal [CN]; 156 SCD; 146 aMCI; 56 AD) were enrolled in our study. The independent component analysis (ICA) method was used to extract the SRN, SMN, and memory-related network from all subjects. The alteration of functional connectivity (FC) within SRN and its connectivity with memory-related network/SMN were compared among four groups and further correlation analysis between altered FC and memory awareness index as well as episodic memory score were performed. RESULTS Compared with CN group, individuals with SCD exhibited hyperconnectivity within SRN, while aMCI and AD patients showed hypoconnectivity. Furthermore, aMCI patients and AD patients both showed the interruption of the FC between the SRN and memory-related network compared to CN group. Pearson correlation analysis showed that disruptive FC within SRN and its interaction with memory-related network were related to memory awareness index and episodic memory scores. CONCLUSION In conclusion, impaired memory awareness and episodic memory in the AD spectrum are correlated to the disconnection within SRN and its interaction with memory-related network.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Song
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenwen Xu
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guanjie Hu
- Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honglin Ge
- Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ju Gao
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingjian Lin
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiu Chen
- Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | | |
Collapse
|
20
|
Pascual-Leone A, Bartres-Faz D. Human Brain Resilience: A Call to Action. Ann Neurol 2021; 90:336-349. [PMID: 34219268 DOI: 10.1002/ana.26157] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023]
Abstract
At present, resilience refers to a highly heterogeneous concept with ill-defined determinants, mechanisms, and outcomes. This call for action argues for the need to define resilience as a person-centered multidimensional metric, informed by a dynamic lifespan perspective and combining observational and interventional experimental studies to identify specific neural markers and correlated behavioral measures. The coronavirus disease 2019 (COVID-19) pandemic highlights the urgent need of such an effort with the ultimate goal of defining a new vital sign, an individual index of resilience, as a life-long metric with the capacity to predict an individual's risk for disability in the face of a stressor, insult, injury, or disease. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, USA.,Institut Guttmann de Neurorehabilitació, Guttmann Brain Health Institute, Barcelona, Spain
| | - David Bartres-Faz
- Institut Guttmann de Neurorehabilitació, Guttmann Brain Health Institute, Barcelona, Spain.,Department de Medicina, Facultat de Medicina i Ciències de la Salut - Campus Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Soldan A, Pettigrew C, Zhu Y, Wang MC, Bilgel M, Hou X, Lu H, Miller MI, Albert M. Association of Lifestyle Activities with Functional Brain Connectivity and Relationship to Cognitive Decline among Older Adults. Cereb Cortex 2021; 31:5637-5651. [PMID: 34184058 DOI: 10.1093/cercor/bhab187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
This study examines the relationship of engagement in different lifestyle activities to connectivity in large-scale functional brain networks, and whether network connectivity modifies cognitive decline, independent of brain amyloid levels. Participants (N = 153, mean age = 69 years, including N = 126 with amyloid imaging) were cognitively normal when they completed resting-state functional magnetic resonance imaging, a lifestyle activity questionnaire, and cognitive testing. They were followed with annual cognitive tests up to 5 years (mean = 3.3 years). Linear regressions showed positive relationships between cognitive activity engagement and connectivity within the dorsal attention network, and between physical activity levels and connectivity within the default-mode, limbic, and frontoparietal control networks, and global within-network connectivity. Additionally, higher cognitive and physical activity levels were independently associated with higher network modularity, a measure of functional network specialization. These associations were largely independent of APOE4 genotype, amyloid burden, global brain atrophy, vascular risk, and level of cognitive reserve. Moreover, higher connectivity in the dorsal attention, default-mode, and limbic networks, and greater global connectivity and modularity were associated with reduced cognitive decline, independent of APOE4 genotype and amyloid burden. These findings suggest that changes in functional brain connectivity may be one mechanism by which lifestyle activity engagement reduces cognitive decline.
Collapse
Affiliation(s)
- Anja Soldan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Corinne Pettigrew
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuxin Zhu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Ewers M, Luan Y, Frontzkowski L, Neitzel J, Rubinski A, Dichgans M, Hassenstab J, Gordon BA, Chhatwal JP, Levin J, Schofield P, Benzinger TLS, Morris JC, Goate A, Karch CM, Fagan AM, McDade E, Allegri R, Berman S, Chui H, Cruchaga C, Farlow M, Graff-Radford N, Jucker M, Lee JH, Martins RN, Mori H, Perrin R, Xiong C, Rossor M, Fox NC, O'Connor A, Salloway S, Danek A, Buerger K, Bateman RJ, Habeck C, Stern Y, Franzmeier N. Segregation of functional networks is associated with cognitive resilience in Alzheimer's disease. Brain 2021; 144:2176-2185. [PMID: 33725114 DOI: 10.1093/brain/awab112] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 12/29/2020] [Indexed: 11/14/2022] Open
Abstract
Cognitive resilience is an important modulating factor of cognitive decline in Alzheimer's disease, but the functional brain mechanisms that support cognitive resilience remain elusive. Given previous findings in normal ageing, we tested the hypothesis that higher segregation of the brain's connectome into distinct functional networks represents a functional mechanism underlying cognitive resilience in Alzheimer's disease. Using resting-state functional MRI, we assessed both resting-state functional MRI global system segregation, i.e. the balance of between-network to within-network connectivity, and the alternate index of modularity Q as predictors of cognitive resilience. We performed all analyses in two independent samples for validation: (i) 108 individuals with autosomal dominantly inherited Alzheimer's disease and 71 non-carrier controls; and (ii) 156 amyloid-PET-positive subjects across the spectrum of sporadic Alzheimer's disease and 184 amyloid-negative controls. In the autosomal dominant Alzheimer's disease sample, disease severity was assessed by estimated years from symptom onset. In the sporadic Alzheimer's sample, disease stage was assessed by temporal lobe tau-PET (i.e. composite across Braak stage I and III regions). In both samples, we tested whether the effect of disease severity on cognition was attenuated at higher levels of functional network segregation. For autosomal dominant Alzheimer's disease, we found higher functional MRI-assessed system segregation to be associated with an attenuated effect of estimated years from symptom onset on global cognition (P = 0.007). Similarly, for patients with sporadic Alzheimer's disease, higher functional MRI-assessed system segregation was associated with less decrement in global cognition (P = 0.001) and episodic memory (P = 0.004) per unit increase of temporal lobe tau-PET. Confirmatory analyses using the alternate index of modularity Q revealed consistent results. In conclusion, higher segregation of functional connections into distinct large-scale networks supports cognitive resilience in Alzheimer's disease.
Collapse
Affiliation(s)
- Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ying Luan
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University LMU, Munich, Germany
| | - Lukas Frontzkowski
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University LMU, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University LMU, Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University LMU, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Ludwig-Maximilian-University LMU, Munich, Germany
| | - Jason Hassenstab
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Brian A Gordon
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Jasmeer P Chhatwal
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, MA, USA
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Tammie L S Benzinger
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Celeste M Karch
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Anne M Fagan
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ricardo Allegri
- Department of Neurology, FLENI Fondation, Buenos Aires, Argentina
| | - Sarah Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helena Chui
- Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cruchaga
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA.,NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marty Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Osaka, Japan
| | - Richard Perrin
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biostatistics, Washington University, St Louis, MO, USA
| | - Martin Rossor
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick C Fox
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Antoinette O'Connor
- Dementia Research Centre, University College London, Queen Square, London, UK.,UK Dementia Research Institute at UCL, UCL, London, UK
| | - Stephen Salloway
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Randall J Bateman
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, USA
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University LMU, Munich, Germany
| | | |
Collapse
|
23
|
Ossenkoppele R, Lyoo CH, Jester-Broms J, Sudre CH, Cho H, Ryu YH, Choi JY, Smith R, Strandberg O, Palmqvist S, Kramer J, Boxer AL, Gorno-Tempini ML, Miller BL, La Joie R, Rabinovici GD, Hansson O. Assessment of Demographic, Genetic, and Imaging Variables Associated With Brain Resilience and Cognitive Resilience to Pathological Tau in Patients With Alzheimer Disease. JAMA Neurol 2021; 77:632-642. [PMID: 32091549 PMCID: PMC7042808 DOI: 10.1001/jamaneurol.2019.5154] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Question Which demographic, genetic, and neuroimaging factors are associated with cognitive and brain resilience to pathological tau in patients with Alzheimer disease? Findings In this multicenter, cross-sectional, longitudinal study of 260 cognitively impaired amyloid-β–positive participants, young age and female sex were associated with greater brain resilience, whereas higher educational level and cortical thickness were associated with greater cognitive resilience. Meaning Cognitive and brain resilience may be associated with differential mechanisms, which may help explain interindividual differences in how well patients tolerate pathological tau. Importance Better understanding is needed of the degree to which individuals tolerate Alzheimer disease (AD)–like pathological tau with respect to brain structure (brain resilience) and cognition (cognitive resilience). Objective To examine the demographic (age, sex, and educational level), genetic (APOE-ε4 status), and neuroimaging (white matter hyperintensities and cortical thickness) factors associated with interindividual differences in brain and cognitive resilience to tau positron emission tomography (PET) load and to changes in global cognition over time. Design, Setting, an Participants In this cross-sectional, longitudinal study, tau PET was performed from June 1, 2014, to November 30, 2017, and global cognition monitored for a mean [SD] interval of 2.0 [1.8] years at 3 dementia centers in South Korea, Sweden, and the United States. The study included amyloid-β–positive participants with mild cognitive impairment or AD dementia. Data analysis was performed from October 26, 2018, to December 11, 2019. Exposures Standard dementia screening, cognitive testing, brain magnetic resonance imaging, amyloid-β PET and cerebrospinal fluid analysis, and flortaucipir (tau) labeled with fluor-18 (18F) PET. Main Outcomes and Measures Separate linear regression models were performed between whole cortex [18F]flortaucipir uptake and cortical thickness, and standardized residuals were used to obtain a measure of brain resilience. The same procedure was performed for whole cortex [18F]flortaucipir uptake vs Mini-Mental State Examination (MMSE) as a measure of cognitive resilience. Bivariate and multivariable linear regression models were conducted with age, sex, educational level, APOE-ε4 status, white matter hyperintensity volumes, and cortical thickness as independent variables and brain and cognitive resilience measures as dependent variables. Linear mixed models were performed to examine whether changes in MMSE scores over time differed as a function of a combined brain and cognitive resilience variable. Results A total of 260 participants (145 [55.8%] female; mean [SD] age, 69.2 [9.5] years; mean [SD] MMSE score, 21.9 [5.5]) were included in the study. In multivariable models, women (standardized β = −0.15, P = .02) and young patients (standardized β = −0.20, P = .006) had greater brain resilience to pathological tau. Higher educational level (standardized β = 0.23, P < .001) and global cortical thickness (standardized β = 0.23, P < .001) were associated with greater cognitive resilience to pathological tau. Linear mixed models indicated a significant interaction of brain resilience × cognitive resilience × time on MMSE (β [SE] = −0.235 [0.111], P = .03), with steepest slopes for individuals with both low brain and cognitive resilience. Conclusions and Relevance Results of this study suggest that women and young patients with AD have relative preservation of brain structure when exposed to neocortical pathological tau. Interindividual differences in resilience to pathological tau may be important to disease progression because participants with both low brain and cognitive resilience had the most rapid cognitive decline over time.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Lund University, Clinical Memory Research Unit, Lund, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Chul Hyoung Lyoo
- Gangnam Severance Hospital, Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Carole H Sudre
- King's College London School of Biomedical Engineering and Imaging Sciences, London, United Kingdom.,Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom.,Centre for Medical Image Computing, Department of Medical Physics, University College London, London, United Kingdom
| | - Hanna Cho
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
| | - Young Hoon Ryu
- Gangnam Severance Hospital, Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Yong Choi
- Gangnam Severance Hospital, Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, South Korea
| | - Ruben Smith
- Lund University, Clinical Memory Research Unit, Lund, Sweden
| | - Olof Strandberg
- Lund University, Clinical Memory Research Unit, Lund, Sweden
| | | | - Joel Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco.,Department of Radiology and Biomedical Imaging, University of California, San Francisco.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Associate Editor
| | - Oskar Hansson
- Lund University, Clinical Memory Research Unit, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
24
|
Pini L, Wennberg A, Mitolo M, Meneghello F, Burgio F, Semenza C, Venneri A, Mantini D, Vallesi A. Quality of sleep predicts increased frontoparietal network connectivity in patients with mild cognitive impairment. Neurobiol Aging 2020; 95:205-213. [DOI: 10.1016/j.neurobiolaging.2020.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 11/27/2022]
|
25
|
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396:413-446. [PMID: 32738937 PMCID: PMC7392084 DOI: 10.1016/s0140-6736(20)30367-6] [Citation(s) in RCA: 5641] [Impact Index Per Article: 1128.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Gill Livingston
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK.
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Andrew Sommerlad
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - David Ames
- National Ageing Research Institute and Academic Unit for Psychiatry of Old Age, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
| | | | - Sube Banerjee
- Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Alistair Burns
- Department of Old Age Psychiatry, University of Manchester, Manchester, UK
| | - Jiska Cohen-Mansfield
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Heczeg Institute on Aging, Tel Aviv University, Tel Aviv, Israel; Minerva Center for Interdisciplinary Study of End of Life, Tel Aviv University, Tel Aviv, Israel
| | - Claudia Cooper
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Sergi G Costafreda
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Amit Dias
- Department of Preventive and Social Medicine, Goa Medical College, Goa, India
| | - Nick Fox
- Dementia Research Centre, UK Dementia Research Institute, University College London, London, UK; Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Laura N Gitlin
- Center for Innovative Care in Aging, Johns Hopkins University, Baltimore, MA, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Helen C Kales
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Vasiliki Orgeta
- Division of Psychiatry, University College London, London, UK
| | - Karen Ritchie
- Inserm, Unit 1061, Neuropsychiatry: Epidemiological and Clinical Research, La Colombière Hospital, University of Montpellier, Montpellier, France; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kenneth Rockwood
- Centre for the Health Care of Elderly People, Geriatric Medicine Dalhousie University, Halifax, NS, Canada
| | - Elizabeth L Sampson
- Division of Psychiatry, University College London, London, UK; Barnet, Enfield, and Haringey Mental Health Trust, London, UK
| | - Quincy Samus
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MA, USA
| | - Lon S Schneider
- Department of Psychiatry and the Behavioural Sciences and Department of Neurology, Keck School of Medicine, Leonard Davis School of Gerontology of the University of Southern California, Los Angeles, CA, USA
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Geriatric Department, Oslo University Hospital, Oslo, Norway
| | - Linda Teri
- Department Psychosocial and Community Health, School of Nursing, University of Washington, Seattle, WA, USA
| | - Naaheed Mukadam
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Epidemiological evidence suggests that higher reserve significantly delays the dementia onset in Alzheimer's disease. Yet, confusion in terminology of reserve and related concepts exists and the lack of quantitative measures and unclear neural substrates of reserve have hampered progress. We review here the latest advances in the concept, measures and functional brain mechanisms of reserve, as well as their moderating factors including sex and gender. RECENT FINDINGS The definition of reserve has been revised towards a more simplified concept, and the development of quantitative measurements of a cognitive advantage in disease has been advanced. Functional MRI and FDG-PET studies have provided for the first time converging evidence for the involvement of the cognitive control and salience network and temporal pole in reserve. Women tend to show lower resilience than men at advanced stages of AD. SUMMARY Neuroimaging studies have provided substantial evidence for putative brain mechanisms supporting reserve in Alzheimer's disease. However, the findings are still somewhat disparate and call for the development of unifying and testable theory of functional and structural brain properties that subserve reserve. Sex differences emerged as a moderating factor of reserve in Alzheimer's disease and need to be made a major research focus in Alzheimer's disease.
Collapse
|
27
|
Connectomics and molecular imaging in neurodegeneration. Eur J Nucl Med Mol Imaging 2019; 46:2819-2830. [PMID: 31292699 DOI: 10.1007/s00259-019-04394-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Our understanding on human neurodegenerative disease was previously limited to clinical data and inferences about the underlying pathology based on histopathological examination. Animal models and in vitro experiments have provided evidence for a cell-autonomous and a non-cell-autonomous mechanism for the accumulation of neuropathology. Combining modern neuroimaging tools to identify distinct neural networks (connectomics) with target-specific positron emission tomography (PET) tracers is an emerging and vibrant field of research with the potential to examine the contributions of cell-autonomous and non-cell-autonomous mechanisms to the spread of pathology. The evidence provided here suggests that both cell-autonomous and non-cell-autonomous processes relate to the observed in vivo characteristics of protein pathology and neurodegeneration across the disease spectrum. We propose a synergistic model of cell-autonomous and non-cell-autonomous accounts that integrates the most critical factors (i.e., protein strain, susceptible cell feature and connectome) contributing to the development of neuronal dysfunction and in turn produces the observed clinical phenotypes. We believe that a timely and longitudinal pursuit of such research programs will greatly advance our understanding of the complex mechanisms driving human neurodegenerative diseases.
Collapse
|