1
|
Xin L, Reymond P, Boto J, Grouiller F, Vulliemoz S, Lazeyras F, Vargas MI. Neurochemical characteristics of pathological tissues in epilepsy: A preliminary 1H MR spectroscopy study at 7 T. Eur J Radiol Open 2025; 14:100640. [PMID: 40093876 PMCID: PMC11910369 DOI: 10.1016/j.ejro.2025.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Background and purpose This study aims to evaluate the neurochemical characteristics of pathological tissues by 1H magnetic resonance spectroscopy (MRS) in patient with pharmaco-resistant focal epilepsy at 7 T. Methods Thirteen patients with drug-resistant epilepsy and focal seizure successfully underwent MRS examinations at 7 T MRI scanners. 1H MR spectra were acquired from two voxels (lesion side and contralateral side) using the semi-adiabatic spin-echo full-intensity localized spectroscopy (sSPECIAL) sequence. Metabolite levels were quantified from LCModel and reported as to total creatine ratio. Results In comparison to the contralateral side, lesions in focal cortical dysplasia demonstrated significantly reduced macromolecule and N-acetyl aspartate, significantly increased total choline and glycine + myo-inositol, and a distinct reduction trend of glutamate. Conclusions We conclude that performing MRS at high magnetic field offered the potential to reveal metabolic alterations in epilepsy lesions that may help to further understand the underlying pathophysiology of the disease.
Collapse
Affiliation(s)
- Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Reymond
- Division of Neuroradiology, Geneva University Hospitals and University of Geneva, Switzerland
| | - José Boto
- Division of Neuroradiology, Geneva University Hospitals and University of Geneva, Switzerland
| | - Frederic Grouiller
- Swiss Center of Affective Sciences, University of Geneva, Switzerland
- Center for Biomedical Imaging of Geneva and University of Geneva, Switzerland
| | - Serge Vulliemoz
- Division of Neurology, Neurosciences Department of Geneva University Hospitals and University of Geneva, Switzerland
| | - Francois Lazeyras
- Center for Biomedical Imaging of Geneva and University of Geneva, Switzerland
| | | |
Collapse
|
2
|
Uher D, Drenthen GS, Hoeberigs CM, van Lanen RH, Colon AJ, Haast RA, van Kranen-Mastenbroek VH, Widman G, Hofman PA, Wagner LG, Beckervordersandforth JC, Jansen JF, Schijns OE, Backes WH. The role of ultra-high field MRI and image processing in the presurgical workup in MRI-negative focal epilepsy: A validated 7T MRI case study. Epilepsy Behav Rep 2025; 30:100761. [PMID: 40177236 PMCID: PMC11964652 DOI: 10.1016/j.ebr.2025.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
This case study demonstrates the value of combined 7 T structural and functional MRI in the presurgical workup of a 24-year-old male with drug-resistant focal epilepsy who was initially considered MRI-negative on clinical 3 T MRI. The patient underwent extensive presurgical workup with 7 T MRI, magnetoencephalography, stereo-electroencephalography, and resection of the suspected right frontal epileptogenic zone. Histopathology showed focal cortical dysplasia (FCD) type IIb. The patient remained 11 months after surgery seizure-free. Retrospective analysis revealed that both structural and functional 7 T MRI showed abnormalities within the resected area. Morphometric Analysis Program (MAP18) detected abnormalities on both 3 T and 7 T images. However, abnormalities were more conspicuous on 7 T. Resting-state functional MRI metrics, particularly regional homogeneity and fractional amplitude of low-frequency fluctuations, demonstrated significantly increased values in both a MAP18-defined region of interest and the entire resected area compared to a healthy control group (p < 0.05). However, extensive unspecific abnormalities were also observed outside the resected region, highlighting the importance of a multimodal approach. This case study illustrates that advanced image processing of ultra-high field structural and resting-state functional MRI scans may enhance the detection of subtle epileptogenic lesions in presurgical evaluation, potentially improving post-operative seizure outcome and associated quality of life.
Collapse
Affiliation(s)
- Daniel Uher
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gerhard S. Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Christianne M. Hoeberigs
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze, Maastricht, the Netherlands
| | - Rick H.G.J. van Lanen
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert J. Colon
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze, Maastricht, the Netherlands
- Centre d‘ Etudes et Traitement de l‘Epilepsie, CHU-Martinique, Fort-de-France, France
| | - Roy A.M. Haast
- Aix-Marseille Université, CRMBM, CNRS UMR 7339, Marseille, France
| | - Vivianne H.J.M. van Kranen-Mastenbroek
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze, Maastricht, the Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Guido Widman
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Paul A.M. Hofman
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
- Department of Radiology, Horatio Oduber Hospital, Oranjestad, Aruba
| | - Louis G. Wagner
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze, Maastricht, the Netherlands
| | | | - Jacobus F.A. Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze, Maastricht, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Olaf E.M.G. Schijns
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze, Maastricht, the Netherlands
| | - Walter H. Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| | | |
Collapse
|
3
|
Barkovich EJ, Cortes-Albornoz MC, Machado-Rivas F, Ferraciolli SF, Afacan O, Jaimes C. A closer look: pediatric neuroimaging at 7T. Pediatr Radiol 2025:10.1007/s00247-025-06231-4. [PMID: 40257498 DOI: 10.1007/s00247-025-06231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
Although 7 Tesla (7T) field strength MR imaging offers higher signal-to-noise ratio and spatial resolution and improves certain types of tissue contrast, the incorporation of these systems into clinical pediatric neuroradiology has been relatively limited. Following a discussion of available hardware, current regulations, and pediatric specific safety considerations, this article briefly reviews the underlying principles behind the improved image quality attainable with certain techniques at 7T. Subsequently, specific high-performance sequences and techniques are highlighted including MP2RAGE, T2-weighted, and T2*-weighted sequences as well as MR angiography, all with sample images and comparison with standard field strengths. Finally, current clinical neuroradiological applications of 7T are explored with particular focus on focal epilepsy, multiple sclerosis, vascular diseases, and cerebral microbleeds. Ongoing and future innovations in hardware design and sequence development promise continued advancement in 7T neuroimaging and further applications to pediatric neuroradiology.
Collapse
Affiliation(s)
- Emil Jernstedt Barkovich
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.
| | - Maria Camila Cortes-Albornoz
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Fedel Machado-Rivas
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Suely Fazio Ferraciolli
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Fujita S, Hagiwara A, Kamagata K, Aoki S. Clinical Neuroimaging Over the Last Decade: Achievements and What Lies Ahead. Invest Radiol 2025:00004424-990000000-00324. [PMID: 40239043 DOI: 10.1097/rli.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
ABSTRACT The past decade has witnessed notable advancements in clinical neuroimaging facilitated by technological innovations and significant scientific discoveries. In conjunction with Investigative Radiology's 60th anniversary, this review examines key contributions from the past 10 years, emphasizing the journal's most accessed articles and their impact on clinical practice and research. Advances in imaging technologies, including photon-counting computed tomography, and innovations in low-field and high-field magnetic resonance imaging systems have expanded diagnostic capabilities. Progress in the development and translation of contrast media and rapid quantitative imaging techniques has further improved diagnostic accuracy. Additionally, the integration of advanced data analysis methods, particularly deep learning and medical informatics, has improved image interpretation and operational efficiency. Beyond technological developments, this review highlights basic neuroscience findings, such as the discovery and characterization of the glymphatic system. These insights have provided a deeper understanding of central nervous system physiology and pathology, bridging the gap between research and clinical applications. This review integrates these advancements to provide an overview of the progress and ongoing challenges in clinical neuroimaging, offering insights into its current state and potential future directions within the broader field of radiology.
Collapse
Affiliation(s)
- Shohei Fujita
- From the Department of Radiology, Juntendo University, Tokyo, Japan (S.F., A.H., K.K., S.A.); Department of Radiology, The University of Tokyo, Tokyo, Japan (S.F.); Department of Radiology, The University of Tokyo, Tokyo, Japan (A.H.); Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA (S.F.); and Department of Radiology, Harvard Medical School, Boston, MA (S.F.)
| | | | | | | |
Collapse
|
5
|
Nada A, Cousins JP, Rivera A, Carr SB, Jones J, Minor C, Hetherington HP, Kim JH, Pan JW. Imaging the Internal Auditory Canal with an 8 × 2 Transceiver Array Head Coil at 7T. AJNR Am J Neuroradiol 2025; 46:852-858. [PMID: 40147834 PMCID: PMC11979838 DOI: 10.3174/ajnr.a8569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 03/29/2025]
Abstract
7T neuroimaging has known problems with B1 + strength, homogeneity and B0 susceptibility that make imaging in the inferior brain regions difficult. We investigated the utility of a decoupled 8 × 2 transceiver coil and shim insert to image the internal auditory canal (IAC) and inferior brain in comparison to the standard Nova 8/32 coil. B1 +, B0, and the T2 sampling perfection with application-optimized contrasts by using flip angle evolution sequence (SPACE) were compared by using research and standard methods in n = 8 healthy adults by using a Terra system. A T2 TSE was also acquired, and 2 neuroradiologists evaluated structures in and around the IAC, blinded to the acquisition, by using a 5-point Likert scale. The Nova 8/32 coil gave lower B1 + inferiorly compared with the whole brain while the transceiver maintained similar B1 + throughout. SPACE images showed that the transceiver performed significantly better, e.g., the transceiver scored 4.0 ± 0.8 in the left IAC, compared with 2.5 ± 0.8 with the Nova 8/32. With T2-weighted imaging that places a premium on refocusing pulses, these results show that with improved B1 + performance inferiorly, good visualization of the structure of the IAC and inferior brain regions is possible at 7T.
Collapse
Affiliation(s)
- A Nada
- From the Washington University in St. Louis (A.N.), School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri
| | - J P Cousins
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| | - A Rivera
- Department of Otolaryngology (A.R.), University of Missouri, Columbia, Missouri
| | - S B Carr
- Department of Neurosurgery (S.B.C.), University of Missouri, Columbia, Missouri
| | - J Jones
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| | - C Minor
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| | | | - J H Kim
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| | - J W Pan
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| |
Collapse
|
6
|
Kraff O, May MW. Multi-center QA of ultrahigh-field systems. MAGMA (NEW YORK, N.Y.) 2025:10.1007/s10334-025-01232-8. [PMID: 40126781 DOI: 10.1007/s10334-025-01232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 03/26/2025]
Abstract
Over the past two decades, ultra-high field (UHF) magnetic resonance imaging (MRI) has evolved from pure investigational devices to now systems with CE and FDA clearance for clinical use. UHF MRI offers enhanced diagnostic value, especially in brain and musculoskeletal imaging, aiding in the differential diagnosis of conditions like multiple sclerosis and epilepsy. However, to fully harness the potential of UHF, multi-center studies and quality assurance (QA) protocols are critical for ensuring reproducibility across different systems and sites. This becomes even more vital as the UHF community comprises three generations of magnet design, and many UHF sites are currently upgrading to the latest system architecture. Hence, this review presents multi-center QA measurements that have been performed at UHF, in particular from larger consortia through their "travelling heads" studies. Despite the technical variability between different vendors and system generations, these studies have shown a high level of reproducibility in structural and quantitative imaging. Furthermore, the review highlights the ongoing challenges in QA, such as transmitter performance drift and the need for a standard reliable multi-tissue phantom for RF coil calibration, which are crucial for advancing UHF MRI in both clinical and research applications.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, 45141, Essen, Germany.
| | - Markus W May
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, 45141, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
7
|
Testud B, Destruel A, Troalen T, Ranjeva JP, Guye M. Review of 7T MRI imaging of pituitary microadenomas: are we there yet? Neuroradiology 2025; 67:529-540. [PMID: 40056182 DOI: 10.1007/s00234-025-03554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/19/2025] [Indexed: 03/10/2025]
Abstract
PURPOSE 7T MRI imaging of the pituitary gland is an emerging technique. The purpose of this article is to review the current status of the 7T MRI of the pituitary gland, particularly in the context of pituitary microadenoma pathology. We will discuss technical challenges and parallel transmission opportunities. METHODS Follow-up study selection and data extraction were performed following PRISMA guidelines. We focused on diagnostic performance and acquisition protocols. Inclusion criteria were: MRI imaging studies of pituitary adenoma at 7T. Exclusion criteria were: Case reports and reviews; studies which did not report MRI protocols; surgical planning studies; studies focusing exclusively on macroadenomas for which ultra-high magnetic field imaging is less decisive than microadenomas in clinical practice. RESULTS Six studies were included. 7T MRI outperformed 1.5 or 3T MRI for the detection of microadenomas. Acquisition protocols employed were heterogeneous, with two-dimensional T2-w and T1-w turbo spin-echo sequences, three-dimensional T1-w isotropic spin-echo and gradient-echo sequences (resolution: 0.6 and 0.8 mm), and dynamic contrast-enhanced T1-w sequences. CONCLUSION 7T MRI is a promising tool for overcoming the difficulties encountered by conventional MRI, particularly in the case of Cushing disease. However, there is insufficient data to precisely define an optimal protocol yet.
Collapse
Affiliation(s)
- Benoit Testud
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France.
- APHM La Timone, CEMEREM, Pavillon 3 CEMEREM, 264 rue saint pierre, Marseille, 13005, France.
- Radiology Department, APHM La Conception, Marseille, France.
| | - Aurélien Destruel
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
- APHM La Timone, CEMEREM, Pavillon 3 CEMEREM, 264 rue saint pierre, Marseille, 13005, France
| | | | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
- APHM La Timone, CEMEREM, Pavillon 3 CEMEREM, 264 rue saint pierre, Marseille, 13005, France
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
- APHM La Timone, CEMEREM, Pavillon 3 CEMEREM, 264 rue saint pierre, Marseille, 13005, France
| |
Collapse
|
8
|
Boğa Ç, Henning A. Bilateral orthogonality generative acquisitions method for homogeneous T 2 * images using parallel transmission at 7 T. Magn Reson Med 2025; 93:1043-1058. [PMID: 39375826 DOI: 10.1002/mrm.30329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE The novel bilateral orthogonality generative acquisitions method has been developed for homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images without the effects of transmit field inhomogeneity using a parallel-transmission (pTx) system at 7 T. THEORY AND METHODS A new method has been introduced using four low-angle gradient-echo (GRE) acquisitions to obtain homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast by removing the effects of transmit field inhomogeneity in the pTx system. First, two input images are obtained in circularly polarized mode and another mode in which the first transmit channel or channel group have an additional transmit phase of π. The last two acquisitions are single-channel acquisitions for a dual-channel system or single-channel group acquisitions for more than two channels. The introduced method is demonstrated in dual-channel and eight-channel pTx systems using phantom and whole-brain in vivo experiments. Noise performance of the proposed method is also tested against the ratio of two GRE acquisitions and the TIAMO (time-interleaved acquisitions of modes) method. RESULTS Th new method results in more homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast in the final images than the compared methods, particularly in the low-intensity regions of circularly polarized-mode images for the images obtained via ratio of the two GRE acquisitions. CONCLUSION The introduced method is easy to implement, robust, and provides homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images of the whole brain using pTx systems with any number of channels, compared with the ratio of the two GRE images and the TIAMO method.
Collapse
Affiliation(s)
- Çelik Boğa
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anke Henning
- UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Calvo-Imirizaldu M, Botta D, Seeck M, Novy J, Ojeda Esparza JF, Fitsiori A, Santarosa C, Battistini K, Lövblad KO, Kurz FT. Ultrahigh-field imaging (7 Tesla) in DNET: Unmasking microstructural imaging characteristics - A case report. Epilepsy Behav Rep 2025; 29:100749. [PMID: 40017526 PMCID: PMC11867227 DOI: 10.1016/j.ebr.2025.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 03/01/2025] Open
Abstract
Commercial ultrahigh-field 7 Tesla (T) MRI has been approved for clinical brain imaging, including applications in epilepsy and brain tumors. Increasing magnetic field strength offers significant advantages over lower-field MRI due to improved spatial resolution, signal-to-noise ratio, and contrast-to-noise ratio. These improvements provide better anatomical delineation and gray-white matter tissue-contrast differentiation. We present a case of a presumed dysembryoplastic neuroepithelial tumor (DNET) imaged at 7 T MRI of the second generation, which revealed an unprecedented level of detail of the complex and intricate tumor architecture. Insights of its different components correlate closely with its known histopathological features. These tumors are unique among low-grade neoplasms due to their distinct clinical presentation, imaging features, and histopathological architecture. DNETs are rare, typically occurring in young patients with refractory epilepsy, and are classified by their well-defined histological subtypes. We review the various MRI patterns of DNET, which have been shown to correlate with histological subtypes and the extent of the epileptogenic zone. Complete tumor resection is essential for long-term control and recurrence prevention, emphasizing the importance of precise preoperative visualization of the tumor and its surrounding tissue. In this case, 7 T images demonstrated superior lesion conspicuity and clearer boundaries, highlighting the advantages of ultrahigh-field MRI in defining the full extent of the lesion. Although 7 T MRI is not yet widely available, it has started to gain an important role in the management of epilepsy, particularly for cases requiring detailed structural analysis.
Collapse
Affiliation(s)
- Marta Calvo-Imirizaldu
- Department of Radiology, University Clinic of Navarra, Pamplona, Spain
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Daniele Botta
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Margitta Seeck
- Division of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Jan Novy
- Division of Neurology, Lausanne University Hospitals, Lausanne, Switzerland
| | | | - Aikaterini Fitsiori
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Corrado Santarosa
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Kevin Battistini
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Olof Lövblad
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Felix T. Kurz
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
van Lanen RHGJ, Uher D, Tse DHY, Steijvers E, Colon AJ, Jansen JFA, Drenthen GS, Ivanov D, Hoogland G, Rijkers K, Hoeberigs CM, Hofman PAM, Backes WH, Schijns OEMG. In vivo 9.4 Tesla MRI of a patient with drug-resistant epilepsy: Technical report. Acta Neurochir (Wien) 2025; 167:18. [PMID: 39820684 PMCID: PMC11739318 DOI: 10.1007/s00701-024-06385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE In resective epilepsy surgery for drug-resistant focal epilepsy (DRE), good seizure outcome is strongly associated with visualization of an epileptogenic lesion on MRI. Standard clinical MRI (≤ 3 Tesla (T)) may fail to detect subtle lesions. 7T MRI enhances detection and delineation, the potential benefits of increasing field strength to 9.4T are explored. METHODS A 36 years old male patient with DRE evaluated for resective surgery, in which 3T and 7T MRI failed to detect any epileptogenic lesions, was submitted to a dedicated epilepsy scan protocol using T1 and T2* weighted imaging at 9.4T. Images were evaluated independently by two neuroradiologists and one neurosurgeon. RESULTS 9.4T MRI offered increased spatial resolution and enhanced depiction of anatomical structures vital for epilepsy imaging, exemplified by regions mesio-temporal (hippocampus, amygdala), latero-temporal, insula, frontal and temporal operculum, and gray-white matter junction (precentral gyrus/frontal lobe) compared to 3T and 7T, albeit with challenges in mesial-temporal and antero-inferior temporal lobe imaging. No epileptogenic lesion was identified. CONCLUSION 9.4T demonstrates promise in the identification and delineation of anatomical structures and small epileptogenic lesions in patients with DRE eligible for resective surgery. Whether clinical 9.4T MRI in DRE has clinical advantages over 7T or leads to a more complete resection of the epileptogenic zone and improved seizure outcome after epilepsy surgery needs to be established.
Collapse
Affiliation(s)
- Rick H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands.
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.
| | - Daniel Uher
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Desmond H Y Tse
- Scannexus, Ultra-High Field MRI Research Centre, Maastricht, Netherlands
| | - Esther Steijvers
- Scannexus, Ultra-High Field MRI Research Centre, Maastricht, Netherlands
| | - Albert J Colon
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
- Service de la recherche et traitement d'epilepsie, Centre Hospitalier Universitaire Martinique, Fort-de-France, France
| | - Jacobus F A Jansen
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Gerhard S Drenthen
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| | - Christianne M Hoeberigs
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| | - Paul A M Hofman
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| | - Walter H Backes
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| |
Collapse
|
11
|
Ortiz AV, Eisma JJ, Martin D, Lagrange AH, Motuzas C, Nobis W, Abou-Khalil BW, Morgan VL, Fox J. Detection challenges of temporal encephaloceles in epilepsy: A retrospective analysis. Magn Reson Imaging 2025; 115:110272. [PMID: 39532244 PMCID: PMC11614672 DOI: 10.1016/j.mri.2024.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Temporal encephaloceles (TEs) are herniations of cerebral parenchyma through structural defects in the floor of the middle cranial fossa. They are a relatively common, but only relatively recently identified potential cause of drug-resistant epilepsy. Uncontrolled epilepsy is associated with many negative long term health consequences including a heightened risk of death. The most effective treatment for drug-resistant epilepsy is surgery. One of the most predictive factors associated with successful surgery is identification of an abnormality on imaging. However, TEs can be difficult to detect and are often overlooked on neuroimaging studies. Improving our ability to accurately detect TEs by MRI is an important step in improving surgical outcomes in patients with drug-resistant epilepsy. We performed a review on existing imaging modalities for detecting TEs and report on our attempt to use a voxel-based morphometry (VBM) algorithm to detect TEs in T1-weighted MRIs of 81 patients from a database comprised of 25 patients with confirmed encephaloceles and 56 controls. Our program's sensitivity and specificity were compared to those of two neuroradiologists and two epileptologists using visualization during surgery as the gold standard. On average, the neuroradiologists and epileptologists had sensitivities of 41 % and 58 % and specificities of 81 % and 60 % while our VBM-based approach had sensitivities and specificities ranging from 11 % to 50 % and 0.2 % to 17 %, respectively. This work provides an overview of the different imaging modalities utilized in the detection of TEs and highlights the difficulties associated with their detection for both experienced physicians and cutting-edge computational methods. Our findings suggest that VBM-based methods could potentially be used to enhance clinicians' ability to detect TEs thereby facilitating surgical planning, improving surgical outcomes by allowing for more specific targeting, and bettering the long-term health and well-being of patients with drug-resistant epilepsy secondary to TEs.
Collapse
Affiliation(s)
- Alexander V Ortiz
- Department of Radiology, Stanford University Medical Center, Stanford, CA, USA.
| | - Jarrod J Eisma
- Department of Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - Dann Martin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andre H Lagrange
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cari Motuzas
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William Nobis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bassel W Abou-Khalil
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Victoria L Morgan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonah Fox
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Bauer T, Olbrich S, Groteklaes A, Lehnen NC, Zidan M, Lange A, Bisten J, Walger L, Faber J, Bruchhausen W, Vollmuth P, Herrlinger U, Radbruch A, Surges R, Sabir H, Rüber T. Proof of concept: Portable ultra-low-field magnetic resonance imaging for the diagnosis of epileptogenic brain pathologies. Epilepsia 2024; 65:3607-3618. [PMID: 39470733 DOI: 10.1111/epi.18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVE High-field magnetic resonance imaging (MRI) is a standard in the diagnosis of epilepsy. However, high costs and technical barriers have limited adoption in low- and middle-income countries. Even in high-income nations, many individuals with epilepsy face delays in undergoing MRI. Recent advancements in ultra-low-field (ULF) MRI technology, particularly the development of portable scanners, offer a promising solution to the limited accessibility of MRI. In this study, we present and evaluate the imaging capability of ULF MRI in detecting structural abnormalities typically associated with epilepsy and compare it to high-field MRI at 3 T. METHODS Data collection was conducted within 3 consecutive weeks at the University Hospital Bonn. Inclusion criteria were a minimum age of 18 years, diagnosed epilepsy, and clinical high-field MRI with abnormalities. We used a .064 T Swoop portable MR Imaging System. Both high-field MRI and ULF MRI scans were evaluated independently by two experienced neuroradiologists as part of their clinical routine, comparing pathology detection and diagnosis completeness. RESULTS Twenty-three individuals with epilepsy were recruited. One subject presented with a dual pathology. Across the entire cohort, in 17 of 24 (71%) pathologies, an anomaly colocalizing with the actual lesion was observed on ULF MRI. For 11 of 24 (46%) pathologies, the full diagnosis could be made based on ULF MRI. Tumors and posttraumatic lesions could be diagnosed best on ULF MRI, whereas cortical dysplasia and other focal pathologies were the least well diagnosed. SIGNIFICANCE This single-center series of individuals with epilepsy demonstrates the feasibility and utility of ULF MRI for the field of epileptology. Its integration into epilepsy care offers transformative potential, particularly in resource-limited settings. Further research is needed to position ULF MRI within imaging modalities in the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Tobias Bauer
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Simon Olbrich
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Anne Groteklaes
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | | | - Mousa Zidan
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Annalena Lange
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Institute for Computer Science, University of Bonn, Bonn, Germany
- Section for Global Health, Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Justus Bisten
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Institute for Computer Science, University of Bonn, Bonn, Germany
| | - Lennart Walger
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Walter Bruchhausen
- Section for Global Health, Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | | | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Center for Medical Data Usability and Translation, University of Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Hemmen Sabir
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Theodor Rüber
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Center for Medical Data Usability and Translation, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Mir M, Miller NP, White M, Elvandahl W, Danyeli AE, Özütemiz C. Prevalence of Rathke Cleft and Other Incidental Pituitary Gland Findings on Contrast-Enhanced 3D Fat-Saturated T1 MPRAGE at 7T MRI. AJNR Am J Neuroradiol 2024; 45:1811-1818. [PMID: 38914432 PMCID: PMC11543067 DOI: 10.3174/ajnr.a8393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND AND PURPOSE A cleftlike nonenhancing hypointensity was observed repeatedly in the pituitary gland at the adenohypophysis/neurohypophysis border on contrast-enhanced 3D fat-saturated T1-MPRAGE using clinical 7T MRI. Our primary goal was to assess the prevalence of this finding. The secondary goals were to evaluate the frequency of other incidental pituitary lesions, MRI artifacts, and their effect on pituitary imaging on the contrast-enhanced 3D fat-saturated T1 MPRAGE at 7T. MATERIALS AND METHODS One hundred patients who underwent 7T neuroimaging between October 27, 2021, and August 10, 2023, were included. Each case was evaluated for cleftlike pituitary hypointensity, pituitary masses, and artifacts on contrast-enhanced 3D fat-saturated T1 MPRAGE. Follow-up examinations were evaluated if present. The average prevalence for each finding was calculated, as were descriptive statistics for age and sex. RESULTS A cleftlike hypointensity was present in 66% of 7T MRIs. There were no significant differences between the "cleftlike present" and "cleftlike absent" groups regarding sex (P = .39) and age (P = .32). The cleftlike hypointensity was demonstrated on follow-up MRIs in 3/3 patients with 7T, 1/12 with 3T, and 1/5 with 1.5T. A mass was found in 22%, while 75% had no mass and 3% were indeterminate. A mass was found in 18 (27%) of the cleftlike present and 4 (13%) of the cleftlike absent groups. The most common mass types were Rathke cleft cyst in 7 (31.8%) patients, "Rathke cleft cyst versus entrapped CSF" in 6 (27.3%), and microadenoma in 6 (22.2%) in the cleftlike present group. There were no significant differences in the mass types between the cleftlike present and cleftlike absent groups (P = .23). Susceptibility and/or motion artifacts were frequent using contrast-enhanced 3D fat-saturated T1 MPRAGE (54%). Artifact-free scans were significantly more frequent in the cleftlike present group (P = .03). CONCLUSIONS A cleftlike nonenhancing hypointensity was frequently seen on the contrast-enhanced 3D fat-saturated T1 MPRAGE images at 7T MRI, which most likely represents a normal embryologic Rathke cleft remnant and cannot be seen in lower-field-strength MRIs. Susceptibility and motion artifacts are common in the sella. They may affect image quality, and the artifacts at 7T may lead to an underestimation of the prevalence of the Rathke cleft and other incidental findings.
Collapse
Affiliation(s)
- Mikael Mir
- From the University of Minnesota Medical School (M.M., N.P.M.), Minneapolis, Minnesota
| | - Nathaniel P Miller
- From the University of Minnesota Medical School (M.M., N.P.M.), Minneapolis, Minnesota
| | - Matthew White
- Center for Magnetic Resonance Research (M.W., W.E.), University of Minnesota, Minneapolis, Minnesota
| | - Wendy Elvandahl
- Center for Magnetic Resonance Research (M.W., W.E.), University of Minnesota, Minneapolis, Minnesota
| | - Ayca Ersen Danyeli
- Department of Pathology (A.E.D.), School of Medicine, Acıbadem University, Istanbul, Turkey
| | - Can Özütemiz
- Department of Radiology (C.Ö.), University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
14
|
Bartolomei F. The epileptogenic network concept: Applications in the SEEG exploration of lesional focal epilepsies. Neurophysiol Clin 2024; 54:103023. [PMID: 39481212 DOI: 10.1016/j.neucli.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
The advent of advanced brain imaging techniques has significantly enhanced the understanding and treatment of focal epilepsies, with identifiable brain lesions present in 80 % of cases. Despite this, surgical outcomes remain varied, often influenced by lesion type and location. Traditional lesion-centric approaches may overlook the complex organization of the epileptogenic zone (EZ), which often extends beyond the visible lesion, emphasizing the need for comprehensive presurgical evaluations like stereo-electroencephalography (SEEG) in some cases. This article delves into the concept of epileptogenic networks, moving beyond the notion of a lesional epileptic focus. Through SEEG, three primary network types have been identified: the Epileptogenic Zone Network (EZN), characterized by regions with heightened epileptogenicity and seizure initiation; the Propagation Zone Network (PZN), involving regions with delayed and less intense epileptic activity; and Non-Involved networks (NI). Quantitative measures, such as the epileptogenicity index (EI), aid in delineating these networks, revealing that EZN can be focal or networked, with the latter being more prevalent. The relationship between epilepsy-associated lesions and network organization is complex. Intrinsically epileptogenic lesions, like focal cortical dysplasia and periventricular nodular heterotopias, often generate epileptiform activities but may still involve broader epileptogenic networks. Non-intrinsically epileptogenic lesions, such as cavernomas and post-stroke lesions, typically lack inherent neuronal activity but can facilitate the development of extensive epileptogenic networks. Understanding the intricacies of these networks is crucial for optimizing surgical interventions. Recognizing that lesions may represent just one node within a broader epileptogenic network underscores the importance of comprehensive SEEG evaluations to achieve better surgical outcomes.
Collapse
Affiliation(s)
- Fabrice Bartolomei
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France.
| |
Collapse
|
15
|
Hoeberigs MC, Beckervordersandforth JC, de Bruyn G, Klinkenberg S, Schijns OEMG. A teenage girl with drug-resistant epilepsy and a hippocampal angiocentric neuroepithelial tumor (ANET) - illustrative case of 7T MRI in clinical practice. Seizure 2024; 121:152-155. [PMID: 39181014 DOI: 10.1016/j.seizure.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Affiliation(s)
- M Christianne Hoeberigs
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht-Heeze, the Netherlands.
| | | | - G de Bruyn
- Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht-Heeze, the Netherlands
| | - S Klinkenberg
- Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht-Heeze, the Netherlands; Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - O E M G Schijns
- Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht-Heeze, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute (MHeNS), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
16
|
Pastore LV, De Vita E, Sudhakar SV, Löbel U, Mankad K, Biswas A, Cirillo L, Pujar S, D’Arco F. Advances in magnetic resonance imaging for the assessment of paediatric focal epilepsy: a narrative review. Transl Pediatr 2024; 13:1617-1633. [PMID: 39399717 PMCID: PMC11467228 DOI: 10.21037/tp-24-166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background and Objective Epilepsy affects approximately 50 million people worldwide, with 30-40% of patients not responding to medication, necessitating alternative therapies such as surgical intervention. However, the accurate localization of epileptogenic lesions, particularly in pediatric magnetic resonance imaging (MRI)-negative drug-resistant epilepsy, remains a challenge. This paper reviews advanced neuroimaging techniques aimed at improving the detection of such lesions to enhance surgical outcomes. Methods A comprehensive literature search was conducted using PubMed, focusing on advanced MRI sequences, focal epilepsy, and the integration of artificial intelligence (AI) in the diagnostic process. Key Content and Findings New MRI sequences, including magnetization prepared 2 rapid gradient echo (MP2RAGE), edge-enhancing gradient echo (EDGE), and fluid and white matter suppression (FLAWS), have demonstrated enhanced capabilities in detecting subtle epileptogenic lesions. Quantitative MRI techniques, notably magnetic resonance fingerprinting (MRF), alongside innovative post-processing methods, are emphasized for their effectiveness in delineating cortical malformations, whether used alone or in combination with ultra-high field MRI systems. Furthermore, the integration of AI in radiology is progressing, providing significant support in accurately localizing lesions, and potentially optimizing pre-surgical planning. Conclusions While advanced neuroimaging and AI offer significant improvements in the diagnostic process for epilepsy, some challenges remain. These include long acquisition times, the need for extensive data analysis, and a lack of large, standardized datasets for AI validation. However, the future holds promise as research continues to integrate these technologies into clinical practice. These efforts will improve the clinical applicability and effectiveness of these advanced techniques in epilepsy management, paving the way for more accurate diagnoses and better patient outcomes.
Collapse
Affiliation(s)
- Luigi Vincenzo Pastore
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Enrico De Vita
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sniya Valsa Sudhakar
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ulrike Löbel
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Asthik Biswas
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luigi Cirillo
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Suresh Pujar
- Neurology/Epilepsy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Neurosciences Unit, University College London-Great Ormond Street Institute of Child Health, London, UK
| | - Felice D’Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Özütemiz C, Hussein HM, Ikramuddin S, Clark HB, Charidimou A, Streib C. Occult Amyloid-β-Related Angiitis: Neuroimaging Findings at 1.5T, 3T, and 7T MRI. AJNR Am J Neuroradiol 2024; 45:1013-1018. [PMID: 38937114 PMCID: PMC11383424 DOI: 10.3174/ajnr.a8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 06/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a progressive neurodegenerative small vessel disease that is associated with intracranial hemorrhage and cognitive impairment in the elderly. The clinical and radiographic presentations have many overlapping features with vascular cognitive impairment, hemorrhagic stroke, and Alzheimer disease (AD). Amyloid-β-related angiitis (ABRA) is a form of primary CNS vasculitis linked to CAA, with the development of spontaneous autoimmune inflammation against amyloid in the vessel wall with resultant vasculitis. The diagnosis of ABRA and CAA is important. ABRA is often fatal if untreated and requires prompt immunosuppression. Important medical therapies such as anticoagulation and antiamyloid agents for AD are contraindicated in CAA. Here, we present a biopsy-proved case of ABRA with underlying occult CAA. Initial 1.5T and 3T MR imaging did not suggest CAA per the Boston Criteria 2.0. ABRA was not included in the differential diagnosis due to the lack of any CAA-related findings on conventional MR imaging. However, a follow-up 7T MR imaging revealed extensive cortical/subcortical cerebral microbleeds, cortical superficial siderosis, and intragyral hemorrhage in extensive detail throughout the supratentorial brain regions, which radiologically supported the diagnosis of ABRA in the setting of CAA. This case suggests an increased utility of high-field MR imaging to detect occult hemorrhagic neuroimaging findings with the potential to both diagnose more patients with CAA and diagnose them earlier.
Collapse
Affiliation(s)
- Can Özütemiz
- From the Department of Radiology (C.Ö.), University of Minnesota, Minneapolis, MN, USA
| | - Haitham M Hussein
- Department of Neurology (H.M.H., S.I., C.S.), University of Minnesota, Minneapolis, MN, USA
| | - Salman Ikramuddin
- Department of Neurology (H.M.H., S.I., C.S.), University of Minnesota, Minneapolis, MN, USA
| | - H Brent Clark
- Department of Laboratory Medicine & Pathology (H.B.C.), University of Minnesota, Minneapolis, Minnesota
| | - Andreas Charidimou
- Chobanian & Avedisian School of Medicine, Department of Neurology (A.C.), Boston University, Boston, Massachusetts
| | - Christopher Streib
- Department of Neurology (H.M.H., S.I., C.S.), University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Wagstyl K, Kobow K, Casillas-Espinosa PM, Cole AJ, Jiménez-Jiménez D, Nariai H, Baulac S, O'Brien T, Henshall DC, Akman O, Sankar R, Galanopoulou AS, Auvin S. WONOEP 2022: Neurotechnology for the diagnosis of epilepsy. Epilepsia 2024; 65:2238-2247. [PMID: 38829313 DOI: 10.1111/epi.18028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.
Collapse
Affiliation(s)
- Konrad Wagstyl
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
- Developmental Neurosciences, UCL Great Ormond Street for Child Health, UCL, London, UK
| | - Katja Kobow
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pablo M Casillas-Espinosa
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Andrew J Cole
- MGH Epilepsy Service, Division of Clinical Neurophysiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diego Jiménez-Jiménez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Medical Center, Los Angeles, California, USA
| | - Stéphanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Terence O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - David C Henshall
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ozlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, California, USA
- UCLA Children's Discovery and Innovation Institute, California, Los Angeles, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stéphane Auvin
- Université Paris-Cité, INSERM NeuroDiderot, Paris, France
- Pediatric Neurology Department, APHP, Robert Debré University Hospital, CRMR Epilepsies Rares, EpiCARE member, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
19
|
Middlebrooks EH, Patel V, Zhou X, Straub S, Murray JV, Agarwal AK, Okromelidze L, Singh RB, Lopez Chiriboga AS, Westerhold EM, Gupta V, Sandhu SJS, Marin Collazo IV, Tao S. 7 T Lesion-Attenuated Magnetization-Prepared Gradient Echo Acquisition for Detection of Posterior Fossa Demyelinating Lesions in Multiple Sclerosis. Invest Radiol 2024; 59:513-518. [PMID: 38193790 DOI: 10.1097/rli.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
OBJECTIVES Detection of infratentorial demyelinating lesions in multiple sclerosis (MS) presents a challenge in magnetic resonance imaging (MRI), a difficulty that is further heightened in 7 T MRI. This study aimed to assess the efficacy of a novel MRI approach, lesion-attenuated magnetization-prepared gradient echo acquisition (LAMA), for detecting demyelinating lesions within the posterior fossa and upper cervical spine on 7 T MRI and contrast its performance with conventional double-inversion recovery (DIR) and T2-weighted turbo spin echo sequences. MATERIALS AND METHODS We conducted a retrospective cross-sectional study in 42 patients with a confirmed diagnosis of MS. All patients had 7 T MRI that incorporated LAMA, 3D DIR, and 2D T2-weighted turbo spin echo sequences. Three readers assessed lesion count in the brainstem, cerebellum, and upper cervical spinal cord using both DIR and T2-weighted images in one session. In a separate session, LAMA was analyzed alone. Contrast-to-noise ratio was also compared between LAMA and the conventional sequences. Lesion counts between methods were assessed using nonparametric Wilcoxon signed rank test. Interrater agreement in lesion detection was estimated by intraclass correlation coefficients. RESULTS LAMA identified a significantly greater number of lesions than DIR + T2 (mean 6.4 vs 3.0; P < 0.001). LAMA also exhibited better interrater agreement (intraclass correlation coefficient [95% confidence interval], 0.75 [0.41-0.88] vs 0.61 [0.35-0.78]). The contrast-to-noise ratio for LAMA (3.7 ± 0.9) significantly exceeded that of DIR (1.94 ± 0.7) and T2 (1.2 ± 0.7) (all P 's < 0.001). In cases with no lesions detected using DIR + T2, at least 1 lesion was identified in 83.3% with LAMA. Across all analyzed brain regions, LAMA consistently detected more lesions than DIR + T2. CONCLUSIONS LAMA significantly improves the detection of infratentorial demyelinating lesions in MS patients compared with traditional methods. Integrating LAMA with standard magnetization-prepared 2 rapid acquisition gradient echo acquisition provides a valuable tool for accurately characterizing the extent of MS disease.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- From the Department of Radiology, Mayo Clinic, Jacksonville, FL (E.H.M., V.P., X.Z., S.S., J.V.M.J., A.K.A., L.O., R.B.S., E.M.W., V.G., S.J.S.S., S.T.); and Department of Neurology, Mayo Clinic, Jacksonville, FL (A.S.L.C., I.V.M.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Uher D, Drenthen GS, Poser BA, Hofman PAM, Wagner LG, van Lanen RHGJ, Hoeberigs CM, Colon AJ, Schijns OEMG, Jansen JFA, Backes WH. DeepFLAIR: A neural network approach to mitigate signal and contrast loss in temporal lobes at 7 Tesla FLAIR images. Magn Reson Imaging 2024; 110:57-68. [PMID: 38621552 DOI: 10.1016/j.mri.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND AND PURPOSE Higher magnetic field strength introduces stronger magnetic field inhomogeneities in the brain, especially within temporal lobes, leading to image artifacts. Particularly, T2-weighted fluid-attenuated inversion recovery (FLAIR) images can be affected by these artifacts. Here, we aimed to improve the FLAIR image quality in temporal lobe regions through image processing of multiple contrast images via machine learning using a neural network. METHODS Thirteen drug-resistant MR-negative epilepsy patients (age 29.2 ± 9.4y, 5 females) were scanned on a 7 T MRI scanner. Magnetization-prepared (MP2RAGE) and saturation-prepared with 2 rapid gradient echoes, multi-echo gradient echo with four echo times, and the FLAIR sequence were acquired. A voxel-wise neural network was trained on extratemporal-lobe voxels from the acquired structural scans to generate a new FLAIR-like image (i.e., deepFLAIR) with reduced temporal lobe inhomogeneities. The deepFLAIR was evaluated in temporal lobes through signal-to-noise (SNR), contrast-to-noise (CNR) ratio, the sharpness of the gray-white matter boundary and joint-histogram analysis. Saliency mapping demonstrated the importance of each input image per voxel. RESULTS SNR and CNR in both gray and white matter were significantly increased (p < 0.05) in the deepFLAIR's temporal ROIs, compared to the FLAIR. The gray-white matter boundary sharpness was either preserved or improved in 10/13 right-sided temporal regions and was found significantly increased in the ROIs. Multiple image contrasts were influential for the deepFLAIR reconstruction with the MP2RAGE second inversion image being the most important. CONCLUSIONS The deepFLAIR network showed promise to restore the FLAIR signal and reduce contrast attenuation in temporal lobe areas. This may yield a valuable tool, especially when artifact-free FLAIR images are not available.
Collapse
Affiliation(s)
- Daniel Uher
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gerhard S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Benedikt A Poser
- Faculty of Psychology and Neuroscience (FPN), Maastricht University, the Netherlands
| | - Paul A M Hofman
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands
| | - Louis G Wagner
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands
| | - Rick H G J van Lanen
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Christianne M Hoeberigs
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands
| | - Albert J Colon
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands; Department of Epileptology, CHU-Martinique, Fort-de-France, France
| | - Olaf E M G Schijns
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Cardiovascular Diseases Institute (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
21
|
Bapst B, Massire A, Mauconduit F, Gras V, Boulant N, Dufour J, Bodini B, Stankoff B, Luciani A, Vignaud A. Pushing MP2RAGE boundaries: Ultimate time-efficient parameterization combined with exhaustive T 1 synthetic contrasts. Magn Reson Med 2024; 91:1608-1624. [PMID: 38102807 DOI: 10.1002/mrm.29948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE MP2RAGE parameter optimization is redefined to allow more time-efficient MR acquisitions, whereas the T1 -based synthetic imaging framework is used to obtain on-demand T1 -weighted contrasts. Our aim was to validate this concept on healthy volunteers and patients with multiple sclerosis, using plug-and-play parallel-transmission brain imaging at 7 T. METHODS A "time-efficient" MP2RAGE sequence was designed with optimized parameters including TI and TR set as small as possible. Extended phase graph formalism was used to set flip-angle values to maximize the gray-to-white-matter contrast-to-noise ratio (CNR). Several synthetic contrasts (UNI, EDGE, FGATIR, FLAWSMIN , FLAWSHCO ) were generated online based on the acquired T1 maps. Experimental validation was performed on 4 healthy volunteers at various spatial resolutions. Clinical applicability was evaluated on 6 patients with multiple sclerosis, scanned with both time-efficient and conventional MP2RAGE parameterizations. RESULTS The proposed time-efficient MP2RAGE protocols reduced acquisition time by 40%, 30%, and 19% for brain imaging at (1 mm)3 , (0.80 mm)3 and (0.65 mm)3 , respectively, when compared with conventional parameterizations. They also provided all synthetic contrasts and comparable contrast-to-noise ratio on UNI images. The flexibility in parameter selection allowed us to obtain a whole-brain (0.45 mm)3 acquisition in 19 min 56 s. On patients with multiple sclerosis, a (0.67 mm)3 time-efficient acquisition enhanced cortical lesion visualization compared with a conventional (0.80 mm)3 protocol, while decreasing the scan time by 15%. CONCLUSION The proposed optimization, associated with T1 -based synthetic contrasts, enabled substantial decrease of the acquisition time or higher spatial resolution scans for a given time budget, while generating all typical brain contrasts derived from MP2RAGE.
Collapse
Affiliation(s)
- Blanche Bapst
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
- Department of Neuroradiology, AP-HP, Henri Mondor University Hospital, Créteil, France
- EA 4391, Université Paris Est Créteil, Créteil, France
| | | | - Franck Mauconduit
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Vincent Gras
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Juliette Dufour
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm, Paris, France
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm, Paris, France
| | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm, Paris, France
| | - Alain Luciani
- Department of Medical Imaging, Henri Mondor University Hospital, Créteil, France
| | - Alexandre Vignaud
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|
22
|
Özütemiz C. Cerebrovascular Imaging at 7T: A New High. Semin Roentgenol 2024; 59:148-156. [PMID: 38880513 DOI: 10.1053/j.ro.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Can Özütemiz
- University of Minnesota, Department of Radiology, MMC 292, 420 Delaware St. SE Minneapolis, MN.
| |
Collapse
|
23
|
Huang Q, Xie P, Zhou J, Ding H, Liu Z, Li T, Guan Y, Wang M, Wang J, Teng P, Zhu M, Ma K, Wu H, Luan G, Zhai F. Predictors of seizure outcomes in stereo-electroencephalography-guided radio-frequency thermocoagulation for MRI-negative epilepsy. Ther Adv Chronic Dis 2024; 15:20406223241236258. [PMID: 38496233 PMCID: PMC10943718 DOI: 10.1177/20406223241236258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Background One-third of intractable epilepsy patients have no visually identifiable focus for neurosurgery based on imaging tests [magnetic resonance imaging (MRI)-negative cases]. Stereo-electroencephalography-guided radio-frequency thermocoagulation (SEEG-guided RF-TC) is utilized in the clinical treatment of epilepsy to lower the incidence of complications post-open surgery. Objective This study aimed to identify prognostic factors and long-term seizure outcomes in SEEG-guided RF-TC for patients with MRI-negative epilepsy. Design This was a single-center retrospective cohort study. Methods We included 30 patients who had undergone SEEG-guided RF-TC at Sanbo Brain Hospital, Capital Medical University, from April 2015 to December 2019. The probability of remaining seizure-free and the plotted survival curves were analyzed. Prognostic factors were analyzed using log-rank tests in univariate analysis and the Cox regression model in multivariate analysis. Results With a mean time of 31.07 ± 2.64 months (median 30.00, interquartile range: 18.00-40.00 months), 11 out of 30 patients (36.7%) were classified as International League Against Epilepsy class 1 in the last follow-up. The mean time of remaining seizure-free was 21.33 ± 4.55 months [95% confidence interval (CI) 12.41-30.25], and the median time was 3.00 ± 0.54 months (95% CI 1.94-4.06). Despite falling in the initial year, the probability of remaining seizure-free gradually stabilizes in the subsequent years. The patients were more likely to obtain seizure freedom when the epileptogenic zone was located in the insular lobe or with one focus on the limbic system (p = 0.034, hazard ratio 5.019, 95% CI 1.125-22.387). Conclusion Our findings may be applied to guide individualized surgical interventions and help clinicians make better decisions.
Collapse
Affiliation(s)
- Qi Huang
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Pandeng Xie
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Haoran Ding
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Zhao Liu
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Tianfu Li
- Department of Brain Institute, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Pengfei Teng
- Department of Magnetoencephalography, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Mingwang Zhu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Kaiqiang Ma
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Han Wu
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, XiangshanYikesong 50, Haidian District, Beijing 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, XiangshanYikesong 50, Haidian District, Beijing 100093, China
- Department of Functional Neurosurgery, Neurological Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| |
Collapse
|
24
|
Haast RAM, Kashyap S, Ivanov D, Yousif MD, DeKraker J, Poser BA, Khan AR. Insights into hippocampal perfusion using high-resolution, multi-modal 7T MRI. Proc Natl Acad Sci U S A 2024; 121:e2310044121. [PMID: 38446857 PMCID: PMC10945835 DOI: 10.1073/pnas.2310044121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 03/08/2024] Open
Abstract
We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.
Collapse
Affiliation(s)
- Roy A. M. Haast
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
- Krembil Brain Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Mohamed D. Yousif
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QCH3A 0G4, Canada
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Ali R. Khan
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| |
Collapse
|
25
|
Hangel G, Kasprian G, Chambers S, Haider L, Lazen P, Koren J, Diehm R, Moser K, Tomschik M, Wais J, Winter F, Zeiser V, Gruber S, Aull-Watschinger S, Traub-Weidinger T, Baumgartner C, Feucht M, Dorfer C, Bogner W, Trattnig S, Pataraia E, Roessler K. Implementation of a 7T Epilepsy Task Force consensus imaging protocol for routine presurgical epilepsy work-up: effect on diagnostic yield and lesion delineation. J Neurol 2024; 271:804-818. [PMID: 37805665 PMCID: PMC10827812 DOI: 10.1007/s00415-023-11988-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE Recently, the 7 Tesla (7 T) Epilepsy Task Force published recommendations for 7 T magnetic resonance imaging (MRI) in patients with pharmaco-resistant focal epilepsy in pre-surgical evaluation. The objective of this study was to implement and evaluate this consensus protocol with respect to both its practicability and its diagnostic value/potential lesion delineation surplus effect over 3 T MRI in the pre-surgical work-up of patients with pharmaco-resistant focal onset epilepsy. METHODS The 7 T MRI protocol consisted of T1-weighted, T2-weighted, high-resolution-coronal T2-weighted, fluid-suppressed, fluid-and-white-matter-suppressed, and susceptibility-weighted imaging, with an overall duration of 50 min. Two neuroradiologists independently evaluated the ability of lesion identification, the detection confidence for these identified lesions, and the lesion border delineation at 7 T compared to 3 T MRI. RESULTS Of 41 recruited patients > 12 years of age, 38 were successfully measured and analyzed. Mean detection confidence scores were non-significantly higher at 7 T (1.95 ± 0.84 out of 3 versus 1.64 ± 1.19 out of 3 at 3 T, p = 0.050). In 50% of epilepsy patients measured at 7 T, additional findings compared to 3 T MRI were observed. Furthermore, we found improved border delineation at 7 T in 88% of patients with 3 T-visible lesions. In 19% of 3 T MR-negative cases a new potential epileptogenic lesion was detected at 7 T. CONCLUSIONS The diagnostic yield was beneficial, but with 19% new 7 T over 3 T findings, not major. Our evaluation revealed epilepsy outcomes worse than ILAE Class 1 in two out of the four operated cases with new 7 T findings.
Collapse
Affiliation(s)
- Gilbert Hangel
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Department of Biomedical Imaging and Image-Guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for MR Imaging Biomarkers, Vienna, Austria.
- Medical Imaging Cluster, Medical University of Vienna, Vienna, Austria.
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stefanie Chambers
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Lukas Haider
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- NMR Research Unit, Faculty of Brain Science, Queens Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - Philipp Lazen
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Johannes Koren
- Department of Neurology, Klinik Hietzing, Vienna, Austria
| | - Robert Diehm
- Center for Rare and Complex Childhood Onset Epilepsies, Member of ERN EpiCARE, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Moser
- Center for Rare and Complex Childhood Onset Epilepsies, Member of ERN EpiCARE, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Tomschik
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Jonathan Wais
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Fabian Winter
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Vitalij Zeiser
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Stephan Gruber
- Department of Biomedical Imaging and Image-Guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for MR Imaging Biomarkers, Vienna, Austria
| | | | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Martha Feucht
- Center for Rare and Complex Childhood Onset Epilepsies, Member of ERN EpiCARE, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for MR Imaging Biomarkers, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-Guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for MR Imaging Biomarkers, Vienna, Austria
| | | | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory for MR Imaging Biomarkers, Vienna, Austria
| |
Collapse
|
26
|
Bridgen P, Tomi-Tricot R, Uus A, Cromb D, Quirke M, Almalbis J, Bonse B, De la Fuente Botella M, Maggioni A, Cio PD, Cawley P, Casella C, Dokumaci AS, Thomson AR, Willers Moore J, Bridglal D, Saravia J, Finck T, Price AN, Pickles E, Cordero-Grande L, Egloff A, O’Muircheartaigh J, Counsell SJ, Giles SL, Deprez M, De Vita E, Rutherford MA, Edwards AD, Hajnal JV, Malik SJ, Arichi T. High resolution and contrast 7 tesla MR brain imaging of the neonate. FRONTIERS IN RADIOLOGY 2024; 3:1327075. [PMID: 38304343 PMCID: PMC10830693 DOI: 10.3389/fradi.2023.1327075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Introduction Ultra-high field MR imaging offers marked gains in signal-to-noise ratio, spatial resolution, and contrast which translate to improved pathological and anatomical sensitivity. These benefits are particularly relevant for the neonatal brain which is rapidly developing and sensitive to injury. However, experience of imaging neonates at 7T has been limited due to regulatory, safety, and practical considerations. We aimed to establish a program for safely acquiring high resolution and contrast brain images from neonates on a 7T system. Methods Images were acquired from 35 neonates on 44 occasions (median age 39 + 6 postmenstrual weeks, range 33 + 4 to 52 + 6; median body weight 2.93 kg, range 1.57 to 5.3 kg) over a median time of 49 mins 30 s. Peripheral body temperature and physiological measures were recorded throughout scanning. Acquired sequences included T2 weighted (TSE), Actual Flip angle Imaging (AFI), functional MRI (BOLD EPI), susceptibility weighted imaging (SWI), and MR spectroscopy (STEAM). Results There was no significant difference between temperature before and after scanning (p = 0.76) and image quality assessment compared favorably to state-of-the-art 3T acquisitions. Anatomical imaging demonstrated excellent sensitivity to structures which are typically hard to visualize at lower field strengths including the hippocampus, cerebellum, and vasculature. Images were also acquired with contrast mechanisms which are enhanced at ultra-high field including susceptibility weighted imaging, functional MRI, and MR spectroscopy. Discussion We demonstrate safety and feasibility of imaging vulnerable neonates at ultra-high field and highlight the untapped potential for providing important new insights into brain development and pathological processes during this critical phase of early life.
Collapse
Affiliation(s)
- Philippa Bridgen
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Raphael Tomi-Tricot
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, London, United Kingdom
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Megan Quirke
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jennifer Almalbis
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Beya Bonse
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Miguel De la Fuente Botella
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Alessandra Maggioni
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Pierluigi Di Cio
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Paul Cawley
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Chiara Casella
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Ayse Sila Dokumaci
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Alice R. Thomson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Jucha Willers Moore
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Devi Bridglal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Joao Saravia
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Thomas Finck
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Anthony N. Price
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Elisabeth Pickles
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, ISCIII, Madrid, Spain
| | - Alexia Egloff
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Sharon L. Giles
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Enrico De Vita
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MR Physics, Radiology Department, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mary A. Rutherford
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - A. David Edwards
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Joseph V. Hajnal
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Shaihan J. Malik
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Tomoki Arichi
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| |
Collapse
|
27
|
Rodrigo Marinowic D, Bottega Pazzin D, Prates da Cunha de Azevedo S, Pinzetta G, Victor Machado de Souza J, Tonon Schneider F, Thor Ramos Previato T, Jean Varella de Oliveira F, Costa Da Costa J. Epileptogenesis and drug-resistant in focal cortical dysplasias: Update on clinical, cellular, and molecular markers. Epilepsy Behav 2024; 150:109565. [PMID: 38070410 DOI: 10.1016/j.yebeh.2023.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/14/2024]
Abstract
Focal cortical dysplasia (FCD) is a cortical malformation in brain development and is considered as one of the major causes of drug-resistant epilepsiesin children and adults. The pathogenesis of FCD is yet to be fully understood. Imaging markers such as MRI are currently the surgeons major obstacle due to the difficulty in delimiting the precise dysplasic area and a mosaic brain where there is epileptogenic tissue invisible to MRI. Also increased gene expression and activity may be responsible for the alterations in cell proliferation, migration, growth, and survival. Altered expressions were found, particularly in the PI3K/AKT/mTOR pathway. Surgery is still considered the most effective treatment option, due to drug-resistance, and up to 60 % of patients experience complete seizure control, varying according to the type and location of FCD. Both genetic and epigenetic factors may be involved in the pathogenesis of FCD, and there is no conclusive evidence whether these alterations are inherited or have an environmental origin.
Collapse
Affiliation(s)
- Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Giulia Pinzetta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Victor Machado de Souza
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Tonon Schneider
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Jean Varella de Oliveira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Rebsamen M, Jin BZ, Klail T, De Beukelaer S, Barth R, Rezny-Kasprzak B, Ahmadli U, Vulliemoz S, Seeck M, Schindler K, Wiest R, Radojewski P, Rummel C. Clinical Evaluation of a Quantitative Imaging Biomarker Supporting Radiological Assessment of Hippocampal Sclerosis. Clin Neuroradiol 2023; 33:1045-1053. [PMID: 37358608 PMCID: PMC10654177 DOI: 10.1007/s00062-023-01308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE To evaluate the influence of quantitative reports (QReports) on the radiological assessment of hippocampal sclerosis (HS) from MRI of patients with epilepsy in a setting mimicking clinical reality. METHODS The study included 40 patients with epilepsy, among them 20 with structural abnormalities in the mesial temporal lobe (13 with HS). Six raters blinded to the diagnosis assessed the 3T MRI in two rounds, first using MRI only and later with both MRI and the QReport. Results were evaluated using inter-rater agreement (Fleiss' kappa [Formula: see text]) and comparison with a consensus of two radiological experts derived from clinical and imaging data, including 7T MRI. RESULTS For the primary outcome, diagnosis of HS, the mean accuracy of the raters improved from 77.5% with MRI only to 86.3% with the additional QReport (effect size [Formula: see text]). Inter-rater agreement increased from [Formula: see text] to [Formula: see text]. Five of the six raters reached higher accuracies, and all reported higher confidence when using the QReports. CONCLUSION In this pre-use clinical evaluation study, we demonstrated clinical feasibility and usefulness as well as the potential impact of a previously suggested imaging biomarker for radiological assessment of HS.
Collapse
Affiliation(s)
- Michael Rebsamen
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Baudouin Zongxin Jin
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tomas Klail
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie De Beukelaer
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rike Barth
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beata Rezny-Kasprzak
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uzeyir Ahmadli
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland.
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| |
Collapse
|
29
|
Özütemiz C, White M, Elvendahl W, Eryaman Y, Marjańska M, Metzger GJ, Patriat R, Kulesa J, Harel N, Watanabe Y, Grant A, Genovese G, Cayci Z. Use of a Commercial 7-T MRI Scanner for Clinical Brain Imaging: Indications, Protocols, Challenges, and Solutions-A Single-Center Experience. AJR Am J Roentgenol 2023; 221:788-804. [PMID: 37377363 PMCID: PMC10825876 DOI: 10.2214/ajr.23.29342] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The first commercially available 7-T MRI scanner (Magnetom Terra) was approved by the FDA in 2017 for clinical imaging of the brain and knee. After initial protocol development and sequence optimization efforts in volunteers, the 7-T system, in combination with an FDA-approved 1-channel transmit/32-channel receive array head coil, can now be routinely used for clinical brain MRI examinations. The ultrahigh field strength of 7-T MRI has the advantages of improved spatial resolution, increased SNR, and increased CNR but also introduces an array of new technical challenges. The purpose of this article is to describe an institutional experience with the use of the commercially available 7-T MRI scanner for routine clinical brain imaging. Specific clinical indications for which 7-T MRI may be useful for brain imaging include brain tumor evaluation with possible perfusion imaging and/or spectroscopy, radiotherapy planning; evaluation of multiple sclerosis and other demyelinating diseases, evaluation of Parkinson disease and guidance of deep brain stimulator placement, high-detail intracranial MRA and vessel wall imaging, evaluation of pituitary pathology, and evaluation of epilepsy. Detailed protocols, including sequence parameters, for these various indications are presented, and implementation challenges (including artifacts, safety, and side effects) and potential solutions are explored.
Collapse
Affiliation(s)
- Can Özütemiz
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
| | - Matthew White
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Wendy Elvendahl
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Jeramy Kulesa
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN
| | - Andrea Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Zuzan Cayci
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
30
|
Amrami KK, Chebrolu VV, Felmlee JP, Frick MA, Powell GM, Marek T, Howe BM, Fagan AJ, Kollasch PD, Spinner RJ. 7T for clinical imaging of benign peripheral nerve tumors: preliminary results. Acta Neurochir (Wien) 2023; 165:3549-3558. [PMID: 37464202 DOI: 10.1007/s00701-023-05724-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE MRI has become an essential diagnostic imaging modality for peripheral nerve pathology. Early MR imaging for peripheral nerve depended on inferred nerve involvement by visualizing downstream effects such as denervation muscular atrophy; improvements in MRI technology have made possible direct visualization of the nerves. In this paper, we share our early clinical experience with 7T for benign neurogenic tumors. MATERIALS Patients with benign neurogenic tumors and 7T MRI examinations available were reviewed. Cases of individual benign peripheral nerve tumors were included to demonstrate 7T MRI imaging characteristics. All exams were performed on a 7T MRI MAGNETOM Terra using a 28-channel receive, single-channel transmit knee coil. RESULTS Five cases of four pathologies were selected from 38 patients to depict characteristic imaging features in different benign nerve tumors and lesions using 7T MRI. CONCLUSION The primary advantage of 7T over 3T is an increase in signal-to-noise ratio which allows higher in plane resolution so that the smallest neural structures can be seen and characterized. This improvement in MR imaging provides the opportunity for more accurate diagnosis and surgical planning in selected cases. As this technology continues to evolve for clinical purposes, we anticipate increasing applications and improved patient care using 7T MRI for the diagnosis of peripheral nerve masses.
Collapse
Affiliation(s)
- Kimberly K Amrami
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Venkata V Chebrolu
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Siemens Healthineers, Rochester, MN, USA
| | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Matthew A Frick
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Garret M Powell
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Tomas Marek
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Benjamin M Howe
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Peter D Kollasch
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Siemens Healthineers, Rochester, MN, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Fawcett J, Davis S, Manford M. Further advances in epilepsy. J Neurol 2023; 270:5655-5670. [PMID: 37458794 DOI: 10.1007/s00415-023-11860-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 10/15/2023]
Abstract
In 2017, one of us reviewed advances in epilepsy (Manford in J Neurol 264:1811-1824, 2017). The current paper brings that review up to date and gives a slight change in emphasis. Once again, the story is of evolution rather than revolution. In recognition that most of our current medications act on neurotransmitters or ion channels, and not on the underlying changes in connectivity and pathways, they have been renamed as antiseizure (ASM) medications rather than antiepileptic drugs. Cenobamate is the one newly licensed medication for broader use in focal epilepsy but there have been a number of developments for specific disorders. We review new players and look forward to new developments in the light of evolving underlying science. We look at teratogenicity; old villains and new concerns in which clinicians play a vital role in explaining and balancing the risks. Medical treatment of status epilepticus, long without evidence, has benefitted from high-quality trials to inform practice; like buses, several arriving at once. Surgical treatment continues to be refined with improvements in the pre-surgical evaluation of patients, especially with new imaging techniques. Alternatives including stereotactic radiotherapy have received further focus and targets for palliative stimulation techniques have grown in number. Individuals' autonomy and quality of life continue to be the subject of research with refinement of what clinicians can do to help persons with epilepsy (PWE) achieve control. This includes seizure management but extends to broader considerations of human empowerment, needs and desires, which may be aided by emerging technologies such as seizure detection devices. The role of specialist nurses in improving that quality has been reinforced by specific endorsement from the International League against Epilepsy (ILAE).
Collapse
Affiliation(s)
- Joanna Fawcett
- Department of Neurology, Royal United Hospital, Bath, UK
| | - Sarah Davis
- Department of Neurology, Royal United Hospital, Bath, UK
| | - Mark Manford
- Department of Neurology, Royal United Hospital, Bath, UK.
| |
Collapse
|
32
|
Balestrini S, Mei D, Sisodiya SM, Guerrini R. Steps to Improve Precision Medicine in Epilepsy. Mol Diagn Ther 2023; 27:661-672. [PMID: 37755653 PMCID: PMC10590329 DOI: 10.1007/s40291-023-00676-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Precision medicine is an old concept, but it is not widely applied across human health conditions as yet. Numerous attempts have been made to apply precision medicine in epilepsy, this has been based on a better understanding of aetiological mechanisms and deconstructing disease into multiple biological subsets. The scope of precision medicine is to provide effective strategies for treating individual patients with specific agent(s) that are likely to work best based on the causal biological make-up. We provide an overview of the main applications of precision medicine in epilepsy, including the current limitations and pitfalls, and propose potential strategies for implementation and to achieve a higher rate of success in patient care. Such strategies include establishing a definition of precision medicine and its outcomes; learning from past experiences, from failures and from other fields (e.g. oncology); using appropriate precision medicine strategies (e.g. drug repurposing versus traditional drug discovery process); and using adequate methods to assess efficacy (e.g. randomised controlled trials versus alternative trial designs). Although the progress of diagnostic techniques now allows comprehensive characterisation of each individual epilepsy condition from a molecular, biological, structural and clinical perspective, there remain challenges in the integration of individual data in clinical practice to achieve effective applications of precision medicine in this domain.
Collapse
Affiliation(s)
- S Balestrini
- Neuroscience Department, Meyer Children's Hospital IRCSS, Florence, Italy
- University of Florence, Florence, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - D Mei
- Neuroscience Department, Meyer Children's Hospital IRCSS, Florence, Italy
| | - S M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCSS, Florence, Italy.
- University of Florence, Florence, Italy.
| |
Collapse
|
33
|
Uher D, Drenthen GS, Schijns OEMG, Colon AJ, Hofman PAM, van Lanen RHGJ, Hoeberigs CM, Jansen JFA, Backes WH. Advances in Image Processing for Epileptogenic Zone Detection with MRI. Radiology 2023; 307:e220927. [PMID: 37129491 DOI: 10.1148/radiol.220927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Focal epilepsy is a common and severe neurologic disorder. Neuroimaging aims to identify the epileptogenic zone (EZ), preferably as a macroscopic structural lesion. For approximately a third of patients with chronic drug-resistant focal epilepsy, the EZ cannot be precisely identified using standard 3.0-T MRI. This may be due to either the EZ being undetectable at imaging or the seizure activity being caused by a physiologic abnormality rather than a structural lesion. Computational image processing has recently been shown to aid radiologic assessments and increase the success rate of uncovering suspicious regions by enhancing their visual conspicuity. While structural image analysis is at the forefront of EZ detection, physiologic image analysis has also been shown to provide valuable information about EZ location. This narrative review summarizes and explains the current state-of-the-art computational approaches for image analysis and presents their potential for EZ detection. Current limitations of the methods and possible future directions to augment EZ detection are discussed.
Collapse
Affiliation(s)
- Daniel Uher
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Gerhard S Drenthen
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Olaf E M G Schijns
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Albert J Colon
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Paul A M Hofman
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Rick H G J van Lanen
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Christianne M Hoeberigs
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Jacobus F A Jansen
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Walter H Backes
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| |
Collapse
|
34
|
Nurzed B, Kuehne A, Aigner CS, Schmitter S, Niendorf T, Eigentler TW. Radiofrequency antenna concepts for human cardiac MR at 14.0 T. MAGMA (NEW YORK, N.Y.) 2023; 36:257-277. [PMID: 36920549 PMCID: PMC10140016 DOI: 10.1007/s10334-023-01075-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE To examine the feasibility of human cardiac MR (CMR) at 14.0 T using high-density radiofrequency (RF) dipole transceiver arrays in conjunction with static and dynamic parallel transmission (pTx). MATERIALS AND METHODS RF arrays comprised of self-grounded bow-tie (SGBT) antennas, bow-tie (BT) antennas, or fractionated dipole (FD) antennas were used in this simulation study. Static and dynamic pTx were applied to enhance transmission field (B1+) uniformity and efficiency in the heart of the human voxel model. B1+ distribution and maximum specific absorption rate averaged over 10 g tissue (SAR10g) were examined at 7.0 T and 14.0 T. RESULTS At 14.0 T static pTx revealed a minimum B1+ROI efficiency of 0.91 μT/√kW (SGBT), 0.73 μT/√kW (BT), and 0.56 μT/√kW (FD) and maximum SAR10g of 4.24 W/kg, 1.45 W/kg, and 2.04 W/kg. Dynamic pTx with 8 kT points indicate a balance between B1+ROI homogeneity (coefficient of variation < 14%) and efficiency (minimum B1+ROI > 1.11 µT/√kW) at 14.0 T with a maximum SAR10g < 5.25 W/kg. DISCUSSION MRI of the human heart at 14.0 T is feasible from an electrodynamic and theoretical standpoint, provided that multi-channel high-density antennas are arranged accordingly. These findings provide a technical foundation for further explorations into CMR at 14.0 T.
Collapse
Affiliation(s)
- Bilguun Nurzed
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
| | | | | | | | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany.
- MRI.TOOLS GmbH, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
- Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
35
|
Medina-Pizarro M, Spencer DD, Damisah EC. Recent advances in epilepsy surgery. Curr Opin Neurol 2023; 36:95-101. [PMID: 36762633 DOI: 10.1097/wco.0000000000001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Technological innovations in the preoperative evaluation, surgical techniques and outcome prediction in epilepsy surgery have grown exponentially over the last decade. This review highlights and emphasizes relevant updates in techniques and diagnostic tools, discussing their context within standard practice at comprehensive epilepsy centres. RECENT FINDINGS High-resolution structural imaging has set an unprecedented opportunity to detect previously unrecognized subtle abnormalities. Machine learning and computer science are impacting the methodologies to analyse presurgical and surgical outcome data, building more accurate prediction models to tailor treatment strategies. Robotic-assisted placement of depth electrodes has increased the safety and ability to sample epileptogenic nodes within deep structures, improving our understanding of the seizure networks in drug-resistant epilepsy. The current available minimally invasive techniques are reasonable surgical alternatives to ablate or disrupt epileptogenic regions, although their sustained efficacy is still an active area of research. SUMMARY Epilepsy surgery is still underutilized worldwide. Every patient who continues with seizures despite adequate trials of two well selected and tolerated antiseizure medications should be evaluated for surgical candidacy. Collaboration between academic epilepsy centres is of paramount importance to answer long-standing questions in epilepsy surgery regarding the understanding of spatio-temporal dynamics in epileptogenic networks and its impact on surgical outcomes.
Collapse
|
36
|
Metodiev D, Minkin K, Ruseva M, Ganeva R, Parvanov D, Nachev S. Pathomorphological Diagnostic Criteria for Focal Cortical Dysplasias and Other Common Epileptogenic Lesions—Review of the Literature. Diagnostics (Basel) 2023; 13:diagnostics13071311. [PMID: 37046529 PMCID: PMC10092959 DOI: 10.3390/diagnostics13071311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Focal cortical dysplasia (FCD) represents a heterogeneous group of morphological changes in the brain tissue that can predispose the development of pharmacoresistant epilepsy (recurring, unprovoked seizures which cannot be managed with medications). This group of neurological disorders affects not only the cerebral cortex but also the subjacent white matter. This work reviews the literature describing the morphological substrate of pharmacoresistant epilepsy. All illustrations presented in this study are obtained from brain biopsies from refractory epilepsy patients investigated by the authors. Regarding classification, there are three main FCD types, all of which involve cortical dyslamination. The 2022 revision of the International League Against Epilepsy (ILAE) FCD classification includes new histologically defined pathological entities: mild malformation of cortical development (mMCD), mild malformation of cortical development with oligodendroglial hyperplasia in frontal lobe epilepsy (MOGHE), and “no FCD on histopathology”. Although the pathomorphological characteristics of the various forms of focal cortical dysplasias are well known, their aetiologic and pathogenetic features remain elusive. The identification of genetic variants in FCD opens an avenue for novel treatment strategies, which are of particular utility in cases where total resection of the epileptogenic area is impossible.
Collapse
|
37
|
Dokumacı AS, Aitken FR, Sedlacik J, Bridgen P, Tomi‐Tricot R, Mooiweer R, Vecchiato K, Wilkinson T, Casella C, Giles S, Hajnal JV, Malik SJ, O'Muircheartaigh J, Carmichael DW. Simultaneous Optimization of MP2RAGE T 1 -weighted (UNI) and FLuid And White matter Suppression (FLAWS) brain images at 7T using Extended Phase Graph (EPG) Simulations. Magn Reson Med 2023; 89:937-950. [PMID: 36352772 PMCID: PMC10100108 DOI: 10.1002/mrm.29479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE The MP2RAGE sequence is typically optimized for either T1 -weighted uniform image (UNI) or gray matter-dominant fluid and white matter suppression (FLAWS) contrast images. Here, the purpose was to optimize an MP2RAGE protocol at 7 Tesla to provide UNI and FLAWS images simultaneously in a clinically applicable acquisition time at <0.7 mm isotropic resolution. METHODS Using the extended phase graph formalism, the signal evolution of the MP2RAGE sequence was simulated incorporating T2 relaxation, diffusion, RF spoiling, and B1 + variability. Flip angles and TI were optimized at different TRs (TRMP2RAGE ) to produce an optimal contrast-to-noise ratio for UNI and FLAWS images. Simulation results were validated by comparison to MP2RAGE brain scans of 5 healthy subjects, and a final protocol at TRMP2RAGE = 4000 ms was applied in 19 subjects aged 8-62 years with and without epilepsy. RESULTS FLAWS contrast images could be obtained while maintaining >85% of the optimal UNI contrast-to-noise ratio. Using TI1 /TI2 /TRMP2RAGE of 650/2280/4000 ms, 6/8 partial Fourier in the inner phase-encoding direction, and GRAPPA factor = 4 in the other, images with 0.65 mm isotropic resolution were produced in <7.5 min. The contrast-to-noise ratio was around 20% smaller at TRMP2RAGE = 4000 ms compared to that at TRMP2RAGE = 5000 ms; however, the 20% shorter duration makes TRMP2RAGE = 4000 ms a good candidate for clinical applications example, pediatrics. CONCLUSION FLAWS and UNI images could be obtained in a single scan with 0.65 mm isotropic resolution, providing a set of high-contrast images and full brain coverage in a clinically applicable scan time. Images with excellent anatomical detail were demonstrated over a wide age range using the optimized parameter set.
Collapse
Affiliation(s)
- Ayşe Sıla Dokumacı
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Fraser R. Aitken
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Jan Sedlacik
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Radiology DepartmentGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| | - Pip Bridgen
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Raphael Tomi‐Tricot
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUnited Kingdom
| | - Ronald Mooiweer
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUnited Kingdom
| | - Katy Vecchiato
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUnited Kingdom
| | - Tom Wilkinson
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Chiara Casella
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUnited Kingdom
| | - Sharon Giles
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Joseph V. Hajnal
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Shaihan J. Malik
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Jonathan O'Muircheartaigh
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUnited Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College LondonLondonUnited Kingdom
| | - David W. Carmichael
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| |
Collapse
|
38
|
Englot DJ. Early MRI in Epilepsy: A Picture Is Worth a Thousand Preventable Seizures. Epilepsy Curr 2023; 23:84-86. [PMID: 37122406 PMCID: PMC10131562 DOI: 10.1177/15357597221138509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Structural Neuroimaging in Adults and Adolescents With Newly Diagnosed Focal Epilepsy: The Human Epilepsy Project Bank AM, Kuzniecky R, Knowlton RC, Cascino GD, Jackson G, Pardoe HR; for the Human Epilepsy Project Investigators. Neurology . 2022. doi:10.1212/WNL.0000000000201125 . Online ahead of print. Background and objectives: Identification of an epileptogenic lesion on structural neuroimaging in individuals with focal epilepsy is important for management and treatment planning. The objective of this study was to determine the frequency of MRI-identified potentially epileptogenic structural abnormalities in a large multicenter study of adolescent and adult patients with newly diagnosed focal epilepsy. Methods: Patients with a new diagnosis of focal epilepsy enrolled in the Human Epilepsy Project observational cohort study underwent 3-Tesla (3 T) brain MRI using a standardized protocol. Imaging findings were classified as normal, abnormal, or incidental. Abnormal findings were classified as focal or diffuse, and as likely epilepsy-related or of unknown relationship to epilepsy. Fisher exact tests were performed to determine whether abnormal imaging or abnormality type was associated with clinical characteristics. Results: 418 participants were enrolled. 218 participants (59.3%) had no abnormalities detected, 149 (35.6%) had abnormal imaging, and 21 (5.0%) had incidental findings. 78 participants (18.7%) had abnormalities that were considered epilepsy-related and 71 (17.0%) had abnormalities of unknown relationship to epilepsy. Older participants were more likely to have imaging abnormalities, while participants with focal and epilepsy-related imaging abnormalities were younger than those without these abnormalities. 131 participants (31.3%) had a family history of epilepsy. Epilepsy-related abnormalities were not associated with participant sex, family history of epilepsy, or seizure type. Discussion: We found that one in five patients with newly diagnosed focal epilepsy has an MRI finding that is likely causative and may alter treatment options. An additional one in five patients has abnormalities of unknown significance. This information is important for patient counseling, prognostication, and management.
Collapse
Affiliation(s)
- Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center
| |
Collapse
|
39
|
Mohanty D, Quach M. The Noninvasive Evaluation for Minimally Invasive Pediatric Epilepsy Surgery (MIPES): A Multimodal Exploration of the Localization-Based Hypothesis. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractMinimally invasive pediatric epilepsy surgery (MIPES) is a rising technique in the management of focal-onset drug-refractory epilepsy. Minimally invasive surgical techniques are based on small, focal interventions (such as parenchymal ablation or localized neuromodulation) leading to elimination of the seizure onset zone or interruption of the larger epileptic network. Precise localization of the seizure onset zone, demarcation of eloquent cortex, and mapping of the network leading to seizure propagation are required to achieve optimal outcomes. The toolbox for presurgical, noninvasive evaluation of focal epilepsy continues to expand rapidly, with a variety of options based on advanced imaging and electrophysiology. In this article, we will examine several of these diagnostic modalities from the standpoint of MIPES and discuss how each can contribute to the development of a localization-based hypothesis for potential surgical targets.
Collapse
Affiliation(s)
- Deepankar Mohanty
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Michael Quach
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
40
|
Structural association between heterotopia and cortical lesions visualised with 7 T MRI in patients with focal epilepsy. Seizure 2022; 101:177-183. [DOI: 10.1016/j.seizure.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/18/2022] [Accepted: 08/19/2022] [Indexed: 01/15/2023] Open
|
41
|
Cankurtaran CZ, Templer J, Bandt SK, Avery R, Hijaz T, McComb EN, Liu BP, Schuele S, Nemeth AJ, Korutz AW. Multimodal Presurgical Evaluation of Medically Refractory Focal Epilepsy in Adults: An Update for Radiologists. AJR Am J Roentgenol 2022; 219:488-500. [PMID: 35441531 DOI: 10.2214/ajr.22.27588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surgery is a potentially curative treatment option for patients with medically refractory focal epilepsy. Advanced neuroimaging modalities often improve surgical outcomes by contributing key information during the highly individualized surgical planning process and intraoperative localization. Hence, neuroradiologists play an integral role in the multidisciplinary management team. In this review, we initially present the conceptual background and practical framework of the presurgical evaluation process, including a description of the surgical treatment approaches used for medically refractory focal epilepsy in adults. This background is followed by an overview of the advanced modalities commonly used during the presurgical workup at level IV epilepsy centers, including diffusion imaging techniques, blood oxygenation level-dependent functional MRI (fMRI), PET, SPECT, and subtraction ictal SPECT, and by introductions to 7-T MRI and electrophysiologic techniques including electroencephalography and magnetoencephalography. We also provide illustrative case examples of multimodal neuroimaging including PET/MRI, PET/MRI-diffusion-tensor imaging (DTI), subtraction ictal SPECT, and image-guided stereotactic planning with fMRI-DTI.
Collapse
Affiliation(s)
- Ceylan Z Cankurtaran
- Department of Radiology, Keck School of Medicine of USC, 1500 San Pablo St, HCC2 Radiology, Los Angeles, CA 90033
| | - Jessica Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sarah K Bandt
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ryan Avery
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tarek Hijaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Erin N McComb
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Benjamin P Liu
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Stephan Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alexander J Nemeth
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alexander W Korutz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
42
|
Najm I, Lal D, Alonso Vanegas M, Cendes F, Lopes-Cendes I, Palmini A, Paglioli E, Sarnat HB, Walsh CA, Wiebe S, Aronica E, Baulac S, Coras R, Kobow K, Cross JH, Garbelli R, Holthausen H, Rössler K, Thom M, El-Osta A, Lee JH, Miyata H, Guerrini R, Piao YS, Zhou D, Blümcke I. The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 2022; 63:1899-1919. [PMID: 35706131 PMCID: PMC9545778 DOI: 10.1111/epi.17301] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
Ongoing challenges in diagnosing focal cortical dysplasia (FCD) mandate continuous research and consensus agreement to improve disease definition and classification. An International League Against Epilepsy (ILAE) Task Force (TF) reviewed the FCD classification of 2011 to identify existing gaps and provide a timely update. The following methodology was applied to achieve this goal: a survey of published literature indexed with ((Focal Cortical Dysplasia) AND (epilepsy)) between 01/01/2012 and 06/30/2021 (n = 1349) in PubMed identified the knowledge gained since 2012 and new developments in the field. An online survey consulted the ILAE community about the current use of the FCD classification scheme with 367 people answering. The TF performed an iterative clinico-pathological and genetic agreement study to objectively measure the diagnostic gap in blood/brain samples from 22 patients suspicious for FCD and submitted to epilepsy surgery. The literature confirmed new molecular-genetic characterizations involving the mechanistic Target Of Rapamycin (mTOR) pathway in FCD type II (FCDII), and SLC35A2 in mild malformations of cortical development (mMCDs) with oligodendroglial hyperplasia (MOGHE). The electro-clinical-imaging phenotypes and surgical outcomes were better defined and validated for FCDII. Little new information was acquired on clinical, histopathological, or genetic characteristics of FCD type I (FCDI) and FCD type III (FCDIII). The survey identified mMCDs, FCDI, and genetic characterization as fields for improvement in an updated classification. Our iterative clinico-pathological and genetic agreement study confirmed the importance of immunohistochemical staining, neuroimaging, and genetic tests to improve the diagnostic yield. The TF proposes to include mMCDs, MOGHE, and "no definite FCD on histopathology" as new categories in the updated FCD classification. The histopathological classification can be further augmented by advanced neuroimaging and genetic studies to comprehensively diagnose FCD subtypes; these different levels should then be integrated into a multi-layered diagnostic scheme. This update may help to foster multidisciplinary efforts toward a better understanding of FCD and the development of novel targeted treatment options.
Collapse
Affiliation(s)
- Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA
| | - Dennis Lal
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Neurology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Translational Medicine, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Andre Palmini
- Department of Clinical Neurosciences, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Porto Alegre Epilepsy Surgery Program, Hospital São Lucas PUCRS, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Harvey B Sarnat
- Department of Paediatrics, Department of Pathology (Neuropathology) and Department of Clinical Neurosciences, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Kobow
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Helen Cross
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Hans Holthausen
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Karl Rössler
- Department of Neurosurgery, Allgemeines Krankenhaus Wien, Vienna Medical University, Wien, Austria
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, UK
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST and SoVarGen, Daejeon, South Korea
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Anna Meyer- University of Florence, Florence, Italy
| | - Yue-Shan Piao
- National Center for Neurological Disorders, Department of Pathology, Xuanwu Hospital, Capital Medical University, and Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ingmar Blümcke
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
43
|
|
44
|
Okada T, Fujimoto K, Fushimi Y, Akasaka T, Thuy DHD, Shima A, Sawamoto N, Oishi N, Zhang Z, Funaki T, Nakamoto Y, Murai T, Miyamoto S, Takahashi R, Isa T. Neuroimaging at 7 Tesla: a pictorial narrative review. Quant Imaging Med Surg 2022; 12:3406-3435. [PMID: 35655840 PMCID: PMC9131333 DOI: 10.21037/qims-21-969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 01/26/2024]
Abstract
Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dinh H. D. Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medial Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhilin Zhang
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
Lapalme-Remis S, Nguyen DK. Neuroimaging of Epilepsy. Continuum (Minneap Minn) 2022; 28:306-338. [PMID: 35393961 DOI: 10.1212/con.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article provides an overview of imaging modalities, important imaging pathologies, and the role each imaging modality can play in the diagnosis, evaluation, and treatment of epilepsy, including epilepsy surgery. RECENT FINDINGS The Harmonized Neuroimaging of Epilepsy Structural Sequences (HARNESS-MRI) protocol was proposed to standardize MRI imaging for all patients with seizures. The role of 7-Tesla MRI in finding previously occult epileptogenic lesions is under investigation, and the technique is increasingly used. Developing MRI postprocessing techniques can increase the sensitivity of MRI. Improvements in functional imaging techniques such as EEG-functional MRI (fMRI) and magnetic source imaging provide complementary methods of identifying seizure foci. New epileptogenic pathologies such as multinodular and vacuolating neuronal tumors (MVNT) are being discovered, and the importance of others, such as encephaloceles, is better appreciated. SUMMARY Brain imaging is a critical component of the diagnosis and evaluation of patients with epilepsy. Structural imaging modalities such as MRI and CT allow for the identification of a wide variety of potentially epileptogenic lesions. For patients with drug-resistant epilepsy under consideration for resective surgery, both structural and functional neuroimaging may be needed for focus identification and surgical planning for preservation of neurologic function.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW We review significant advances in epilepsy imaging in recent years. RECENT FINDINGS Structural MRI at 7T with optimization of acquisition and postacquisition image processing increases the diagnostic yield but artefactual findings remain a challenge. MRI analysis from multiple sites indicates different atrophy patterns and white matter diffusion abnormalities in temporal lobe and generalized epilepsies, with greater abnormalities close to the presumed seizure source. Structural and functional connectivity relate to seizure spread and generalization; longitudinal studies are needed to clarify the causal relationship of these associations. Diffusion MRI may help predict surgical outcome and network abnormalities extending beyond the epileptogenic zone. Three-dimensional multimodal imaging can increase the precision of epilepsy surgery, improve seizure outcome and reduce complications. Language and memory fMRI are useful predictors of postoperative deficits, and lead to risk minimization. FDG PET is useful for clinical studies and specific ligands probe the pathophysiology of neurochemical fluxes and receptor abnormalities. SUMMARY Improved structural MRI increases detection of abnormalities that may underlie epilepsy. Diffusion, structural and functional MRI indicate the widespread associations of epilepsy syndromes. These can assist stratification of surgical outcome and minimize risk. PET has continued utility clinically and for research into the pathophysiology of epilepsies.
Collapse
Affiliation(s)
- John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Young GS, Kimbrell V, Seethamraju R, Bubricks EJ. Clinical 7T MRI for epilepsy care: Value, patient selection, technical issues, and outlook. J Neuroimaging 2022; 32:377-388. [DOI: 10.1111/jon.12974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Geoffrey S. Young
- Department of Radiology Brigham and Women's Hospital Boston Massachusetts USA
- Department of Radiology Harvard Medical School Boston Massachusetts USA
| | - Vera Kimbrell
- Department of Radiology Brigham and Women's Hospital Boston Massachusetts USA
| | - Ravi Seethamraju
- USA MR Collaborations Siemens Medical Solutions, USA Inc Malvern Pennsylvania USA
- Department of Radiology Massachusetts General Hospital Charlestown Massachusetts USA
| | - Ellen J. Bubricks
- Edward B. Bromfield Epilepsy Division, Department of Neurology Brigham and Women's Hospital Boston Massachusetts USA
- Department of Neurology Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
48
|
van Lanen RHGJ, Wiggins CJ, Colon AJ, Backes WH, Jansen JFA, Uher D, Drenthen GS, Roebroeck A, Ivanov D, Poser BA, Hoeberigs MC, van Kuijk SMJ, Hoogland G, Rijkers K, Wagner GL, Beckervordersandforth J, Delev D, Clusmann H, Wolking S, Klinkenberg S, Rouhl RPW, Hofman PAM, Schijns OEMG. Value of ultra-high field MRI in patients with suspected focal epilepsy and negative 3 T MRI (EpiUltraStudy): protocol for a prospective, longitudinal therapeutic study. Neuroradiology 2022; 64:753-764. [PMID: 34984522 PMCID: PMC8907090 DOI: 10.1007/s00234-021-02884-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 10/30/2022]
Abstract
PURPOSE Resective epilepsy surgery is a well-established, evidence-based treatment option in patients with drug-resistant focal epilepsy. A major predictive factor of good surgical outcome is visualization and delineation of a potential epileptogenic lesion by MRI. However, frequently, these lesions are subtle and may escape detection by conventional MRI (≤ 3 T). METHODS We present the EpiUltraStudy protocol to address the hypothesis that application of ultra-high field (UHF) MRI increases the rate of detection of structural lesions and functional brain aberrances in patients with drug-resistant focal epilepsy who are candidates for resective epilepsy surgery. Additionally, therapeutic gain will be addressed, testing whether increased lesion detection and tailored resections result in higher rates of seizure freedom 1 year after epilepsy surgery. Sixty patients enroll the study according to the following inclusion criteria: aged ≥ 12 years, diagnosed with drug-resistant focal epilepsy with a suspected epileptogenic focus, negative conventional 3 T MRI during pre-surgical work-up. RESULTS All patients will be evaluated by 7 T MRI; ten patients will undergo an additional 9.4 T MRI exam. Images will be evaluated independently by two neuroradiologists and a neurologist or neurosurgeon. Clinical and UHF MRI will be discussed in the multidisciplinary epilepsy surgery conference. Demographic and epilepsy characteristics, along with postoperative seizure outcome and histopathological evaluation, will be recorded. CONCLUSION This protocol was reviewed and approved by the local Institutional Review Board and complies with the Declaration of Helsinki and principles of Good Clinical Practice. Results will be submitted to international peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER www.trialregister.nl : NTR7536.
Collapse
Affiliation(s)
- R H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands. .,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.
| | - C J Wiggins
- Scannexus, Ultra-High Field MRI Research Center, Maastricht, the Netherlands
| | - A J Colon
- Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | - W H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - D Uher
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - G S Drenthen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - M C Hoeberigs
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, the Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | - K Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | - G L Wagner
- Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | | | - D Delev
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - H Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - S Wolking
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - S Klinkenberg
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - R P W Rouhl
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P A M Hofman
- Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| |
Collapse
|
49
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
50
|
Vachha B, Huang SY. MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond. Eur Radiol Exp 2021; 5:35. [PMID: 34435246 PMCID: PMC8387544 DOI: 10.1186/s41747-021-00216-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Research in ultrahigh magnetic field strength combined with ultrahigh and ultrafast gradient technology has provided enormous gains in sensitivity, resolution, and contrast for neuroimaging. This article provides an overview of the technical advantages and challenges of performing clinical neuroimaging studies at ultrahigh magnetic field strength combined with ultrahigh and ultrafast gradient technology. Emerging clinical applications of 7-T MRI and state-of-the-art gradient systems equipped with up to 300 mT/m gradient strength are reviewed, and the impact and benefits of such advances to anatomical, structural and functional MRI are discussed in a variety of neurological conditions. Finally, an outlook and future directions for ultrahigh field MRI combined with ultrahigh and ultrafast gradient technology in neuroimaging are examined.
Collapse
Affiliation(s)
- Behroze Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Room 2301, Charlestown, MA, 02129, USA.
| |
Collapse
|