1
|
Albrecht M, de Jonge R, Buysse C, Dremmen MHG, van der Eerden AW, de Hoog M, Tibboel D, Hunfeld M. Prognostic Value of Brain Magnetic Resonance Imaging in Children After Out-of-Hospital Cardiac Arrest: Predictive Value of Normal Magnetic Resonance Imaging for a Favorable Two-Year Outcome. Pediatr Neurol 2025; 165:96-104. [PMID: 39987637 DOI: 10.1016/j.pediatrneurol.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Determine the predictive value of brain magnetic resonance imaging (MRI) findings less than or equal to seven days post-pediatric out-of-hospital cardiac arrest (OHCA) for long-term outcomes. METHODS This retrospective single-center study included children (zero to 17 years) with OHCA admitted to a tertiary care hospital pediatrc intensive care unit from 2012 to 2020 who underwent brain MRI at most seven days postarrest. A neuroimaging scoring system was designed, using T1-, T2-, and diffusion-weighted images based on previously published scores and brain injury patterns. Extensive brain injury was defined as ≥50% cortex/white matter injury or four or more of nine predefined brain regions. Pediatric cerebral performance category (PCPC) scores were determined at hospital discharge and two years post-OHCA as part of routine follow-up care. Favorable neurological outcomes were defined as PCPC scores of 1 to 2 or no change from prearrest status. RESULTS Among 142 children, 56 had a brain MRI at less than or equal to seven days postarrest. Median arrest age was 3.3 years (first and third quartiles [Q1, Q3]: 0.6, 13.6), and 64% were male. Brain MRI was obtained four days post-OHCA (Q1, Q3: 3, 5). Normal brain MRI findings (i.e., negative test result) predicted favorable outcomes with 100% negative predictive value, whereas extensive injury (i.e., positive test result) predicted unfavorable outcomes and death with 100% positive predictive value. CONCLUSIONS A normal brain MRI at less than or equal to seven days postarrest predicts favorable neurological outcomes two years later, whereas extensive brain injury predicts unfavorable neurological outcomes or death at discharge and two years post-OHCA.
Collapse
Affiliation(s)
- Marijn Albrecht
- Division of Pediatric Intensive Care, Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Rogier de Jonge
- Division of Pediatric Intensive Care, Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Corinne Buysse
- Division of Pediatric Intensive Care, Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marjolein H G Dremmen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anke W van der Eerden
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Matthijs de Hoog
- Division of Pediatric Intensive Care, Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Intensive Care, Erasmus MC, Rotterdam, The Netherlands
| | - Maayke Hunfeld
- Division of Pediatric Intensive Care, Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Scholefield BR, Tijssen J, Ganesan SL, Kool M, Couto TB, Topjian A, Atkins DL, Acworth J, McDevitt W, Laughlin S, Guerguerian AM. Prediction of good neurological outcome after return of circulation following paediatric cardiac arrest: A systematic review and meta-analysis. Resuscitation 2025; 207:110483. [PMID: 39742939 DOI: 10.1016/j.resuscitation.2024.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
AIM To evaluate the ability of blood-biomarkers, clinical examination, electrophysiology, or neuroimaging, assessed within 14 days from return of circulation to predict good neurological outcome in children following out- or in-hospital cardiac arrest. METHODS Medline, EMBASE and Cochrane Trials databases were searched (2010-2023). Sensitivity and false positive rates (FPR) for good neurological outcome (defined as either 'no, mild, moderate disability or minimal change from baseline') in paediatric survivors were calculated for each predictor. Risk of bias was assessed using the QUIPS tool. RESULTS Thirty-five studies (2974 children) were included. The presence of any of the following had a FPR < 30% for predicting good neurological outcome with moderate (50-75%) or high (>75%) sensitivity: bilateral reactive pupillary light response within 12 h; motor component ≥ 4 on the Glasgow Coma Scale score at 6 h; bilateral somatosensory evoked potentials at 24-72 h; sleep spindles, and continuous cortical activity on electroencephalography within 24 h; or a normal brain MRI at 4-6d. Early (≤12 h) normal lactate levels (<2mmol/L) or normal s100b, NSE or MBP levels predicted good neurological outcome with FPR rate < 30% and low (<50%) sensitivity. All studies had moderate to high risk of bias with timing of measurement, definition of test, use of multi-modal tests, or outcome assessment heterogeneity. CONCLUSIONS Clinical examination, electrophysiology, neuroimaging or blood-biomarkers as individual tests can predict good neurological outcome after cardiac arrest in children. However, evidence is often low quality and studies are heterogeneous. Use of a standardised, multimodal, prognostic algorithm should be studied and is likely of added value over single modality testing.
Collapse
Affiliation(s)
- Barnaby R Scholefield
- Department of Critical Care Medicine, Hospital for Sick Children, Department of Paediatrics, University of Toronto, Neurosciences and Mental Health Program, Research Institute Toronto, ON, Canada.
| | - Janice Tijssen
- Western University, Department of Paediatrics, London, ON, Canada & Paediatric Critical Care Medicine, Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Saptharishi Lalgudi Ganesan
- Western University, Department of Paediatrics, London, ON, Canada & Paediatric Critical Care Medicine, Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Mirjam Kool
- Paediatric Intensive Care Unit, Birmingham Women's and Children's NHS Foundation Trust, UK
| | - Thomaz Bittencourt Couto
- Hospital Israelita Albert Einstein AND Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brasil
| | - Alexis Topjian
- The Children's Hospital of Philadelphia, Department of Anesthesiology and Critical Care Medicine, and and Pediatrics, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Dianne L Atkins
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jason Acworth
- Emergency Department, Queensland Children's Hospital, Brisbane, Australia
| | - Will McDevitt
- Department of Neurophysiology, Birmingham Women's and Children's NHS Foundation Trust, and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Suzanne Laughlin
- Department of Diagnostic and Interventional Radiology, Hospital for Sick Children, ON, Canada, Department of Medical Imaging, University of Toronto, ON, Canada
| | - Anne-Marie Guerguerian
- Department of Critical Care Medicine, Hospital for Sick Children, Department of Paediatrics, University of Toronto, Neurosciences and Mental Health Program, Research Institute Toronto, ON, Canada
| |
Collapse
|
3
|
Yu P, Foster S, Li X, Bhaskar P, Morriss M, Singh S, Burr T, Sirsi D, Raman L, Lasa JJ. The association between early hypotension and neurologic outcome after pediatric cardiac ECPR in children with cardiac disease. Resusc Plus 2024; 20:100808. [PMID: 39512525 PMCID: PMC11541672 DOI: 10.1016/j.resplu.2024.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Objective Explore the relationship between early hypotension after ECPR and survival to hospital discharge (SHD) with favorable neurologic outcome (FNO) in children with cardiac disease. Methods Retrospective cohort study of patients undergoing ECPR at a single center pediatric cardiac intensive care unit. Hypotension was defined as MAP < 5th percentile for age. Primary and secondary exposure variables were presence and burden of hypotension respectively, during the first 6 h after ECPR. Our primary outcome was SHD with FNO defined by Pediatric Cerebral Performance Category score of 1-3 or no change from baseline. Secondary outcomes included acute central nervous system (CNS) injury via neuroimaging and EEG. Univariate and multivariable logistic regression analyses were performed. Results We analyzed 82 index ECPR events from 2010 to 2022. Hypotension was observed for at least one MAP value in 36/82 (43.9%) of the cohort. The median [IQR] burden of hypotension was 0 [0,14.3]%. Patients with SHD with FNO had shorter CPR duration, lower number of epinephrine and calcium doses, and lower maximum lactate levels when compared to patients who died or had SHD without FNO. After controlling for potential confounders, there was no association between presence of hypotension or burden of hypotension and SHD, SHD with FNO, or acute CNS injury via neuroimaging and EEG. Conclusion In children with cardiac disease, there was no association between early hypotension after ECPR and SHD with FNO. Multicenter studies are needed to better understand how early hypotension after ECPR affects neurologic outcomes in children with cardiac disease.
Collapse
Affiliation(s)
- Priscilla Yu
- University of Texas Southwestern Medical Center, Dept of Pediatrics, Divisions of Cardiology, Dallas, TX, United States
- University of Texas Southwestern Medical Center, Dept of Pediatrics, Division of Critical Care Medicine, Dallas, TX, United States
| | - Sierra Foster
- University of Texas Southwestern Medical Center, Dept of Pediatrics, Division of Critical Care Medicine, Dallas, TX, United States
| | - Xilong Li
- University of Texas Southwestern Medical Center, DPeter O'Donnell Jr. School of Public Health, Dallas, TX, United States
| | - Priya Bhaskar
- University of Texas Southwestern Medical Center, Dept of Pediatrics, Divisions of Cardiology, Dallas, TX, United States
- University of Texas Southwestern Medical Center, Dept of Pediatrics, Division of Critical Care Medicine, Dallas, TX, United States
| | - Michael Morriss
- University of Texas Southwestern Medical Center, Department of Radiology, Division of Pediatric Radiology, Dallas, TX, United States
| | - Sumit Singh
- University of Texas Southwestern Medical Center, Department of Radiology, Division of Pediatric Radiology, Dallas, TX, United States
| | - Tyler Burr
- McLane Children’s Hospital, Department of Pediatrics, Temple, TX, United States
| | - Deepa Sirsi
- University of Texas Southwestern Medical Center, Dept of Pediatrics and Neurology, Dallas, TX, United States
| | - Lakshmi Raman
- University of Texas Southwestern Medical Center, Dept of Pediatrics, Division of Critical Care Medicine, Dallas, TX, United States
| | - Javier J. Lasa
- University of Texas Southwestern Medical Center, Dept of Pediatrics, Divisions of Cardiology, Dallas, TX, United States
- University of Texas Southwestern Medical Center, Dept of Pediatrics, Division of Critical Care Medicine, Dallas, TX, United States
| |
Collapse
|
4
|
Plante V, Basu M, Gettings JV, Luchette M, LaRovere KL. Update in Pediatric Neurocritical Care: What a Neurologist Caring for Critically Ill Children Needs to Know. Semin Neurol 2024; 44:362-388. [PMID: 38788765 DOI: 10.1055/s-0044-1787047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Currently nearly one-quarter of admissions to pediatric intensive care units (PICUs) worldwide are for neurocritical care diagnoses that are associated with significant morbidity and mortality. Pediatric neurocritical care is a rapidly evolving field with unique challenges due to not only age-related responses to primary neurologic insults and their treatments but also the rarity of pediatric neurocritical care conditions at any given institution. The structure of pediatric neurocritical care services therefore is most commonly a collaborative model where critical care medicine physicians coordinate care and are supported by a multidisciplinary team of pediatric subspecialists, including neurologists. While pediatric neurocritical care lies at the intersection between critical care and the neurosciences, this narrative review focuses on the most common clinical scenarios encountered by pediatric neurologists as consultants in the PICU and synthesizes the recent evidence, best practices, and ongoing research in these cases. We provide an in-depth review of (1) the evaluation and management of abnormal movements (seizures/status epilepticus and status dystonicus); (2) acute weakness and paralysis (focusing on pediatric stroke and select pediatric neuroimmune conditions); (3) neuromonitoring modalities using a pathophysiology-driven approach; (4) neuroprotective strategies for which there is evidence (e.g., pediatric severe traumatic brain injury, post-cardiac arrest care, and ischemic stroke and hemorrhagic stroke); and (5) best practices for neuroprognostication in pediatric traumatic brain injury, cardiac arrest, and disorders of consciousness, with highlights of the 2023 updates on Brain Death/Death by Neurological Criteria. Our review of the current state of pediatric neurocritical care from the viewpoint of what a pediatric neurologist in the PICU needs to know is intended to improve knowledge for providers at the bedside with the goal of better patient care and outcomes.
Collapse
Affiliation(s)
- Virginie Plante
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Meera Basu
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Matthew Luchette
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Ganesan SL. Combining Electrophysiology and Neuroimaging to Enhance Accuracy of Neuroprognostication in Children After Cardiac Arrest. Neurology 2024; 102:e209254. [PMID: 38350042 DOI: 10.1212/wnl.0000000000209254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Affiliation(s)
- Saptharishi L Ganesan
- From the Department of Paediatrics (S.L.G.), Schulich School of Medicine & Dentistry, Western University, London; and Paediatric Critical Care Medicine (S.L.G.), Children's Hospital, London Health Sciences Centre, Ontario, Canada
| |
Collapse
|
6
|
Bach AM, Kirschen MP, Fung FW, Abend NS, Ampah S, Mondal A, Huh JW, Chen SSL, Yuan I, Graham K, Berman JI, Vossough A, Topjian A. Association of EEG Background With Diffusion-Weighted Magnetic Resonance Neuroimaging and Short-Term Outcomes After Pediatric Cardiac Arrest. Neurology 2024; 102:e209134. [PMID: 38350044 PMCID: PMC11384654 DOI: 10.1212/wnl.0000000000209134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES EEG and MRI features are independently associated with pediatric cardiac arrest (CA) outcomes, but it is unclear whether their combination improves outcome prediction. We aimed to assess the association of early EEG background category with MRI ischemia after pediatric CA and determine whether addition of MRI ischemia to EEG background features and clinical variables improves short-term outcome prediction. METHODS This was a single-center retrospective cohort study of pediatric CA with EEG initiated ≤24 hours and MRI obtained ≤7 days of return of spontaneous circulation. Initial EEG background was categorized as normal, slow/disorganized, discontinuous/burst-suppression, or attenuated-featureless. MRI ischemia was defined as percentage of brain tissue with apparent diffusion coefficient (ADC) <650 × 10-6 mm2/s and categorized as high (≥10%) or low (<10%). Outcomes were mortality and unfavorable neurologic outcome (Pediatric Cerebral Performance Category increase ≥1 from baseline resulting in ICU discharge score ≥3). The Kruskal-Wallis test evaluated the association of EEG with MRI. Area under the receiver operating characteristic (AUROC) curve evaluated predictive accuracy. Logistic regression and likelihood ratio tests assessed multivariable outcome prediction. RESULTS We evaluated 90 individuals. EEG background was normal in 16 (18%), slow/disorganized in 42 (47%), discontinuous/burst-suppressed in 12 (13%), and attenuated-featureless in 20 (22%) individuals. The median percentage of MRI ischemia was 5% (interquartile range 1-18); 32 (36%) individuals had high MRI ischemia burden. Twenty-eight (31%) individuals died, and 58 (64%) had unfavorable neurologic outcome. Worse EEG background category was associated with more MRI ischemia (p < 0.001). The combination of EEG background and MRI ischemia burden had higher predictive accuracy than EEG alone (AUROC: mortality: 0.92 vs 0.87, p = 0.03) or MRI alone (AUROC: mortality: 0.92 vs 0.84, p = 0.02; unfavorable: 0.83 vs 0.73, p < 0.01). Addition of percentage of MRI ischemia to clinical variables and EEG background category improved prediction for mortality (χ2 = 19.1, p < 0.001) and unfavorable neurologic outcome (χ2 = 4.8, p = 0.03) and achieved high predictive accuracy (AUROC: mortality: 0.97; unfavorable: 0.92). DISCUSSION Early EEG background category was associated with MRI ischemia after pediatric CA. Combining EEG and MRI data yielded higher outcome predictive accuracy than either modality alone. The addition of MRI ischemia to clinical variables and EEG background improved short-term outcome prediction.
Collapse
Affiliation(s)
- Ashley M Bach
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Matthew P Kirschen
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - France W Fung
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Nicholas S Abend
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Steve Ampah
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Antara Mondal
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Jimmy W Huh
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Shih-Shan L Chen
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Ian Yuan
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Kathryn Graham
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Jeffrey I Berman
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Arastoo Vossough
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Alexis Topjian
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| |
Collapse
|
7
|
Vassar R, Mehta N, Epps L, Jiang F, Amorim E, Wietstock S. Mortality and Timing of Withdrawal of Life-Sustaining Therapies After Out-of-Hospital Cardiac Arrest: Two-Center Retrospective Pediatric Cohort Study. Pediatr Crit Care Med 2024; 25:241-249. [PMID: 37982686 DOI: 10.1097/pcc.0000000000003412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Pediatric out-of-hospital cardiac arrest (OHCA) is associated with substantial morbidity and mortality. Limited data exist to guide timing and method of neurologic prognostication after pediatric OHCA, making counseling on withdrawal of life-sustaining therapies (WLSTs) challenging. This study investigates the timing and mode of death after pediatric OHCA and factors associated with mortality. Additionally, this study explores delayed recovery after comatose examination on day 3 postarrest. DESIGN This is a retrospective, observational study based on data collected from hospital databases and chart reviews. SETTING Data collection occurred in two pediatric academic hospitals between January 1, 2016, and December 31, 2020. PATIENTS Patients were identified from available databases and electronic medical record queries for the International Classification of Diseases , 10th Edition (ICD-10) code I46.9 (Cardiac Arrest). Patient inclusion criteria included age range greater than or equal to 48 hours to less than 18 years, OHCA within 24 hours of admission, greater than or equal to 1 min of cardiopulmonary resuscitation, and return-of-spontaneous circulation for greater than or equal to 20 min. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS One hundred thirty-five children (65% male) with a median age of 3 years (interquartile range 0.6-11.8) met inclusion criteria. Overall, 63 of 135 patients (47%) died before hospital discharge, including 34 of 63 patients (54%) after WLST. Among these, 20 of 34 patients underwent WLST less than or equal to 3 days postarrest, including 10 of 34 patients who underwent WLST within 1 day. WLST occurred because of poor perceived neurologic prognosis in all cases, although 7 of 34 also had poor perceived systemic prognosis. Delayed neurologic recovery from coma on day 3 postarrest was observed in 7 of 72 children (10%) who ultimately survived to discharge. CONCLUSIONS In our two centers between 2016 and 2020, more than half the deaths after pediatric OHCA occurred after WLST, and a majority of WLST occurred within 3 days postarrest. Additional research is warranted to determine optimal timing and predictors of neurologic prognosis after pediatric OHCA to better inform families during goals of care discussions.
Collapse
Affiliation(s)
- Rachel Vassar
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Nehali Mehta
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital, University of California, San Francisco, CA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lane Epps
- Department of Emergency Medicine, University of California, San Francisco, CA
| | - Fei Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Edilberto Amorim
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Division of Neurology, Zuckerberg San Francisco General Hospital, San Francisco, CA
| | - Sharon Wietstock
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital, University of California, San Francisco, CA
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital Oakland, University of California, San Francisco, Oakland, CA
| |
Collapse
|
8
|
Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, Fernanda de Almeida M, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Daripa Kawakami M, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, John Madar R, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, et alBerg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, Fernanda de Almeida M, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Daripa Kawakami M, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, John Madar R, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, Gene Ong YK, Orkin AM, Parr MJ, Patocka C, Perkins GD, Perlman JM, Rabi Y, Raitt J, Ramachandran S, Ramaswamy VV, Raymond TT, Reis AG, Reynolds JC, Ristagno G, Rodriguez-Nunez A, Roehr CC, Rüdiger M, Sakamoto T, Sandroni C, Sawyer TL, Schexnayder SM, Schmölzer GM, Schnaubelt S, Semeraro F, Singletary EM, Skrifvars MB, Smith CM, Soar J, Stassen W, Sugiura T, Tijssen JA, Topjian AA, Trevisanuto D, Vaillancourt C, Wyckoff MH, Wyllie JP, Yang CW, Yeung J, Zelop CM, Zideman DA, Nolan JP. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Resuscitation 2024; 195:109992. [PMID: 37937881 DOI: 10.1016/j.resuscitation.2023.109992] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The International Liaison Committee on Resuscitation engages in a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation and first aid science. Draft Consensus on Science With Treatment Recommendations are posted online throughout the year, and this annual summary provides more concise versions of the final Consensus on Science With Treatment Recommendations from all task forces for the year. Topics addressed by systematic reviews this year include resuscitation of cardiac arrest from drowning, extracorporeal cardiopulmonary resuscitation for adults and children, calcium during cardiac arrest, double sequential defibrillation, neuroprognostication after cardiac arrest for adults and children, maintaining normal temperature after preterm birth, heart rate monitoring methods for diagnostics in neonates, detection of exhaled carbon dioxide in neonates, family presence during resuscitation of adults, and a stepwise approach to resuscitation skills training. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, using Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces list priority knowledge gaps for further research. Additional topics are addressed with scoping reviews and evidence updates.
Collapse
|
9
|
Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, de Almeida MF, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Kawakami MD, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, Madar RJ, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, et alBerg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, de Almeida MF, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Kawakami MD, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, Madar RJ, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, Ong YKG, Orkin AM, Parr MJ, Patocka C, Perkins GD, Perlman JM, Rabi Y, Raitt J, Ramachandran S, Ramaswamy VV, Raymond TT, Reis AG, Reynolds JC, Ristagno G, Rodriguez-Nunez A, Roehr CC, Rüdiger M, Sakamoto T, Sandroni C, Sawyer TL, Schexnayder SM, Schmölzer GM, Schnaubelt S, Semeraro F, Singletary EM, Skrifvars MB, Smith CM, Soar J, Stassen W, Sugiura T, Tijssen JA, Topjian AA, Trevisanuto D, Vaillancourt C, Wyckoff MH, Wyllie JP, Yang CW, Yeung J, Zelop CM, Zideman DA, Nolan JP. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation 2023; 148:e187-e280. [PMID: 37942682 PMCID: PMC10713008 DOI: 10.1161/cir.0000000000001179] [Show More Authors] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The International Liaison Committee on Resuscitation engages in a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation and first aid science. Draft Consensus on Science With Treatment Recommendations are posted online throughout the year, and this annual summary provides more concise versions of the final Consensus on Science With Treatment Recommendations from all task forces for the year. Topics addressed by systematic reviews this year include resuscitation of cardiac arrest from drowning, extracorporeal cardiopulmonary resuscitation for adults and children, calcium during cardiac arrest, double sequential defibrillation, neuroprognostication after cardiac arrest for adults and children, maintaining normal temperature after preterm birth, heart rate monitoring methods for diagnostics in neonates, detection of exhaled carbon dioxide in neonates, family presence during resuscitation of adults, and a stepwise approach to resuscitation skills training. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, using Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces list priority knowledge gaps for further research. Additional topics are addressed with scoping reviews and evidence updates.
Collapse
|
10
|
Fink EL, Kochanek PM, Beers SR, Clark RRSB, Berger RP, Bayir H, Topjian AA, Newth C, Press C, Maddux AB, Willyerd F, Hunt EA, Siems A, Chung MG, Smith L, Doughty L, Diddle JW, Patregnani J, Piantino J, Walson KH, Balakrishnan B, Meyer MT, Friess S, Pineda J, Maloney D, Rubin P, Haller TL, Treble-Barna A, Wang C, Lee V, Wisnowski JL, Subramanian S, Narayanan S, Blüml S, Fabio A, Panigrahy A. Assessment of Brain Magnetic Resonance and Spectroscopy Imaging Findings and Outcomes After Pediatric Cardiac Arrest. JAMA Netw Open 2023; 6:e2320713. [PMID: 37389874 PMCID: PMC10314315 DOI: 10.1001/jamanetworkopen.2023.20713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/28/2023] [Indexed: 07/01/2023] Open
Abstract
Importance Morbidity and mortality after pediatric cardiac arrest are chiefly due to hypoxic-ischemic brain injury. Brain features seen on magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) after arrest may identify injury and aid in outcome assessments. Objective To analyze the association of brain lesions seen on T2-weighted MRI and diffusion-weighted imaging and N-acetylaspartate (NAA) and lactate concentrations seen on MRS with 1-year outcomes after pediatric cardiac arrest. Design, Setting, and Participants This multicenter cohort study took place in pediatric intensive care units at 14 US hospitals between May 16, 2017, and August 19, 2020. Children aged 48 hours to 17 years who were resuscitated from in-hospital or out-of-hospital cardiac arrest and who had a clinical brain MRI or MRS performed within 14 days postarrest were included in the study. Data were analyzed from January 2022 to February 2023. Exposure Brain MRI or MRS. Main Outcomes and Measures The primary outcome was an unfavorable outcome (either death or survival with a Vineland Adaptive Behavior Scales, Third Edition, score of <70) at 1 year after cardiac arrest. MRI brain lesions were scored according to region and severity (0 = none, 1 = mild, 2 = moderate, 3 = severe) by 2 blinded pediatric neuroradiologists. MRI Injury Score was a sum of T2-weighted and diffusion-weighted imaging lesions in gray and white matter (maximum score, 34). MRS lactate and NAA concentrations in the basal ganglia, thalamus, and occipital-parietal white and gray matter were quantified. Logistic regression was performed to determine the association of MRI and MRS features with patient outcomes. Results A total of 98 children, including 66 children who underwent brain MRI (median [IQR] age, 1.0 [0.0-3.0] years; 28 girls [42.4%]; 46 White children [69.7%]) and 32 children who underwent brain MRS (median [IQR] age, 1.0 [0.0-9.5] years; 13 girls [40.6%]; 21 White children [65.6%]) were included in the study. In the MRI group, 23 children (34.8%) had an unfavorable outcome, and in the MRS group, 12 children (37.5%) had an unfavorable outcome. MRI Injury Scores were higher among children with an unfavorable outcome (median [IQR] score, 22 [7-32]) than children with a favorable outcome (median [IQR] score, 1 [0-8]). Increased lactate and decreased NAA in all 4 regions of interest were associated with an unfavorable outcome. In a multivariable logistic regression adjusted for clinical characteristics, increased MRI Injury Score (odds ratio, 1.12; 95% CI, 1.04-1.20) was associated with an unfavorable outcome. Conclusions and Relevance In this cohort study of children with cardiac arrest, brain features seen on MRI and MRS performed within 2 weeks after arrest were associated with 1-year outcomes, suggesting the utility of these imaging modalities to identify injury and assess outcomes.
Collapse
Affiliation(s)
- Ericka L. Fink
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sue R. Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert R. S. B. Clark
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rachel P. Berger
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hülya Bayir
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alexis A. Topjian
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Christopher Newth
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Los Angeles, Los Angeles, California
| | - Craig Press
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Aline B. Maddux
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora
| | | | - Elizabeth A. Hunt
- Departments of Anesthesiology and Critical Care Medicine, and Pediatrics, Johns Hopkins Children’s Center, Baltimore, Maryland
| | - Ashley Siems
- Departments of Anesthesiology and Critical Care Medicine, and Pediatrics, Johns Hopkins Children’s Center, Baltimore, Maryland
| | - Melissa G. Chung
- Department of Pediatrics, Division of Critical Care Medicine, and Pediatric Neurology, Nationwide Children’s Hospital, Columbus, Ohio
| | - Lincoln Smith
- Department of Pediatrics, University of Washington School of Medicine, Seattle
| | - Leslie Doughty
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - J. Wesley Diddle
- Department of Pediatrics, Children’s National Medical Center, Washington, DC
| | - Jason Patregnani
- Department of Pediatrics, Children’s National Medical Center, Washington, DC
| | - Juan Piantino
- Department of Pediatrics, Oregon Health & Science University, Portland
| | | | - Binod Balakrishnan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Michael T. Meyer
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Stuart Friess
- Department of Pediatrics, St Louis Children’s Hospital, St Louis, Missouri
| | - Jose Pineda
- Department of Anesthesia Critical Care, Mattel Children’s Hospital, University of California, Los Angeles
| | - David Maloney
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pamela Rubin
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tamara L. Haller
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chunyan Wang
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Vince Lee
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica L. Wisnowski
- Department of Radiology, Children’s Hospital of Los Angeles, Los Angeles, California
| | - Subramanian Subramanian
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Srikala Narayanan
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stefan Blüml
- Department of Radiology, Children’s Hospital of Los Angeles, Los Angeles, California
| | - Anthony Fabio
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
11
|
Henry M, Filipp SL, Aydin EY, Chiriboga N, Zelinka K, Smith LE, Gurka MJ, Irazuzta J, Fonseca Y, Winter MC, Pringle C. Multicentric validation of a prognostic tool for predicting brain death following out-of-hospital cardiac arrest in children. Resuscitation 2023; 185:109727. [PMID: 36764571 PMCID: PMC10065949 DOI: 10.1016/j.resuscitation.2023.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
AIM Out-of-hospital cardiac arrest (OHCA) in pediatric patients is associated with high rates of mortality and neurologic injury, with no definitive evidence-based method to predict outcomes available. A prognostic scoring tool for adults, The Brain Death After Cardiac Arrest (BDCA) score, was recently developed and validated. We aimed to validate this score in pediatric patients. METHODS Retrospective cohort study of pediatric patients admitted to 5 PICUs after OHCA between 2011 and 2021. We extracted BDCA score elements for those who survived at least 24 hours but died as a result of their OHCA. We assessed score discrimination for the definitive outcome of brain death. Subgroup analysis was performed for infants < 12mo versus children ≥ 12mo, those who likely had brain death but had withdrawal of life sustaining therapy (WLST) prior to declaration, and by etiology and duration of arrest. RESULTS 389 subjects were identified across 5 institutions, with 282 meeting inclusion criteria. 169 (59.9%) were formally declared brain dead; 58 (20.6%) had findings consistent with brain death but had withdrawal of life sustaining therapies prior to completion of formal declaration. Area under the receiver operating characteristic curve for the age ≥ 12mo cohort was 0.82 [95% CI 0.75, 0.90], which mirrored the adult subject AUCs of 0.82 [0.77, 0.86] and 0.81 [0.76, 0.86] in the development and validation cohorts. Scores demonstrated worse discrimination in the infant cohort (AUC = 0.61). CONCLUSIONS The BDCA score shows promise in children ≥ 12mo following OHCA and may be considered in conjunction with existing multimodal prognostication approaches.
Collapse
Affiliation(s)
- Matthew Henry
- College of Medicine, Department of Pediatrics, Critical Care Medicine, University of Florida, PO Box 100296, Gainesville, FL 32610, United States.
| | - Stephanie L Filipp
- College of Medicine, Department of Pediatrics, Pediatric Research Hub, University of Florida, United States
| | - Elber Yuksel Aydin
- College of Medicine, Department of Pediatrics, Critical Care Medicine, University of Florida-Jacksonville, United States
| | - Nicolas Chiriboga
- Pediatric Neurocritical Care, Northwestern University Feinberg School of Medicine, United States
| | - Kailea Zelinka
- Department of Pediatrics, Critical Care Medicine, University of Maryland, United States
| | - Lorena Espinosa Smith
- Children's Hospital Los Angeles, Department of Anesthesiology Critical Care Medicine, United States
| | - Matthew J Gurka
- College of Medicine, Department of Pediatrics, Pediatric Research Hub, University of Florida, United States
| | - Jose Irazuzta
- College of Medicine, Department of Pediatrics, Critical Care Medicine, University of Florida-Jacksonville, United States
| | - Yudy Fonseca
- Department of Pediatrics, Critical Care Medicine, University of Maryland School of Medicine, United States
| | - Meredith C Winter
- Children's Hospital Los Angeles, Department of Anesthesiology Critical Care Medicine, United States; University of Southern California Keck School of Medicine, Department of Pediatrics, United States
| | - Charlene Pringle
- College of Medicine, Department of Pediatrics, Critical Care Medicine, University of Florida, PO Box 100296, Gainesville, FL 32610, United States
| |
Collapse
|
12
|
Park JY, Kim YH, Ahn SJ, Lee JH, Lee DW, Hwang SY, Song YG. Association between the extent of diffusion restriction on brain diffusion-weighted imaging and neurological outcomes after an out-of-hospital cardiac arrest. Resuscitation 2023; 187:109761. [PMID: 36898602 DOI: 10.1016/j.resuscitation.2023.109761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND This study evaluated the association between the extent of diffusion restriction on brain diffusion-weighted imaging (DWI) and neurological outcomes in patients who underwent targeted temperature management (TTM) after an out-of-hospital cardiac arrest (OHCA). METHODS Patients who underwent brain magnetic resonance imaging within 10 days of OHCA between 2012 and 2021 were analysed. The extent of diffusion restriction was described according to the modified DWI Alberta Stroke Program Early Computed Tomography Score (DWI-ASPECTS). The 35 predefined brain regions were assigned a score if diffuse signal changes were concordantly present in DWI scans and apparent diffusion coefficient maps. The primary outcome was an unfavourable neurological outcome at 6 months. The sensitivity, specificity, and receiver operating characteristic (ROC) curves for the measured parameters were analysed. Cut-off values were determined to predict the primary outcome. The predictive cut-off DWI-ASPECTS was internally validated using five-fold cross-validation. RESULTS Of the 301 patients, 108 (35.9%) had 6-month favourable neurological outcomes. Patients with unfavourable outcomes had higher whole-brain DWI-ASPECTS (median, 31 [26-33] vs. 0 [0-1], P < 0.001) than those with favourable outcomes. The area under the ROC curve (AUROC) of whole-brain DWI-ASPECTS was 0.957 (95% confidence interval [CI] 0.928-0.977). A cut-off value of ≥8 for unfavourable neurological outcomes had specificity and sensitivity of 100% (95% CI 96.6-100) and 89.6% (95% CI 84.4-93.6), respectively. The mean AUROC was 0.956. CONCLUSION More extensive diffusion restriction on DWI-ASPECTS in patients with OHCA who underwent TTM was associated with 6-month unfavourable neurological outcomes. Running title: Diffusion restriction and neurological outcomes after cardiac arrest.
Collapse
Affiliation(s)
- Jong Yoon Park
- Department of Emergency Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Yong Hwan Kim
- Department of Emergency Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea.
| | - Seong Jun Ahn
- Department of Emergency Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Jun Ho Lee
- Department of Emergency Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Dong Woo Lee
- Department of Emergency Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Seong Youn Hwang
- Department of Emergency Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Yun Gyu Song
- Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| |
Collapse
|
13
|
Jarvis JM, Roy J, Schmithorst V, Lee V, Devine D, Meyers B, Munjal N, Clark RSB, Kochanek PM, Panigrahy A, Ceschin R, Fink EL. Limbic pathway vulnerability associates with neurologic outcome in children after cardiac arrest. Resuscitation 2023; 182:109634. [PMID: 36336196 PMCID: PMC10408582 DOI: 10.1016/j.resuscitation.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
AIM To analyze whether brain connectivity sequences including diffusion tensor imaging (DTI) and resting state functional magnetic resonance imaging (rsfMRI) identify vulnerable brain regions and networks associated with neurologic outcome after pediatric cardiac arrest. METHODS Children aged 2 d-17 y with cardiac arrest were enrolled in one of 2 parent studies at a single center. Clinically indicated brain MRI with DTI and rsfMRI and performed within 2 weeks after arrest were analyzed. Tract-wise fractional anisotropy (FA) and axial, radial, and mean diffusivity assessed DTI, and functional connectivity strength (FCS) assessed rsfMRI between outcome groups. Unfavorable neurologic outcome was defined as Pediatric Cerebral Performance Category score 4-6 or change > 1 between 6 months after arrest vs baseline. RESULTS Among children with DTI (n = 28), 57% had unfavorable outcome. Mean, radial, axial diffusivity and FA of varying direction of magnitude in the limbic tracts, including the right cingulum parolfactory, left cingulum parahippocampal, corpus callosum forceps major, and corpus callosum forceps minor tracts, were associated with unfavorable neurologic outcome (p < 0.05). Among children with rsfMRI (n = 12), 67% had unfavorable outcome. Decreased FCS in the ventromedial and dorsolateral prefrontal cortex, insula, precentral gyrus, anterior cingulate, and inferior parietal lobule were correlated regionally with unfavorable neurologic outcome (p < 0.05 Family-Wise Error corrected). CONCLUSION Decreased multimodal connectivity measures of paralimbic tracts were associated with unfavorable neurologic outcome after pediatric cardiac arrest. Longitudinal analysis correlating brain connectivity sequences with long term neuropsychological outcomes to identify the impact of pediatric cardiac arrest in vulnerable brain networks over time appears warranted.
Collapse
Affiliation(s)
- Jessica M Jarvis
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, United States
| | - Joy Roy
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, United States
| | - Vanessa Schmithorst
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States
| | - Vince Lee
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States
| | - Danielle Devine
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, United States
| | - Benjamin Meyers
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States
| | - Neil Munjal
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, United States
| | - Robert S B Clark
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, United States; Safar Center for Resuscitation Research, University of Pittsburgh, United States
| | - Patrick M Kochanek
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, United States; Safar Center for Resuscitation Research, University of Pittsburgh, United States
| | - Ashok Panigrahy
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States
| | - Rafael Ceschin
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, United States; Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, United States; Safar Center for Resuscitation Research, University of Pittsburgh, United States.
| |
Collapse
|
14
|
Kirschen MP, Berman JI, Liu H, Ouyang M, Mondal A, Griffis H, Levow C, Winters M, Lang SS, Huh J, Huang H, Berg RA, Vossough A, Topjian A. Association Between Quantitative Diffusion-Weighted Magnetic Resonance Neuroimaging and Outcome After Pediatric Cardiac Arrest. Neurology 2022; 99:e2615-e2626. [PMID: 36028319 PMCID: PMC9754647 DOI: 10.1212/wnl.0000000000201189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Diffusion MRI can quantify the extent of hypoxic-ischemic brain injury after cardiac arrest. Our objective was to determine the association between the adult-derived threshold of apparent diffusion coefficient (ADC) <650 × 10-6 mm2/s in >10% of brain tissue and an unfavorable outcome after pediatric cardiac arrest. Since ADC decreases exponentially as a function of increasing age, we determined the association between (1) having >10% of brain tissue below a novel age-dependent ADC threshold, and (2) age-normalized whole-brain mean ADC and unfavorable outcome. METHODS This was a retrospective study of patients aged ≤18 years who had cardiac arrest and a clinically obtained brain MRI within 7 days. The primary outcome was unfavorable neurologic status at hospital discharge based on the Pediatric Cerebral Performance Category score. ADC images were extracted from 3-direction diffusion imaging. We determined whether each patient had >10% of voxels with an ADC below prespecified thresholds. We computed the whole-brain mean ADC for each patient. RESULTS One hundred thirty-four patients were analyzed. Patients with ADC <650 × 10-6 mm2/s in >10% of voxels had 15 times higher odds (95% CI 5-65) of an unfavorable outcome compared with patients with ADC <650 × 10-6 mm2/s (area under the receiver operating characteristic curve [AUROC] 0.72 [95% CI 0.63-0.80]). These ADC criteria had a sensitivity and specificity of 0.49 and 0.94, respectively, and positive and negative predictive values of 0.93 and 0.52, respectively, for an unfavorable outcome. The age-dependent ADC threshold that yielded optimal sensitivity and specificity for unfavorable outcomes was <300 × 10-6 mm2/s below each patient's predicted whole-brain mean ADC. The sensitivity, specificity, and positive and negative predictive values for this ADC threshold were 0.53, 0.96, 0.96, and 0.54, respectively (odds ratio [OR] 26.4 [95% CI 7.5-168.3]; AUROC 0.74 [95% CI 0.66-0.83]). Lower age-normalized whole-brain mean ADC was also associated with an unfavorable outcome (OR 0.42 [0.24-0.64], AUROC 0.76 [95% CI 0.66-0.82]). DISCUSSION Quantitative diffusion thresholds on MRI within 7 days after cardiac arrest were associated with an unfavorable outcome in children. The age-independent ADC threshold was highly specific for predicting an unfavorable outcome. However, the specificity and sensitivity increased when using age-dependent ADC thresholds. Age-dependent ADC thresholds may improve prognostic accuracy and require further investigation in larger cohorts. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that quantitative diffusion-weighted imaging within 7 days postarrest can predict an unfavorable clinical outcome in children.
Collapse
Affiliation(s)
- Matthew P Kirschen
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
| | - Jeffrey I Berman
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Hongyan Liu
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Minhui Ouyang
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Antara Mondal
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Heather Griffis
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Cindee Levow
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Madeline Winters
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Shih-Shan Lang
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Jimmy Huh
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Hao Huang
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Robert A Berg
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Arastoo Vossough
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Alexis Topjian
- From the Departments of Anesthesiology and Critical Care Medicine (M.P.K., C.L., M.W., J.H., R.A.B., A.T.), and Radiology (J.I.B., M.O., H.H., A.V.); Data Science and Biostatistics Unit (H.L., A.M., H.G.), Department of Biomedical and Health Informatics, and Department of Neurosurgery (S.-S.L.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
15
|
Piantino JA, Ruzas CM, Press CA, Subramanian S, Balakrishnan B, Panigrahy A, Pettersson D, Maloney JA, Vossough A, Topjian A, Kirschen MP, Doughty L, Chung MG, Maloney D, Haller T, Fabio A, Fink EL. Use of Magnetic Resonance Imaging in Neuroprognostication After Pediatric Cardiac Arrest: Survey of Current Practices. Pediatr Neurol 2022; 134:45-51. [PMID: 35835025 PMCID: PMC9883065 DOI: 10.1016/j.pediatrneurol.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Use of magnetic resonance imaging (MRI) as a tool to aid in neuroprognostication after cardiac arrest (CA) has been described, yet details of specific indications, timing, and sequences are unknown. We aim to define the current practices in use of brain MRI in prognostication after pediatric CA. METHODS A survey was distributed to pediatric institutions participating in three international studies. Survey questions related to center demographics, clinical practice patterns of MRI after CA, neuroimaging resources, and details regarding MRI decision support. RESULTS Response rate was 31% (44 of 143). Thirty-four percent (15 of 44) of centers have a clinical pathway informing the use of MRI after CA. Fifty percent (22 of 44) of respondents reported that an MRI is obtained in nearly all patients with CA, and 32% (14 of 44) obtain an MRI in those who do not return to baseline neurological status. Poor neurological examination was reported as the most common factor (91% [40 of 44]) determining the timing of the MRI. Conventional sequences (T1, T2, fluid-attenuated inversion recovery, and diffusion-weighted imaging/apparent diffusion coefficient) are routinely used at greater than 97% of centers. Use of advanced imaging techniques (magnetic resonance spectroscopy, diffusion tensor imaging, and functional MRI) were reported by less than half of centers. CONCLUSIONS Conventional brain MRI is a common practice for prognostication after CA. Advanced imaging techniques are used infrequently. The lack of standardized clinical pathways and variability in reported practices support a need for higher-quality evidence regarding the indications, timing, and acquisition protocols of clinical MRI studies.
Collapse
Affiliation(s)
- Juan A Piantino
- Division of Child Neurology, Department of Pediatrics, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, Oregon
| | - Christopher M Ruzas
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Craig A Press
- Division of Neurology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Binod Balakrishnan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ashok Panigrahy
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - David Pettersson
- Division of Neuroradiology, Department of Diagnostic Radiology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon
| | - John A Maloney
- Department of Radiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lesley Doughty
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melissa G Chung
- Divisions of Critical Care Medicine and Pediatric Neurology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - David Maloney
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tamara Haller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony Fabio
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
16
|
Smith AE, Guerriero RM. The next step towards a predictive model of outcomes following pediatric cardiac arrest. Resuscitation 2021; 167:398-399. [PMID: 34384818 DOI: 10.1016/j.resuscitation.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Alyssa E Smith
- Department of Neurology, Division of Pediatric and Developmental Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Réjean M Guerriero
- Department of Neurology, Division of Pediatric and Developmental Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|