1
|
Everix L, Elvas F, Miranda Menchaca A, Khetarpal V, Liu L, Bard J, Staelens S, Bertoglio D. Preclinical validation and kinetic modelling of the SV2A PET ligand [ 18F]UCB-J in mice. J Cereb Blood Flow Metab 2025; 45:920-931. [PMID: 39628318 PMCID: PMC11615906 DOI: 10.1177/0271678x241304923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Synaptic vesicle protein 2A (SV2A) is ubiquitously expressed in presynaptic terminals where it functions as a neurotransmission regulator protein. Synaptopathy has been reported during healthy ageing and in a variety of neurodegenerative diseases. Positron emission tomography (PET) imaging of SV2A can be used to evaluate synaptic density. The PET ligand [11C]UCB-J has high binding affinity and selectivity for SV2A but has a short physical half-life due to the 11C isotope. Here we report the characterization and validation of its 18F-labeled equivalent, [18F]UCB-J, in terms of specificity, reproducibility and stability in C57BL/6J mice. Plasma analysis revealed at least one polar radiometabolite. Kinetic modelling was performed using a population-based metabolite corrected image-derived input function (IDIF). [18F]UCB-J showed relatively fast kinetics and a reliable measure of the IDIF-based volume of distribution (VT(IDIF)). [18F]UCB-J specificity for SV2A was confirmed through a levetiracetam blocking assay (50 to 200 mg/kg). Reproducibility of the VT(IDIF) was determined through test-retest analysis, revealing significant correlation (r2 = 0.773, p < 0.0001). Time-stability analyses indicate a scan duration of 60 min to be sufficient to obtain a reliable VT(IDIF). In conclusion, [18F]UCB-J is a selective SV2A ligand with optimal kinetics in mice. Further investigation is warranted for (pre)clinical applicability of [18F]UCB-J in synaptopathies.
Collapse
Affiliation(s)
- Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), Wilrijk, Belgium
| | | | - Vinod Khetarpal
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, USA
| | - Longbin Liu
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, USA
| | - Jonathan Bard
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, USA
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Nilsson J, Mecca AP, Ashton NJ, Salardini E, O'Dell RS, Carson RE, Benedet AL, Blennow K, Zetterberg H, van Dyck CH, Brinkmalm A. Associations between fluid biomarkers and PET imaging ([ 11 C]UCB-J) of synaptic pathology in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646290. [PMID: 40236111 PMCID: PMC11996329 DOI: 10.1101/2025.03.31.646290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Positron Emission Tomography (PET) imaging with ligands for synaptic vesicle glycoprotein 2A (SV2A) has emerged as a promising methodology for measuring synaptic density in Alzheimer's disease (AD). We investigate the relationship between SV2A PET and CSF synaptic protein changes of AD patients. METHOD Twenty-one participants with early AD and 7 cognitively normal (CN) individuals underwent [ 11 C]UCB-J PET. We used mass spectrometry to measure a panel of synaptic proteins in CSF. RESULTS In the AD group, higher levels of syntaxin-7 and PEBP-1 were associated with lower global synaptic density. In the total sample, lower global synaptic density was associated with higher levels of AP2B1, neurogranin, γ-synuclein, GDI-1, PEBP-1, syntaxin-1B, and syntaxin-7 but not with the levels of the neuronal pentraxins or 14-3-3 zeta/delta. CONCLUSION Reductions of synaptic density found in AD compared to CN participants using [ 11 C]UCB-J PET were observed to be associated with CSF biomarker levels of synaptic proteins.
Collapse
|
3
|
Cho K, Kim GW. Neurexin1 level in Huntington's Disease and decreased Neurexin1 in disease progression. Neurosci Res 2025; 212:97-104. [PMID: 39481547 DOI: 10.1016/j.neures.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by the presence of abnormally expanded polyglutamine tracts in huntingtin protein (HTT). Mutant HTT disrupts synaptic transmission and plasticity, particularly in the striatum and cortex, leading to early dysfunctions, such as altered neurotransmitter release, impaired synaptic vesicle recycling, and disrupted postsynaptic receptor function. Synaptic loss precedes neuronal degeneration and contributes to disease progression. Neurexin1 (NRXN1), a synaptic cell adhesion molecule primarily located in the presynaptic membrane, plays a crucial role in maintaining synaptic integrity. The present study investigated the role of NRXN1 in HD. This study researched whether the changed level has been related to expanded polyQ stretch and disease progression. Here, we report a reduction in NRXN1 levels in post-symptomatic HD mice and in neuronal cells expressing abnormally expanded polyQ tracts. Mutant HTT was found to decrease NRXN1 levels while increasing LAMP2A levels, which promotes lysosomal degradation of NRXN1. In HD cells expressing Q111, downregulated LAMP2A restored NRXN1 levels and maintained cell proliferation compared with cells expressing Q7. These findings suggest that NRXN1 is regulated by LAMP2A-mediated way and that decreased NRXN1 levels are associated with symptomatic progression and neuronal cell loss in HD.
Collapse
Affiliation(s)
- Kyoungjoo Cho
- Department of Life Science, Kyonggi University, Suwon, South Korea
| | - Gyung Whan Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul, South Korea.
| |
Collapse
|
4
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
5
|
Azman KF, Zakaria R. Brain-Derived Neurotrophic Factor (BDNF) in Huntington's Disease: Neurobiology and Therapeutic Potential. Curr Neuropharmacol 2025; 23:384-403. [PMID: 40123457 DOI: 10.2174/1570159x22666240530105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2025] Open
Abstract
Huntington's disease is a hereditary neurodegenerative disorder marked by severe neurodegeneration in the striatum and cortex. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. It plays a crucial role in maintaining the survival and proper function of striatal neurons. Depletion of BDNF has been linked to impairment and death of striatal neurons, leading to the manifestation of motor, cognitive, and behavioral dysfunctions characteristic of Huntington's disease. This review highlights the current update on the neurobiology of BDNF in the pathogenesis of Huntington's disease. The molecular evidence and the affected signaling pathways are also discussed. In addition, the impact of experimental manipulation of BDNF levels and its pharmaceutical potential for Huntington's disease treatment are explicitly reviewed.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
6
|
Liu G, Yang C, Wang X, Chen X, Cai H, Le W. Cerebellum in neurodegenerative diseases: Advances, challenges, and prospects. iScience 2024; 27:111194. [PMID: 39555407 PMCID: PMC11567929 DOI: 10.1016/j.isci.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive dysfunction of neurons and glial cells, leading to their structural and functional degradation in the central and/or peripheral nervous system. Historically, research on NDs has primarily focused on the brain, brain stem, or spinal cord associated with disease-related symptoms, often overlooking the role of the cerebellum. However, an increasing body of clinical and biological evidence suggests a significant connection between the cerebellum and NDs. In several NDs, cerebellar pathology and biochemical changes may start in the early disease stages. This article provides a comprehensive update on the involvement of the cerebellum in the clinical features and pathogenesis of multiple NDs, suggesting that the cerebellum is involved in the onset and progression of NDs through various mechanisms, including specific neurodegeneration, neuroinflammation, abnormal mitochondrial function, and altered metabolism. Additionally, this review highlights the significant therapeutic potential of cerebellum-related treatments for NDs.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
| |
Collapse
|
7
|
Howes O, Marcinkowska J, Turkheimer FE, Carr R. Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacology 2024; 50:164-183. [PMID: 39134769 PMCID: PMC11525650 DOI: 10.1038/s41386-024-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 11/01/2024]
Abstract
Synapses are implicated in many neuropsychiatric illnesses. Here, we provide an overview of in vivo techniques to index synaptic markers in patients. Several positron emission tomography (PET) tracers for synaptic vesicle glycoprotein 2 A (SV2A) show good reliability and selectivity. We review over 50 clinical studies including over 1700 participants, and compare findings in healthy ageing and across disorders, including addiction, schizophrenia, depression, posttraumatic stress disorder, and neurodegenerative disorders, including tauopathies, Huntington's disease and α-synucleinopathies. These show lower SV2A measures in cortical brain regions across most of these disorders relative to healthy volunteers, with the most well-replicated findings in tauopathies, whilst changes in Huntington's chorea, Parkinson's disease, corticobasal degeneration and progressive supranuclear palsy are predominantly subcortical. SV2A PET measures are correlated with functional connectivity across brain networks, and a number of other measures of brain function, including glucose metabolism. However, the majority of studies found no relationship between grey matter volume measured with magnetic resonance imaging and SV2A PET measures. Cognitive dysfunction, in domains including working memory and executive function, show replicated inverse relationships with SV2A measures across diagnoses, and initial findings also suggest transdiagnostic relationships with mood and anxiety symptoms. This suggests that synaptic abnormalities could be a common pathophysiological substrate underlying cognitive and, potentially, affective symptoms. We consider limitations of evidence and future directions; highlighting the need to develop postsynaptic imaging markers and for longitudinal studies to test causal mechanisms.
Collapse
Affiliation(s)
- Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- South London & the Maudsley NHS Trust, London, England.
- London Institute of Medical Sciences, London, England.
| | - Julia Marcinkowska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Richard Carr
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- South London & the Maudsley NHS Trust, London, England
- London Institute of Medical Sciences, London, England
| |
Collapse
|
8
|
Jing Y, Dogan I, Reetz K, Romanzetti S. Neurochemical changes in the progression of Huntington's disease: A meta-analysis of in vivo 1H-MRS studies. Neurobiol Dis 2024; 199:106574. [PMID: 38914172 DOI: 10.1016/j.nbd.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) allows measuring specific brain metabolic alterations in Huntington's disease (HD), and these metabolite profiles may serve as non-invasive biomarkers associated with disease progression. Despite this potential, previous findings are inconsistent. Accordingly, we performed a meta-analysis on available in vivo1H-MRS studies in premanifest (Pre-HD) and symptomatic HD stages (Symp-HD), and quantified neurometabolic changes relative to controls in 9 Pre-HD studies (227 controls and 188 mutation carriers) and 14 Symp-HD studies (326 controls and 306 patients). Our results indicated decreased N-acetylaspartate and creatine in the basal ganglia in both Pre-HD and Symp-HD. The overall level of myo-inositol was decreased in Pre-HD while increased in Symp-HD. Besides, Symp-HD patients showed more severe metabolism disruption than Pre-HD patients. Taken together, 1H-MRS is important for elucidating progressive metabolite changes from Pre-HD to clinical conversion; N-acetylaspartate and creatine in the basal ganglia are already sensitive at the preclinical stage and are promising biomarkers for tracking disease progression; overall myo-inositol is a possible characteristic metabolite for distinguishing HD stages.
Collapse
Affiliation(s)
- Yinghua Jing
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
9
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
10
|
Placzek M, Wilton DK, Weïwer M, Manter MA, Reid SE, Meyer CJ, Campbell AJ, Bajrami B, Bigot A, Bricault S, Fayet A, Frouin A, Gergits F, Gupta M, Jiang W, Melanson M, Romano CD, Riley MM, Wang JM, Wey HY, Wagner FF, Stevens B, Hooker JM. A Fast-Binding, Functionally Reversible, COX-2 Radiotracer for CNS PET Imaging. ACS CENTRAL SCIENCE 2024; 10:1105-1114. [PMID: 38799654 PMCID: PMC11117721 DOI: 10.1021/acscentsci.3c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme that plays a pivotal role in peripheral inflammation and pain via the prostaglandin pathway. In the central nervous system (CNS), COX-2 is implicated in neurodegenerative and psychiatric disorders as a potential therapeutic target and biomarker. However, clinical studies with COX-2 have yielded inconsistent results, partly due to limited mechanistic understanding of how COX-2 activity relates to CNS pathology. Therefore, developing COX-2 positron emission tomography (PET) radiotracers for human neuroimaging is of interest. This study introduces [11C]BRD1158, which is a potent and uniquely fast-binding, selective COX-2 PET radiotracer. [11C]BRD1158 was developed by prioritizing potency at COX-2, isoform selectivity over COX-1, fast binding kinetics, and free fraction in the brain. Evaluated through in vivo PET neuroimaging in rodent models with human COX-2 overexpression, [11C]BRD1158 demonstrated high brain uptake, fast target-engagement, functional reversibility, and excellent specific binding, which is advantageous for human imaging applications. Lastly, post-mortem samples from Huntington's disease (HD) patients and preclinical HD mouse models showed that COX-2 levels were elevated specifically in disease-affected brain regions, primarily from increased expression in microglia. These findings indicate that COX-2 holds promise as a novel clinical marker of HD onset and progression, one of many potential applications of [11C]BRD1158 human PET.
Collapse
Affiliation(s)
- Michael
S. Placzek
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Daniel K. Wilton
- Department
of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michel Weïwer
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Mariah A. Manter
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Lurie
Center for Autism, 1
Maguire Road, Lexington, Massachusetts 02421, United States
- Massachusetts
General Hospital, 55
Fruit St., Boston, Massachusetts 02114, United States
| | - Sarah E. Reid
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Christopher J. Meyer
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Arthur J. Campbell
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Besnik Bajrami
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Antoine Bigot
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Sarah Bricault
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Agathe Fayet
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Arnaud Frouin
- Department
of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Frederick Gergits
- Department
of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mehak Gupta
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Wei Jiang
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Michelle Melanson
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Chiara D. Romano
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Misha M. Riley
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jessica M. Wang
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Hsiao-Ying Wey
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Florence F. Wagner
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Beth Stevens
- Department
of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Stanley
Center for Psychiatric Research, Broad Institute
of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United
- Howard
Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jacob M. Hooker
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Lurie
Center for Autism, 1
Maguire Road, Lexington, Massachusetts 02421, United States
- Massachusetts
General Hospital, 55
Fruit St., Boston, Massachusetts 02114, United States
| |
Collapse
|
11
|
Bavarsad MS, Grinberg LT. SV2A PET imaging in human neurodegenerative diseases. Front Aging Neurosci 2024; 16:1380561. [PMID: 38699560 PMCID: PMC11064927 DOI: 10.3389/fnagi.2024.1380561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
This manuscript presents a thorough review of synaptic vesicle glycoprotein 2A (SV2A) as a biomarker for synaptic integrity using Positron Emission Tomography (PET) in neurodegenerative diseases. Synaptic pathology, characterized by synaptic loss, has been linked to various brain diseases. Therefore, there is a need for a minimally invasive approach to measuring synaptic density in living human patients. Several radiotracers targeting synaptic vesicle protein 2A (SV2A) have been created and effectively adapted for use in human subjects through PET scans. SV2A is an integral glycoprotein found in the membranes of synaptic vesicles in all synaptic terminals and is widely distributed throughout the brain. The review delves into the development of SV2A-specific PET radiotracers, highlighting their advancements and limitations in neurodegenerative diseases. Among these tracers, 11C-UCB-J is the most used so far. We summarize and discuss an increasing body of research that compares measurements of synaptic density using SV2A PET with other established indicators of neurodegenerative diseases, including cognitive performance and radiological findings, thus providing a comprehensive analysis of SV2A's effectiveness and reliability as a diagnostic tool in contrast to traditional markers. Although the literature overall suggests the promise of SV2A as a diagnostic and therapeutic monitoring tool, uncertainties persist regarding the superiority of SV2A as a biomarker compared to other available markers. The review also underscores the paucity of studies characterizing SV2A distribution and loss in human brain tissue from patients with neurodegenerative diseases, emphasizing the need to generate quantitative neuropathological maps of SV2A density in cases with neurodegenerative diseases to fully harness the potential of SV2A PET imaging in clinical settings. We conclude by outlining future research directions, stressing the importance of integrating SV2A PET imaging with other biomarkers and clinical assessments and the need for longitudinal studies to track SV2A changes throughout neurodegenerative disease progression, which could lead to breakthroughs in early diagnosis and the evaluation of new treatments.
Collapse
Affiliation(s)
| | - Lea T. Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
12
|
Endepols H, Anglada-Huguet M, Mandelkow E, Neumaier B, Mandelkow EM, Drzezga A. Fragmentation of functional resting state brain networks in a transgenic mouse model of tau pathology: A metabolic connectivity study using [ 18F]FDG-PET. Exp Neurol 2024; 372:114632. [PMID: 38052272 DOI: 10.1016/j.expneurol.2023.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
In a previous study, regional reductions in cerebral glucose metabolism have been demonstrated in the tauopathy mouse model rTg4510 (Endepols et al., 2022). Notably, glucose hypometabolism was present in some brain regions without co-localized synaptic degeneration measured with [18F]UCB-H. We hypothesized that in those regions hypometabolism may reflect reduced functional connectivity rather than synaptic damage. To test this hypothesis, we performed seed-based metabolic connectivity analyses using [18F]FDG-PET data in this mouse model. Eight rTg4510 mice at the age of seven months and 8 non-transgenic littermates were injected intraperitoneally with 11.1 ± 0.8 MBq [18F]FDG and spent a 35-min uptake period awake in single cages. Subsequently, they were anesthetized and measured in a small animal PET scanner for 30 min. Three seed-based connectivity analyses were performed per group. Seeds were selected for apparent mismatch between [18F]FDG and [18F]UCB-H. A seed was placed either in the medial orbitofrontal cortex, dorsal hippocampus or dorsal thalamus, and correlated with all other voxels of the brain across animals. In the control group, the emerging correlative pattern was strongly overlapping for all three seed locations, indicating a uniform fronto-thalamo-hippocampal resting state network. In contrast, rTg4510 mice showed three distinct networks with minimal overlap. Frontal and thalamic networks were greatly diminished. The hippocampus, however, formed a new network with the whole parietal cortex. We conclude that resting-state functional networks are fragmented in the brain of rTg4510 mice. Thus, hypometabolism can be explained by reduced functional connectivity of brain areas devoid of tau-related pathology, such as the thalamus.
Collapse
Affiliation(s)
- Heike Endepols
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52428, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Cologne, Germany
| | | | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany; Department Neurodegenerative Diseases & Gerontopsychiatry, University Hospital Bonn, Germany
| | - Bernd Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52428, Germany.
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany; Department Neurodegenerative Diseases & Gerontopsychiatry, University Hospital Bonn, Germany
| | - Alexander Drzezga
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Wilhelm-Johnen-Straße, Jülich 52428, Germany
| |
Collapse
|
13
|
Visser M, O'Brien JT, Mak E. In vivo imaging of synaptic density in neurodegenerative disorders with positron emission tomography: A systematic review. Ageing Res Rev 2024; 94:102197. [PMID: 38266660 DOI: 10.1016/j.arr.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2 A (SV2A) enables quantification of synaptic density in the living human brain. Assessing the regional distribution and severity of synaptic density loss will contribute to our understanding of the pathological processes that precede atrophy in neurodegeneration. In this systematic review, we provide a discussion of in vivo SV2A PET imaging research for quantitative assessment of synaptic density in various dementia conditions: amnestic Mild Cognitive Impairment and Alzheimer's disease, Frontotemporal dementia, Progressive supranuclear palsy and Corticobasal degeneration, Parkinson's disease and Dementia with Lewy bodies, Huntington's disease, and Spinocerebellar Ataxia. We discuss the main findings concerning group differences and clinical-cognitive correlations, and explore relations between SV2A PET and other markers of pathology. Additionally, we touch upon synaptic density in healthy ageing and outcomes of radiotracer validation studies. Studies were identified on PubMed and Embase between 2018 and 2023; last searched on the 3rd of July 2023. A total of 36 studies were included, comprising 5 on normal ageing, 21 clinical studies, and 10 validation studies. Extracted study characteristics were participant details, methodological aspects, and critical findings. In summary, the small but growing literature on in vivo SV2A PET has revealed different spatial patterns of synaptic density loss among various neurodegenerative disorders that correlate with cognitive functioning, supporting the potential role of SV2A PET imaging for differential diagnosis. SV2A PET imaging shows tremendous capability to provide novel insights into the aetiology of neurodegenerative disorders and great promise as a biomarker for synaptic density reduction. Novel directions for future synaptic density research are proposed, including (a) longitudinal imaging in larger patient cohorts of preclinical dementias, (b) multi-modal mapping of synaptic density loss onto other pathological processes, and (c) monitoring therapeutic responses and assessing drug efficacy in clinical trials.
Collapse
Affiliation(s)
- Malouke Visser
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom; Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom.
| |
Collapse
|
14
|
Hobbs NZ, Papoutsi M, Delva A, Kinnunen KM, Nakajima M, Van Laere K, Vandenberghe W, Herath P, Scahill RI. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13:163-199. [PMID: 38788082 PMCID: PMC11307036 DOI: 10.3233/jhd-240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.
Collapse
Affiliation(s)
- Nicola Z. Hobbs
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
| | - Marina Papoutsi
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
- IXICO plc, London, UK
| | - Aline Delva
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | |
Collapse
|
15
|
Bonassi G, Semprini M, Mandich P, Trevisan L, Marchese R, Lagravinese G, Barban F, Pelosin E, Chiappalone M, Mantini D, Avanzino L. Neural oscillations modulation during working memory in pre-manifest and early Huntington's disease. Brain Res 2023; 1820:148540. [PMID: 37598900 DOI: 10.1016/j.brainres.2023.148540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION We recently demonstrated specific spectral signatures associated with updating of memory information, working memory (WM) maintenance and readout, with relatively high spatial resolution by means of high-density electroencephalography (hdEEG). WM is impaired already in early symptomatic HD (early-HD) and in pre-manifest HD (pre-HD). The aim of this study was to test whether hdEEG coupled to source localization allows for the identification of neuronal oscillations in specific frequency bands in 16 pre-HD and early-HD during different phases of a WM task. METHODS We examined modulation of neural oscillations by event-related synchronization and desynchronization (ERS/ERD) of θ, β, gamma low, γLOW and γHIGH EEG bands in a-priori selected large fronto-parietal network, including the insula and the cerebellum. RESULTS We found: (i) Reduced θ oscillations in HD with respect to controls in almost all the areas of the WM network during the update and readout phases; (ii) Modulation of β oscillations, which increased during the maintenance phase of the WM task in both groups; (iii) correlation of γHIGH oscillations during WM task with disease burden score in HD patients. CONCLUSIONS Our data show reduced phase-specific modulation of oscillations in pre-HD and early-HD, even in the presence of preserved dynamic of modulation. Particularly, reduced synchronization in the θ band in the areas of the WM network, consistent with abnormal long-range coordination of neuronal activity within this network, was found in update and readout phases in HD groups.
Collapse
Affiliation(s)
- Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
| | - Marianna Semprini
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lucia Trevisan
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Federico Barban
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Dept. of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Michela Chiappalone
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Dept. of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132 Genoa, Italy.
| |
Collapse
|
16
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med 2023; 29:2866-2884. [PMID: 37814059 PMCID: PMC10667107 DOI: 10.1038/s41591-023-02566-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.
Collapse
Affiliation(s)
- Daniel K Wilton
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
| | - Kevin Mastro
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Molly D Heller
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Frederick W Gergits
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Carly Rose Willing
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Jaclyn B Fahey
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Arnaud Frouin
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Anthony Daggett
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yejin A Kim
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Richard L M Faull
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Beth Stevens
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
- Stanley Center, Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Innate immune mechanisms mediate loss of corticostriatal synapses in Huntington's disease. Nat Med 2023; 29:2718-2719. [PMID: 37848706 DOI: 10.1038/s41591-023-02616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
|
18
|
Delva A, Van Laere K, Vandenberghe W. Longitudinal Imaging of Regional Brain Volumes, SV2A, and Glucose Metabolism In Huntington's Disease. Mov Disord 2023; 38:1515-1526. [PMID: 37382295 DOI: 10.1002/mds.29501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Development of disease-modifying treatments for Huntington's disease (HD) could be aided by the use of imaging biomarkers of disease progression. Positron emission tomography (PET) with 11 C-UCB-J, a radioligand for the brain-wide presynaptic marker synaptic vesicle protein 2A (SV2A), detects more widespread brain changes in early HD than volumetric magnetic resonance imaging (MRI) and 18 F-fludeoxyglucose (18 F-FDG) PET, but longitudinal 11 C-UCB-J PET data have not been reported. The aim of this study was to compare the sensitivity of 11 C-UCB-J PET, 18 F-FDG PET, and volumetric MRI for detection of longitudinal changes in early HD. METHODS Seventeen HD mutation carriers (six premanifest and 11 early manifest) and 13 healthy controls underwent 11 C-UCB-J PET, 18 F-FDG PET, and volumetric MRI at baseline (BL) and after 21.4 ± 2.7 months (Y2). Within-group and between-group longitudinal clinical and imaging changes were assessed. RESULTS The HD group showed significant 2-year worsening of Unified Huntington's Disease Rating Scale motor scores. There was significant longitudinal volume loss within the HD group in caudate (-4.5% ± 3.8%), putamen (-3.6% ± 3.5%), pallidum (-3.0% ± 2.7%), and frontal cortex (-2.0% ± 2.1%) (all P < 0.001). Within the HD group there was longitudinal loss of putaminal SV2A binding (6.4% ± 8.8%, P = 0.01) and putaminal glucose metabolism (-2.8% ± 4.4%, P = 0.008), but these changes were not significant after correction for multiple comparisons. Premanifest subjects at BL only had significantly lower SV2A binding than controls in basal ganglia structures, but at Y2 additionally had significant SV2A loss in frontal and parietal cortex, indicating spread of SV2A loss from subcortical to cortical regions. CONCLUSIONS Volumetric MRI may be more sensitive than 11 C-UCB-J PET and 18 F-FDG PET for detection of 2-year brain changes in early HD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aline Delva
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Vogler L, Ballweg A, Bohr B, Briel N, Wind K, Antons M, Kunze LH, Gnörich J, Lindner S, Gildehaus FJ, Baumann K, Bartenstein P, Boening G, Ziegler SI, Levin J, Zwergal A, Höglinger GU, Herms J, Brendel M. Assessment of synaptic loss in mouse models of β-amyloid and tau pathology using [ 18F]UCB-H PET imaging. Neuroimage Clin 2023; 39:103484. [PMID: 37541098 PMCID: PMC10407951 DOI: 10.1016/j.nicl.2023.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE In preclinical research, the use of [18F]Fluorodesoxyglucose (FDG) as a biomarker for neurodegeneration may induce bias due to enhanced glucose uptake by immune cells. In this study, we sought to investigate synaptic vesicle glycoprotein 2A (SV2A) PET with [18F]UCB-H as an alternative preclinical biomarker for neurodegenerative processes in two mouse models representing the pathological hallmarks of Alzheimer's disease (AD). METHODS A total of 29 PS2APP, 20 P301S and 12 wild-type mice aged 4.4 to 19.8 months received a dynamic [18F]UCB-H SV2A-PET scan (14.7 ± 1.5 MBq) 0-60 min post injection. Quantification of tracer uptake in cortical, cerebellar and brainstem target regions was implemented by calculating relative volumes of distribution (VT) from an image-derived-input-function (IDIF). [18F]UCB-H binding was compared across all target regions between transgenic and wild-type mice. Additional static scans were performed in a subset of mice to compare [18F]FDG and [18F]GE180 (18 kDa translocator protein tracer as a surrogate for microglial activation) standardized uptake values (SUV) with [18F]UCB-H binding at different ages. Following the final scan, a subset of mouse brains was immunohistochemically stained with synaptic markers for gold standard validation of the PET results. RESULTS [18F]UCB-H binding in all target regions was significantly reduced in 8-months old P301S transgenic mice when compared to wild-type controls (temporal lobe: p = 0.014; cerebellum: p = 0.0018; brainstem: p = 0.0014). Significantly lower SV2A tracer uptake was also observed in 13-months (temporal lobe: p = 0.0080; cerebellum: p = 0.006) and 19-months old (temporal lobe: p = 0.0042; cerebellum: p = 0.011) PS2APP transgenic versus wild-type mice, whereas the brainstem revealed no significantly altered [18F]UCB-H binding. Immunohistochemical analyses of post-mortem mouse brain tissue confirmed the SV2A PET findings. Correlational analyses of [18F]UCB-H and [18F]FDG using Pearson's correlation coefficient revealed a significant negative association in the PS2APP mouse model (R = -0.26, p = 0.018). Exploratory analyses further stressed microglial activation as a potential reason for this inverse relationship, since [18F]FDG and [18F]GE180 quantification were positively correlated in this cohort (R = 0.36, p = 0.0076). CONCLUSION [18F]UCB-H reliably depicts progressive synaptic loss in PS2APP and P301S transgenic mice, potentially qualifying as a more reliable alternative to [18F]FDG as a biomarker for assessment of neurodegeneration in preclinical research.
Collapse
Affiliation(s)
- Letizia Vogler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Anna Ballweg
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Bernd Bohr
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nils Briel
- Center for Neuropathology, LMU Munich, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Melissa Antons
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Lea H Kunze
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany; German Center for Vertigo and Balance Disorders (DSGZ), University Hospital of Munich, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
20
|
O'Dell RS, Higgins-Chen A, Gupta D, Chen MK, Naganawa M, Toyonaga T, Lu Y, Ni G, Chupak A, Zhao W, Salardini E, Nabulsi NB, Huang Y, Arnsten AFT, Carson RE, van Dyck CH, Mecca AP. Principal component analysis of synaptic density measured with [ 11C]UCB-J PET in early Alzheimer's disease. Neuroimage Clin 2023; 39:103457. [PMID: 37422964 PMCID: PMC10338149 DOI: 10.1016/j.nicl.2023.103457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Synaptic loss is considered an early pathological event and major structural correlate of cognitive impairment in Alzheimer's disease (AD). We used principal component analysis (PCA) to identify regional patterns of covariance in synaptic density using [11C]UCB-J PET and assessed the association between principal components (PC) subject scores with cognitive performance. METHODS [11C]UCB-J binding was measured in 45 amyloid + participants with AD and 19 amyloid- cognitively normal participants aged 55-85. A validated neuropsychological battery assessed performance across five cognitive domains. PCA was applied to the pooled sample using distribution volume ratios (DVR) standardized (z-scored) by region from 42 bilateral regions of interest (ROI). RESULTS Parallel analysis determined three significant PCs explaining 70.2% of the total variance. PC1 was characterized by positive loadings with similar contributions across the majority of ROIs. PC2 was characterized by positive and negative loadings with strongest contributions from subcortical and parietooccipital cortical regions, respectively, while PC3 was characterized by positive and negative loadings with strongest contributions from rostral and caudal cortical regions, respectively. Within the AD group, PC1 subject scores were positively correlated with performance across all cognitive domains (Pearson r = 0.24-0.40, P = 0.06-0.006), PC2 subject scores were inversely correlated with age (Pearson r = -0.45, P = 0.002) and PC3 subject scores were significantly correlated with CDR-sb (Pearson r = 0.46, P = 0.04). No significant correlations were observed between cognitive performance and PC subject scores in CN participants. CONCLUSIONS This data-driven approach defined specific spatial patterns of synaptic density correlated with unique participant characteristics within the AD group. Our findings reinforce synaptic density as a robust biomarker of disease presence and severity in the early stages of AD.
Collapse
Affiliation(s)
- Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| | - Albert Higgins-Chen
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Pain Research, Informatics, Multi-morbidities, and Education Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dhruva Gupta
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Gessica Ni
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Anna Chupak
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Wenzhen Zhao
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA; Department of Neurology, Yale University School of Medicine, P.O. Box 208018, New Haven, CT 06520, USA
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| |
Collapse
|
21
|
Gasser J, Gillet G, Valadas JS, Rouvière L, Kotian A, Fan W, Keaney J, Kadiu I. Innate immune activation and aberrant function in the R6/2 mouse model and Huntington's disease iPSC-derived microglia. Front Mol Neurosci 2023; 16:1191324. [PMID: 37415834 PMCID: PMC10319581 DOI: 10.3389/fnmol.2023.1191324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by CAG repeats in exon 1 of the HTT gene. A hallmark of HD along with other psychiatric and neurodegenerative diseases is alteration in the neuronal circuitry and synaptic loss. Microglia and peripheral innate immune activation have been reported in pre-symptomatic HD patients; however, what "activation" signifies for microglial and immune function in HD and how it impacts synaptic health remains unclear. In this study we sought to fill these gaps by capturing immune phenotypes and functional activation states of microglia and peripheral immunity in the R6/2 model of HD at pre-symptomatic, symptomatic and end stages of disease. These included characterizations of microglial phenotypes at single cell resolution, morphology, aberrant functions such as surveillance and phagocytosis and their impact on synaptic loss in vitro and ex vivo in R6/2 mouse brain tissue slices. To further understand how relevant the observed aberrant microglial behaviors are to human disease, transcriptomic analysis was performed using HD patient nuclear sequencing data and functional assessments were conducted using induced pluripotent stem cell (iPSC)-derived microglia. Our results show temporal changes in brain infiltration of peripheral lymphoid and myeloid cells, increases in microglial activation markers and phagocytic functions at the pre-symptomatic stages of disease. Increases in microglial surveillance and synaptic uptake parallel significant reduction of spine density in R6/2 mice. These findings were mirrored by an upregulation of gene signatures in the endocytic and migratory pathways in disease-associated microglial subsets in human HD brains, as well as increased phagocytic and migratory functions of iPSC-derived HD microglia. These results collectively suggest that targeting key and specific microglial functions related to synaptic surveillance and pruning may be therapeutically beneficial in attenuating cognitive decline and psychiatric aspects of HD.
Collapse
Affiliation(s)
- Julien Gasser
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Gaelle Gillet
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Jorge S. Valadas
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Laura Rouvière
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Apoorva Kotian
- Development Science, UCB Biopharma SRL, Slough, United Kingdom
| | - Wenqiang Fan
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - James Keaney
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Irena Kadiu
- Neuroinflammation Focus Area, Neuroscience Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| |
Collapse
|
22
|
Zhang J, Wang J, Xu X, You Z, Huang Q, Huang Y, Guo Q, Guan Y, Zhao J, Liu J, Xu W, Deng Y, Xie F, Li B. In vivo synaptic density loss correlates with impaired functional and related structural connectivity in Alzheimer's disease. J Cereb Blood Flow Metab 2023; 43:977-988. [PMID: 36718002 PMCID: PMC10196742 DOI: 10.1177/0271678x231153730] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Synapse loss has been considered as a major pathological change in Alzheimer's disease (AD). It remains unclear about whether and how synapse loss relates to functional and structural connectivity dysfunction in AD. We measured synaptic vesicle glycoprotein 2 A (SV2A) binding using 18F-SynVesT-1 PET to evaluate synaptic alterations in 33 participants with AD, 31 with mild cognitive impairment (MCI), and 30 controls. We examined the correlation between synaptic density and cognitive function. Functional MRI was performed to analyze functional connectivity in lower synaptic density regions. We tracked the white matter tracts between impaired functional connectivity regions using Diffusion MRI. In AD group, lower synaptic density in bilateral cortex and hippocampus was found when compared with controls. The synaptic density changes in right insular cortex and bilateral caudal middle frontal gyrus (MFG) were correlated with cognitive decline. Among them, right MFG synaptic density was positively associated with right MFG - bilateral superior frontal gyrus (SFG) functional connectivity. AD had lower probability of tract (POT) between right MFG and SFG than controls, which was significantly associated with global cognition. These findings provide evidence supporting synapse loss contributes to functional and related structural connectivity alterations underlying cognitive impairment of AD.
Collapse
Affiliation(s)
- Junfang Zhang
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Jie Wang
- Department of Nuclear Medicine
& PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaomeng Xu
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Zhiwen You
- Department of Nuclear Medicine,
Shanghai East Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Qi Huang
- Department of Nuclear Medicine
& PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Huang
- PET Center, Department of Radiology
and Biomedical Imaging, Yale University School of Medicine, New Haven,
Connecticut, USA
| | - Qihao Guo
- Department of Gerontology, Shanghai
Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine
& PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine,
Shanghai East Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Jun Liu
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Clinical Neuroscience Center,
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Wei Xu
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Clinical Neuroscience Center,
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Department of Neurology, Ruijin
Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine,
Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine
& PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Binyin Li
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Clinical Neuroscience Center,
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Department of Neurology, Ruijin
Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine,
Shanghai, China
| |
Collapse
|
23
|
Chen Z, Liao G, Wan N, He Z, Chen D, Tang Z, Long Z, Zou G, Peng L, Wan L, Wang C, Peng H, Shi Y, Tang Y, Li J, Li Y, Long T, Hou X, He L, Qiu R, Chen D, Wang J, Guo J, Shen L, Huang Y, Ashizawa T, Klockgether T, Tang B, Zhou M, Hu S, Jiang H. Synaptic Loss in Spinocerebellar Ataxia Type 3 Revealed by SV2A Positron Emission Tomography. Mov Disord 2023; 38:978-989. [PMID: 37023261 DOI: 10.1002/mds.29395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Severe reduced synaptic density was observed in spinocerebellar ataxia (SCA) in postmortem neuropathology, but in vivo assessment of synaptic loss remains challenging. OBJECTIVE SPINOCEREBELLAR ATAXIA TYPE 3: The objective of this study was to assess in vivo synaptic loss and its clinical correlates in spinocerebellar ataxia type 3 (SCA3) patients by synaptic vesicle glycoprotein 2A (SV2A)-positron emission tomography (PET) imaging. METHODS We recruited 74 SCA3 individuals including preataxic and ataxic stages and divided into two cohorts. All participants received SV2A-PET imaging using 18 F-SynVesT-1 for synaptic density assessment. Specifically, cohort 1 received standard PET procedure and quantified neurofilament light chain (NfL), and cohort 2 received simplified PET procedure for exploratory purpose. Bivariate correlation was performed between synaptic loss and clinical as well as genetic assessments. RESULTS In cohort 1, significant reductions of synaptic density were observed in cerebellum and brainstem in SCA3 ataxia stage compared to preataxic stage and controls. Vermis was found significantly involved in preataxic stage compared to controls. Receiver operating characteristic (ROC) curves highlighted SV2A of vermis, pons, and medulla differentiating preataxic stage from ataxic stage, and SV2A combined with NfL improved the performance. Synaptic density was significantly negatively correlated with disease severity in cerebellum and brainstem (International Co-operative Ataxia Rating Scale: ρ ranging from -0.467 to -0.667, P ≤ 0.002; Scale of Assessment and Rating of Ataxia: ρ ranging from -0.465 to -0.586, P ≤ 0.002). SV2A reduction tendency of cerebellum and brainstem identified in cohort 1 was observed in cohort 2 with simplified PET procedure. CONCLUSIONS We first identified in vivo synaptic loss was related to disease severity of SCA3, suggesting SV2A PET could be a promising clinical biomarker for disease progression of SCA3. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Guang Liao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Na Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiyou He
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daji Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhichao Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangdong Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yulai Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Long
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lang He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Yiyun Huang
- Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, Texas, USA
| | - Thomas Klockgether
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuo Hu
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
25
|
Weiss AR, Bertoglio D, Liguore WA, Brandon K, Templon J, Link J, McBride JL. Reduced D 2 /D 3 Receptor Binding and Glucose Metabolism in a Macaque Model of Huntington's Disease. Mov Disord 2023; 38:143-147. [PMID: 36544385 PMCID: PMC9948637 DOI: 10.1002/mds.29271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dopamine system dysfunction and altered glucose metabolism are implicated in Huntington's disease (HD), a neurological disease caused by mutant huntingtin (mHTT) expression. OBJECTIVE The aim was to characterize alterations in cerebral dopamine D2 /D3 receptor density and glucose utilization in a newly developed AAV-mediated NHP model of HD that expresses mHTT throughout numerous brain regions. METHODS Positron emission tomography (PET) imaging was performed using [18 F]fallypride to quantify D2 /D3 receptor density and 2-[18 F]fluoro-2-deoxy-d-glucose ([18 F]FDG) to measure cerebral glucose utilization in these HD macaques. RESULTS Compared to controls, HD macaques showed significantly reduced dopamine D2 /D3 receptor densities in basal ganglia (P < 0.05). In addition, HD macaques displayed significant glucose hypometabolism throughout the cortico-basal ganglia network (P < 0.05). CONCLUSIONS [18 F]Fallypride and [18 F]FDG are PET imaging biomarkers of mHTT-mediated disease progression that can be used as noninvasive outcome measures in future therapeutic studies with this AAV-mediated HD macaque model. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alison R. Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium
| | - William A. Liguore
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR
| | - Kristin Brandon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR
| | - John Templon
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR
| | - Jeanne Link
- Center for Radiochemistry Research, Oregon Health and Science University, Portland, OR
| | - Jodi L. McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR
- Dept. of Behavioral Neuroscience, Oregon National Primate Research Center, Beaverton, OR
| |
Collapse
|
26
|
Akkermans J, Zajicek F, Miranda A, Adhikari MH, Bertoglio D. Identification of pre-synaptic density networks using [ 11C]UCB-J PET imaging and ICA in mice. Neuroimage 2022; 264:119771. [PMID: 36436710 DOI: 10.1016/j.neuroimage.2022.119771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Synaptic vesicle glycoprotein 2A (SV2A) is a vesicle glycoprotein involved in neurotransmitter release. SV2A is located on the pre-synaptic terminals of neurons and visualized using the radioligand [11C]UCB-J and positron emission tomography (PET) imaging. Thus, SV2A PET imaging can provide a proxy for pre-synaptic density in health and disease. This study aims to apply independent component analysis (ICA) to SV2A PET data acquired in mice to identify pre-synaptic density networks (pSDNs), explore how ageing affects these pSDNs, and determine the impact of a neurological disorder on these networks. METHODS We used [11C]UCB-J PET imaging data (n = 135) available at different ages (3, 7, 10, and 16 months) in wild-type (WT) C57BL/6J mice and in diseased mice (mouse model of Huntington's disease, HD) with reported synaptic deficits. First, ICA was performed on a healthy dataset after it was split into two equal-sized samples (n = 36 each) and the analysis was repeated 50 times in different partitions. We tested different model orders (8, 12, and 16) and identified the pSDNs. Next, we investigated the effect of age on the loading weights of the identified pSDNs. Additionally, the identified pSDNs were compared to those of diseased mice to assess the impact of disease on each pSDNs. RESULTS Model order 12 resulted in the preferred choice to provide six reliable and reproducible independent components (ICs) as supported by the cluster-quality index (IQ) and regression coefficients (β) values. Temporal analysis showed age-related statistically significant changes on the loading weights in four ICs. ICA in an HD model revealed a statistically significant disease-related effect on the loading weights in several pSDNs in line with the progression of the disease. CONCLUSION This study validated the use of ICA on SV2A PET data acquired with [11C]UCB-J for the identification of cerebral pre-synaptic density networks in mice in a rigorous and reproducible manner. Furthermore, we showed that different pSDNs change with age and are affected in a disease condition. These findings highlight the potential value of ICA in understanding pre-synaptic density networks in the mouse brain.
Collapse
Affiliation(s)
- Jordy Akkermans
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium
| | - Franziska Zajicek
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium
| | | | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium; Bio-Imaging Lab, University of Antwerp, Belgium.
| |
Collapse
|
27
|
Vanderlinden G, Ceccarini J, Vande Casteele T, Michiels L, Lemmens R, Triau E, Serdons K, Tournoy J, Koole M, Vandenbulcke M, Van Laere K. Spatial decrease of synaptic density in amnestic mild cognitive impairment follows the tau build-up pattern. Mol Psychiatry 2022; 27:4244-4251. [PMID: 35794185 DOI: 10.1038/s41380-022-01672-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Next to amyloid and tau, synaptic loss is a key pathological hallmark in Alzheimer's disease, closely related to cognitive dysfunction and neurodegeneration. Tau is thought to cause synaptic loss, but this has not been experimentally verified in vivo. In a 2-year follow-up study, dual tracer PET-MR was performed in 12 amnestic MCI patients using 18F-MK-6240 for tau and 11C-UCB-J for SV2A as a proxy for synaptic density. Tau already accumulated in the neocortex at baseline with progression in Braak V/VI at follow-up. While synaptic loss was limited to limbic regions at baseline, it followed the specific tau pattern to stage IV/V regions two years later, indicating that tau spread might drive synaptic vulnerability. Moreover, synaptic density changes correlated to changes in cognitive function. This study shows for the first time in vivo that synaptic loss regionally follows tau accumulation after two years, providing a disease-modifying window of opportunity for (combined) tau-targeting therapies.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Thomas Vande Casteele
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Michiels
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Eric Triau
- Private Practice Neurology, Leuven, Belgium
| | - Kim Serdons
- Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Jos Tournoy
- Department of Geriatric Medicine, University Hospitals UZ Leuven, Leuven, Belgium.,Department of Public Health and Primary Care, Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Old-Age Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.,Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Delva A, Van Laere K, Vandenberghe W. Longitudinal Positron Emission Tomography Imaging of Presynaptic Terminals in Early Parkinson's Disease. Mov Disord 2022; 37:1883-1892. [PMID: 35819412 DOI: 10.1002/mds.29148] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Imaging tools that allow quantification of Parkinson's disease (PD) progression could facilitate the development of disease-modifying therapies. Cross-sectional studies have shown presynaptic terminal damage in PD patients, but longitudinal data are limited. OBJECTIVES The aim of this study was to longitudinally assess loss of presynaptic terminals in general and dopaminergic presynaptic terminals in particular as measures of disease progression in early PD. METHODS A total of 27 patients with early PD and 18 age- and sex-matched healthy controls underwent positron emission tomography (PET) with 11 C-UCB-J, a ligand for the brain-wide presynaptic terminal marker SV2A, and with 18 F-FE-PE2I, a highly selective dopamine transporter ligand, in combination with a comprehensive motor and non-motor clinical assessment at baseline (BL) and after 26.5 ± 2.1 months (Y2). SUVR-1 images were calculated and volumes of interest were delineated based on individual 3D T1 magnetic resonance imaging (MRI). RESULTS PD patients showed significant 2-year worsening of Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS-III) (off medication) scores, but not of non-motor scores. Motor and non-motor scores in controls did not change significantly over 2 years. 18 F-FE-PE2I binding in caudate and putamen showed significant 2-year decline in the PD group and remained unchanged in controls. Longitudinal decline of striatal 18 F-FE-PE2I binding in PD did not correlate with longitudinal changes in MDS-UPDRS-III scores. 11 C-UCB-J PET did not show any region with significant 2-year change in PD or controls. CONCLUSIONS 18 F-FE-PE2I PET showed robust 2-year decline in early PD, but 11 C-UCB-J PET did not. Longitudinal changes in 18 F-FE-PE2I binding did not correlate with clinical motor progression. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aline Delva
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Carson RE, Naganawa M, Toyonaga T, Koohsari S, Yang Y, Chen MK, Matuskey D, Finnema SJ. Imaging of Synaptic Density in Neurodegenerative Disorders. J Nucl Med 2022; 63:60S-67S. [PMID: 35649655 DOI: 10.2967/jnumed.121.263201] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
PET technology has produced many radiopharmaceuticals that target specific brain proteins and other measures of brain function. Recently, a new approach has emerged to image synaptic density by targeting the synaptic vesicle protein 2A (SV2A), an integral glycoprotein in the membrane of synaptic vesicles and widely distributed throughout the brain. Multiple SV2A ligands have been developed and translated to human use. The most successful of these to date is 11C-UCB-J, because of its high uptake, moderate metabolism, and effective quantification with a 1-tissue-compartment model. Further, since SV2A is the target of the antiepileptic drug levetiracetam, human blocking studies have characterized specific binding and potential reference regions. Regional brain SV2A levels were shown to correlate with those of synaptophysin, another commonly used marker of synaptic density, providing the basis for SV2A PET imaging to have broad utility across neuropathologic diseases. In this review, we highlight the development of SV2A tracers and the evaluation of quantification methods, including compartment modeling and simple tissue ratios. Mouse and rat models of neurodegenerative diseases have been studied with small-animal PET, providing validation by comparison to direct tissue measures. Next, we review human PET imaging results in multiple neurodegenerative disorders. Studies on Parkinson disease and Alzheimer disease have progressed most rapidly at multiple centers, with generally consistent results of patterns of SV2A or synaptic loss. In Alzheimer disease, the synaptic loss patterns differ from those of amyloid, tau, and 18F-FDG, although intertracer and interregional correlations have been found. Smaller studies have been reported in other disorders, including Lewy body dementia, frontotemporal dementia, Huntington disease, progressive supranuclear palsy, and corticobasal degeneration. In conclusion, PET imaging of SV2A has rapidly developed, and qualified radioligands are available. PET studies on humans indicate that SV2A loss might be specific to disease-associated brain regions and consistent with synaptic density loss. The recent availability of new 18F tracers, 18F-SynVesT-1 and 18F-SynVesT-2, will substantially broaden the application of SV2A PET. Future studies are needed in larger patient cohorts to establish the clinical value of SV2A PET and its potential for diagnosis and progression monitoring of neurodegenerative diseases, as well as efficacy assessment of disease-modifying therapies.
Collapse
Affiliation(s)
- Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut;
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; and
| | - Sjoerd J Finnema
- Neuroscience Discovery Research, Translational Imaging, AbbVie, North Chicago, Illinois
| |
Collapse
|
30
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
31
|
Hawellek DJ, Garces P, Meghdadi AH, Waninger S, Smith A, Manchester M, Schobel SA, Hipp JF. Changes in brain activity with tominersen in early-manifest Huntington’s disease. Brain Commun 2022; 4:fcac149. [PMID: 35774187 PMCID: PMC9237739 DOI: 10.1093/braincomms/fcac149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
It is unknown whether alterations in EEG brain activity caused by Huntington’s disease may be responsive to huntingtin-lowering treatment. We analysed EEG recordings of 46 patients (mean age = 47.02 years; standard deviation = 10.19 years; 18 female) with early-manifest Stage 1 Huntington’s disease receiving the huntingtin-lowering antisense oligonucleotide tominersen for 4 months or receiving placebo as well as 39 healthy volunteers (mean age = 44.48 years; standard deviation = 12.94; 22 female) not receiving treatment. Patients on tominersen showed increased resting-state activity within a 4–8 Hz frequency range compared with patients receiving placebo (cluster-based permutation test, P < 0.05). The responsive frequency range overlapped with EEG activity that was strongly reduced in Huntington’s disease compared with healthy controls (cluster-based permutation test, P < 0.05). The underlying mechanisms of the observed treatment-related increase are unknown and may reflect neural plasticity as a consequence of the molecular pathways impacted by tominersen treatment.
Hawellek et al. report that patients with Huntington’s disease treated with the huntingtin-lowering antisense oligonucleotide tominersen exhibited increased EEG power in the theta/alpha frequency range. The underlying mechanisms of the observed changes are unknown and may reflect neural plasticity as a consequence of the molecular pathways impacted by tominersen treatment.
Collapse
Affiliation(s)
- D J Hawellek
- Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel 4070 , Switzerland
| | - P Garces
- Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel 4070 , Switzerland
| | - A H Meghdadi
- Advanced Brain Monitoring Inc. , Carlsbad, CA 92008 , USA
| | - S Waninger
- Advanced Brain Monitoring Inc. , Carlsbad, CA 92008 , USA
| | - A Smith
- Ionis Pharmaceuticals Inc. , Carlsbad, CA 92010 , USA
| | - M Manchester
- Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel 4070 , Switzerland
| | - S A Schobel
- F. Hoffmann-La Roche Ltd , Basel 4070 , Switzerland
| | - J F Hipp
- Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel 4070 , Switzerland
| |
Collapse
|