1
|
Weinstock M. Therapeutic agents for Alzheimer's disease: a critical appraisal. Front Aging Neurosci 2024; 16:1484615. [PMID: 39717349 PMCID: PMC11663918 DOI: 10.3389/fnagi.2024.1484615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/31/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Mutations in genes and precursors of β amyloid (Aβ) are found in the familial form of the disease. This led to the evaluation of seven monoclonal antibodies against Aβ in subjects with AD, two of which were approved for use by the FDA. They caused only a small improvement in cognitive function, probably because they were given to those with much more prevalent sporadic forms of dementia. They also have potentially serious adverse effects. Oxidative stress and elevated pro-inflammatory cytokines are present in all subjects with AD and are well correlated with the degree of memory impairment. Drugs that affect these processes include TNFα blocking antibodies and MAPK p38 inhibitors that reduce cognitive impairment when given for other inflammatory conditions. However, their adverse effects and inability to penetrate the brain preclude their use for dementia. Rosiglitazone is used to treat diabetes, a risk factor for AD, but failed in a clinical trial because it was given to subjects that already had dementia. Ladostigil reduces oxidative stress and suppresses the release of pro-inflammatory cytokines from activated microglia without blocking their effects. Chronic oral administration to aging rats prevented the decline in memory and suppressed overexpression of genes adversely affecting synaptic function in relevant brain regions. In a phase 2 trial, ladostigil reduced the decline in short-term memory and in whole brain and hippocampal volumes in human subjects with mild cognitive impairment and had no more adverse effects than placebo.
Collapse
Affiliation(s)
- Marta Weinstock
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
2
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
3
|
Rosales Hernández MC, Olvera-Valdez M, Velazquez Toledano J, Mendieta Wejebe JE, Fragoso Morales LG, Cruz A. Exploring the Benzazoles Derivatives as Pharmacophores for AChE, BACE1, and as Anti-Aβ Aggregation to Find Multitarget Compounds against Alzheimer's Disease. Molecules 2024; 29:4780. [PMID: 39407708 PMCID: PMC11477595 DOI: 10.3390/molecules29194780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Despite the great effort that has gone into developing new molecules as multitarget compounds to treat Alzheimer's disease (AD), none of these have been approved to treat this disease. Therefore, it will be interesting to determine whether benzazoles such as benzimidazole, benzoxazole, and benzothiazole, employed as pharmacophores, could act as multitarget drugs. AD is a multifactorial disease in which several pharmacological targets have been identified-some are involved with amyloid beta (Aβ) production, such as beta secretase (BACE1) and beta amyloid aggregation, while others are involved with the cholinergic system as acetylcholinesterase (AChE) and butirylcholinesterase (BChE) and nicotinic and muscarinic receptors, as well as the hyperphosphorylation of microtubule-associated protein (tau). In this review, we describe the in silico and in vitro evaluation of benzazoles on three important targets in AD: AChE, BACE1, and Aβ. Benzothiazoles and benzimidazoles could be the best benzazoles to act as multitarget drugs for AD because they have been widely evaluated as AChE inhibitors, forming π-π interactions with W286, W86, Y72, and F338, as well as in the AChE gorge and catalytic site. In addition, the sulfur atom from benzothiazol interacts with S286 and the aromatic ring from W84, with these compounds having an IC50 value in the μM range. Also, benzimidazoles and benzothiazoles can inhibit Aβ aggregation. However, even though benzazoles have not been widely evaluated on BACE1, benzimidazoles evaluated in vitro showed an IC50 value in the nM range. Therefore, important chemical modifications could be considered to improve multitarget benzazoles' activity, such as substitutions in the aromatic ring with electron withdrawal at position five, or a linker 3 or 4 carbons in length, which would allow for better interaction with targets.
Collapse
Affiliation(s)
- Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Marycruz Olvera-Valdez
- Laboratorio de Nanomateriales Sustentables, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, Lindavista, Gustavo A. Madero, Ciudad de México 07700, Mexico;
- Laboratorio de Investigación en Química Orgánica y Supramolecular, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Gustavo A. Madero, Ciudad de México 07340, Mexico
| | - Jazziel Velazquez Toledano
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Jessica Elena Mendieta Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Leticia Guadalupe Fragoso Morales
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Alejandro Cruz
- Laboratorio de Investigación en Química Orgánica y Supramolecular, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Gustavo A. Madero, Ciudad de México 07340, Mexico
| |
Collapse
|
4
|
Banerjee C, Tripathy D, Kumar D, Chakraborty J. Monoamine oxidase and neurodegeneration: Mechanisms, inhibitors and natural compounds for therapeutic intervention. Neurochem Int 2024; 179:105831. [PMID: 39128624 DOI: 10.1016/j.neuint.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Mammalian flavoenzyme Monoamine oxidase (MAO) resides on the outer mitochondrial membrane (OMM) and it is involved in the metabolism of different monoamine neurotransmitters in brain. During MAO mediated oxidative deamination of relevant substrates, H2O2 is released as a catalytic by-product, thus serving as a major source of reactive oxygen species (ROS). Under normal conditions, MAO mediated ROS is reported to propel the functioning of mitochondrial electron transport chain and phasic dopamine release. However, due to its localization onto mitochondria, sudden elevation in its enzymatic activity could directly impact the form and function of the organelle. For instance, in the case of Parkinson's disease (PD) patients who are on l-dopa therapy, the enzyme could be a concurrent source of extensive ROS production in the presence of uncontrolled substrate (dopamine) availability, thus further impacting the health of surviving neurons. It is worth mentioning that the expression of the enzyme in different brain compartments increases with age. Moreover, the involvement of MAO in the progression of neurological disorders such as PD, Alzheimer's disease and depression has been extensively studied in recent times. Although the usage of available synthetic MAO inhibitors has been instrumental in managing these conditions, the associated complications have raised significant concerns lately. Natural products have served as a major source of lead molecules in modern-day drug discovery; however, there is still no FDA-approved MAO inhibitor which is derived from natural sources. In this review, we have provided a comprehensive overview of MAO and how the enzyme system is involved in the pathogenesis of different age-associated neuropathologic conditions. We further discussed the applications and drawbacks of the long-term usage of presently available synthetic MAO inhibitors. Additionally, we have highlighted the prospect and worth of natural product derived molecules in addressing MAO associated complications.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasmita Tripathy
- Department of Zoology, Netaji Nagar College for Women, Kolkata, 700092, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India.
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
5
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Turgutalp B, Kizil C. Multi-target drugs for Alzheimer's disease. Trends Pharmacol Sci 2024; 45:628-638. [PMID: 38853102 DOI: 10.1016/j.tips.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Alzheimer's disease (AD), a leading cause of dementia, increasingly challenges our healthcare systems and society. Traditional therapies aimed at single targets have fallen short owing to the complex, multifactorial nature of AD that necessitates simultaneous targeting of various disease mechanisms for clinical success. Therefore, targeting multiple pathologies at the same time could provide a synergistic therapeutic effect. The identification of new disease targets beyond the classical hallmarks of AD offers a fertile ground for the design of new multi-target drugs (MTDs), and building on existing compounds have the potential to yield in successful disease modifying therapies. This review discusses the evolving landscape of MTDs, focusing on their potential as AD therapeutics. Analysis of past and current trials of compounds with multi-target activity underscores the capacity of MTDs to offer synergistic therapeutic effects, and the flourishing genetic understanding of AD will inform and inspire the development of MTD-based AD therapies.
Collapse
Affiliation(s)
- Bengisu Turgutalp
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, 710 West 168th Street, New York, NY 10032, USA.
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, 710 West 168th Street, New York, NY 10032, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY, USA.
| |
Collapse
|
7
|
Kushwaha A, Basera DS, Kumari S, Sutar RF, Singh V, Das S, Agrawal A. Assessment of memory deficits in psychiatric disorders: A systematic literature review. J Neurosci Rural Pract 2024; 15:182-193. [PMID: 38746499 PMCID: PMC11090569 DOI: 10.25259/jnrp_456_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/12/2023] [Indexed: 05/16/2024] Open
Abstract
Memory deficits are observed across psychiatric disorders ranging from the prodrome of psychosis to common mental disorders such as anxiety, depression, and dissociative disorders. Memory deficits among patients recovering from psychiatric disorders could be directly related to the primary illness or secondary to the adverse effect of a treatment such as Electroconvulsive Therapy (ECT). The trouble in the meaningful integration of working-memory and episodic memory is the most commonly affected domain that requires routine assessments. An update on the recent trends of methods of assessment of memory deficits is the first step towards understanding and correcting these deficits to target optimum recovery. A systematic literature search was conducted from October 2018 to October 2022 to review the recent methods of assessment of memory deficits in psychiatric disorders. The definition of 'Memory deficit' was operationalized as 'selective processes of memory, commonly required for activities of daily living, and affected among psychiatric disorders resulting in subjective distress and dysfunction'. We included 110 studies, most of them being conducted in western countries on patients with schizophrenia. Other disorders included dementia and mild cognitive impairment. Brief Assessment of Cognition in Schizophrenia, Cambridge Automated Neuropsychological Test Battery, California Verbal Learning Test, Trail Making Test Part A and B, Rey Auditory Verbal Learning Test, Wechsler Memory Scale, Wechsler Adults Intelligence Scale-IV were the most common neuropsychological assessments used. Mini-Mental State Examination and Montreal Cognitive Assessment were the most common bedside assessment tools used while Squire Subjective Memory Questionnaire was commonly used to measure ECT-related memory deficits. The review highlights the recent developments in the field of assessment of memory deficits in psychiatric disorders. Findings recommend and emphasize routine assessment of memory deficits among psychiatric disorders in developing countries especially severe mental illnesses. It remains interesting to see the role of standardized assessments in diagnostic systems given more than a decade of research on memory deficits in psychiatric disorders.
Collapse
Affiliation(s)
- Anuradha Kushwaha
- Department of Psychiatry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Devendra Singh Basera
- Department of Psychiatry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sangita Kumari
- Department of Psychiatry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Roshan Fakirchand Sutar
- Department of Psychiatry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Vijender Singh
- Department of Psychiatry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Saikat Das
- Department of Radiotherapy, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
8
|
Wang N, Jia W, Wang J, Yang Z, Liu Y, Huang D, Mei X, Xiong X, Shi J, Tang Y, Chen G, Di D, Hou Y, Liu Y. Design, synthesis, and biological evaluation of novel donepezil-tacrine hybrids as multi-functional agents with low neurotoxicity against Alzheimer's disease. Bioorg Chem 2024; 143:107010. [PMID: 38056387 DOI: 10.1016/j.bioorg.2023.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and deficits in cognitive domains. Low choline levels, oxidative stress, and neuroinflammation are the primary mechanisms implicated in AD progression. Simultaneous inhibition of acetylcholinesterase (AChE) and reactive oxygen species (ROS) production by a single molecule may provide a new breath of hope for AD treatment. Here, we describe donepezil-tacrine hybrids as inhibitors of AChE and ROS. Four series of derivatives with a β-amino alcohol linker were designed and synthesized. In this study, the target compounds were evaluated for their ability to inhibit AChE and butyrylcholinesterase (BuChE) in vitro, using tacrine (hAChE, IC50 = 305.78 nM; hBuChE, IC50 = 56.72 nM) and donepezil (hAChE, IC50 = 89.32 nM; hBuChE, IC50 = 9137.16 nM) as positive controls. Compound B19 exhibited an excellent and balanced inhibitory potency against AChE (IC50 = 30.68 nM) and BuChE (IC50 = 124.57 nM). The cytotoxicity assays demonstrated that the PC12 cell viability rates of compound B19 (84.37 %) were close to that of tacrine (87.73 %) and donepezil (79.71 %). Potential therapeutic effects in AD were evaluated using the neuroprotective effect of compounds against H2O2-induced toxicity, and compound B19 (68.77 %) exhibited substantially neuroprotective activity at the concentration of 25 μM, compared with the model group (30.34 %). Furthermore, compound B19 protected PC12 cells from H2O2-induced apoptosis and ROS production. These properties of compound B19 suggested that it was a multi-functional agent with AChE inhibition, anti-oxidative, anti-inflammatory activities, and low toxicity and that it deserves further investigation as a promising agent for AD treatment.
Collapse
Affiliation(s)
- Ningwei Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Wenlong Jia
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Junqin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Zejun Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yaoyang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Dehua Huang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Xiaohan Mei
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Xinxin Xiong
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Jing Shi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yadong Tang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Guang Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Donghua Di
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yunlei Hou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| |
Collapse
|
9
|
Huang ST, Luo JC, Zhong GH, Teng LP, Yang CY, Tang CL, Jing L, Zhou ZB, Liu J, Jiang N. In vitro and in vivo Biological Evaluation of Newly Tacrine-Selegiline Hybrids as Multi-Target Inhibitors of Cholinesterases and Monoamine Oxidases for Alzheimer's Disease. Drug Des Devel Ther 2024; 18:133-159. [PMID: 38283137 PMCID: PMC10822116 DOI: 10.2147/dddt.s432170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
Purpose Alzheimer's disease (AD) is the most common neurodegenerative disease, and its multifactorial nature increases the difficulty of medical research. To explore an effective treatment for AD, a series of novel tacrine-selegiline hybrids with ChEs and MAOs inhibitory activities were designed and synthesized as multifunctional drugs. Methods All designed compounds were evaluated in vitro for their inhibition of cholinesterases (AChE/BuChE) and monoamine oxidases (MAO-A/B) along with their blood-brain barrier permeability. Then, further biological activities of the optimizing compound 7d were determined, including molecular model analysis, in vitro cytotoxicity, acute toxicity studies in vivo, and pharmacokinetic and pharmacodynamic property studies in vivo. Results Most synthesized compounds demonstrated potent inhibitory activity against ChEs/MAOs. Particularly, compound 7d exhibited good and well-balanced activity against ChEs (hAChE: IC50 = 1.57 μM, hBuChE: IC50 = 0.43 μM) and MAOs (hMAO-A: IC50 = 2.30 μM, hMAO-B: IC50 = 4.75 μM). Molecular modeling analysis demonstrated that 7d could interact simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE in a mixed-type manner and also exhibits binding affinity towards BuChE and MAO-B. Additionally, 7d displayed excellent permeability of the blood-brain barrier, and under the experimental conditions, it elicited low or no toxicity toward PC12 and BV-2 cells. Furthermore, 7d was not acutely toxic in mice at doses up to 2500 mg/kg and could improve the cognitive function of mice with scopolamine-induced memory impairment. Lastly, 7d possessed well pharmacokinetic characteristics. Conclusion In light of these results, it is clear that 7d could potentially serve as a promising multi-functional drug for the treatment of AD.
Collapse
Affiliation(s)
- Shu-Tong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jin-Chong Luo
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Guo-Hui Zhong
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Li-Ping Teng
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Cai-Yan Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Chun-Li Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Jing Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
10
|
Reichert F, Zohar K, Lezmi E, Eliyahu T, Rotshenker S, Linial M, Weinstock M. Ladostigil Reduces the Adenoside Triphosphate/Lipopolysaccharide-Induced Secretion of Pro-Inflammatory Cytokines from Microglia and Modulate-Immune Regulators, TNFAIP3, and EGR1. Biomolecules 2024; 14:112. [PMID: 38254713 PMCID: PMC10813603 DOI: 10.3390/biom14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Treatment of aging rats for 6 months with ladostigil (1 mg/kg/day) prevented a decline in recognition and spatial memory and suppressed the overexpression of gene-encoding pro-inflammatory cytokines, TNFα, IL1β, and IL6 in the brain and microglial cultures. Primary cultures of mouse microglia stimulated by lipopolysaccharides (LPS, 0.75 µg/mL) and benzoyl ATPs (BzATP) were used to determine the concentration of ladostigil that reduces the secretion of these cytokine proteins. Ladostigil (1 × 10-11 M), a concentration compatible with the blood of aging rats in, prevented memory decline and reduced secretion of IL1β and IL6 by ≈50%. RNA sequencing analysis showed that BzATP/LPS upregulated 25 genes, including early-growth response protein 1, (Egr1) which increased in the brain of subjects with neurodegenerative diseases. Ladostigil significantly decreased Egr1 gene expression and levels of the protein in the nucleus and increased TNF alpha-induced protein 3 (TNFaIP3), which suppresses cytokine release, in the microglial cytoplasm. Restoration of the aberrant signaling of these proteins in ATP/LPS-activated microglia in vivo might explain the prevention by ladostigil of the morphological and inflammatory changes in the brain of aging rats.
Collapse
Affiliation(s)
- Fanny Reichert
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (F.R.); (S.R.)
| | - Keren Zohar
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.); (M.L.)
| | - Elyad Lezmi
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Tsiona Eliyahu
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.); (M.L.)
| | - Shlomo Rotshenker
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (F.R.); (S.R.)
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.); (M.L.)
| | - Marta Weinstock
- Institute of Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
11
|
Ten Kate M, Barkhof F, Schwarz AJ. Consistency between Treatment Effects on Clinical and Brain Atrophy Outcomes in Alzheimer's Disease Trials. J Prev Alzheimers Dis 2024; 11:38-47. [PMID: 38230715 PMCID: PMC10994869 DOI: 10.14283/jpad.2023.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/17/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Longitudinal changes in volumetric MRI outcome measures have been shown to correlate well with longitudinal changes in clinical instruments and have been widely used as biomarker outcomes in clinical trials for Alzheimer's disease (AD). While instances of discordant findings have been noted in some trials, especially the recent amyloid-removing therapies, the overall relationship between treatment effects on brain atrophy and clinical outcomes, and how it might depend on treatment target or mechanism, clinical instrument or imaging variable is not yet clear. OBJECTIVE To systematically assess the consistency and therapeutic class-dependence of treatment effects on clinical outcomes and on brain atrophy in published reports of clinical trials conducted in mild cognitive impairment (MCI) and/or AD. DESIGN Quantitative review of the published literature. The consistency of treatment effects on clinical and brain atrophy outcomes was assessed in terms of statistical agreement with hypothesized equal magnitude effects (e.g., 30% slowing of both) and nominal directional concordance, as a function of therapeutic class. SETTING Interventional randomized clinical trials. PARTICIPANTS MCI or AD trial participants. INTERVENTION Treatments included were those that involved ingestion or injection of a putatively active substance into the body, encompassing both pharmacological and controlled dietary interventions. MEASUREMENTS Each trial included in the analysis reported at least one of the required clinical outcomes (ADAS-Cog, CDR-SB or MMSE) and at least one of the required imaging outcomes (whole brain, ventricular or hippocampal volume). RESULTS Data from 35 trials, comprising 185 pairwise comparisons, were included. Overall, the 95% confidence bounds overlapped with the line of identity for 150/185 (81%) of the imaging-clinical variable pairs. The greatest proportion of outliers was found in trials of anti-amyloid antibodies that have been shown to dramatically reduce the level of PET-detectable amyloid plaques, for which only 13/33 (39%) of observations overlapped the identity line. A Deming regression calculated using all data points yielded a slope of 0.54, whereas if data points from the amyloid remover class were excluded, the Deming regression line had a slope of 0.92. Directional discordance of treatment effects was also most pronounced for the amyloid-removing class, and for comparisons involving ventricular volume. CONCLUSION Our results provide a frame of reference for the interpretation of clinical and brain atrophy results from future clinical trials and highlight the importance of mechanism of action in the interpretation of imaging results.
Collapse
Affiliation(s)
- M Ten Kate
- Adam J Schwarz, PhD, Takeda Pharmaceuticals, Ltd., 40 Landsdowne St., Cambridge MA 02139, USA Tel: (+1) 317 282 3557,
| | | | | |
Collapse
|
12
|
Xu Lou I, Chen J, Ali K, Shaikh AL, Chen Q. Mapping new pharmacological interventions for cognitive function in Alzheimer's disease: a systematic review of randomized clinical trials. Front Pharmacol 2023; 14:1190604. [PMID: 37332343 PMCID: PMC10270324 DOI: 10.3389/fphar.2023.1190604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Background and Objective: Alzheimer's disease (AD) is a progressive neurodegenerative disorder, that is, characterized by cognitive decline. To date, there are no effective treatments for AD. Therefore, the objective of this study was to map new perspectives on the effects of pharmacological treatment on cognitive function and the overall psychological state in patients with AD. Methods: Two independent researchers searched for randomized clinical trials (RCTs) exploring new pharmacological approaches related to cognition in Alzheimer's disease in adults from 2018 to 2023 in PubMed, Web of Science, Scopus, and Cochrane Library databases. A total of 17 RCTs were included in this review. Results: The results show that in recent years, new drugs have been tested in patients with Alzheimer's disease, including masitinib, methylphenidate, levetiracetam, Jiannao Yizhi, and Huannao Yicong formulas. Most studies have been conducted in populations with mild to moderate Alzheimer's disease. Conclusion: Although some of the drugs found suggested improvement in cognitive function, the scarcity of available studies highlights the need for further research in this area. Systematic review registration: [www.crd.york.ac.uk/prospero], identifier [CRD42023409986].
Collapse
Affiliation(s)
- Inmaculada Xu Lou
- International Education College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Jiayue Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
- Hangzhou Clinical Medical College Internal Medicine of Traditional Chinese Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kamran Ali
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Abdul Lateef Shaikh
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
13
|
Bacanoiu MV, Danoiu M, Rusu L, Marin MI. New Directions to Approach Oxidative Stress Related to Physical Activity and Nutraceuticals in Normal Aging and Neurodegenerative Aging. Antioxidants (Basel) 2023; 12:antiox12051008. [PMID: 37237873 DOI: 10.3390/antiox12051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress (OS) plays, perhaps, the most important role in the advanced aging process, cognitive impairment and pathogenesis of neurodegenerative disorders. The process generates tissue damage via specific mechanisms on proteins, lipids and nucleic acids of the cells. An imbalance between the excessive production of oxygen- and nitrogen-reactive species and antioxidants leads to a progressive decline in physiological, biological and cognitive functions. Accordingly, we need to design and develop favourable strategies for stopping the early aging process as well as the development of neurodegenerative diseases. Exercise training and natural or artificial nutraceutical intake are considered therapeutic interventions that reduce the inflammatory process, increase antioxidant capacities and promote healthy aging by decreasing the amount of reactive oxygen species (ROS). The aim of our review is to present research results in the field of oxidative stress related to physical activity and nutraceutical administration for the improvement of the aging process, but also related to reducing the neurodegeneration process based on analysing the beneficial effects of several antioxidants, such as physical activity, artificial and natural nutraceuticals, as well as the tools by which they are evaluated. In this paper, we assess the recent findings in the field of oxidative stress by analysing intervention antioxidants, anti-inflammatory markers and physical activity in healthy older adults and the elderly population with dementia and Parkinson's disease. By searching for studies from the last few years, we observed new trends for approaching the reduction in redox potential using different tools that evaluate regular physical activity, as well as antioxidant and anti-inflammatory markers preventing premature aging and the progress of disabilities in neurodegenerative diseases. The results of our review show that regular physical activity, supplemented with vitamins and oligomolecules, results in a decrease in IL-6 and an increase in IL-10, and has an influence on the oxidative metabolism capacity. In conclusion, physical activity provides an antioxidant-protective effect by decreasing free radicals and proinflammatory markers.
Collapse
Affiliation(s)
- Manuela Violeta Bacanoiu
- Sport Medicine and Physical Therapy Department, Faculty of Physical Education and Sport, University of Craiova, 200585 Craiova, Romania
| | - Mircea Danoiu
- Sport Medicine and Physical Therapy Department, Faculty of Physical Education and Sport, University of Craiova, 200585 Craiova, Romania
| | - Ligia Rusu
- Sport Medicine and Physical Therapy Department, Faculty of Physical Education and Sport, University of Craiova, 200585 Craiova, Romania
| | - Mihnea Ion Marin
- Faculty of Mechanics, University of Craiova, 200585 Craiova, Romania
| |
Collapse
|
14
|
Zagórska A, Czopek A, Fryc M, Jaromin A, Boyd BJ. Drug Discovery and Development Targeting Dementia. Pharmaceuticals (Basel) 2023; 16:151. [PMID: 37259302 PMCID: PMC9965722 DOI: 10.3390/ph16020151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 08/04/2023] Open
Abstract
Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Fryc
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
15
|
Bubley A, Erofeev A, Gorelkin P, Beloglazkina E, Majouga A, Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int J Mol Sci 2023; 24:ijms24021717. [PMID: 36675233 PMCID: PMC9863713 DOI: 10.3390/ijms24021717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Collapse
Affiliation(s)
- Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexaner Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
- Correspondence:
| |
Collapse
|
16
|
Eissa KI, Kamel MM, Mohamed LW, Kassab AE. Development of new Alzheimer's disease drug candidates using donepezil as a key model. Arch Pharm (Weinheim) 2023; 356:e2200398. [PMID: 36149034 DOI: 10.1002/ardp.202200398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent geriatric diseases and a significant cause of high mortality. This crippling disorder is becoming more prevalent at an unprecedented rate, which has led to an increase in the financial cost of caring. It is a pathologically complicated, multifactorial disease characterized by β-amyloid precipitation, β-amyloid oligomer production, decrease in cholinergic function, and dysregulation of other neurotransmitter systems. Due to the pathogenic complexity of AD, multitarget drugs that can simultaneously alternate multiple biological targets may enhance the therapeutic efficacy. Donepezil (DNP) is the most potent approved drug for the treatment of AD. It has a remarkable effect on a number of AD-related processes, including cholinesterase activity, anti-Aβ aggregation, oxidative stress, and more. DNP resembles an excellent scaffold to be hybridized with other pharmacophoric moieties having biological activity against AD pathological factors. There have been significant attempts made to modify the structure of DNP to create new bioactive chemical entities with novel structural patterns. In this review, we highlight recent advances in the development of multiple-target DNP-hybridized models for the treatment of AD that can be used in the future in the rational design of new potential AD therapeutics. The design and development of new drug candidates for the treatment of AD using DNP as a molecular scaffold have also been reviewed and summarized.
Collapse
Affiliation(s)
- Kholoud I Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Kamel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamia W Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Khan SS, Khatik GL, Datusalia AK. Strategies for Treatment of Disease-Associated Dementia Beyond Alzheimer's Disease: An Update. Curr Neuropharmacol 2023; 21:309-339. [PMID: 35410602 PMCID: PMC10190146 DOI: 10.2174/1570159x20666220411083922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/27/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Memory, cognition, dementia, and neurodegeneration are complexly interlinked processes with various mechanistic pathways, leading to a range of clinical outcomes. They are strongly associated with pathological conditions like Alzheimer's disease, Parkinson's disease, schizophrenia, and stroke and are a growing concern for their timely diagnosis and management. Several cognitionenhancing interventions for management include non-pharmacological interventions like diet, exercise, and physical activity, while pharmacological interventions include medicinal agents, herbal agents, and nutritional supplements. This review critically analyzed and discussed the currently available agents under different drug development phases designed to target the molecular targets, including cholinergic receptor, glutamatergic system, GABAergic targets, glycine site, serotonergic targets, histamine receptors, etc. Understanding memory formation and pathways involved therein aids in opening the new gateways to treating cognitive disorders. However, clinical studies suggest that there is still a dearth of knowledge about the pathological mechanism involved in neurological conditions, making the dropouts of agents from the initial phases of the clinical trial. Hence, a better understanding of the disease biology, mode of drug action, and interlinked mechanistic pathways at a molecular level is required.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Ashok K. Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| |
Collapse
|
18
|
Current Pharmacotherapy and Multi-Target Approaches for Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15121560. [PMID: 36559010 PMCID: PMC9781592 DOI: 10.3390/ph15121560] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by decreased synaptic transmission and cerebral atrophy with appearance of amyloid plaques and neurofibrillary tangles. Cognitive, functional, and behavioral alterations are commonly associated with the disease. Different pathophysiological pathways of AD have been proposed, some of which interact and influence one another. Current treatment for AD mainly involves the use of therapeutic agents to alleviate the symptoms in AD patients. The conventional single-target treatment approaches do not often cause the desired effect in the disease due to its multifactorial origin. Thus, multi-target strategies have since been undertaken, which aim to simultaneously target multiple targets involved in the development of AD. In this review, we provide an overview of the pathogenesis of AD and the current drug therapies for the disease. Additionally, rationales of the multi-target approaches and examples of multi-target drugs with pharmacological actions against AD are also discussed.
Collapse
|
19
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
20
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
21
|
Liu C, Sang Z, Pan H, Wu Q, Qiu Y, Shi J. A Novel Multifunctional 5,6-Dimethoxy-Indanone-Chalcone-Carbamate Hybrids Alleviates Cognitive Decline in Alzheimer’s Disease by Dual Inhibition of Acetylcholinesterase and Inflammation. Front Aging Neurosci 2022; 14:922650. [PMID: 35860673 PMCID: PMC9289467 DOI: 10.3389/fnagi.2022.922650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
Backgrounds Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease. The treatment of AD through multiple pathological targets may generate therapeutic efficacy better. The multifunctional molecules that simultaneously hit several pathological targets have been of great interest in the intervention of AD. Methods Here, we combined the chalcone scaffold with carbamate moiety and 5,6-dimethoxy-indanone moiety to generate a novel multi-target-directed ligand (MTDL) molecule (E)-3-((5,6-dimethoxy-1-oxo-1,3-dihydro-2H-inden-2-ylidene)-methyl)phenylethyl(methyl) carbamate (named AP5). In silico approaches were used to virtually predict the binding interaction of AP5 with AChE, the drug-likeness, and BBB penetrance, and later validated by evaluation of pharmacokinetics (PK) in vivo by LC-MS/MS. Moreover, studies were conducted to examine the potential of AP5 for inhibiting AChE and AChE-induced amyloid-β (Aβ) aggregation, attenuating neuroinflammation, and providing neuroprotection in the APP/PS1 model of AD. Results We found that AP5 can simultaneously bind to the peripheral and catalytic sites of AChE by molecular docking. AP5 exhibited desirable pharmacokinetic (PK) characteristics including oral bioavailability (67.2%), >10% brain penetrance, and favorable drug-likeness. AP5 inhibited AChE activity and AChE-induced Aβ aggregation in vivo and in vitro. Further, AP5 lowered Aβ plaque deposition and insoluble Aβ levels in APP/PS1 mice. Moreover, AP5 exerted anti-inflammatory responses by switching microglia to a disease-associated microglia (DAM) phenotype and preventing A1 astrocytes formation. The phagocytic activity of microglial cells to Aβ was recovered upon AP5 treatment. Importantly, chronic AP5 treatment significantly prevented neuronal and synaptic damage and memory deficits in AD mice. Conclusion Together, our work demonstrated that AP5 inhibited the AChE activity, decreased Aβ plaque deposition by interfering Aβ aggregation and promoting microglial Aβ phagocytosis, and suppressed inflammation, thereby rescuing neuronal and synaptic damage and relieving cognitive decline. Thus, AP5 can be a new promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chan Liu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhipei Sang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hong Pan
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yu Qiu,
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Jingshan Shi,
| |
Collapse
|
22
|
Guglielmi P, Carradori S, D'Agostino I, Campestre C, Petzer JP. An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opin Ther Pat 2022; 32:849-883. [PMID: 35638744 DOI: 10.1080/13543776.2022.2083501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood and cognitive activity, and monoamine catabolism. AREAS COVERED MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION MAO inhibitors here reported exhibit different potencies (from the micro- to nanomolar range) and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
23
|
Rullo M, Cipolloni M, Catto M, Colliva C, Miniero DV, Latronico T, de Candia M, Benicchi T, Linusson A, Giacchè N, Altomare CD, Pisani L. Probing Fluorinated Motifs onto Dual AChE-MAO B Inhibitors: Rational Design, Synthesis, Biological Evaluation, and Early-ADME Studies. J Med Chem 2022; 65:3962-3977. [PMID: 35195417 DOI: 10.1021/acs.jmedchem.1c01784] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bioisosteric H/F or CH2OH/CF2H replacement was introduced in coumarin derivatives previously characterized as dual AChE-MAO B inhibitors to probe the effects on both inhibitory potency and drug-likeness. Along with in vitro screening, we investigated early-ADME parameters related to solubility and lipophilicity (Sol7.4, CHI7.4, log D7.4), oral bioavailability and central nervous system (CNS) penetration (PAMPA-HDM and PAMPA-blood-brain barrier (BBB) assays, Caco-2 bidirectional transport study), and metabolic liability (half-lives and clearance in microsomes, inhibition of CYP3A4). Both specific and nonspecific tissue toxicities were determined in SH-SY5Y and HepG2 lines, respectively. Compound 15 bearing a -CF2H motif emerged as a water-soluble, orally bioavailable CNS-permeant potent inhibitor of both human AChE (IC50 = 550 nM) and MAO B (IC50 = 8.2 nM, B/A selectivity > 1200). Moreover, 15 behaved as a safe and metabolically stable neuroprotective agent, devoid of cytochrome liability.
Collapse
Affiliation(s)
- Mariagrazia Rullo
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | | | - Marco Catto
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | | | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", via Orabona, 4, 70125 Bari, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", via Orabona, 4, 70125 Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | | | - Anna Linusson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Nicola Giacchè
- TES Pharma s.r.l., Corso Vannucci 47, 06121 Perugia, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
24
|
Travers-Lesage V, Mignani SM, Dallemagne P, Rochais C. Advances in prodrug design for Alzheimer's Disease: the state of the art. Expert Opin Drug Discov 2022; 17:325-341. [PMID: 35089846 DOI: 10.1080/17460441.2022.2031972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION : Alzheimer's disease (AD) is the most common cause of dementia with a memory loss and other cognitive abilities and is a complex and multifactorial neurodegenerative disease that remains today a challenge for drug discovery. Like many pathologies of the central nervous system, one of the first hurdles is the development of a compound with a sufficient brain exposure to ensure a potential therapeutic benefit. In this direction, the development of prodrugs has been an intense field of research in the last years. AREAS COVERED : Two main strategies of prodrugs development are analysed in this review. First, the application of the classical modulation of an active compound to incorporate a drug carrier or to prepare bioprecursor has been exemplified in the field of AD. This approach has led to several examples engaged in the clinical trials. In a second chapter, a series of innovative prodrugs based on a polypharmacological approach is described to take into account the complexity of AD. EXPERT OPINION : In the past 10 years, at least 6 prodrugs have been approved by the FDA for the treatment of central nervous system pathologies. Most of them have been developed in order to improve membrane permeability of the parent drugs. Facing the limitation of Alzheimer's disease drug discovery, the development of prodrugs will likely play a central role in the next years. Indeed, beside addressing the challenge of distribution, prodrug could also tackle the complex multifactorial origin of the disease with the rise of innovative pleiotropic prodrugs.
Collapse
Affiliation(s)
- Valentin Travers-Lesage
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Serge M Mignani
- UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS, 45 rue des Saints Pères, 75006 Paris, France.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| |
Collapse
|
25
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
26
|
Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, Mustapha M, Adenan MI, Stanslas J, Hamid HA. Hypoxia-Induced Neuroinflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Centella asiatica. Front Physiol 2021; 12:712317. [PMID: 34721056 PMCID: PMC8551388 DOI: 10.3389/fphys.2021.712317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
27
|
A novel multi-target strategy to attenuate the progression of Parkinson's disease by diamine hybrid AGE/ALE inhibitor. Future Med Chem 2021; 13:2185-2200. [PMID: 34634921 DOI: 10.4155/fmc-2021-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Instead of a conventional 'one-drug-one-target approach', this article presents a novel multi-target approach with a concept of trapping simultaneously as many detrimental factors as possible involved in the progression of Parkinson's disease. These factors include reactive carbonyl species, reactive oxygen species, Fe3+/Cu2+ and ortho-quinones (o-quinone), in particular. Different from the known multi-target strategies for Parkinson's disease, it is a sort of 'vacuum cleaning' strategy. The new agent consists of reactive carbonyl species scavenging moiety and reactive oxygen species scavenging and metal chelating moiety linked by a spacer. Provided that the capacity of scavenging o-quinones is demonstrated, this type of agent can further broaden its potential therapeutic profile. In order to support this new hypothetical approach, a number of simple in vitro experiments are proposed.
Collapse
|
28
|
Babić Leko M, Nikolac Perković M, Nedić Erjavec G, Klepac N, Švob Štrac DK, Borovečki F, Pivac N, Hof PR, Šimić G. Association of the MAOB rs1799836 Single Nucleotide Polymorphism and APOE ɛ4 Allele in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:585-594. [PMID: 34533445 DOI: 10.2174/1567205018666210917162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The dopaminergic system is functionally compromised in Alzheimer's dis-ease (AD). The activity of monoamine oxidase B (MAOB), the enzyme involved in the degradation of dopamine, is increased during AD. Also, increased expression of MAOB occurs in the post-mortem hippocampus and neocortex of patients with AD. The MAOB rs1799836 polymorphism modulates MAOB transcription, consequently influencing protein translation and MAOB activity. We recently showed that cerebrospinal fluid levels of amyloid β1-42 are decreased in patients carry- ing the A allele in MAOB rs1799836 polymorphism. OBJECTIVE The present study compares MAOB rs1799836 polymorphism and APOE, the only con- firmed genetic risk factor for sporadic AD. METHOD We included 253 participants, 127 of whom had AD, 57 had mild cognitive impairment, 11 were healthy controls, and 58 suffered from other primary causes of dementia. MAOB and APOE polymorphisms were determined using TaqMan SNP Genotyping Assays. RESULTS We observed that the frequency of APOE ɛ4/ɛ4 homozygotes and APOE ɛ4 carriers is sig- nificantly increased among patients carrying the AA MAOB rs1799836 genotype. CONCLUSION These results indicate that the MAOB rs1799836 polymorphism is a potential genetic biomarker of AD and a potential target for the treatment of decreased dopaminergic transmission and cognitive deterioration in AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | | | | | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Department of Molecular Medicine, Institute Ruđer Bošković, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
29
|
Remya C, Dileep KV, Koti Reddy E, Mantosh K, Lakshmi K, Sarah Jacob R, Sajith AM, Jayadevi Variyar E, Anwar S, Zhang KYJ, Sadasivan C, Omkumar RV. Neuroprotective derivatives of tacrine that target NMDA receptor and acetyl cholinesterase - Design, synthesis and biological evaluation. Comput Struct Biotechnol J 2021; 19:4517-4537. [PMID: 34471497 PMCID: PMC8379669 DOI: 10.1016/j.csbj.2021.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer’s disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 – 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 – 38.84 ± 9.64 μM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.
Collapse
Key Words
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AChT, acetylthiocholine
- AD, Alzheimer’s disease
- ADME, absorption, distribution, metabolism and excretion
- Acetylcholinesterase
- Alzheimer’s disease
- BBB, blood brain barrier
- Ca2+, calcium
- ChE, Cholinesterases
- DMEM, Dulbecco’s modified Eagle’s medium
- DTNB, 5,5-dithiobis-(2-nitrobenzoic acid)
- ENM, elastic network modeling
- ER, endoplasmic reticulum
- FRET, fluorescence resonance energy transfer
- G6PD, glucose-6-phosphate dehydrogenase
- HBSS, Hank's balanced salt solution
- IP, intraperitoneal
- LBD, Ligand binding domain
- LC-MS, Liquid chromatography-mass spectrometry
- LiCABEDS, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps
- MAP2, microtubule associated protein 2
- MD, Molecular dynamics
- MTDLs
- MTDLs, multi-target directed ligands
- MWM, Morris water maze
- NBM, neurobasal medium
- NMA, normal mode analysis
- NMDA receptor
- NMDAR, N-methyl-D-aspartate receptor
- Neuroprotection
- OPLS, Optimized potential for liquid simulations
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- Polypharmacology
- RMSD, root mean square deviation
- SAR, structure-activity relationships
- SD, standard deviation
- SVM, support vector machine
- Structure-based drug design
- TBI, traumatic brain injury
- TMD, transmembrane domain
- Tacrine
- h-NMDAR, human NMDAR
- hAChE, human AChE
- ppm, parts per million
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Computational and Structural Biology, Jubilee Center for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Eeda Koti Reddy
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kumar Mantosh
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Kesavan Lakshmi
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Reena Sarah Jacob
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Ayyiliyath M Sajith
- Post Graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University, Kasaragod, India
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - Shaik Anwar
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - C Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
30
|
Mzezewa SC, Omoruyi SI, Zondagh LS, Malan SF, Ekpo OE, Joubert J. Design, synthesis, and evaluation of 3,7-substituted coumarin derivatives as multifunctional Alzheimer's disease agents. J Enzyme Inhib Med Chem 2021; 36:1607-1621. [PMID: 34281458 PMCID: PMC8291583 DOI: 10.1080/14756366.2021.1913137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Multitarget directed ligands (MTDLs) are emerging as promising treatment options for Alzheimer's disease (AD). Coumarin derivatives serve as a good starting point for designing MTDLs due to their inherent inhibition of monoamine oxidase (MAO) and cholinesterase enzymes, which are complicit in AD's complex pathophysiology. A preliminary series of 3,7-substituted coumarin derivatives were synthesised and evaluated for enzyme inhibitory activity, cytotoxicity as well as neuroprotective ability. The results indicated that the compounds are weak cholinesterase inhibitors with five compounds demonstrating relatively potent inhibition and selectivity towards MAO-B with IC50 values between 0.014 and 0.498 hx00B5;µM. Significant neuroprotective effects towards MPP+-compromised SH-SY5Y neuroblastoma cells were also observed, with no inherent cytotoxicity at 10 µM for all compounds. The overall results demonstrated that substitution of the phenylethyloxy moiety at the 7-position imparted superior general activity to the derivatives, with the propargylamine substitution at the 3-position, in particular, displaying the best MAO-B selectivity and neuroprotection.
Collapse
Affiliation(s)
- Sheunopa C Mzezewa
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Sylvester I Omoruyi
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Luke S Zondagh
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Sarel F Malan
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Okobi E Ekpo
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Jacques Joubert
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
31
|
Mazej T, Knez D, Meden A, Gobec S, Sova M. 4-Phenethyl-1-Propargylpiperidine-Derived Dual Inhibitors of Butyrylcholinesterase and Monoamine Oxidase B. Molecules 2021; 26:molecules26144118. [PMID: 34299393 PMCID: PMC8305717 DOI: 10.3390/molecules26144118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
The multi-target-directed ligands (MTDLs) strategy is encouraged for the development of novel modulators targeting multiple pathways in the neurodegenerative cascade typical for Alzheimer’s disease (AD). Based on the structure of an in-house irreversible monoamine oxidase B (MAO-B) inhibitor, we aimed to introduce a carbamate moiety on the aromatic ring to impart cholinesterase (ChE) inhibition, and to furnish multifunctional ligands targeting two enzymes that are intricately involved in AD pathobiology. In this study, we synthesized three dual hMAO-B/hBChE inhibitors 13–15, with compound 15 exhibiting balanced, low micromolar inhibition of hMAO-B (IC50 of 4.3 µM) and hBChE (IC50 of 8.5 µM). The docking studies and time-dependent inhibition of hBChE confirmed the initial expectation that the introduced carbamate moiety is responsible for covalent inhibition. Therefore, dual-acting compound 15 represents an excellent starting point for further optimization of balanced MTDLs
Collapse
|
32
|
Jones DN, Raghanti MA. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J Chem Neuroanat 2021; 114:101957. [PMID: 33836221 DOI: 10.1016/j.jchemneu.2021.101957] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Monoamine oxidase enzymes are responsible for the degredation of serotonin, dopamine, and norepinephrine in the central neurvous system. Although it has been nearly 100 years since they were first described, we are still learning about their role in the healthy brain and how they are altered in various disease states. The present review provides a survey of our current understanding of monoamine oxidases, with a focus on their contributions to neuropsychiatric, neurodevelopmental, and neurodegenerative disease. Important species differences in monoamine oxidase function and development in the brain are highlighted. Sex-specific monoamine oxidase regulatory mechanisms and their implications for various neurological disorders are also discussed. While our understanding of these critical enzymes has expanded over the last century, gaps exist in our understanding of sex and species differences and the roles monoamine oxidases may play in conditions often comorbid with neurological disorders.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
33
|
Matthews DC, Ritter A, Thomas RG, Andrews RD, Lukic AS, Revta C, Kinney JW, Tousi B, Leverenz JB, Fillit H, Zhong K, Feldman HH, Cummings J. Rasagiline effects on glucose metabolism, cognition, and tau in Alzheimer's dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12106. [PMID: 33614888 PMCID: PMC7882538 DOI: 10.1002/trc2.12106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND A Phase II proof of concept (POC) randomized clinical trial was conducted to evaluate the effects of rasagiline, a monoamine oxidase B (MAO-B) inhibitor approved for Parkinson disease, in mild to moderate Alzheimer's disease (AD). The primary objective was to determine if 1 mg of rasagiline daily for 24 weeks is associated with improved regional brain metabolism (fluorodeoxyglucose-positron emission tomography [FDG-PET]) compared to placebo. Secondary objectives included measurement of effects on tau PET and evaluation of directional consistency of clinical end points. METHODS This was a double-blind, parallel group, placebo-controlled, community-based, three-site trial of 50 participants randomized 1:1 to receive oral rasagiline or placebo (NCT02359552). FDG-PET was analyzed for the presence of an AD-like pattern as an inclusion criterion and as a longitudinal outcome using prespecified regions of interest and voxel-based analyses. Tau PET was evaluated at baseline and longitudinally. Clinical outcomes were analyzed using an intention-to-treat (ITT) model. RESULTS Fifty patients were randomized and 43 completed treatment. The study met its primary end point, demonstrating favorable change in FDG-PET differences in rasagiline versus placebo in middle frontal (P < 0.025), anterior cingulate (P < 0.041), and striatal (P < 0.023) regions. Clinical measures showed benefit in quality of life (P < 0.04). Digit Span, verbal fluency, and Neuropsychiatric Inventory (NPI) showed non-significant directional favoring of rasagiline; no effects were observed in Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog) or activities of daily living. Rasagiline was generally well tolerated with low rates of adverse events and notably fewer neuropsychiatric symptoms in the active treatment group. DISCUSSION These outcomes illustrate the potential benefits of rasagiline on clinical and neuroimaging measures in patients with mild to moderate AD. Rasagiline appears to affect neuronal activity in frontostriatal pathways, with associated clinical benefit potential warranting a more fully powered trial. This study illustrated the potential benefit of therapeutic repurposing and an experimental medicine proof-of-concept design with biomarkers to characterize patient and detect treatment response.
Collapse
Affiliation(s)
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Ronald G. Thomas
- Department of Family Medicine and Public HealthUCSDLa JollaCaliforniaUSA
| | | | | | - Carolyn Revta
- Alzheimer's Disease Cooperative StudyUniversity of California San Diego School of MedicineLa JollaCaliforniaUSA
| | | | - Babak Tousi
- Neurologic InstituteCleveland ClinicClevelandOhioUSA
| | | | - Howard Fillit
- Alzheimer's Drug Discovery FoundationNew YorkNew YorkUSA
| | | | - Howard H. Feldman
- Department of NeurosciencesAlzheimer's Disease Cooperative StudySan DiegoUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
- Department of Brain HealthChambers‐Grundy Center for Transformative NeuroscienceSchool of Integrated Health SciencesUniversity of Nevada Las VegasNevadaUSA
| |
Collapse
|
34
|
Babić Leko M, Hof PR, Šimić G. Alterations and interactions of subcortical modulatory systems in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:379-421. [PMID: 33785136 DOI: 10.1016/bs.pbr.2020.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is not fully understood. Here we summarize current knowledge on the involvement of the serotonergic, noradrenergic, dopaminergic, cholinergic, and opioid systems in AD, emphasizing the importance of interactions between the serotonergic and the other subcortical modulatory systems during the progression of AD. In physiological conditions, all neurotransmitter systems function in concert and are interdependent at both the neuroanatomical and molecular levels. Through their early involvement in AD, cognitive and behavioral abilities that rely on their interactions also become disrupted. Considering that serotonin (5HT) regulates the release of noradrenaline (NA), dopamine (DA) and acetylcholine (ACh), any alteration in 5HT levels leads to disturbance of NA, DA, and ACh homeostasis in the brain. One of the earliest pathological changes during the prodromal phase of AD is a decrease of serotonergic transmission throughout the brain, with serotonergic receptors being also affected. Additionally, serotonergic and noradrenergic as well as serotonergic and dopaminergic nuclei are reciprocally interconnected. As the serotonergic dorsal raphe nucleus (DRN) is affected by pathological changes early in AD, and the noradrenergic locus coeruleus (LC) and dopaminergic ventral tegmental area (VTA) exhibit AD-related pathological changes, their connectivity also becomes altered in AD. Such disrupted interactions among neurotransmitter systems in AD can be used in the development of multi-target drugs. Some of the potential AD therapeutics (such as ASS234, RS67333, tropisetron) target multiple neurotransmitter systems to achieve the best possible improvement of cognitive and behavioral deficits observed in AD. Here, we review how serotonergic system interacts with other subcortical modulatory systems (noradrenergic, dopaminergic, cholinergic, and opioid systems) during AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia.
| |
Collapse
|
35
|
Cummings J. New approaches to symptomatic treatments for Alzheimer's disease. Mol Neurodegener 2021; 16:2. [PMID: 33441154 PMCID: PMC7805095 DOI: 10.1186/s13024-021-00424-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Successful development of agents that improve cognition and behavior in Alzheimer's disease (AD) is critical to improving the lives of patients manifesting the symptoms of this progressive disorder. DISCUSSION There have been no recent approvals of cognitive enhancing agents for AD. There are currently 6 cognitive enhancers in Phase 2 trials and 4 in phase 3. They represent a variety of novel mechanisms. There has been progress in developing new treatments for neuropsychiatric symptoms in AD with advances in treatment of insomnia, psychosis, apathy, and agitation in AD. There are currently 4 AD-related psychotropic agents in Phase 2 trials and 7 in Phase 3 trials. Many novel mechanisms are being explored for the treatment of cognitive and behavioral targets. Progress in trial designs, outcomes measures, and population definitions are improving trial conduct for symptomatic treatment of AD. CONCLUSIONS Advances in developing new agents for cognitive and behavioral symptoms of AD combined with enhanced trial methods promise to address the unmet needs of patients with AD for improved cognition and amelioration of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
36
|
Duarte P, Cuadrado A, León R. Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. Handb Exp Pharmacol 2021; 264:229-259. [PMID: 32852645 DOI: 10.1007/164_2020_384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoamine oxidases (MAOs) are involved in the oxidative deamination of different amines and neurotransmitters. This pointed them as potential targets for several disorders and along the last 70 years a wide variety of MAO inhibitors have been developed as successful drugs for the treatment of complex diseases, being the first drugs approved for depression in the late 1950s. The discovery of two MAO isozymes (MAO-A and B) with different substrate selectivity and tissue expression patterns led to novel therapeutic approaches and to the development of new classes of inhibitors, such as selective irreversible and reversible MAO-B inhibitors and reversible MAO-A inhibitors. Significantly, MAO-B inhibitors constitute a widely studied group of compounds, some of them approved for the treatment of Parkinson's disease. Further applications are under development for the treatment of Alzheimer's disease, amyotrophic lateral sclerosis, and cardiovascular diseases, among others. This review summarizes the most important aspects regarding the development and clinical use of MAO inhibitors, going through mechanistic and structural details, new indications, and future perspectives. Monoamine oxidases (MAOs) catalyze the oxidative deamination of different amines and neurotransmitters. The two different isozymes, MAO-A and MAO-B, are located at the outer mitochondrial membrane in different tissues. The enzymatic reaction involves formation of the corresponding aldehyde and releasing hydrogen peroxide (H2O2) and ammonia or a substituted amine depending on the substrate. MAO's role in neurotransmitter metabolism made them targets for major depression and Parkinson's disease, among other neurodegenerative diseases. Currently, these compounds are being studied for other diseases such as cardiovascular ones.
Collapse
Affiliation(s)
- Pablo Duarte
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio Cuadrado
- Departmento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain.
- Instituto de Química Médica, Consejo Superior de Investigaciones CientÚficas (IQM-CSIC), Madrid, Spain.
| |
Collapse
|
37
|
Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets. Mol Neurobiol 2020; 58:281-303. [PMID: 32935230 DOI: 10.1007/s12035-020-02116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia among elder people, which is a progressive neurodegenerative disease that results from a chronic loss of cognitive activities. It has been observed that AD is multifactorial, hence diverse pharmacological targets that could be followed for the treatment of AD. The Food and Drug Administration has approved two types of medications for AD treatment such as cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartic acid receptor (NMDAR) antagonists. Rivastigmine, donepezil, and galantamine are the ChEIs that have been approved to treat AD. On the other hand, memantine is the only non-competitive NMDAR antagonist approved in AD treatment. As compared with placebo, it has been revealed through clinical studies that many single-target therapies are unsuccessful to treat multifactorial Alzheimer's symptoms or disease progression. Therefore, due to the complex nature of AD pathophysiology, diverse pharmacological targets can be hunted. In this article, based on the entwined link of acetylcholinesterase (AChE) and NMDAR, we represent several multifunctional compounds in the rational design of new potential AD medications. This review focus on the significance of privileged scaffolds in the generation of the multi-target lead compound for treating AD, investigating the idea and challenges of multi-target drug design. Furthermore, the most auspicious elementary units for designing as well as synthesizing hybrid drugs are demonstrated as pharmacological probes in the rational design of new potential AD therapeutics.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
38
|
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12050. [PMID: 32695874 PMCID: PMC7364858 DOI: 10.1002/trc2.12050] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a growing public health concern affecting millions of patients worldwide and costing billions of dollars annually. We review the pipeline of drugs and biologics in clinical trials for the treatment of AD. We use the Common Alzheimer's and Related Dementias Research Ontology (CADRO) to classify treatment targets and mechanisms of action. We review our annual pipeline reports for the past 5 years to provide longitudinal insight into clinical trials and drug development for AD. METHODS We reviewed ClinicalTrials.gov as of February 27, 2020, and identified all trials of pharmacologic agents currently being developed for treatment of AD as represented on this widely used U.S. Food and Drug Administration registry. RESULTS There are 121 agents in clinical trials for the treatment of AD. Twenty-nine agents are in 36 Phase 3 trials, 65 agents are in 73 Phase 2 trials, and 27 agents are in 27 Phase 1 trials. Twelve agents in trials target cognitive enhancement and 12 are intended to treat neuropsychiatric and behavioral symptoms. There are 97 agents in disease modification trials. Compared to the 2019 pipeline, there is an increase in the number of disease-modifying agents targeting pathways other than amyloid or tau. DISCUSSION The 2020 pipeline has innovations in clinical trials and treatment targets that provide hope for greater success in AD drug development programs. Review of clinical trials over the past 5 years show that there is progressive emphasis on non-amyloid targets, including candidate treatments for inflammation, synapse and neuronal protection, vascular factors, neurogenesis, and epigenetic interventions. There has been a marked growth in repurposed agents in the pipeline.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada, Las Vegas (UNLV)Las VegasNevadaUSA
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Marwan Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | | |
Collapse
|
39
|
Benek O, Korabecny J, Soukup O. A Perspective on Multi-target Drugs for Alzheimer's Disease. Trends Pharmacol Sci 2020; 41:434-445. [PMID: 32448557 DOI: 10.1016/j.tips.2020.04.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) has a complex pathophysiology that includes aggregation of pathological proteins, impaired neurotransmission, increased oxidative stress, or microglia-mediated neuroinflammation. Therapeutics targeting only one of these AD-related subpathologies have not yet been successful in the search for a disease-modifying treatment. Therefore, multi-target drugs (MTDs) aiming simultaneously at several subpathologies are expected to be a better approach. However, the concept of MTD is inherently connected with several limitations, which are often ignored during MTD design and development. Here, we provide an overview of the MTD approach and discuss its potential pitfalls in the context of AD treatment. We also put forward ideas to be used in the rational design of MTDs to obtain drugs that are effective against AD.
Collapse
Affiliation(s)
- Ondrej Benek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|