1
|
Rispoli MG, De Angelis MV, Melchionda D, Manente G. High-risk area for migraine attacks - a new concept in migraine pathophysiology. Front Neurol 2025; 16:1569361. [PMID: 40260134 PMCID: PMC12010771 DOI: 10.3389/fneur.2025.1569361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Migraine is a common primary and often disabling neurological disorder, whose pathophysiology is still debated. It does not appear to be an isolated event of head pain but the consequence of recurrent disruption of healthy homeostasis in some brain functions. We propose a new theoretical model, focused on the existence of a "high-risk area" for migraine attacks, which can represent a potential target of non-pharmacologic treatment and prevention. We suggest that migraine arises from the combined effects of three primary factors, namely depressive or unstable mood, unrestful sleep and sympathetic-parasympathetic imbalance with parasympathetic prevalence, alongside with their temporal variability, potentially through dysfunction of homeostatic hypothalamic networks in susceptible individuals. Moreover, these three primary factors contribute to a state of low brain energy, that contains the high-risk area and represents the condition in which migraine attacks rise up. Wearable devices, self-administered questionnaires and clinical tools (i.e., polysomnography, pupillary light reflex, plasma catecholamines dosage) may be used to monitor autonomic nervous system function, mood and sleep and demonstrate the existence of the high-risk area. This will be helpful for patients to understand when they are about to enter in the high-risk area, in order to implement strategies to prevent migraine attacks. This approach would provide a significant advantage in terms of prevention and early treatment.
Collapse
|
2
|
Fleischmann R, Strauß S, Reuter U. Treating episodic migraine with precision: the evolving landscape of targeted therapies driven by insights in disease biology. Expert Opin Biol Ther 2025:1-15. [PMID: 39831521 DOI: 10.1080/14712598.2025.2456464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Migraine is a disabling neurological disorder with a complex neurobiology. It appears as a cyclic disorder of sensory processing, affecting multiple systems beyond nociception. Overlapping mechanisms, including dysfunctional processing of sensory input from brain structures are involved in the generation of attacks. AREAS COVERED This review provides a comprehensive synthesis on migraine neurobiology, which was additionally informed by search of research databases (PubMed, ClinicalTrials.gov). Findings from the most recent literature are integrated in a pathophysiological framework. By combining mechanistic insights and clinical trial data, this review highlights the trajectory of precision medicine in migraine treatment, offering a perspective on the near future of targeted and individualized therapeutic strategies. EXPERT OPINION Recent advances in migraine neurobiology offer potential solutions to longstanding challenges. While targeted CGRP therapies have shown promise by addressing specific mechanisms, the pathophysiology of migraine suggests that combination therapies targeting multiple pathways could be beneficial in migraine prevention. The growing diversity of treatment options presents challenges in therapy selection, underscoring the need for predictive biomarkers. These innovations can optimize treatment strategies and improve patient outcomes. As the field progresses, personalized, multimodal approaches are poised to become the standard of care, significantly advancing precision medicine in this area.
Collapse
Affiliation(s)
- Robert Fleischmann
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Sebastian Strauß
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Reuter
- University Medicine Greifswald, Greifswald, Germany
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
3
|
Maddahi A, Edvinsson JCA, Edvinsson L. Sex differences in expression of CGRP family of receptors and ligands in the rat trigeminal system. J Headache Pain 2024; 25:193. [PMID: 39516766 PMCID: PMC11545840 DOI: 10.1186/s10194-024-01893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is part of the calcitonin peptide family, which includes calcitonin (CT), amylin (AMY), and adrenomedullin (ADM). CGRP and its receptor are highly present in the trigeminovascular system (TVS). Recent research suggests that other members of the calcitonin family could be feasible therapeutic targets in the treatment of migraine. The present study aims to elucidate the distribution of ADM, AMY, CT, and their receptors in the rat TVS, and to explore potential sex differences in their expression. METHODS Trigeminal ganglia (TG) were dissected from male and female adult rats. Protein and gene expression were assessed through immunohistochemistry and RT-qPCR. Additionally, the dura mater was isolated for further investigation of protein expression and fiber localization using immunohistochemistry. RESULTS Quantitative gene expression analysis revealed the presence of all genes in male and female TGs, except for calcitonin receptor (CTR). Notably, CGRP mRNA levels in TG were several folds higher than those of other genes. The receptor activity-modifying protein-1 (RAMP1) mRNA levels were significantly higher in female compared to male. No AMY or CT immunoreactivity was observed in the TVS. In contrast, immunoreactivity for ADM, CGRP, RAMP1, CTR, and calcitonin-like receptor (CLR) were observed in the cytoplasm of TG neurons. Immunoreactive Aδ-fibers storing RAMP1, ADM and CLR were also identified. RAMP2 and RAMP3 were expressed in nucleus of TG neurons and in satellite glial cells. Furthermore, RAMP1 and CLR were co-localized with CASPR in the nodes of Ranvier located in Aδ-fibers. CONCLUSIONS This study provides valuable insights into the distribution of the CGRP family of peptides and their receptors in the TVS. CGRP mRNA levels in the TG were markedly higher than those of other genes, demonstrating the key role of CGRP. The co-localization of CLR and RAMP1 on Aδ-fibers with CASPR suggests a potential role for this receptor in modulating trigeminal nerve function and neuronal excitability, with implications for migraine pathophysiology. Additionally, RAMP1 mRNA levels were significantly higher in female TG compared to males, indicating sex-specific differences in gene expression. These findings underscore the need for further research into the functional significance of gender-related variations.
Collapse
Affiliation(s)
- Aida Maddahi
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Jacob C A Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Guo S, Christensen SL, Al‐Karagholi MA, Olesen J. Molecular nociceptive mechanisms in migraine: The migraine cascade. Eur J Neurol 2024; 31:e16333. [PMID: 38894592 PMCID: PMC11235602 DOI: 10.1111/ene.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This review will explore the categorization of migraine-provoking molecules, their cellular actions, site of action and potential drug targets based on the migraine cascade model. METHODS Personal experience and literature. RESULTS Migraine impacts over 1 billion people worldwide but is underfunded in research. Recent progress, particularly through the human and animal provocation model, has deepened our understanding of its mechanisms. This model have identified endogenous neuropeptides such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP) that induces controlled migraine-like attacks leading to significant discoveries of their role in migraine. This knowledge led to the development of CGRP-inhibiting drugs; a groundbreaking migraine treatment now accessible globally. Also a PACAP-inhibiting drug was effective in a recent phase II trial. Notably, rodent studies have shed light on pain pathways and the mechanisms of various migraine-inducing substances identifying novel drug targets. This is primarily done by using selective inhibitors that target specific signaling pathways of the known migraine triggers leading to the hypothesized cellular cascade model of migraine. CONCLUSION The model of migraine presents numerous opportunities for innovative drug development. The future of new migraine treatments is limited only by the investment from pharmaceutical companies.
Collapse
Affiliation(s)
- Song Guo
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
- Department of NeurologyZealand University HospitalRoskildeDenmark
| | - Sarah Louise Christensen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Mohammad Al‐Mahdi Al‐Karagholi
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| |
Collapse
|
5
|
Karsan N, Edvinsson L, Vecsei L, Goadsby PJ. Pituitary cyclase-activating polypeptide targeted treatments for the treatment of primary headache disorders. Ann Clin Transl Neurol 2024; 11:1654-1668. [PMID: 38887982 PMCID: PMC11251486 DOI: 10.1002/acn3.52119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Migraine is a complex and disabling neurological disorder. Recent years have witnessed the development and emergence of novel treatments for the condition, namely those targeting calcitonin gene-related peptide (CGRP). However, there remains a substantial need for further treatments for those unresponsive to current therapies. Targeting pituitary adenylate cyclase-activating polypeptide (PACAP) as a possible therapeutic strategy in the primary headache disorders has gained interest over recent years. METHODS This review will summarize what we know about PACAP to date: its expression, receptors, roles in migraine and cluster headache biology, insights gained from preclinical and clinical models of migraine, and therapeutic scope. RESULTS PACAP shares homology with vasoactive intestinal polypeptide (VIP) and is one of several vasoactive neuropeptides along with CGRP and VIP, which has been implicated in migraine neurobiology. PACAP is widely expressed in areas of interest in migraine pathophysiology, such as the thalamus, trigeminal nucleus caudalis, and sphenopalatine ganglion. Preclinical evidence suggests a role for PACAP in trigeminovascular sensitization, while clinical evidence shows ictal release of PACAP in migraine and intravenous infusion of PACAP triggering attacks in susceptible individuals. PACAP leads to dural vasodilatation and secondary central phenomena via its binding to different G-protein-coupled receptors, and intracellular downstream effects through cyclic adenosine monophosphate (cAMP) and phosphokinase C (PKC). Targeting PACAP as a therapeutic strategy in headache has been explored using monoclonal antibodies developed against PACAP and against the PAC1 receptor, with initial positive results. INTERPRETATION Future clinical trials hold considerable promise for a new therapeutic approach using PACAP-targeted therapies in both migraine and cluster headache.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Lars Edvinsson
- Department of Medicine, Institute of Clinical SciencesLund University221 84LundSweden
| | - Laszlo Vecsei
- Department of Neurology, Albert Szent‐Györgyi Medical School, and HUN‐REN‐SZTE Neuroscience Research Group, Hungarian Research NetworkUniversity of SzegedSemmelweis u. 6SzegedH‐6725Hungary
| | - Peter J Goadsby
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Department of NeurologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
6
|
Al-Khazali HM, Ashina H, Christensen RH, Wiggers A, Rose K, Iljazi A, Amin FM, Ashina M, Snellman J, Maio-Twofoot T, Schytz HW. Hypersensitivity to CGRP as a predictive biomarker of migraine prevention with erenumab. Cephalalgia 2024; 44:3331024241258734. [PMID: 38859744 DOI: 10.1177/03331024241258734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND The present study aimed to investigate the predictive value of calcitonin gene-related peptide (CGRP)-induced migraine attacks for effectiveness to erenumab treatment in people with migraine. METHODS In total, 139 participants with migraine underwent a single experimental day involving a 20-min infusion with CGRP. Following this, the participants entered a 24-week treatment period with erenumab. The primary endpoints were the predictive value of CGRP-induced migraine attacks on the effectiveness of erenumab, defined as ≥50% reduction in monthly migraine days, or ≥ 50% reduction in either monthly migraine or monthly headache days of moderate to severe intensity. RESULTS Among participants with CGRP-induced migraine attacks, 60 of 99 (61%) achieved ≥50% reduction in monthly migraine days during weeks 13-24 with erenumab. Conversely, 13 of 25 (52%) where CGRP infusion did not induce a migraine achieved the same endpoint (p = 0.498). There were no significant differences between the ≥50% reduction in either monthly migraine or monthly headache days of moderate to severe intensity between CGRP-sensitive and non-sensitive participants (p = 0.625). CONCLUSIONS Our findings suggest that the CGRP-provocation model cannot be used to predict erenumab's effectiveness. It remains uncertain whether this finding extends to other monoclonal antibodies targeting the CGRP ligand or to gepants.Trial Registration: The study was registered at ClinicalTrials.gov (NCT04592952).
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Astrid Wiggers
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Rose
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Afrim Iljazi
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Henrik W Schytz
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Karsan N. Pathophysiology of Migraine. Continuum (Minneap Minn) 2024; 30:325-343. [PMID: 38568486 DOI: 10.1212/con.0000000000001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This article provides an overview of the current understanding of migraine pathophysiology through insights gained from the extended symptom spectrum of migraine, neuroanatomy, migraine neurochemistry, and therapeutics. LATEST DEVELOPMENTS Recent advances in human migraine research, including human experimental migraine models and functional neuroimaging, have provided novel insights into migraine attack initiation, neurochemistry, neuroanatomy, and therapeutic substrates. It has become clear that migraine is a neural disorder, in which a wide range of brain areas and neurochemical systems are implicated, producing a heterogeneous clinical phenotype. Many of these neural pathways are monoaminergic and peptidergic, such as those involving calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide. We are currently witnessing an exciting era in which specific drugs targeting these pathways have shown promise in treating migraine, including some studies suggesting efficacy before headache has even started. ESSENTIAL POINTS Migraine is a brain disorder involving both headache and altered sensory, limbic, and homeostatic processing. A complex interplay between neurotransmitter systems, physiologic systems, and pain processing likely occurs. Targeting various therapeutic substrates within these networks provides an exciting avenue for future migraine therapeutics.
Collapse
|
8
|
Ashina M, Hoffmann J, Ashina H, Hay DL, Flores-Montanez Y, Do TP, De Icco R, Dodick DW. Pharmacotherapies for Migraine and Translating Evidence From Bench to Bedside. Mayo Clin Proc 2024; 99:285-299. [PMID: 38180396 DOI: 10.1016/j.mayocp.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 01/06/2024]
Abstract
Migraine is a ubiquitous neurologic disorder that afflicts more than 1 billion people worldwide. Recommended therapeutic strategies include the use of acute and, if needed, preventive medications. During the past 2 decades, tremendous progress has been made in better understanding the molecular mechanisms underlying migraine pathogenesis, which in turn has resulted in the advent of novel medications targeting signaling molecule calcitonin gene-related peptide or its receptor. Here, we provide an update on the rational use of pharmacotherapies for migraine to facilitate more informed clinical decision-making. We then discuss the scientific discoveries that led to the advent of new medications targeting calcitonin gene-related peptide signaling. Last, we conclude with recent advances that are being made to identify novel drug targets for migraine.
Collapse
Affiliation(s)
- Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience.), King's College Hospital, London, United Kingdom; NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Anaesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Brain and Spinal Cord Injury, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Yadira Flores-Montanez
- BIDMC Comprehensive Headache Center, Department of Neurology and Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA; University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | | |
Collapse
|
9
|
Garelja ML, Alexander TI, Bennie A, Nimick M, Petersen J, Walker CS, Hay DL. Pharmacological characterisation of erenumab, Aimovig, at two calcitonin gene-related peptide responsive receptors. Br J Pharmacol 2024; 181:142-161. [PMID: 37580864 PMCID: PMC10840612 DOI: 10.1111/bph.16218] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) is involved in migraine pathophysiology. CGRP can signal through two receptors. The canonical CGRP receptor comprises the calcitonin receptor-like receptor and receptor activity-modifying protein 1 (RAMP1); the AMY1 receptor comprises the calcitonin receptor with RAMP1. Drugs that reduce CGRP activity, such as receptor antagonists, are approved for the treatment and prevention of migraine. Despite being designed to target the canonical CGRP receptor, emerging evidence suggests that these antagonists, including erenumab (a monoclonal antibody antagonist) can also antagonise the AMY1 receptor. However, it is difficult to estimate its selectivity because direct comparisons between receptors under matched conditions have not been made. We therefore characterised erenumab at both CGRP-responsive receptors with multiple ligands, including αCGRP and βCGRP. EXPERIMENTAL APPROACH Erenumab antagonism was quantified through IC50 and pKB experiments, measuring cAMP production. We used SK-N-MC cells which endogenously express the human CGRP receptor, and HEK293S and Cos7 cells transiently transfected to express either human CGRP or AMY1 receptors. KEY RESULTS Erenumab antagonised both the CGRP and AMY1 receptors with an ~20-120-fold preference for the CGRP receptor, depending on the cells, agonist, analytical approach and/or assay format. Erenumab antagonised both forms of CGRP equally, and appeared to act as a competitive reversible antagonist at both receptors. CONCLUSION AND IMPLICATIONS Despite being designed to target the CGRP receptor, erenumab can antagonise the AMY1 receptor. Its ability to antagonise CGRP activity at both receptors may be useful in better understanding the clinical profile of erenumab.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Tyla I. Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Amy Bennie
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Mhairi Nimick
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Jakeb Petersen
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
10
|
Do TP, Deligianni C, Amirguliyev S, Snellman J, Lopez CL, Al-Karagholi MAM, Guo S, Ashina M. Second messenger signalling bypasses CGRP receptor blockade to provoke migraine attacks in humans. Brain 2023; 146:5224-5234. [PMID: 37540009 PMCID: PMC10690017 DOI: 10.1093/brain/awad261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/25/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023] Open
Abstract
There are several endogenous molecules that can trigger migraine attacks when administered to humans. Notably, calcitonin gene-related peptide (CGRP) has been identified as a key player in a signalling cascade involved in migraine attacks, acting through the second messenger cyclic adenosine monophosphate (cAMP) in various cells, including intracranial vascular smooth muscle cells. However, it remains unclear whether intracellular cAMP signalling requires CGRP receptor activation during a migraine attack in humans. To address this question, we conducted a randomized, double-blind, placebo-controlled, parallel trial using a human provocation model involving the administration of CGRP and cilostazol in individuals with migraine pretreated with erenumab or placebo. Our study revealed that migraine attacks can be provoked in patients by cAMP-mediated mechanisms using cilostazol, even when the CGRP receptor is blocked by erenumab. Furthermore, the dilation of cranial arteries induced by cilostazol was not influenced by the CGRP receptor blockade. These findings provide clinical evidence that cAMP-evoked migraine attacks do not require CGRP receptor activation. This discovery opens up new possibilities for the development of mechanism-based drugs for the treatment of migraine.
Collapse
Affiliation(s)
- Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina Deligianni
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Sarkhan Amirguliyev
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | | | - Cristina Lopez Lopez
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Al-Khazali HM, Ashina H, Christensen RH, Wiggers A, Rose K, Iljazi A, Schytz HW, Amin FM, Ashina M. An exploratory analysis of clinical and sociodemographic factors in CGRP-induced migraine attacks: A REFORM study. Cephalalgia 2023; 43:3331024231206375. [PMID: 37815254 DOI: 10.1177/03331024231206375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To investigate whether clinical and sociodemographic factors are associated with calcitonin gene-related peptide (CGRP) induced migraine attacks. METHODS A total of 139 participants with migraine received a 20-minute intravenous infusion of CGRP (1.5 µg/min) on a single experiment day. The incidence of CGRP-induced migraine attacks was recorded using a headache diary during the 12-hour observational period post-infusion. Univariable and multivariable regression analyses were conducted to examine potential predictors' relationship with CGRP-induced migraine attacks. RESULTS CGRP-induced migraine attacks were reported in 110 (79%) of 139 participants. Univariable analysis revealed that participants with cutaneous allodynia had higher odds of developing CGRP-induced migraine attacks, compared with those without allodynia (OR, 2.97, 95% CI, 1.28 to 7.43). The subsequent multivariable analysis confirmed this association (OR, 3.26, 95% CI, 1.32 to 8.69) and also found that participants with migraine with aura had lower odds of developing CGRP-induced migraine attacks (OR, 0.32, 95% CI, 0.12 to 0.84). CONCLUSION Our results suggest that cutaneous allodynia and aura play a role in CGRP-induced migraine attacks, while other clinical and sociodemographic factors do not seem to have any noticeable impact. This indicates that the CGRP provocation model is robust, as the CGRP hypersensitivity remained unaffected despite differences among a heterogeneous migraine population.Trial Registration: ClinicalTrials.gov Identifier: NCT04592952.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Astrid Wiggers
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Rose
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Afrim Iljazi
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik W Schytz
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Pleș H, Florian IA, Timis TL, Covache-Busuioc RA, Glavan LA, Dumitrascu DI, Popa AA, Bordeianu A, Ciurea AV. Migraine: Advances in the Pathogenesis and Treatment. Neurol Int 2023; 15:1052-1105. [PMID: 37755358 PMCID: PMC10535528 DOI: 10.3390/neurolint15030067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
This article presents a comprehensive review on migraine, a prevalent neurological disorder characterized by chronic headaches, by focusing on their pathogenesis and treatment advances. By examining molecular markers and leveraging imaging techniques, the research identifies key mechanisms and triggers in migraine pathology, thereby improving our understanding of its pathophysiology. Special emphasis is given to the role of calcitonin gene-related peptide (CGRP) in migraine development. CGRP not only contributes to symptoms but also represents a promising therapeutic target, with inhibitors showing effectiveness in migraine management. The article further explores traditional medical treatments, scrutinizing the mechanisms, benefits, and limitations of commonly prescribed medications. This provides a segue into an analysis of emerging therapeutic strategies and their potential to enhance migraine management. Finally, the paper delves into neuromodulation as an innovative treatment modality. Clinical studies indicating its effectiveness in migraine management are reviewed, and the advantages and limitations of this technique are discussed. In summary, the article aims to enhance the understanding of migraine pathogenesis and present novel therapeutic possibilities that could revolutionize patient care.
Collapse
Affiliation(s)
- Horia Pleș
- Department of Neurosurgery, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Teodora-Larisa Timis
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Luca-Andrei Glavan
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Adrian Popa
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Bordeianu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| |
Collapse
|
13
|
Silvestro M, Iannone LF, Orologio I, Tessitore A, Tedeschi G, Geppetti P, Russo A. Migraine Treatment: Towards New Pharmacological Targets. Int J Mol Sci 2023; 24:12268. [PMID: 37569648 PMCID: PMC10418850 DOI: 10.3390/ijms241512268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a debilitating neurological condition affecting millions of people worldwide. Until a few years ago, preventive migraine treatments were based on molecules with pleiotropic targets, developed for other indications, and discovered by serendipity to be effective in migraine prevention, although often burdened by tolerability issues leading to low adherence. However, the progresses in unravelling the migraine pathophysiology allowed identifying novel putative targets as calcitonin gene-related peptide (CGRP). Nevertheless, despite the revolution brought by CGRP monoclonal antibodies and gepants, a significant percentage of patients still remains burdened by an unsatisfactory response, suggesting that other pathways may play a critical role, with an extent of involvement varying among different migraine patients. Specifically, neuropeptides of the CGRP family, such as adrenomedullin and amylin; molecules of the secretin family, such as pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP); receptors, such as transient receptor potential (TRP) channels; intracellular downstream determinants, such as potassium channels, but also the opioid system and the purinergic pathway, have been suggested to be involved in migraine pathophysiology. The present review provides an overview of these pathways, highlighting, based on preclinical and clinical evidence, as well as provocative studies, their potential role as future targets for migraine preventive treatment.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luigi Francesco Iannone
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pierangelo Geppetti
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Antonio Russo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
14
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Karlsson WK, Ashina H, Cullum CK, Christensen RH, Al-Khazali HM, Amin FM, Ashina M. The Registry for Migraine (REFORM) study: methodology, demographics, and baseline clinical characteristics. J Headache Pain 2023; 24:70. [PMID: 37303034 DOI: 10.1186/s10194-023-01604-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Erenumab has demonstrated effectiveness for prevention of migraine attacks, but the treatment is costly, and a considerable proportion of patients do not respond to it. The Registry for Migraine study (REFORM) was initiated to discover biomarkers that can predict response to erenumab in patients with migraine. The specific objective was to investigate differences in erenumab efficacy based on clinical information, blood-based biomarkers, structural and functional magnetic resonance imaging (MRI), and response to intravenous infusion of calcitonin gene-related peptide (CGRP). In this first report of the REFORM study, we provide a comprehensive description of the study methodology, and present the baseline characteristics of the study population. METHODS The REFORM study was a single-center, prospective, longitudinal cohort study in adults with migraine who were scheduled to receive preventive treatment with erenumab as part of a separate, open-label, single-arm phase IV trial. The study included four periods: a 2-week screening period (Weeks -6 to -5), 4-week baseline period (Week -4 to Day 1), 24-week treatment period (Day 1 to Week 24), and a 24-week follow-up period without treatment (Week 25 to Week 48). Demographic and clinical characteristics were recorded using a semi-structured interview, whilst outcome data were obtained using a headache diary, patient-reported outcomes, blood sampling, brain MRI, and responsiveness to intravenous infusion of CGRP. RESULTS The study enrolled 751 participants, with a mean age ± SD of 43.8 ± 12.2 years, of which 88.8% (n = 667) were female. At enrollment, 64.7% (n = 486) were diagnosed with chronic migraine, and 30.2% (n = 227) had history of aura. The mean monthly migraine days (MMDs) was 14.5 ± 7.0. Concomitant preventive medications were used by 48.5% (n = 364) of the participants, and 39.9% (n = 300) had failed ≥ 4 preventive medications. CONCLUSION The REFORM study enrolled a population with a high migraine burden and frequent use of concomitant medications. The baseline characteristics were representative of patients with migraine in specialized headache clinics. Future publications will report the results of the investigations presented in this article. TRIAL REGISTRATION The study and sub-studies were registered on ClinicalTrials.gov (NCT04592952; NCT04603976; and NCT04674020).
Collapse
Affiliation(s)
- William Kristian Karlsson
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher Kjær Cullum
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Haidar Muhsen Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Kuburas A, Russo AF. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain 2023; 24:34. [PMID: 37009867 PMCID: PMC10069045 DOI: 10.1186/s10194-023-01569-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have emerged as mediators of migraine pathogenesis. Both are vasodilatory peptides that can cause migraine-like attacks when infused into people and migraine-like symptoms when injected into rodents. In this narrative review, we compare the similarities and differences between the peptides in both their clinical and preclinical migraine actions. A notable clinical difference is that PACAP, but not CGRP, causes premonitory-like symptoms in patients. Both peptides are found in distinct, but overlapping areas relevant to migraine, most notably with the prevalence of CGRP in trigeminal ganglia and PACAP in sphenopalatine ganglia. In rodents, the two peptides share activities, including vasodilation, neurogenic inflammation, and nociception. Most strikingly, CGRP and PACAP cause similar migraine-like symptoms in rodents that are manifested as light aversion and tactile allodynia. Yet, the peptides appear to act by independent mechanisms possibly by distinct intracellular signaling pathways. The complexity of these signaling pathways is magnified by the existence of multiple CGRP and PACAP receptors that may contribute to migraine pathogenesis. Based on these differences, we suggest PACAP and its receptors provide a rich set of targets to complement and augment the current CGRP-based migraine therapeutics.
Collapse
Affiliation(s)
- Adisa Kuburas
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
18
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Neyal A, Ekmekyapar Fırat Y, Çekmen MB, Kılıçparlar Cengiz E, Koç Ada S, Neyal AM. Calcitonin Gene-Related Peptide and Adrenomedullin Levels During Ictal and Interictal Periods in Patients With Migraine. Cureus 2023; 15:e37843. [PMID: 37214082 PMCID: PMC10198585 DOI: 10.7759/cureus.37843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Background Peptides related to calcitonin gene-related peptide (CGRP) have been suggested to have a role in migraine. Adrenomedullin (AM) might be a candidate molecule because it is related to pain pathways in the peripheral and central nervous systems and uses the same receptors as CGRP. Methodology In this study, we examined the serum CGRP and AM levels during unprovoked ictal and interictal periods of 30 migraine patients as well as 25 healthy controls. Another focus of this study was on the association of CGRP and AM levels with clinical features. Results Mean serum AM levels were 15.80 pg/mL (11.91-21.43 pg/mL) in the ictal and 15.85 pg/mL (12.25-19.29 pg/mL) in the interictal periods in the migraine group and 13.36 pg/mL (10.84-17.18 pg/mL) in the control group. Mean serum CGRP levels were 2.93 pg/mL (2.45-3.90 pg/mL) in the ictal and 3.25 pg/mL (2.85-4.67 pg/mL) in the interictal periods in the migraine group and 3.03 pg/mL (2.48-3.80 pg/mL) in the control group. There were no statistical differences between ictal and/or interictal AM and CGRP levels (p = 0.558 and p = 0.054, respectively) which were also comparable with the results of the control group (p = 0.230, p = 0.295, p = 0.987, p = 0.139, respectively). Ictal serum CGRP and/or AM levels did not correlate with any of the reported clinical features. Conclusions Serum AM and CGRP levels are similar in interictal and unprovoked ictal periods in migraine patients and as well in controls. These results do not indicate that these molecules do not have a role in migraine pathophysiology. Considering the broad mechanisms of action of peptides in the CGRP family, further studies are needed in larger cohorts.
Collapse
Affiliation(s)
- Abdurrahman Neyal
- Department of Neurology, Gaziantep Islam Science and Technology University School of Medicine, Gaziantep, TUR
| | | | - Mustafa B Çekmen
- Department of Medical Biochemistry, Istanbul Medeniyet University School of Medicine, Istanbul, TUR
| | | | - Saniye Koç Ada
- Department of Medical Biochemistry, Istanbul Medeniyet University School of Medicine, Istanbul, TUR
| | - Ayşe M Neyal
- Department of Neurology, Sanko University School of Medicine, Gaziantep, TUR
| |
Collapse
|
20
|
Lee MJ, Al-Karagholi MAM, Reuter U. New migraine prophylactic drugs: Current evidence and practical suggestions for non-responders to prior therapy. Cephalalgia 2023; 43:3331024221146315. [PMID: 36759320 DOI: 10.1177/03331024221146315] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (anti-CGRP(-R) mAbs) and small-molecule CGRP receptor antagonists (gepants) are new mechanism-based prophylactic drugs developed to address the unmet needs of pre-existing migraine prophylactic medications. However, several uncertainties remain in their real-world applications. METHODS This is a narrative review of the literature on the use of CGRP-targeting novel therapeutics in specific situations, including non-responders to prior therapy, combination therapy, switching, and treatment termination. In the case of lack of available literature, we made suggestions based on clinical reasoning. RESULTS High-quality evidence supports the use of all available anti-CGRP(-R) mAbs (erenumab, galcanezumab, fremanezumab, and eptinezumab) in non-responders to prior therapy. There is insufficient evidence to support or reject the efficacy of combining CGRP(-R) mAbs or gepants with oral migraine prophylactic agents or botulinum toxin A. Switching from one CGRP(-R) mAb to another might benefit a fraction of patients. Currently, treatment termination depends on reimbursement policies, and the optimal mode of termination is discussed. CONCLUSIONS New prophylactic drugs that target the CGRP pathway are promising treatment options for patients with difficult-to-treat migraine. Individualized approaches using a combination of new substances with oral prophylactic drugs or botulinum toxin A, switching between new drugs, and adjusting treatment duration could enhance excellence in practice.
Collapse
Affiliation(s)
- Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Greifswald, Germany.,Board of Directors, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
22
|
Ashina H, Iljazi A, Al-Khazali HM, Do TP, Eigenbrodt AK, Larsen EL, Andersen AM, Hansen KJ, Bräuner KB, Chaudhry BA, Christensen CE, Amin FM, Schytz HW. CGRP-induced migraine-like headache in persistent post-traumatic headache attributed to mild traumatic brain injury. J Headache Pain 2022; 23:135. [PMID: 36253732 PMCID: PMC9578273 DOI: 10.1186/s10194-022-01499-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To ascertain whether intravenous infusion of calcitonin gene-related peptide (CGRP) can induce migraine-like headache in people with persistent post-traumatic headache attributed to mild traumatic brain injury (TBI) and no pre-existing migraine. METHODS A non-randomized, single-arm, open-label study at a single site in Denmark. Eligible participants were aged 18 to 65 years and had a known history of persistent post-traumatic headache attributed to mild TBI for ≥ 12 months. All participants received continuous intravenous infusion of CGRP (1.5 µg/min) over 20 min. A headache diary was used to collect outcome data until 12 h after the start of CGRP infusion. The primary end point was the incidence of migraine-like headache during 12-hour observational period. RESULTS A total of 60 participants completed the study protocol and provided data for the analysis of the primary end point. The median age was 32.5 (IQR, 25.5-43.0) years; 43 participants (72%) were female. Following CGRP infusion, 43 (72%) of 60 participants developed migraine-like headache during the 12-hour observational period. The median time to peak headache intensity was 40 min (IQR, 20-60), and the median peak headache intensity was 6 (IQR, 5-8) on the 11-point numeric rating scale. CONCLUSION Intravenous infusion of CGRP is a potent inducer of migraine-like headache in people with persistent post-traumatic headache attributed to mild TBI. This observation underscores the importance of CGRP in the genesis of migraine-like headache that is often experienced by individuals who are afflicted by persistent post-traumatic headache. Further research is warranted to ascertain whether other signaling molecules also contribute to the disease mechanisms underlying post-traumatic headache.
Collapse
Affiliation(s)
- Håkan Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark.,Department of Neurorehabilitation / Traumatic Brain Injury, Rigshospitalet, Copenhagen, Denmark
| | - Afrim Iljazi
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Haidar M Al-Khazali
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Thien Phu Do
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Eigenbrodt
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Eigil L Larsen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Amalie M Andersen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Kevin J Hansen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Karoline B Bräuner
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Basit Ali Chaudhry
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Casper E Christensen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark.,Department of Neurorehabilitation / Traumatic Brain Injury, Rigshospitalet, Copenhagen, Denmark
| | - Henrik W Schytz
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Garelja ML, Hay DL. A narrative review of the calcitonin peptide family and associated receptors as migraine targets: Calcitonin gene-related peptide and beyond. Headache 2022; 62:1093-1104. [PMID: 36226379 PMCID: PMC9613588 DOI: 10.1111/head.14388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies. BACKGROUND Therapeutics that dampen calcitonin gene-related peptide (CGRP) signaling are now in clinical use to prevent or treat migraine. However, CGRP belongs to a broader peptide family, including the peptides amylin and adrenomedullin. Receptors for this family are complex, displaying overlapping pharmacologic profiles. Despite the focus on CGRP and the CGRP receptor in migraine research, recent evidence implicates related peptides and receptors in migraine. METHODS This narrative review summarizes literature encompassing the current pharmacologic understanding of the calcitonin peptide family, and the evidence that links specific members of this family to migraine and migraine-like behaviors. RESULTS Recent work links amylin and adrenomedullin to migraine-like behavior in rodent models and migraine-like attacks in individuals with migraine. We collate novel information that suggests females may be more sensitive to amylin and CGRP in the context of migraine-like behaviors. We report that drugs designed to antagonize the canonical CGRP receptor also antagonize a second CGRP-responsive receptor and speculate as to whether this influences therapeutic efficacy. We also discuss the specificity of current drugs with regards to CGRP isoforms and how this may influence therapeutic profiles. Lastly, we emphasize that receptors related to, but distinct from, the canonical CGRP receptor may represent underappreciated and novel drug targets. CONCLUSION Multiple peptides within the calcitonin family have been linked to migraine. The current focus on CGRP and its canonical receptor may be obscuring pathways to further therapeutics. Drug discovery schemes that take a wider view of the receptor family may lead to the development of new anti-migraine drugs with favorable clinical profiles. We also propose that understanding these related peptides and receptors may improve our interpretation regarding the mechanism of action of current drugs.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Debbie L. Hay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand,Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
24
|
Abstract
Headache disorders can produce recurrent, incapacitating pain. Migraine and cluster headache are notable for their ability to produce significant disability. The anatomy and physiology of headache disorders is fundamental to evolving treatment approaches and research priorities. Key concepts in headache mechanisms include activation and sensitization of trigeminovascular, brainstem, thalamic, and hypothalamic neurons; modulation of cortical brain regions; and activation of descending pain circuits. This review will examine the relevant anatomy of the trigeminal, brainstem, subcortical, and cortical brain regions and concepts related to the pathophysiology of migraine and cluster headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yulia Orlova
- Department of Neurology, University of Florida, Gainesville, Florida
| |
Collapse
|
25
|
Ashina H, Christensen RH, Ashina M. Provoked versus spontaneous migraine attacks: pathophysiological similarities and differences. J Headache Pain 2022; 23:87. [PMID: 35870898 PMCID: PMC9308906 DOI: 10.1186/s10194-022-01464-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The onset and duration of spontaneous migraine attacks are most often difficult to predict which, in turn, makes it challenging to study the neurobiologic underpinnings of the disease in a controlled experimental setting. To address this challenge, human provocation studies can be used to identify signaling molecules (e.g. calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide) that, upon intravenous or oral administration, induce migraine attacks in people with migraine and mild or no headache in healthy volunteers. This approach has proven to be valid for decades and plays an integral role in mapping signaling pathways underlying migraine pathogenesis and identification of novel drug targets. However, the question arises as to whether the pathogenic mechanisms of provoked and spontaneous migraine attacks differ. In this paper, we provide an opinionated discussion on the similarities and differences between provoked and spontaneous attacks based on the current understanding of migraine pathogenesis. METHODS The PubMed database was searched in July 2022 for original research articles on human provocation studies that included participants with migraine. The reference lists of originally identified articles were also searched and we selected those we judged relevant. DISCUSSION People with migraine describe that provoked attacks resemble their spontaneous attacks and can be treated with their usual rescue medication. From a neurobiologic standpoint, provoked and spontaneous migraine attacks appear to be similar, except for the source of migraine-inducing substances (exogenous vs. endogenous source). In addition, provoked attacks can likely not be used to study the events that precede the release of migraine-inducing signaling molecules from sensory afferents and/or parasympathetic efferents during spontaneous attacks.
Collapse
Affiliation(s)
- Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Copenhagen, Denmark
- Department of Neurorehabilitation / Traumatic Brain Injury, Rigshospitalet, Copenhagen, Denmark
| | - Rune Häckert Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Copenhagen, Denmark.
| |
Collapse
|
26
|
Ghanizada H, Christensen RH, Al-Karagholi MAM, Elbahi FA, Coskun H, Ashina M. Arterial responses to infusion of glucagon-like peptide-1 in humans: A randomized trial study. Peptides 2022; 150:170736. [PMID: 35017010 DOI: 10.1016/j.peptides.2022.170736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/19/2022]
Abstract
Glucagon-like-peptide-1 (GLP-1) is an incretin hormone implicated in several metabolic and neurological disorders. GLP-1 induces vasodilation and increases blood flow in the peripheral circulation. Whether GLP-1 alters cerebral hemodynamics in humans is yet to be elucidated. In a crossover, double-blind, placebo-controlled, and randomized design, 21 healthy volunteers were assigned to receive intravenous GLP-1 infusion (2.5 pmol/kg/min) or placebo over 20 min on two different days separated by at least one week. We used a noninvasive, well-validated transcranial doppler (TCD) and ultrasound dermascan to reveal the effect of GLP-1 on intra- and extracerebral arteries. The mean blood flow velocity in the middle cerebral artery (VMCA), the diameter of the superficial temporal artery (STA) and radial artery (RA), and facial skin blood flow were measured. In addition, we documented headache and its associated symptoms during and after infusion. Twenty participants were included in the final analysis. We found no difference in the VMCA (P = 0.227), diameter of the STA (P = 0.096) and the RA (P = 0.221) and facial blood flow (P = 0.814) after GLP-1 compared to placebo. There were no differences in HR, SAT, EtCO2, or RF (P > 0.05) on the GLP-1 day compared to the placebo day. We found no differences in the incidence of headache after GLP-1 (n = 10) compared to placebo (n = 7) (P = 0.250). GLP-1 infusion did not affect cerebral hemodynamics and induce headache in humans. Further preclinical studies with validated methods are required to determine if intra - and extracerebral vasculature express GLP-1Rs in humans.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Rune Häckert Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Fatima Azzahra Elbahi
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hande Coskun
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Danish Headache Knowledge Center, Rigshospitalet-Glostrup, Valdemar Hansens Vej 5, Glostrup, Denmark.
| |
Collapse
|
27
|
Tian R, Zhang Y, Pan Q, Wang Y, Wen Q, Fan X, Qin G, Zhang D, Chen L, Zhang Y, Zhou J. Calcitonin gene-related peptide receptor antagonist BIBN4096BS regulates synaptic transmission in the vestibular nucleus and improves vestibular function via PKC/ERK/CREB pathway in an experimental chronic migraine rat model. J Headache Pain 2022; 23:35. [PMID: 35260079 PMCID: PMC8903578 DOI: 10.1186/s10194-022-01403-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background Vestibular symptoms are frequently reported in patients with chronic migraine (CM). However, whether vestibular symptoms arise through overlapping neurobiology of migraine remains to be elucidated. The neuropeptide calcitonin gene-related peptide (CGRP) and CGRP1 receptor play important pathological roles in facilitating central sensitization in CM. Therefore, we aimed to investigate whether CGRP1 receptor contributes to vestibular dysfunction after CM by improving synaptic transmission in the vestibular nucleus (VN). Methods A CM rat model was established by recurrent intermittent administration of nitroglycerin (NTG). Migraine- and vestibular-related behaviors were assessed. CGRP1 receptor specific antagonist, BIBN4096BS, and protein kinase C (PKC) inhibitor chelerythrine chloride (CHE) were administered intracerebroventricularly. The expressions of CGRP and CGRP1 receptor components, calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) were evaluated by western blot, immunofluorescent staining and quantitative real-time polymerase chain reaction in the vestibular nucleus (VN). Synaptic associated proteins and synaptic morphological characteristics were explored by western blot, transmission electron microscope, and Golgi-cox staining. The expressions of PKC, phosphorylated extracellular signal regulated kinase (p-ERK), phosphorylated cAMP response element-binding protein at serine 133 site (p-CREB-S133) and c-Fos were detected using western blot or immunofluorescent staining. Results The expressions of CGRP, CLR and RAMP1 were significantly upregulated in CM rats. CLR and RAMP1 were expressed mainly in neurons. BIBN4096BS treatment and PKC inhibition alleviated mechanical allodynia, thermal hyperalgesia and vestibular dysfunction in CM rats. Additionally, BIBN4096BS treatment and PKC inhibition markedly inhibited the overexpression of synaptic associated proteins and restored the abnormal synaptic structure in VN after CM. Furthermore, BIBN4096BS treatment dysregulated the expression levels of PKC, p-ERK and p-CREB-S133, and attenuated neuronal activation in VN after CM. Conclusions The present study demonstrated that CGRP1 receptor inhibition improved vestibular function after CM by reversing the aberrant synaptic transmission via downregulating PKC/ERK/CREB signaling pathway. Therapeutic interventions by inhibiting CGRP/CGRP1 signaling may be a new target for the treatment of vestibular symptoms in CM.
Collapse
|
28
|
Garelja ML, Bower RL, Brimble MA, Chand S, Harris PW, Jamaluddin MA, Petersen J, Siow A, Walker CS, Hay DL. Pharmacological characterisation of mouse calcitonin and calcitonin receptor-like receptors reveals differences compared with human receptors. Br J Pharmacol 2022; 179:416-434. [PMID: 34289083 PMCID: PMC8776895 DOI: 10.1111/bph.15628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The calcitonin (CT) receptor family is complex, comprising two receptors (the CT receptor [CTR] and the CTR-like receptor [CLR]), three accessory proteins (RAMPs) and multiple endogenous peptides. This family contains several important drug targets, including CGRP, which is targeted by migraine therapeutics. The pharmacology of this receptor family is poorly characterised in species other than rats and humans. To facilitate understanding of translational and preclinical data, we need to know the receptor pharmacology of this family in mice. EXPERIMENTAL APPROACH Plasmids encoding mouse CLR/CTR and RAMPs were transiently transfected into Cos-7 cells. cAMP production was measured in response to agonists in the absence or presence of antagonists. KEY RESULTS We report the first synthesis and characterisation of mouse adrenomedullin, adrenomedullin 2 and βCGRP and of mouse CTR without or with mouse RAMPs. Receptors containing m-CTR had subtly different pharmacology than human receptors; they were promiscuous in their pharmacology, both with and without RAMPs. Several peptides, including mouse αCGRP and mouse adrenomedullin 2, were potent agonists of the m-CTR:m-RAMP3 complex. Pharmacological profiles of receptors comprising m-CLR:m-RAMPs were generally similar to those of their human counterparts, albeit with reduced specificity. CONCLUSION AND IMPLICATIONS Mouse receptor pharmacology differed from that in humans, with mouse receptors displaying reduced discrimination between ligands. This creates challenges for interpreting which receptor may underlie an effect in preclinical models and thus translation of findings from mice to humans. It also highlights the need for new ligands to differentiate between these complexes. LINKED ARTICLES This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary).. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand,School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Rebekah L Bower
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Shanan Chand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W.R. Harris
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | | | - Jakeb Petersen
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand,School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,Author to whom correspondence should be addressed,
| |
Collapse
|
29
|
Rees T, Hendrikse E, Hay D, Walker C. Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. Br J Pharmacol 2022; 179:381-399. [PMID: 34187083 PMCID: PMC9441195 DOI: 10.1111/bph.15605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
The CGRP system has emerged as a key pharmacological target for the treatment of migraine. However, some individuals who suffer from migraine have low or no response to anti-CGRP or other treatments, suggesting the need for additional clinical targets. CGRP belongs to the calcitonin family of peptides, which includes calcitonin, amylin, adrenomedullin and adrenomedullin 2. These peptides display a range of pro-nociceptive and anti-nociceptive actions, in primary headache conditions such as migraine. Calcitonin family peptides also show expression at sites relevant to migraine and pain. This suggests that calcitonin family peptides and their receptors, beyond CGRP, may be therapeutically useful in the treatment of migraine and other pain disorders. This review considers the localisation of the calcitonin family in peripheral pain pathways and discusses how they may contribute to migraine and pain. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- T.A. Rees
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E.R Hendrikse
- School of Biological Science, University of Auckland, Auckland, NZ
| | - D.L. Hay
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| | - C.S Walker
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| |
Collapse
|
30
|
Wiggers A, Ashina H, Hadjikhani N, Sagare A, Zlokovic BV, Lauritzen M, Ashina M. Brain barriers and their potential role in migraine pathophysiology. J Headache Pain 2022; 23:16. [PMID: 35081902 PMCID: PMC8903554 DOI: 10.1186/s10194-021-01365-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Migraine is a ubiquitous neurologic disease that afflicts people of all ages. Its molecular pathogenesis involves peptides that promote intracranial vasodilation and modulate nociceptive transmission upon release from sensory afferents of cells in the trigeminal ganglion and parasympathetic efferents of cells in the sphenopalatine ganglion. Experimental data have confirmed that intravenous infusion of these vasoactive peptides induce migraine attacks in people with migraine, but it remains a point of scientific contention whether their site of action lies outside or within the central nervous system. In this context, it has been hypothesized that transient dysfunction of brain barriers before or during migraine attacks might facilitate the passage of migraine-inducing peptides into the central nervous system. Here, we review evidence suggestive of brain barrier dysfunction in migraine pathogenesis and conclude with lessons learned in order to provide directions for future research efforts.
Collapse
|
31
|
Artemenko AR, Filatova E, Vorobyeva YD, Do TP, Ashina M, Danilov AB. Migraine and light: A narrative review. Headache 2022; 62:4-10. [PMID: 35041220 DOI: 10.1111/head.14250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In this narrative review, we summarize clinical and experimental data on the effect of light in migraine and discuss future prospects. BACKGROUND Effective nonpharmacological treatment of hypersensitivity to light in migraine is an unmet clinical need. Current management strategies primarily consist of seeking a dark room and avoiding light exposure. Advances in the past 2 decades have improved our understanding of the underlying pathophysiology of how migraine is influenced by light. This may provide promising avenues for novel approaches in clinical management. METHODS We searched MEDLINE for articles published from database inception up to September 1, 2021. We used the search term "migraine" with the search terms "light," "photophobia," "treatment," "trigger," "circadian rhythm," "environment," and/or "pathophysiology." RESULTS Light is commonly reported as a trigger factor of migraine attacks, however, early manifestation of photophobia and false attribution is likely the actual cause based on data deriving from retrospective, prospective, and experimental studies. The most common photophobia symptoms in migraine are exacerbation of headache by light and abnormal sensitivity to light with the underlying neural pathways likely being dependent on ongoing activity in the trigeminovascular system. Clinical studies and experimental models have identified mediators of photophobia and uncovered narrow wavebands of the light spectrum that may reduce pain intensity during a migraine attack. Consequently, novel devices have undergone exploratory clinical trials with promising results. CONCLUSION False attribution is likely the reason why light is commonly reported as a trigger factor of migraine attacks, and a prospective confirmation is required to prevent unnecessary avoidance. The observation that individuals with migraine are not equally photophobic to all wavebands of the light spectrum opens the potential for innovative pain management strategies. In this context, using human-centric lighting (also called integrative lighting) to mimic the natural daylight cycle and avoid harmful wavebands through modern technology may prove beneficial. Future research should identify direct and indirect consequences of light and other environmental factors in migraine to fill out knowledge gaps and enable evidence-based care strategies within institutions, work environments, and other settings.
Collapse
Affiliation(s)
- Ada R Artemenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Filatova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yulia D Vorobyeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Thien Phu Do
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Knowledge Center on Headache Disorders, Glostrup, Denmark.,Department of Neurology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Alexey B Danilov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
32
|
Liu Y, Yang T, Li J, Xu H, Li S, Xiong L. Breakthroughs on the clinical management of headache and questions that need to be solved. IBRAIN 2021; 7:298-308. [PMID: 37786564 PMCID: PMC10529177 DOI: 10.1002/ibra.12003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/04/2023]
Abstract
Headache is a common refractory disorder among adults, especially in females, which can lower the quality of life in patients and increase medical costs. Nearly 90% of people have been affected by headache disorders during their lifetime. The severe situation of headaches has drawn the attention of researchers in recent years. Although the mechanism of headache has not been fully understood by us, there are many effective preventive drugs and treatments available. This review is aimed to sum up the progress in clinical trials of headaches in the past 5 years.
Collapse
Affiliation(s)
- Yu‐Cong Liu
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Ting‐Ting Yang
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Jing Li
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Hui‐Chan Xu
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Shun‐Lian Li
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
33
|
Edvinsson L, Edvinsson JCA, Haanes KA. Biological and small molecule strategies in migraine therapy with relation to the calcitonin gene-related peptide family of peptides. Br J Pharmacol 2021; 179:371-380. [PMID: 34411289 DOI: 10.1111/bph.15669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022] Open
Abstract
Migraine is one of the most common of neurological disorders with a global prevalence of up to 15%. One in five migraineurs have frequent episodic or chronic migraine requiring prophylactic treatment. In recent years, specific pharmacological treatments targeting calcitonin gene-related peptide (CGRP) signalling molecules have provided safe and effective treatments, monoclonal antibodies for prophylaxis and gepants for acute therapy. Albeit beneficial, it is important to understand the molecular mechanisms of these new drugs to better understand migraine pathophysiology and improve therapy. Here, we describe current views on the role of the CGRP family of peptides - CGRP, calcitonin, adrenomedullin, amylin - and their receptors in the trigeminovascular system. All these molecules are present within the trigeminovascular system but differ in expression and localization. It is likely that they have different roles, which can be utilized in providing additional drug targets.
Collapse
Affiliation(s)
- Lars Edvinsson
- Departments of Internal Medicine, Lund University Hospital, Lund, Sweden.,Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Rigshospitalet, Denmark
| | - Jacob C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Rigshospitalet, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian A Haanes
- Departments of Internal Medicine, Lund University Hospital, Lund, Sweden.,Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Rigshospitalet, Denmark
| |
Collapse
|
34
|
Do TP, Al-Saoudi A, Ashina M. Future prophylactic treatments in migraine: Beyond anti-CGRP monoclonal antibodies and gepants. Rev Neurol (Paris) 2021; 177:827-833. [PMID: 34294458 DOI: 10.1016/j.neurol.2021.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023]
Abstract
Migraine is ranked as a leading cause of years lived with disability among all neurological disorders. Therapies targeting the calcitonin gene-related peptide (CGRP) signaling pathway, including monoclonal antibodies against the receptor or ligand and small molecule CGRP receptor antagonists (gepants), are today approved for migraine prophylaxis with additional compounds expected to be introduced to the market soon. In this review, we consider other putative prophylactic migraine drugs in development, including compounds targeting G-protein coupled receptors, glutamate, ion channels, and neuromodulatory devices. Emergence of these new interventions could complement our current treatment armamentarium for migraine management.
Collapse
Affiliation(s)
- T P Do
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Al-Saoudi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark.
| |
Collapse
|