1
|
Bellelli F, Angioni D, Arosio B, Vellas B, De Souto Barreto P. Hallmarks of aging and Alzheimer's Disease pathogenesis: Paving the route for new therapeutic targets. Ageing Res Rev 2025; 106:102699. [PMID: 39986483 DOI: 10.1016/j.arr.2025.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Aging is the leading risk factor for Alzheimer's Disease (AD). Understanding the intricate interplay between biological aging and the AD pathophysiology may help to discover innovative treatments. The relationship between aging and core pathways of AD pathogenesis (amyloidopathy and tauopathy) have been extensively studied in preclinical models. However, the potential discordance between preclinical models and human pathology could represent a limitation in the identification of new therapeutic targets. This narrative review aims to gather the evidence currently available on the associations of β-Amyloid and Tau pathology with the hallmarks of aging in human studies. Briefly, our review suggests that while several hallmarks exhibit a robust association with AD pathogenesis (e.g., epigenetic alterations, chronic inflammation, dysbiosis), others (e.g., telomere attrition, cellular senescence, stem cell exhaustion) demonstrate either no relationship or weak associations. This is often due to limitations such as small sample sizes and study designs, being either cross-sectional or with short follow-up intervals, limiting the generalizability of the findings. Distinct hallmarks play varying roles in different stages of AD pathology, emphasizing the need for longitudinal studies with longer follow-up periods. Considering the intricate interconnections across the hallmarks of aging, future research on AD pathology should focus on multiple hallmarks simultaneously.
Collapse
Affiliation(s)
- Federico Bellelli
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; Fellowship in Geriatric and Gerontology, University of Milan, Milan, Italy.
| | - Davide Angioni
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | | | - Bruno Vellas
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | - Philipe De Souto Barreto
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| |
Collapse
|
2
|
Mantovani E, Martini A, Dinoto A, Zucchella C, Ferrari S, Mariotto S, Tinazzi M, Tamburin S. Biomarkers for cognitive impairment in alpha-synucleinopathies: an overview of systematic reviews and meta-analyses. NPJ Parkinsons Dis 2024; 10:211. [PMID: 39488513 PMCID: PMC11531557 DOI: 10.1038/s41531-024-00823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/19/2024] [Indexed: 11/04/2024] Open
Abstract
Cognitive impairment (CI) is common in α-synucleinopathies, i.e., Parkinson's disease, Lewy bodies dementia, and multiple system atrophy. We summarize data from systematic reviews/meta-analyses on neuroimaging, neurophysiology, biofluid and genetic diagnostic/prognostic biomarkers of CI in α-synucleinopathies. Diagnostic biomarkers include atrophy/functional neuroimaging brain changes, abnormal cortical amyloid and tau deposition, and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, cortical rhythm slowing, reduced cortical cholinergic and glutamatergic and increased cortical GABAergic activity, delayed P300 latency, increased plasma homocysteine and cystatin C and decreased vitamin B12 and folate, increased CSF/serum albumin quotient, and serum neurofilament light chain. Prognostic biomarkers include brain regional atrophy, cortical rhythm slowing, CSF amyloid biomarkers, Val66Met polymorphism, and apolipoprotein-E ε2 and ε4 alleles. Some AD/amyloid/tau biomarkers may diagnose/predict CI in α-synucleinopathies, but single, validated diagnostic/prognostic biomarkers lack. Future studies should include large consortia, biobanks, multi-omics approach, artificial intelligence, and machine learning to better reflect the complexity of CI in α-synucleinopathies.
Collapse
Affiliation(s)
- Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Alice Martini
- School of Psychology, Keele University, Newcastle, UK
- Addiction Department, Azienda Sanitaria Friuli Occidentale, Pordenone, Italy
| | - Alessandro Dinoto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Zucchella
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sergio Ferrari
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
3
|
Palandira SP, Falvey A, Carrion J, Zeng Q, Chaudhry S, Grossman K, Turecki L, Nguyen N, Brines M, Chavan SS, Metz CN, Al-Abed Y, Chang EH, Ma Y, Eidelberg D, Vo A, Tracey KJ, Pavlov VA. Early brain neuroinflammatory and metabolic changes identified by dual tracer microPET imaging in mice with acute liver injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610840. [PMID: 39282308 PMCID: PMC11398324 DOI: 10.1101/2024.09.02.610840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Acute liver injury (ALI) that progresses into acute liver failure (ALF) is a life-threatening condition with an increasing incidence and associated costs. Acetaminophen (N-acetyl-p-aminophenol, APAP) overdosing is among the leading causes of ALI and ALF in the Northern Hemisphere. Brain dysfunction defined as hepatic encephalopathy is one of the main diagnostic criteria for ALF. While neuroinflammation and brain metabolic alterations significantly contribute to hepatic encephalopathy, their evaluation at early stages of ALI remained challenging. To provide insights, we utilized post-mortem analysis and non-invasive brain micro positron emission tomography (microPET) imaging of mice with APAP-induced ALI. Methods Male C57BL/6 mice were treated with vehicle or APAP (600 mg/kg, i.p.). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver damage (using H&E staining), hepatic and serum IL-6 levels, and hippocampal IBA1 (using immunolabeling) were evaluated at 24h and 48h. Vehicle and APAP treated animals also underwent microPET imaging utilizing a dual tracer approach, including [11C]-peripheral benzodiazepine receptor ([11C]PBR28) to assess microglia/astrocyte activation and [18F]-fluoro-2-deoxy-2-D-glucose ([18F]FDG) to assess energy metabolism. Brain images were pre-processed and evaluated using conjunction and individual tracer uptake analysis. Results APAP-induced ALI and hepatic and systemic inflammation were detected at 24h and 48h by significantly elevated serum ALT and AST levels, hepatocellular damage, and increased hepatic and serum IL-6 levels. In parallel, increased microglial numbers, indicative for neuroinflammation were observed in the hippocampus of APAP-treated mice. MicroPET imaging revealed overlapping increases in [11C]PBR28 and [18F]FDG uptake in the hippocampus, thalamus, and habenular nucleus indicating microglial/astroglial activation and increased energy metabolism in APAP-treated mice (vs. vehicle-treated mice) at 24h. Similar significant increases were also found in the hypothalamus, thalamus, and cerebellum at 48h. The individual tracer uptake analyses (APAP vs vehicle) at 24h and 48h confirmed increases in these brain areas and indicated additional tracer- and region-specific effects including hippocampal alterations. Conclusion Peripheral manifestations of APAP-induced ALI in mice are associated with brain neuroinflammatory and metabolic alterations at relatively early stages of disease progression, which can be non-invasively evaluated using microPET imaging and conjunction analysis. These findings support further PET-based investigations of brain function in ALI/ALF that may inform timely therapeutic interventions.
Collapse
Affiliation(s)
- Santhoshi P. Palandira
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Joseph Carrion
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Qiong Zeng
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Saher Chaudhry
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kira Grossman
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lauren Turecki
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Nha Nguyen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sangeeta S. Chavan
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al-Abed
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Eric H. Chang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yilong Ma
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - David Eidelberg
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - An Vo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
4
|
Lan G, Chen X, Yang J, Sun P, Cai Y, Li A, Zhu Y, Liu Z, Ma S, Guo T. Microglial Reactivity Correlates with Presynaptic Loss Independent of β-Amyloid and Tau. Ann Neurol 2024; 95:917-928. [PMID: 38356322 PMCID: PMC11060909 DOI: 10.1002/ana.26885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE Triggering receptor expressed on myeloid cells-2 (TREM2) and progranulin (PGRN) are critical regulators of microglia activation and can be detected in cerebrospinal fluid (CSF). However, whether microglial reactivity is detrimental or neuroprotective for Alzheimer disease (AD) is still debatable. METHODS We identified 663 participants with baseline β-amyloid (Aβ) positron emission tomography (PET) and CSF biomarker data, including phosphorylated tau181 (p-Tau181), soluble TREM2 (sTREM2), PGRN, and growth-associated protein-43 (GAP-43). Among them, 254 participants had concurrent longitudinal CSF biomarkers. We used multivariate regression analysis to study the associations of CSF microglial biomarkers with Aβ PET, CSF p-Tau181, and CSF GAP-43 cross-sectionally and longitudinally. A Chinese aging cohort's independent CSF samples (n = 65) were analyzed as a validation. RESULTS Higher baseline levels of CSF microglial biomarkers were related to faster rates of CSF sTREM2 increase and CSF PGRN decrease. Elevated CSF p-Tau181 was associated with higher levels of CSF microglial biomarkers and faster rates of CSF sTREM2 increase and CSF PGRN decrease. In both cohorts, higher Aβ burden was associated with attenuated CSF p-Tau181 effects on CSF microglial biomarker increases. Independent of Aβ PET and CSF p-Tau181 pathologies, higher levels of CSF sTREM2 but not CSF PGRN were related to elevated CSF GAP-43 levels and faster rates of CSF GAP-43 increase. INTERPRETATION These findings suggest that higher Aβ burden may attenuate the p-Tau-associated microglial responses, and TREM2-related microglial reactivity may independently correlate with GAP-43-related presynaptic loss. This study highlights the two-edged role of microglial reactivity in AD and other neurodegenerative diseases. ANN NEUROL 2024;95:917-928.
Collapse
Affiliation(s)
- Guoyu Lan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China, 518000
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China, 518000
| | - Jie Yang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Pan Sun
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China, 518000
| | - Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Yalin Zhu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Zhen Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | | | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China, 518000
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China, 518000
| |
Collapse
|
5
|
Cai Y, Shi D, Lan G, Chen L, Jiang Y, Zhou L, Guo T. Association of β-Amyloid, Microglial Activation, Cortical Thickness, and Metabolism in Older Adults Without Dementia. Neurology 2024; 102:e209205. [PMID: 38489560 DOI: 10.1212/wnl.0000000000209205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Plasma β-amyloid42 (Aβ42)/Aβ40 levels have shown promise in identifying Aβ-PET positive individuals. This study explored the concordance and discordance of plasma Aβ42/Aβ40 positivity (Plasma±) with CSF Aβ42/Aβ40 positivity (CSF±) and Aβ-PET positivity (PET±) in older adults without dementia. Associations of Aβ deposition, cortical thickness, glucose metabolism, and microglial activation were also investigated. METHODS We selected participants without dementia who had concurrent plasma Aβ42/Aβ40 and Aβ-PET scans from the Alzheimer's Disease Neuroimaging Initiative cohort. Participants were categorized into Plasma±/PET± based on thresholds of composite 18F-florbetapir (FBP) standardized uptake value ratio (SUVR) ≥1.11 and plasma Aβ42/Aβ40 ≤0.1218. Aβ-PET-negative individuals were further divided into Plasma±/CSF± (CSF Aβ42/Aβ40 ≤0.138), and the concordance and discordance of Aβ42/Aβ40 in the plasma and CSF were investigated. Baseline and slopes of regional FBP SUVR were compared among Plasma±/PET± groups, and associations of regional FBP SUVR, FDG SUVR, cortical thickness, and CSF soluble Triggering Receptor Expressed on Myeloid Cell 2 (sTREM2) levels were analyzed. RESULTS One hundred eighty participants (mean age 72.7 years, 51.4% female, 96 cognitively unimpaired, and 84 with mild cognitive impairment) were included. We found that the proportion of Plasma+/PET- individuals was 6.14 times higher (odds ratio (OR) = 6.143, 95% confidence interval (CI) 2.740-16.185, p < 0.001) than that of Plasma-/PET+ individuals, and Plasma+/CSF- individuals showed 8.5 times larger percentage (OR = 8.5, 95% CI: 3.031-32.974, p < 0.001) than Plasma-/CSF+ individuals in Aβ-PET-negative individuals. Besides, Plasma+/PET- individuals exhibited faster (p < 0.05) Aβ accumulation predominantly in bilateral banks of superior temporal sulcus (BANKSSTS) and supramarginal, and superior parietal cortices compared with Plasma-/PET- individuals, despite no difference in baseline FBP SUVRs. In Plasma+/PET+ individuals, higher CSF sTREM2 levels correlated with slower BANKSSTS Aβ accumulation (standardized β (βstd) = -0.418, 95% CI -0.681 to -0.154, p = 0.002). Conversely, thicker cortical thickness and higher glucose metabolism in supramarginal and superior parietal cortices were associated with faster (p < 0.05) CSF sTREM2 increase in Plasma+/PET- individuals rather than in Plasma+/PET+ individuals. DISCUSSION These findings suggest that plasma Aβ42/Aβ40 abnormalities may predate CSF Aβ42/Aβ40 and Aβ-PET abnormalities. Higher sTREM2-related microglial activation is linked to thicker cortical thickness and higher metabolism in early amyloidosis stages but tends to mitigate Aβ accumulation primarily at relatively advanced stages.
Collapse
Affiliation(s)
- Yue Cai
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Dai Shi
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Guoyu Lan
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Linting Chen
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Yanni Jiang
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Liemin Zhou
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Tengfei Guo
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| |
Collapse
|
6
|
Biechele G, Rauchmann BS, Janowitz D, Buerger K, Franzmeier N, Weidinger E, Guersel S, Schuster S, Finze A, Harris S, Lindner S, Albert NL, Wetzel C, Rupprecht R, Rominger A, Palleis C, Katzdobler S, Burow L, Kurz C, Zaganjori M, Trappmann LK, Goldhardt O, Grimmer T, Haeckert J, Keeser D, Stoecklein S, Morenas-Rodriguez E, Bartenstein P, Levin J, Höglinger GU, Simons M, Perneczky R, Brendel M. Associations between sex, body mass index and the individual microglial response in Alzheimer's disease. J Neuroinflammation 2024; 21:30. [PMID: 38263017 PMCID: PMC10804830 DOI: 10.1186/s12974-024-03020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES 18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between β-amyloid-accumulation and microglial activation in AD. METHODS 49 patients with AD (29 females, all Aβ-positive) and 15 Aβ-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and β-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional Aβ-PET on TSPO-PET was used to determine the Aβ-plaque-dependent microglial response (slope) and the Aβ-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI). RESULTS In AD, females showed higher mean cortical TSPO-PET z-scores (0.91 ± 0.49; males 0.30 ± 0.75; p = 0.002), while Aβ-PET z-scores were similar. The Aβ-plaque-independent microglial response was stronger in females with AD (+ 0.37 ± 0.38; males with AD - 0.33 ± 0.87; p = 0.006), pronounced at the prodromal stage. On the contrary, the Aβ-plaque-dependent microglial response was not different between sexes. The Aβ-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the Aβ-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005). CONCLUSION While microglia response to fibrillar Aβ is similar between sexes, women with AD show a stronger Aβ-plaque-independent microglia response. This sex difference in Aβ-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the Aβ-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD.
Collapse
Affiliation(s)
- Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Gothenburg, Sweden
| | - Endy Weidinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Christian Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Department of Nuclear Medicine, University of Bern, Inselspital, Bern, Switzerland
| | - Carla Palleis
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena-Katharina Trappmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Jan Haeckert
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, TU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
7
|
Pietilä E, Snellman A, Tuisku J, Helin S, Viitanen M, Jula A, Rinne JO, Ekblad LL. Midlife insulin resistance, APOE genotype, and change in late-life brain beta-amyloid accumulation - A 5-year follow-up [ 11C]PIB-PET study. Neurobiol Dis 2024; 190:106385. [PMID: 38123104 DOI: 10.1016/j.nbd.2023.106385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
We studied if midlife insulin resistance (IR) and APOE genotype would predict brain beta-amyloid (Aβ) accumulation and Aβ change in late-life in 5-year follow-up [11C]PIB-PET study. 43 dementia-free participants were scanned twice with [11C]PIB-PET in their late-life (mean age at follow-up 75.4 years). Participants were recruited from the Finnish Health2000 study according to their HOMA-IR values measured in midlife (mean age at midlife 55.4 years; IR+ group, HOMA-IR > 2.17; IR- group, HOMA-IR <1.25), and their APOEε4 genotype. At late-life follow-up, [11C]PIB-PET composite SUVr was significantly higher in IR+ group than IR- group (median 2.3 (interquartile range 1.7-3.3) vs. 1.7 (1.5-2.4), p = 0.03). There was no difference between IR- and IR+ groups in [11C]PIB-PET SUVr 5-year change, but the change was significantly higher in IR+/APOEε4+ group (median change 0.8 (0.60-1.0)) than in IR-/APOEε4- (0.28 (0.14-0.47), p = 0.02) and in IR+/APOEε4- group (0.24 (0.06-0.40), p = 0.046). These results suggest that APOEε4 carriers with midlife IR are at increased risk for late-life Aβ accumulation.
Collapse
Affiliation(s)
- Elina Pietilä
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| | - Anniina Snellman
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Matti Viitanen
- Department of Geriatrics, Turku City Hospital and University of Turku, Finland; Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Antti Jula
- Finnish Institute for Health and Welfare, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; InFLAMES Reseach Flagship Center, University of Turku, Turku, Finland
| | - Laura L Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Geriatrics, Turku University Hospital, Wellbeing services county of Southwestern Finland, Finland
| |
Collapse
|
8
|
Saleem A, Shah SIA, Mangar SA, Coello C, Wall MB, Rizzo G, Jones T, Price PM. Cognitive Dysfunction in Patients Treated with Androgen Deprivation Therapy: A Multimodality Functional Imaging Study to Evaluate Neuroinflammation. Prostate Cancer 2023; 2023:6641707. [PMID: 37885823 PMCID: PMC10599921 DOI: 10.1155/2023/6641707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Background Androgen deprivation therapy (ADT) for prostate cancer is implicated as a possible cause of cognitive impairment (CI). CI in dementia and Alzheimer's disease is associated with neuroinflammation. In this study, we investigated a potential role of neuroinflammation in ADT-related CI. Methods Patients with prostate cancer on ADT for ≥3 months were categorized as having ADT-emergent CI or normal cognition (NC) based on self-report at interview. Neuroinflammation was evaluated using positron emission tomography (PET) with the translocator protein (TSPO) radioligand [11C]-PBR28. [11C]-PBR28 uptake in various brain regions was quantified as standardized uptake value (SUVR, normalized to cerebellum) and related to blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) choice-reaction time task (CRT) activation maps. Results Eleven patients underwent PET: four with reported CI (rCI), six with reported NC (rNC), and one status unrecorded. PET did not reveal any between-group differences in SUVR regionally or globally. There was no difference between groups on brain activation to the CRT. Regardless of the reported cognitive status, there was strong correlation between PET-TSPO signal and CRT activation in the hippocampus, amygdala, and medial cortex. Conclusions We found no difference in neuroinflammation measured by PET-TSPO between patients with rCI and rNC. However, we speculate that the strong correlation between TSPO uptake and BOLD-fMRI activation in brain regions involved in memory and known to have high androgen-receptor expression mediating plasticity (hippocampus and amygdala) might reflect inflammatory effects of ADT with compensatory upregulated/increased synaptic functions. Further studies of this imaging readout are warranted to investigate ADT-related CI.
Collapse
Affiliation(s)
- Azeem Saleem
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Syed Imran Ali Shah
- Department of Surgery and Cancer, Imperial College, London, UK
- Department of Biochemistry, CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
| | | | - Christopher Coello
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Matthew B. Wall
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Gaia Rizzo
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Division of Brain Sciences, Imperial College London, London, UK
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Davis, California, USA
| | | |
Collapse
|
9
|
Finze A, Biechele G, Rauchmann BS, Franzmeier N, Palleis C, Katzdobler S, Weidinger E, Guersel S, Schuster S, Harris S, Schmitt J, Beyer L, Gnörich J, Lindner S, Albert NL, Wetzel CH, Rupprecht R, Rominger A, Danek A, Burow L, Kurz C, Tato M, Utecht J, Papazov B, Zaganjori M, Trappmann LK, Goldhardt O, Grimmer T, Haeckert J, Janowitz D, Buerger K, Keeser D, Stoecklein S, Dietrich O, Morenas-Rodriguez E, Barthel H, Sabri O, Bartenstein P, Simons M, Haass C, Höglinger GU, Levin J, Perneczky R, Brendel M. Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies. Mol Psychiatry 2023; 28:4438-4450. [PMID: 37495886 PMCID: PMC10827660 DOI: 10.1038/s41380-023-02188-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
β-amyloid (Aβ) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aβ-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aβ (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aβ (AD: βT = 0.412 ± 0.196 vs. βA = 0.142 ± 0.123, p < 0.001; AD-CBS: βT = 0.385 ± 0.176 vs. βA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (βT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aβ related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.
Collapse
Grants
- EXC 2145 SyNergy - ID 390857198 Deutsche Forschungsgemeinschaft (German Research Foundation)
- EXC 2155 - project number 39087428 Deutsche Forschungsgemeinschaft (German Research Foundation)
- HO2402/18-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- FOR-2858 project numbers 403161218, 421887978 and 422188432 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 19063p Alzheimer Forschung Initiative (Alzheimer Forschung Initiative e.V.)
- GUH was additionally funded by the German Federal Ministry of Education and Research (BMBF, 01KU1403A EpiPD; 01EK1605A HitTau; 01DH18025 TauTherapy); European Joint Programme on Rare Diseases (Improve-PSP); VolkswagenStiftung (Niedersächsisches Vorab); Petermax-Müller Foundation (Etiology and Therapy of Synucleinopathies and Tauopathies). The Lüneburg Heritage and Friedrich-Baur-Stiftung have supported the work of CP. The Hirnliga e.V. supported recruitment and imaging of the ActiGliA cohort (Manfred-Strohscheer-Stiftung) by a grant to BSR and MB.
- TG received consulting fees from AbbVie, Alector, Anavex, Biogen, Eli Lilly, Functional Neuromodulation, Grifols, Iqvia, Noselab, Novo Nordisk, NuiCare, Orphanzyme, Roche Diagnostics, Roche Pharma, UCB, and Vivoryon; lecture fees from Grifols, Medical Tribune, Novo Nordisk, Roche Pharma, and Schwabe; and has received grants to his institution from Roche Diagnostics.
- CH collaborates with Denali Therapeutics. CH is chief advisor of ISAR Bioscience and a member of the advisory board of AviadoBio.
- Günter Höglinger participated in industry-sponsored research projects from Abbvie, Biogen, Biohaven, Novartis, Roche, Sanofi, UCB; serves as a consultant for Abbvie, Alzprotect, Aprineua, Asceneuron, Bial, Biogen, Biohaven, Kyowa Kirin, Lundbeck, Novartis, Retrotope, Roche, Sanofi, UCB; received honoraria for scientific presentations from Abbvie, Bayer Vital, Bial, Biogen, Bristol Myers Squibb, Kyowa Kirin, Roche, Teva, UCB, Zambon; holds a patent on Treatment of Synucleinopathies. United States Patent No.: US 10,918,628 B2: EP 17 787 904.6-1109 / 3 525 788; received publication royalties from Academic Press, Kohlhammer, and Thieme.
Collapse
Affiliation(s)
- Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carla Palleis
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Endy Weidinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Schmitt
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital, Inselspital Bern, Bern, Switzerland
| | - Adrian Danek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maia Tato
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Utecht
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena-Katharina Trappmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Jan Haeckert
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | | | - Daniel Keeser
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Christian Haass
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Johannes Levin
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- Sheffield Institute for Translational Neurosciences (SITraN), University of Sheffield, Sheffield, UK
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
10
|
Feng V, Lanctot K, Herrmann N, Kiss A, Fischer CE, Flint AJ, Mah L, Mulsant BH, Pollock BG, Rajji TK, Tumati S, Verhoeff NP, Graff-Guerrero A, Gallagher D. Lipopolysaccharide, Immune Biomarkers and Cerebral Amyloid-Beta Deposition in Older Adults With Mild Cognitive Impairment & Major Depressive Disorder. Am J Geriatr Psychiatry 2023; 31:786-795. [PMID: 37211499 DOI: 10.1016/j.jagp.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE Inflammatory activation and increased immune response to lipopolysaccharide occur in both depression and cognitive decline and may link these two conditions. We investigated whether lipopolysaccharide (LPS), LPS binding protein (LBP) and peripheral biomarkers of immune response were associated with increased cerebral deposition of amyloid-beta (Abeta) in older adults with mild cognitive impairment (MCI) and remitted major depressive disorder (rMDD). DESIGN Cross-sectional analysis. SETTING Five academic health centers in Toronto. PARTICIPANTS Older adults with MCI with/without rMDD. MEASUREMENTS We investigated the associations among serum LPS, LBP, biomarkers of inflammatory activation - Interleukin-6 (IL-6), C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), and cerebral Abeta deposition quantified by positron emission tomography. RESULTS Among 133 study participants (82 with MCI and 51 with MCI+rMDD) there was no association between LPS (beta - 0.17, p = 0.8) or LBP (beta - 0.11, p = 0.12) and global deposition of Abeta following adjustment for age, gender, and APOE genotype in multivariable regression analyses. LBP was positively correlated with CRP (r = 0.5, p <0.001) and IL-6 (r = 0.2, p = 0.02) but no inflammatory biomarker was associated with Abeta deposition; rMDD was not associated with deposition of Abeta (beta -0.09, p = 0.22). CONCLUSION In this cross-sectional analysis, we did not find an association among LPS/LBP, immune biomarkers or rMDD and global deposition of Abeta. Future analyses should assess the longitudinal relationships between peripheral and central biomarkers of immune activation, depression and cerebral Abeta deposition.
Collapse
Affiliation(s)
- Vivian Feng
- Neuropsychopharmacology Research Group (VF, KL, NH, AK, ST, DG), Sunnybrook Research Institute, Toronto, Canada
| | - Krista Lanctot
- Neuropsychopharmacology Research Group (VF, KL, NH, AK, ST, DG), Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group (VF, KL, NH, AK, ST, DG), Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Alex Kiss
- Neuropsychopharmacology Research Group (VF, KL, NH, AK, ST, DG), Sunnybrook Research Institute, Toronto, Canada; Department of Health Policy, Management and Evaluation (AK), University of Toronto, Toronto, Canada
| | - Corinne E Fischer
- Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Keenan Research Centre for Biomedical Science (CEF), St. Michael's Hospital, Toronto, Canada
| | - Alastair J Flint
- Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Centre for Mental Health (AJF), University Health Network and University of Toronto, Toronto, Canada
| | - Linda Mah
- Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Psychiatry (LM, NPV), Baycrest Health Sciences Centre, Toronto, Canada; Rotman Research Institute (LM), Baycrest Health Sciences Centre, Toronto, Canada
| | - Benoit H Mulsant
- Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Adult Neurodevelopment and Geriatric Psychiatry Division (BHM, BGP, TKR, AG-G), Centre for Addiction and Mental Health, Toronto, Canada; Toronto Dementia Research Alliance (BMH, BGP, TKR, NPV), University of Toronto, Toronto, Canada
| | - Bruce G Pollock
- Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Adult Neurodevelopment and Geriatric Psychiatry Division (BHM, BGP, TKR, AG-G), Centre for Addiction and Mental Health, Toronto, Canada; Toronto Dementia Research Alliance (BMH, BGP, TKR, NPV), University of Toronto, Toronto, Canada
| | - Tarek K Rajji
- Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Adult Neurodevelopment and Geriatric Psychiatry Division (BHM, BGP, TKR, AG-G), Centre for Addiction and Mental Health, Toronto, Canada; Toronto Dementia Research Alliance (BMH, BGP, TKR, NPV), University of Toronto, Toronto, Canada
| | - Shankar Tumati
- Neuropsychopharmacology Research Group (VF, KL, NH, AK, ST, DG), Sunnybrook Research Institute, Toronto, Canada
| | - Nicolaas Paul Verhoeff
- Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Psychiatry (LM, NPV), Baycrest Health Sciences Centre, Toronto, Canada; Toronto Dementia Research Alliance (BMH, BGP, TKR, NPV), University of Toronto, Toronto, Canada
| | - Ariel Graff-Guerrero
- Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Adult Neurodevelopment and Geriatric Psychiatry Division (BHM, BGP, TKR, AG-G), Centre for Addiction and Mental Health, Toronto, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group (VF, KL, NH, AK, ST, DG), Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry (KL, NH, CEF, AJF, LM, BHM, BGP, TKR, NPV, AG-G, DG), Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Ekblad LL, Tuisku J, Koivumäki M, Helin S, Rinne JO, Snellman A. Insulin resistance and body mass index are associated with TSPO PET in cognitively unimpaired elderly. J Cereb Blood Flow Metab 2023; 43:1588-1600. [PMID: 37113066 PMCID: PMC10414007 DOI: 10.1177/0271678x231172519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Metabolic risk factors are associated with peripheral low-grade inflammation and an increased risk for dementia. We evaluated if metabolic risk factors i.e. insulin resistance, body mass index (BMI), serum cholesterol values, or high sensitivity C-reactive protein associate with central inflammation or beta-amyloid (Aβ) accumulation in the brain, and if these associations are modulated by APOE4 gene dose. Altogether 60 cognitively unimpaired individuals (mean age 67.7 years (SD 4.7); 63% women; 21 APOE3/3, 20 APOE3/4 and 19 APOE4/4) underwent positron emission tomography with [11C]PK11195 targeting TSPO (18 kDa translocator protein) and [11C]PIB targeting fibrillar Aβ. [11C]PK11195 distribution value ratios and [11C]PIB standardized uptake values were calculated in a cortical composite region of interest typical for Aβ accumulation in Alzheimer's disease. Associations between metabolic risk factors, [11C]PK11195, and [11C]PIB uptake were evaluated with linear models adjusted for age and sex. Higher logarithmic HOMA-IR (standardized beta 0.40, p = 0.002) and BMI (standardized beta 0.27, p = 0.048) were associated with higher TSPO availability. Voxel-wise analyses indicated that this association was mainly seen in the parietal cortex. Higher logarithmic HOMA-IR was associated with higher [11C]PIB (standardized beta 0.44, p = 0.02), but only in APOE4/4 homozygotes. BMI and HOMA-IR seem to influence TSPO availability in the brain.
Collapse
Affiliation(s)
- Laura L Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- InFLAMES Reseach Flagship Center, University of Turku, Turku, Finland
| | - Anniina Snellman
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
12
|
Gouilly D, Salabert AS, Bertrand E, Goubeaud M, Catala H, Germain J, Ainaoui N, Rafiq M, Benaiteau M, Carlier J, Nogueira L, Planton M, Hitzel A, Méligne D, Sarton B, Silva S, Lemesle B, Payoux P, Thalamas C, Péran P, Pariente J. Clinical heterogeneity of neuro-inflammatory PET profiles in early Alzheimer's disease. Front Neurol 2023; 14:1189278. [PMID: 37588670 PMCID: PMC10425281 DOI: 10.3389/fneur.2023.1189278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
The relationship between neuroinflammation and cognition remains uncertain in early Alzheimer's disease (AD). We performed a cross-sectional study to assess how neuroinflammation is related to cognition using TSPO PET imaging and a multi-domain neuropsychological assessment. A standard uptake value ratio (SUVR) analysis was performed to measure [18F]-DPA-714 binding using the cerebellar cortex or the whole brain as a (pseudo)reference region. Among 29 patients with early AD, the pattern of neuroinflammation was heterogeneous and exhibited no correlation with cognition at voxel-wise, regional or whole-brain level. The distribution of the SUVR values was independent of sex, APOE phenotype, early and late onset of symptoms and the presence of cerebral amyloid angiopathy. However, we were able to demonstrate a complex dissociation as some patients with similar PET pattern had opposed neuropsychological profiles while other patients with opposite PET profiles had similar neuropsychological presentation. Further studies are needed to explore how this heterogeneity impacts disease progression.
Collapse
Affiliation(s)
- Dominique Gouilly
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
| | - Anne-Sophie Salabert
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
- Department of Nuclear Medicine, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Elsa Bertrand
- Center of Clinical Investigation (CIC 1436), Toulouse Purpan University Hospital Center, Toulouse, France
| | - Marie Goubeaud
- Center of Clinical Investigation (CIC 1436), Toulouse Purpan University Hospital Center, Toulouse, France
| | - Hélène Catala
- Center of Clinical Investigation (CIC 1436), Toulouse Purpan University Hospital Center, Toulouse, France
| | - Johanne Germain
- Center of Clinical Investigation (CIC 1436), Toulouse Purpan University Hospital Center, Toulouse, France
| | - Nadéra Ainaoui
- Center of Clinical Investigation (CIC 1436), Toulouse Purpan University Hospital Center, Toulouse, France
| | - Marie Rafiq
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Marie Benaiteau
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Jasmine Carlier
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Leonor Nogueira
- Laboratory of Cell Biology and Cytology, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Mélanie Planton
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Anne Hitzel
- Department of Nuclear Medicine, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Déborah Méligne
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
| | - Benjamine Sarton
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
- Critical Care Unit, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Stein Silva
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
- Critical Care Unit, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Béatrice Lemesle
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Pierre Payoux
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
- Department of Nuclear Medicine, Toulouse Purpan University Hospital Center, Toulouse, France
| | - Claire Thalamas
- Center of Clinical Investigation (CIC 1436), Toulouse Purpan University Hospital Center, Toulouse, France
| | - Patrice Péran
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
| | - Jérémie Pariente
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
- Center of Clinical Investigation (CIC 1436), Toulouse Purpan University Hospital Center, Toulouse, France
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, Toulouse Purpan University Hospital Center, Toulouse, France
| |
Collapse
|
13
|
Snellman A, Ekblad LL, Ashton NJ, Karikari TK, Lantero-Rodriguez J, Pietilä E, Koivumäki M, Helin S, Karrasch M, Zetterberg H, Blennow K, Rinne JO. Head-to-head comparison of plasma p-tau181, p-tau231 and glial fibrillary acidic protein in clinically unimpaired elderly with three levels of APOE4-related risk for Alzheimer's disease. Neurobiol Dis 2023; 183:106175. [PMID: 37268240 DOI: 10.1016/j.nbd.2023.106175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Plasma phosphorylated tau (p-tau) and glial fibrillary acidic protein (GFAP) both reflect early changes in Alzheimer's disease (AD) pathology. Here, we compared the biomarker levels and their association with regional β-amyloid (Aβ) pathology and cognitive performance head-to-head in clinically unimpaired elderly (n = 88) at three levels of APOE4-related genetic risk for sporadic AD (APOE4/4 n = 19, APOE3/4 n = 32 or non-carriers n = 37). Concentrations of plasma p-tau181, p-tau231 and GFAP were measured using Single molecule array (Simoa), regional Aβ deposition with 11C-PiB positron emission tomography (PET), and cognitive performance with a preclinical composite. Significant differences in plasma p-tau181 and p-tau231, but not plasma GFAP concentrations were present between the APOE4 gene doses, explained solely by brain Aβ load. All plasma biomarkers correlated positively with Aβ PET in the total study population. This correlation was driven by APOE3/3 carriers for plasma p-tau markers and APOE4/4 carriers for plasma GFAP. Voxel-wise associations with amyloid-PET revealed different spatial patterns for plasma p-tau markers and plasma GFAP. Only higher plasma GFAP correlated with lower cognitive scores. Our observations suggest that plasma p-tau and plasma GFAP are both early AD markers reflecting different Aβ-related processes.
Collapse
Affiliation(s)
- Anniina Snellman
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland; Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Laura L Ekblad
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Elina Pietilä
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Huang Q, Jiang C, Xia X, Wang Y, Yan C, Wang X, Lei T, Yang X, Yang W, Cheng G, Gao H. Pathological BBB Crossing Melanin-Like Nanoparticles as Metal-Ion Chelators and Neuroinflammation Regulators against Alzheimer's Disease. RESEARCH (WASHINGTON, D.C.) 2023; 6:0180. [PMID: 37363131 PMCID: PMC10289297 DOI: 10.34133/research.0180] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Inflammatory responses, manifested in excessive oxidative stress and microglia overactivation, together with metal ion-triggered amyloid-beta (Aβ) deposition, are critical hallmarks of Alzheimer's disease (AD). The intricate pathogenesis causes severe impairment of neurons, which, in turn, exacerbates Aβ aggregation and facilitates AD progression. Herein, multifunctional melanin-like metal ion chelators and neuroinflammation regulators (named PDA@K) were constructed for targeted treatment of AD. In this platform, intrinsically bioactive material polydopamine nanoparticles (PDA) with potent metal ion chelating and ROS scavenging effects were decorated with the KLVFF peptide, endowing the system with the capacity of enhanced pathological blood-brain barrier (BBB) crossing and lesion site accumulation via Aβ hitchhiking. In vitro and in vivo experiment revealed that PDA@K had high affinity toward Aβ and were able to hitch a ride on Aβ to achieve increased pathological BBB crossing. The engineered PDA@K effectively mitigated Aβ aggregate and alleviated neuroinflammation. The modulated inflammatory microenvironment by PDA@K promoted microglial polarization toward the M2-like phenotype, which restored their critical functions for neuron care and plaque removal. After 3-week treatment of PDA@K, spatial learning and memory deficit as well as neurologic changes of FAD4T transgenic mice were largely rescued. Transcriptomics analysis further revealed the therapeutic mechanism of PDA@K. Our study provided an appealing paradigm for directly utilizing intrinsic properties of nanomaterials as therapeutics for AD instead of just using them as nanocarriers, which largely widen the application of nanomaterials in AD therapy.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Chaoqing Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Yufan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Chenxing Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital,
Sichuan University, Chengdu 610041, P.R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
15
|
Snellman A, Ekblad LL, Tuisku J, Koivumäki M, Ashton NJ, Lantero-Rodriguez J, Karikari TK, Helin S, Bucci M, Löyttyniemi E, Parkkola R, Karrasch M, Schöll M, Zetterberg H, Blennow K, Rinne JO. APOE ε4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly. Alzheimers Res Ther 2023; 15:71. [PMID: 37016464 PMCID: PMC10071691 DOI: 10.1186/s13195-023-01209-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Neuroinflammation, characterized by increased reactivity of microglia and astrocytes in the brain, is known to be present at various stages of the Alzheimer's disease (AD) continuum. However, its presence and relationship with amyloid pathology in cognitively normal at-risk individuals is less clear. Here, we used positron emission tomography (PET) and blood biomarker measurements to examine differences in neuroinflammation and beta-amyloid (Aβ) and their association in cognitively unimpaired homozygotes, heterozygotes, or non-carriers of the APOE ε4 allele, the strongest genetic risk for sporadic AD. METHODS Sixty 60-75-year-old APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) were recruited in collaboration with the local Auria biobank. The participants underwent 11C-PK11195 PET (targeting 18-kDa translocator protein, TSPO), 11C-PiB PET (targeting Aβ), brain MRI, and neuropsychological testing including a preclinical cognitive composite (APCC). 11C-PK11195 distribution volume ratios and 11C-PiB standardized uptake value ratios (SUVRs) were calculated for regions typical for early Aβ accumulation in AD. Blood samples were drawn for measuring plasma glial fibrillary acidic protein (GFAP) and plasma Aβ1-42/1.40. RESULTS In our cognitively unimpaired sample, cortical 11C-PiB-binding increased according to APOE ε4 gene dose (median composite SUVR 1.47 (range 1.38-1.66) in non-carriers, 1.55 (1.43-2.02) in heterozygotes, and 2.13 (1.61-2.83) in homozygotes, P = 0.002). In contrast, cortical composite 11C-PK11195-binding did not differ between the APOE ε4 gene doses (P = 0.27) or between Aβ-positive and Aβ-negative individuals (P = 0.81) and associated with higher Aβ burden only in APOE ε4 homozygotes (Rho = 0.47, P = 0.043). Plasma GFAP concentration correlated with cortical 11C-PiB (Rho = 0.35, P = 0.040), but not 11C-PK11195-binding (Rho = 0.13, P = 0.47) in Aβ-positive individuals. In the total cognitively unimpaired population, both higher composite 11C-PK11195-binding and plasma GFAP were associated with lower hippocampal volume, whereas elevated 11C-PiB-binding was associated with lower APCC scores. CONCLUSIONS Only Aβ burden measured by PET, but not markers of neuroinflammation, differed among cognitively unimpaired elderly with different APOE ε4 gene dose. However, APOE ε4 gene dose seemed to modulate the association between neuroinflammation and Aβ.
Collapse
Affiliation(s)
- Anniina Snellman
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Laura L Ekblad
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Marco Bucci
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Mehta RI, Mehta RI. The Vascular-Immune Hypothesis of Alzheimer's Disease. Biomedicines 2023; 11:408. [PMID: 36830944 PMCID: PMC9953491 DOI: 10.3390/biomedicines11020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and irreversible neurodegenerative disorder with unknown etiology. While its cause is unclear, a number of theories have been proposed to explain the pathogenesis of AD. In large part, these have centered around potential causes for intracerebral accumulation of beta-amyloid (βA) and tau aggregates. Yet, persons with AD dementia often exhibit autopsy evidence of mixed brain pathologies including a myriad of vascular changes, vascular brain injuries, complex brain inflammation, and mixed protein inclusions in addition to hallmark neuropathologic lesions of AD, namely insoluble βA plaques and neurofibrillary tangles (NFTs). Epidemiological data demonstrate that overlapping lesions diminish the βA plaque and NFT threshold necessary to precipitate clinical dementia. Moreover, a subset of persons who exhibit AD pathology remain resilient to disease while other persons with clinically-defined AD dementia do not exhibit AD-defining neuropathologic lesions. It is increasingly recognized that AD is a pathologically heterogeneous and biologically multifactorial disease with uncharacterized biologic phenomena involved in its genesis and progression. Here, we review the literature with regard to neuropathologic criteria and incipient AD changes, and discuss converging concepts regarding vascular and immune factors in AD.
Collapse
Affiliation(s)
- Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Spano M, Roytman M, Aboian M, Saboury B, Franceschi A, Chiang GC. Brain PET Imaging: Approach to Cognitive Impairment and Dementia. PET Clin 2023; 18:103-113. [PMID: 36442959 PMCID: PMC9713600 DOI: 10.1016/j.cpet.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alzheimer disease (AD) is the most common cause of dementia, accounting for 50% to 60% of cases and affecting nearly 6 million people in the United States. Definitive diagnosis requires either antemortem brain biopsy or postmortem autopsy. However, clinical neuroimaging has been playing a greater role in the diagnosis and management of AD, and several PET tracers approach the sensitivity of tissue diagnosis in identifying AD pathologic condition. This review will focus on the utility of PET imaging in the setting of cognitive impairment, with an emphasis on its role in the diagnosis of AD.
Collapse
Affiliation(s)
- Matthew Spano
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, Starr Pavilion, Box 141, New York, NY 10065, USA
| | - Michelle Roytman
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, Starr Pavilion, Box 141, New York, NY 10065, USA
| | - Mariam Aboian
- Department of Radiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, NIH Clinical Center, 10 Center Dr, Bethesda, MD 20892, USA
| | - Ana Franceschi
- Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, 100 East 77th Street, 3rd Floor, New York, NY 10075, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, Starr Pavilion, Box 141, New York, NY 10065, USA.
| |
Collapse
|
18
|
Palandira SP, Carrion J, Turecki L, Falvey A, Zeng Q, Liu H, Tsaava T, Herschberg D, Brines M, Chavan SS, Chang EH, Vo A, Ma Y, Metz CN, Al-Abed Y, Tracey KJ, Pavlov VA. A dual tracer [ 11C]PBR28 and [ 18F]FDG microPET evaluation of neuroinflammation and brain energy metabolism in murine endotoxemia. Bioelectron Med 2022; 8:18. [PMID: 36451231 PMCID: PMC9710165 DOI: 10.1186/s42234-022-00101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Brain metabolic alterations and neuroinflammation have been reported in several peripheral inflammatory conditions and present significant potential for targeting with new diagnostic approaches and treatments. However, non-invasive evaluation of these alterations remains a challenge. METHODS Here, we studied the utility of a micro positron emission tomography (microPET) dual tracer ([11C]PBR28 - for microglial activation and [18F]FDG for energy metabolism) approach to assess brain dysfunction, including neuroinflammation in murine endotoxemia. MicroPET imaging data were subjected to advanced conjunction and individual analyses, followed by post-hoc analysis. RESULTS There were significant increases in [11C]PBR28 and [18F]FDG uptake in the hippocampus of C57BL/6 J mice 6 h following LPS (2 mg/kg) intraperitoneal (i.p.) administration compared with saline administration. These results confirmed previous postmortem observations. In addition, patterns of significant simultaneous activation were demonstrated in the hippocampus, the thalamus, and the hypothalamus in parallel with other tracer-specific and region-specific alterations. These changes were observed in the presence of robust systemic inflammatory responses manifested by significantly increased serum cytokine levels. CONCLUSIONS Together, these findings demonstrate the applicability of [11C]PBR28 - [18F]FDG dual tracer microPET imaging for assessing neuroinflammation and brain metabolic alterations in conditions "classically" characterized by peripheral inflammatory and metabolic pathogenesis.
Collapse
Affiliation(s)
| | - Joseph Carrion
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lauren Turecki
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Qiong Zeng
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Hui Liu
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tea Tsaava
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Dov Herschberg
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sangeeta S Chavan
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Eric H Chang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - An Vo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yilong Ma
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al-Abed
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
19
|
Masdeu JC, Pascual B, Fujita M. Imaging Neuroinflammation in Neurodegenerative Disorders. J Nucl Med 2022; 63:45S-52S. [PMID: 35649654 DOI: 10.2967/jnumed.121.263200] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation plays a major role in the etiopathology of neurodegenerative diseases, including Alzheimer and Parkinson diseases, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. In vivo monitoring of neuroinflammation using PET is critical to understand this process, and data are accumulating in this regard, thus a review is useful. From PubMed, we retrieved publications using any of the available PET tracers to image neuroinflammation in humans as well as selected articles dealing with experimental animal models or the chemistry of currently used or potential radiotracers. We reviewed 280 articles. The most common PET neuroinflammation target, translocator protein (TSPO), has limitations, lacking cellular specificity and the ability to separate neuroprotective from neurotoxic inflammation. However, TSPO PET is useful to define the amount and location of inflammation in the brain of people with neurodegenerative disorders. We describe the characteristics of TSPO and other potential PET neuroinflammation targets and PET tracers available or in development. Despite target and tracer limitations, in recent years there has been a sharp increase in the number of reports of neuroinflammation PET in humans. The most studied has been Alzheimer disease, in which neuroinflammation seems initially neuroprotective and neurotoxic later in the progression of the disease. We describe the findings in all the major neurodegenerative disorders. Neuroinflammation PET is an indispensable tool to understand the process of neurodegeneration, particularly in humans, as well as to validate target engagement in therapeutic clinical trials.
Collapse
Affiliation(s)
- Joseph C Masdeu
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and
| | - Belen Pascual
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and
| | - Masahiro Fujita
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and.,PET Core, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| |
Collapse
|
20
|
Garon M, Weis L, Fiorenzato E, Pistonesi F, Cagnin A, Bertoldo A, Anglani M, Cecchin D, Antonini A, Biundo R. Quantification of Brain β-Amyloid Load in Parkinson's Disease With Mild Cognitive Impairment: A PET/MRI Study. Front Neurol 2022; 12:760518. [PMID: 35300351 PMCID: PMC8921107 DOI: 10.3389/fneur.2021.760518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mild cognitive impairment in Parkinson's disease (PD-MCI) is associated with faster cognitive decline and conversion to dementia. There is uncertainty about the role of β-amyloid (Aβ) co-pathology and its contribution to the variability in PD-MCI profile and cognitive progression. Objective To study how presence of Aβ affects clinical and cognitive manifestations as well as regional brain volumes in PD-MCI. Methods Twenty-five PD-MCI patients underwent simultaneous PET/3T-MRI with [18F]flutemetamol and a clinical and neuropsychological examination allowing level II diagnosis. We tested pairwise differences in motor, clinical, and cognitive features with Mann–Whitney U test. We calculated [18F]flutemetamol (FMM) standardized uptake value ratios (SUVR) in striatal and cortical ROIs, and we performed a univariate linear regression analysis between the affected cognitive domains and the mean SUVR. Finally, we investigated differences in cortical and subcortical brain regional volumes with magnetic resonance imaging (MRI). Results There were 8 Aβ+ and 17 Aβ- PD-MCI. They did not differ for age, disease duration, clinical, motor, behavioral, and global cognition scores. PD-MCI-Aβ+ showed worse performance in the overall executive domain (p = 0.037). Subcortical ROIs analysis showed significant Aβ deposition in PD-MCI-Aβ+ patients in the right caudal and rostral middle frontal cortex, in precuneus, in left paracentral and pars triangularis (p < 0.0001), and bilaterally in the putamen (p = 0.038). Cortical regions with higher amyloid load correlated with worse executive performances (p < 0.05). Voxel-based morphometry (VBM) analyses showed no between groups differences. Conclusions Presence of cerebral Aβ worsens executive functions, but not motor and global cognitive abilities in PD-MCI, and it is not associated with middle-temporal cortex atrophy. These findings, together with the observation of significant proportion of PD-MCI-Aβ-, suggest that Aβ may not be the main pathogenetic determinant of cognitive deterioration in PD-MCI, but it would rather aggravate deficits in domains vulnerable to Parkinson primary pathology.
Collapse
Affiliation(s)
- Michela Garon
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Francesca Pistonesi
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Annachiara Cagnin
- Department of Neuroscience, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padua, Padua, Italy.,Department of Information Engineering, University of Padua, Padua, Italy
| | | | - Diego Cecchin
- Padova Neuroscience Center, University of Padua, Padua, Italy.,Nuclear Medicine Unit, Department of Medicine - DIMED, Padua University Hospital, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy.,Study Center for Neurodegeneration, University of Padua, Padua, Italy
| | - Roberta Biundo
- Department of General Psychology, University of Padua, Padua, Italy.,Study Center for Neurodegeneration, University of Padua, Padua, Italy
| |
Collapse
|
21
|
Woodfield A, Porter T, Gilani I, Noordin S, Li QX, Collins S, Martins RN, Maruff P, Masters CL, Rowe CC, Villemagne VL, Dore V, Newsholme P, Laws SM, Verdile G. Insulin resistance, cognition and Alzheimer's disease biomarkers: Evidence that CSF Aβ42 moderates the association between insulin resistance and increased CSF tau levels. Neurobiol Aging 2022; 114:38-48. [DOI: 10.1016/j.neurobiolaging.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
22
|
Fan YC, Chou CC, Bintoro BS, Chien KL, Bai CH. High sensitivity C-reactive protein and glycated hemoglobin levels as dominant predictors of all-cause dementia: a nationwide population-based cohort study. Immun Ageing 2022; 19:10. [PMID: 35172860 PMCID: PMC8849019 DOI: 10.1186/s12979-022-00265-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic inflammation might play a major role in the pathogenesis linking diabetes mellitus (DM) to cognition. In addition, DM might be the main driver of dementia risk. The purpose of the present study was to evaluate whether inflammation, glycation, or both are associated with the risk of developing all-cause dementia (ACD). METHODS A nationwide population-based cohort study was conducted with 4113 participants. The data were obtained from the Taiwanese Survey on Prevalence of Hypertension, Hyperglycemia, and Hyperlipidemia (TwSHHH) in 2007, which was linked with the Taiwan National Health Insurance Research Database (NHIRD). The markers of inflammation, expressed as hs-CRP, and glycation, presented as HbA1c, were measured. High levels of hs-CRP and HbA1c were defined as values greater than or equal to the 66th percentile. Developed ACD was identified based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. RESULTS During 32,926.90 person-years, 106 individuals developed ACD in up to 8 years of follow-up. The study participants were separated into four categories by the top tertiles of hs-CRP and HbA1c based on the 66th percentile: high levels of both hs-CRP and HbA1c, only high levels of hs-CRP, only high levels of HbA1c, and non-high levels of hs-CRP nor HbA1c. Those who with a high level of only hs-CRP had the higher hazard for developing ACD (adjusted HR = 2.58; 95% CI = 1.29 ~ 5.17; P = 0.007), followed by the group with a high level of only HbA1c (adjusted HR = 2.52; 95% CI = 1.34 ~ 4.74; P = 0.004) and the group with high levels of both hs-CRP and HbA1c (adjusted HR = 2.36; 95% CI = 1.20 ~ 4.62; P = 0.012). Among those aged less than 65 years, hs-CRP was the only significant predictor of ACD risk (P = 0.046), whereas it did not yield any significant result in the elderly. CONCLUSIONS A higher risk of developing ACD was found not only in patients with high levels of inflammation but also high levels of glycated hemoglobin. Future studies should focus on the clinical implementation of hs-CRP or HbA1c to monitor cognitive deficits.
Collapse
Affiliation(s)
- Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chi Chou
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Bagas Suryo Bintoro
- Department of Health Behavior, Environment, and Social Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Center of Health Behavior and Promotion, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kuo-Liong Chien
- Institute of Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan. .,Department of Public Health, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
Snellman A, Ekblad LL, Koivumäki M, Lindgrén N, Tuisku J, Perälä M, Kallio L, Lehtonen R, Saunavaara V, Saunavaara J, Oikonen V, Aarnio R, Löyttyniemi E, Parkkola R, Karrasch M, Zetterberg H, Blennow K, Rinne JO. ASIC-E4: Interplay of Beta-Amyloid, Synaptic Density and Neuroinflammation in Cognitively Normal Volunteers With Three Levels of Genetic Risk for Late-Onset Alzheimer's Disease - Study Protocol and Baseline Characteristics. Front Neurol 2022; 13:826423. [PMID: 35222254 PMCID: PMC8863967 DOI: 10.3389/fneur.2022.826423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Detailed characterization of early pathophysiological changes in preclinical Alzheimer's disease (AD) is necessary to enable development of correctly targeted and timed disease-modifying treatments. ASIC-E4 study ("Beta-Amyloid, Synaptic loss, Inflammation and Cognition in healthy APOE ε4 carriers") combines state-of-the-art neuroimaging and fluid-based biomarker measurements to study the early interplay of three key pathological features of AD, i.e., beta-amyloid (Aβ) deposition, neuroinflammation and synaptic dysfunction and loss in cognitively normal volunteers with three different levels of genetic (APOE-related) risk for late-onset AD. OBJECTIVE Here, our objective is to describe the study design, used protocols and baseline demographics of the ASIC-E4 study. METHODS/DESIGN ASIC-E4 is a prospective observational multimodal imaging study performed in Turku PET Centre in collaboration with University of Gothenburg. Cognitively normal 60-75-year-old-individuals with known APOE ε4/ε4 genotype were recruited via local Auria Biobank (Turku, Finland). Recruitment of the project has been completed in July 2020 and 63 individuals were enrolled to three study groups (Group 1: APOE ε4/ε4, N = 19; Group 2: APOE ε4/ε3, N = 22; Group 3: APOE ε3/ε3, N = 22). At baseline, all participants will undergo positron emission tomography imaging with tracers targeted against Aβ deposition (11C-PIB), activated glia (11C-PK11195) and synaptic vesicle glycoprotein 2A (11C-UCB-J), two brain magnetic resonance imaging scans, and extensive cognitive testing. In addition, blood samples are collected for various laboratory measurements and blood biomarker analysis and cerebrospinal fluid samples are collected from a subset of participants based on additional voluntary informed consent. To evaluate the predictive value of the early neuroimaging findings, neuropsychological evaluation and blood biomarker measurements will be repeated after a 4-year follow-up period. DISCUSSION Results of the ASIC-E4 project will bridge the gap related to limited knowledge of the synaptic and inflammatory changes and their association with each other and Aβ in "at-risk" individuals. Thorough in vivo characterization of the biomarker profiles in this population will produce valuable information for diagnostic purposes and future drug development, where the field has already started to look beyond Aβ.
Collapse
Affiliation(s)
- Anniina Snellman
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Laura L. Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Noora Lindgrén
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Merja Perälä
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Lila Kallio
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Riina Lehtonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Richard Aarnio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juha O. Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
24
|
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, Arlicot N, Pariente J, Payoux P. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update. Eur J Neurosci 2022; 55:1322-1343. [PMID: 35083791 DOI: 10.1111/ejn.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD and how it can be impacted by a disease-modifying treatment.
Collapse
Affiliation(s)
- Dominique Gouilly
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria-Joao Ribeiro
- Department of Nuclear Medicine, CHU, Tours, France.,UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU, Toulouse, France.,Center of Clinical Investigations (CIC1436), CHU, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| |
Collapse
|
25
|
Giannakopoulos P, Rodriguez C, Montandon ML, Garibotto V, Haller S, Herrmann FR. Personality Impact on Alzheimer's Disease-Signature and Vascular Imaging Markers: A PET-MRI Study. J Alzheimers Dis 2021; 85:1807-1817. [PMID: 34958019 DOI: 10.3233/jad-215062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Several studies postulated that personality is an independent determinant of cognitive trajectories in old age. OBJECTIVE This study explores the impact of personality on widely used Alzheimer's disease (AD) and vascular imaging markers. METHODS We examined the association between personality and three classical AD imaging markers (centiloid-based-amyloid load, MRI volumetry in hippocampus, and media temporal lobe atrophy), and two vascular MRI parameters (Fazekas score and number of cortical microbleeds) assessed at baseline and upon a 54-month-follow-up. Personality was assessed with the Neuroticism Extraversion Openness Personality Inventory-Revised. Regression models were used to identify predictors of imaging markers including sex, personality factors, presence of APOE ɛ4 allele and cognitive evolution over time. RESULTS Cortical GM volumes were negatively associated with higher levels of Conscientiousness both at baseline and follow-up. In contrast, higher scores of Openness were related to better preservation of left hippocampal volumes in these two time points and negatively associated with medial temporal atrophy at baseline. Amyloid load was not affected by personality factors. Cases with higher Extraversion scores displayed higher numbers of cortical microbleeds at baseline. CONCLUSION Personality impact on brain morphometry is detected only in some among the routinely used imaging markers. The most robust associations concern the positive role of high levels of Conscientiousness and Openness on AD-signature MRI markers. Higher extraversion levels are associated with increased vulnerability to cortical microbleeds pointing to the fact that the socially favorable traits may have a detrimental effect on brain integrity in old age.
Collapse
Affiliation(s)
- Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sven Haller
- CIMC - Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Faculty of Medicine of the University of Geneva, Geneva, Switzerland.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Teipel S, Bruno D, Plaska CR, Heslegrave A, Ramos-Cejudo J, Osorio RS, Zetterberg H, Blennow K, Pomara N. Association of CSF sTREM2, a marker of microglia activation, with cholinergic basal forebrain volume in major depressive disorder. J Affect Disord 2021; 293:429-434. [PMID: 34246952 PMCID: PMC8803308 DOI: 10.1016/j.jad.2021.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Inflammatory mechanisms are believed to contribute to the manifestation of major depressive disorder (MDD). Central cholinergic activity may moderate this effect. Here, we tested if volume of the cholinergic basal forebrain is associated with cerebrospinal fluid (CSF) levels of sTREM2 as a marker of microglial activation in people with late life MDD. METHODS Basal forebrain volume was determined from structural MRI scans and levels of CSF sTREM2 with immunoassay in 29 people with late-life MDD and 20 healthy older controls at baseline and 3 years follow-up. Associations were determined using Bayesian analysis of covariance. RESULTS We found moderate level of evidence for an association of lower CSF levels of sTREM2 at 3 years follow up with MDD (Bayes factor in favor of an effect = 7.9). This level of evidence prevailed when controlling for overall antidepressant treatment and CSF levels of markers of AD pathology, i.e., Aβ42/Aβ40, ptau181 and total tau. Evidence was in favor of absence of an effect for baseline levels of CSF sTREM2 in MDD cases and for baseline and follow up data in controls. LIMITATIONS The sample size of repeated CSF examinations was relatively small. Therefore, we used Bayesian sequential analysis to assess if effects were affected by sample size. Still, the number of cases was too small to stratify effects for different antidepressive treatments. CONCLUSIONS Our data agree with the assumption that central cholinergic system integrity may contribute to regulation of microglia activity in late-life MDD.
Collapse
Affiliation(s)
- Stefan Teipel
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany; DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany.
| | - Davide Bruno
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Jaime Ramos-Cejudo
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Ricardo S Osorio
- Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nunzio Pomara
- Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
27
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
28
|
Giannakopoulos P, Montandon ML, Rodriguez C, Haller S, Garibotto V, Herrmann FR. Prediction of Subtle Cognitive Decline in Normal Aging: Added Value of Quantitative MRI and PET Imaging. Front Aging Neurosci 2021; 13:664224. [PMID: 34322007 PMCID: PMC8313279 DOI: 10.3389/fnagi.2021.664224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022] Open
Abstract
Quantitative imaging processing tools have been proposed to improve clinic-radiological correlations but their added value at the initial stages of cognitive decline is still a matter of debate. We performed a longitudinal study in 90 community-dwelling elders with three neuropsychological assessments during a 4.5 year follow-up period, and visual assessment of medial temporal atrophy (MTA), white matter hyperintensities, cortical microbleeds (CMB) as well as amyloid positivity, and presence of abnormal FDG-PET patterns. Quantitative imaging data concerned ROI analysis of MRI volume, amyloid burden, and FDG-PET metabolism in several AD-signature areas. Multiple regression models, likelihood-ratio tests, and areas under the receiver operating characteristic curve (AUC) were used to compare quantitative imaging markers to visual inspection. The presence of more or equal to four CMB at inclusion and slight atrophy of the right MTL at follow-up were the only parameters to be independently related to the worst cognitive score explaining 6% of its variance. This percentage increased to 24.5% when the ROI-defined volume loss in the posterior cingulate cortex, baseline hippocampus volume, and MTL metabolism were also considered. When binary classification of cognition was made, the area under the ROC curve increased from 0.69 for the qualitative to 0.79 for the mixed imaging model. Our data reveal that the inclusion of quantitative imaging data significantly increases the prediction of cognitive changes in elderly controls compared to the single consideration of visual inspection.
Collapse
Affiliation(s)
- Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Sven Haller
- Department of Neuroradiology, Faculty of Medicine of the University of Geneva, Geneva, Switzerland
- CIRD—Centre d’Imagerie Rive Droite, Geneva, Switzerland
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - François R. Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|