1
|
Lee JH, Kim HK, Ahn SJ, Park M, Yoo HS, Lyoo CH. Subregion-specific associations of the basal forebrain with sleep and cognition in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:33. [PMID: 39979309 PMCID: PMC11842645 DOI: 10.1038/s41531-025-00880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
To elucidate the role of basal forebrain (BF) in non-motor symptoms of Parkinson's disease (PD), we investigated the association of sleep quality and cognition with BF volume and functional connectivity. The gray matter volume of the anterior intermediate part (Ch4ai) and the anterior lateral part (Ch4al) of the nucleus basalis Meynert were negatively associated with the PSQI global score. The posterior part of the nucleus basalis Meynert (Ch4p) volume was positively associated with visuospatial, memory, and executive functions. The PSQI global score correlated positively with functional connectivity from the Ch4al to the posterior cingulate, inferior parietal, anterior temporal, and medial prefrontal cortices, which correspond to the default mode network. Our results demonstrated that reduced volume of the anterior portion of the Ch4 and its aberrantly increased functional connectivity with the default mode network were closely related to poor overall sleep quality, while reduced volume of the posterior portion of the Ch4 was associated with decreased cognitive function in PD.
Collapse
Affiliation(s)
- Jung Hyun Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Kyeol Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Teipel SJ, Hoffmann H, Storch A, Hermann A, Dyrba M, Schumacher J. Brain age in genetic and idiopathic Parkinson's disease. Brain Commun 2024; 6:fcae382. [PMID: 39713239 PMCID: PMC11660940 DOI: 10.1093/braincomms/fcae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/02/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024] Open
Abstract
The brain-age gap, i.e. the difference between the brain age estimated from structural MRI data and the chronological age of an individual, has been proposed as a summary measure of brain integrity in neurodegenerative diseases. Here, we aimed to determine the brain-age gap in genetic and idiopathic Parkinson's disease and its association with surrogate markers of Alzheimer's disease and Parkinson's disease pathology and with rates of cognitive and motor function decline. We studied 1200 cases from the Parkinson's Progression Markers Initiative cohort, including idiopathic Parkinson's disease, asymptomatic and clinical mutation carriers in the leucine-rich repeat kinase 2 gene (LRRK2) and the glucocerebrosidase gene (GBA), and normal controls using a cohort study design. For comparison, we studied 187 Alzheimer's disease dementia cases and 254 controls from the Alzheimer's Disease Neuroimaging Initiative cohort. We used Bayesian ANOVA to determine associations of the brain-age gap with diagnosis, and baseline measures of motor and cognitive function, dopamine transporter activity and CSF markers of Alzheimer's disease type amyloid-β42 and phosphotau pathology. Associations of brain-age gap with rates of cognitive and motor function decline were determined using Bayesian generalized mixed effect models. The brain-age gap in idiopathic Parkinson's disease patients was 0.7 years compared to controls, but 5.9 years in Alzheimer's disease dementia cases. In contrast, asymptomatic LRRK2 individuals had a 1.1. year younger brain age than controls. Across all cases, the brain-age gap was associated with motor impairment and (in the clinically manifest PD cases) reduced dopamine transporter activity, but less with CSF amyloid-β42 and phosphotau. In idiopathic Parkinson's disease cases, however, the brain-age gap was associated with lower CSF amyloid-β42 levels. In sporadic and genetic Parkinson's disease cases, a higher brain-age gap was associated with faster decline in episodic memory, and executive and motor function, whereas in asymptomatic LRRK2 cases, a smaller brain-age gap was associated with faster cognitive decline. In conclusion, brain age was sensitive to Alzheimer's disease like rather than Parkinson's disease like brain atrophy. Once an individual had idiopathic Parkinson's disease, their brain age was associated with markers of Alzheimer's disease rather than Parkinson's disease. Asymptomatic LRRK2 cases had seemingly younger brains than controls, and in these cases, younger brain age was associated with poorer cognitive outcome. This suggests that the term brain age is misleading when applied to disease stages where reactive brain changes with apparent volume increases rather than atrophy may drive the calculation of the brain age.
Collapse
Affiliation(s)
- Stefan J Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, Rostock 18147, Germany
- Department of Psychosomatic Medicine, University Medical Center Rostock, Rostock 18147, Germany
| | - Hauke Hoffmann
- Department of Psychosomatic Medicine, University Medical Center Rostock, Rostock 18147, Germany
| | - Alexander Storch
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, Rostock 18147, Germany
- Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Andreas Hermann
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, Rostock 18147, Germany
- Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
- Translational Neurodegeneration Section ‘Albrecht Kossel’, Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Martin Dyrba
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, Rostock 18147, Germany
| | - Julia Schumacher
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, Rostock 18147, Germany
- Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| |
Collapse
|
3
|
Yu X, Zhang Y, Cai Y, Rong N, Li R, Shi R, Wei M, Jiang J, Han Y. Asymmetrical patterns of β-amyloid deposition and cognitive changes in Alzheimer's disease: the SILCODE study. Cereb Cortex 2024; 34:bhae485. [PMID: 39710611 DOI: 10.1093/cercor/bhae485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
The asymmetric pattern of β-amyloid plaque distribution across Alzheimer's disease clinical progression stages remains unclear. In this study, 66 participants with normal cognition, 59 with subjective cognitive decline, 12 with mild cognitive impairment, and 11 with Alzheimer's disease dementia were included in the Sino Longitudinal Study on Cognitive Decline (SILCODE) cohort. A regional asymmetry index, denoting the left-right asymmetry of β-amyloid plaques, was derived for each region based on the Anatomical Automatic Labeling atlas. The level of β-amyloid plaques in each region was compared among different clinical stages of Alzheimer's disease using the analysis of variance. An additional correlation analysis examined the relationship between each region of interest's cognitive performance scores and asymmetry index values. We found that β-amyloid appears to be lateralized in different stages of Alzheimer's disease. In addition, there is a significant correlation between β-amyloid asymmetry in various brain regions and cognition. The observed Aβ lateralization could potentially be utilized as a neuroimaging biomarker throughout AD progression.
Collapse
Affiliation(s)
- Xianfeng Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, #45 Changchun Street, Xicheng District, Beijing 100053, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Shushan District, Hefei 230022, China
| | - Ying Zhang
- Institute of Biomedical Engineering, School of Medicine, Shanghai University, #99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No. 5 Kelian Road, Shenzhen 518132, China
| | - Ning Rong
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Shushan District, Hefei 230022, China
| | - Ruixian Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, #45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Rong Shi
- Institute of Biomedical Engineering, School of Medicine, Shanghai University, #99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Min Wei
- Department of Neurology, Xuanwu Hospital of Capital Medical University, #45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, #99 Shangda Road, Baoshan District, Shanghai, 200444, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, #45 Changchun Street, Xicheng District, Beijing 100053, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No. 5 Kelian Road, Shenzhen 518132, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Xicheng District, Beijing 100053, China
- National Clinical Research Center for Geriatric Disorders, Xicheng District, Beijing 100053, China
- School of Biomedical Engineering, Hainan University, #58 People's Avenue, Haidian Island, Haikou 570228, China
- The Central Hospital of Karamay, #67 Junggar Road, Karamay District, Karamay 834000, China
| |
Collapse
|
4
|
Li B, Chen H, Zheng Y, Xu X, You Z, Huang Q, Huang Y, Guan Y, Zhao J, Liu J, Xie F, Wang J, Xu W, Zhang J, Deng Y. Loss of synaptic density in nucleus basalis of meynert indicates distinct neurodegeneration in Alzheimer's disease: the RJNB-D study. Eur J Nucl Med Mol Imaging 2024; 52:134-144. [PMID: 39112615 DOI: 10.1007/s00259-024-06862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/26/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The nucleus basalis of Meynert (NBM) is known to play a crucial role in the development and pathogenesis of Alzheimer's Disease (AD), particularly the cholinergic system within the NBM. However, the relationship between synaptic loss in the NBM and the clinical profile of AD remains unclear. METHODS In our study, we included 44 Aβ-negative normal controls (CN) and 76 Aβ-positive participants with cognitive impairment (CI). All participants underwent structural and diffusion magnetic resonance imaging (MRI), as well as positron emission tomography (PET) imaging to measure synaptic vesicle glycoprotein 2 A (SV2A) levels (Trial registration: NCT05623124. Registered 21 November 2022). The SV2A standardized uptake value ratios (SUVR) distribution in the NBM of CN participants was used as the reference norm. We investigated the association between NBM synaptic density and clinical performance, traditional AD biomarkers, and white matter tracts that passed the NBM. RESULTS Participants with cognitive impairment (CI) who had NBM synaptic density below 1.5 standard deviations (SD) or 0.5 SD of the norm exhibited worse cognitive performance compared to cognitively normal (CN) individuals. Crucially, the extent of deviation in synaptic density from the norm was directly proportional to the severity of cognitive impairment and neurodegeneration biomarkers. Furthermore, among patients with cognitive impairment, synaptic loss in the NBM was associated with potential impairment in the density and organization of neurites within the white matter tracts connected to the NBM. Finally, neurite density index in the medial tracts may play a mediating role in the relationship between NBM synaptic density and MMSE scores. CONCLUSION The extent that synaptic density in NBM deviated from the norm suggested the extent of worse cognitive performance and severe neurodegeneration. Furthermore, cognitive impairment associated with synaptic loss in the NBM may be mediated by its pathological impact on NBM white matter tracts.
Collapse
Affiliation(s)
- Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingting Zheng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaomeng Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junfang Zhang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Duan L, Xiao R, Liu S, Shi Y, Feng Y. Causality between cognitive performance and cardiovascular disease: A bidirectional Mendelian randomization study. Gene 2024; 891:147822. [PMID: 37758004 DOI: 10.1016/j.gene.2023.147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Growing evidence points to a connection between cardiovascular disease and cognitive impairment. These observational study findings, however, were not all uniform, and some did not discover a link like this. Investigating the causal link between cognitive impairment and cardiovascular disease is vital. METHOD Using publicly available genome-wide association study (GWAS) summary datasets and stringent screening instrumental variables, we carried out a bidirectional Mendelian randomization study. To investigate the causality between cardiovascular disease and cognitive impairment, three different MR techniques-inverse variance weighted (IVW), MR-Egger, and weighted median-as well as various sensitivity analyses-Cochran's Q, ivw_radial, leave-one-out (LOO), MR-Egger intercept, and MR-PRESSO-were used. RESULTS The causal impact of genetically predicted cognitive performance on hypertension, atrial fibrillation, heart failure, coronary atherosclerosis, coronary artery disease, and myocardial infarction was detected in the forward MR analysis, but not stroke or any subtypes. We only discover the causal effects of hypertension, any stroke, and its subtypes (ischemic and small vessel stroke) on cognitive performance in the reverse MR analysis. CONCLUSION This MR analysis offers proof of a causal link between cognitive impairment and elevated cardiovascular disease risk. Our research emphasizes the value of cognitively impaired patients being screened for cardiovascular disease, which may offer fresh perspectives on cardiovascular disease prevention.
Collapse
Affiliation(s)
- Lincheng Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shupei Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Prins ND, de Haan W, Gardner A, Blackburn K, Chu HM, Galvin JE, Alam JJ. Phase 2A Learnings Incorporated into RewinD-LB, a Phase 2B Clinical Trial of Neflamapimod in Dementia with Lewy Bodies. J Prev Alzheimers Dis 2024; 11:549-557. [PMID: 38706271 PMCID: PMC11061005 DOI: 10.14283/jpad.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/21/2023] [Indexed: 05/07/2024]
Abstract
BACKGROUND In an exploratory 91-participant phase 2a clinical trial (AscenD-LB, NCT04001517) in dementia with Lewy bodies (DLB), neflamapimod showed improvement over placebo on multiple clinical endpoints. To confirm those results, a phase 2b clinical study (RewinD-LB, NCT05869669 ) that is similar to AscenD-LB has been initiated. OBJECTIVES To optimize the choice of patient population, primary endpoint, and biomarker evaluations in RewinD-LB. DESIGN Evaluation of the efficacy results from AscenD-LB, the main results of which, and a re-analysis after stratification for absence or presence of AD co-pathology (assessed by plasma ptau181), have been published. In addition, the MRI data from a prior phase 2a clinical trial in Early Alzheimer's disease (AD), were reviewed. SETTING 22 clinical sites in the US and 2 in the Netherlands. PARTICIPANTS Probable DLB by consensus criteria and abnormal dopamine uptake by DaTscan™ (Ioflupane I123 SPECT). INTERVENTION Neflamapimod 40mg capsules or matching placebo capsules, twice-a-day (BID) or three-times-a-day (TID), for 16 weeks. MEASUREMENTS 6-test Neuropsychological Test Battery (NTB) assessing attention and executive function, Clinical Dementia Rating Sum-of-Boxes (CDR-SB), Timed Up and Go (TUG), International Shopping List Test (ISLT). RESULTS Within AscenD-LB, patients without evidence of AD co-pathology exhibited a neflamapimod treatment effect that was greater than that in the overall population and substantial (cohen's d effect size vs. placebo ≥ for CDR-SB, TUG, Attention and ISLT-recognition). In addition, the CDR-SB and TUG performed better than the cognitive tests to demonstrate neflamapimod treatment effect in comparison to placebo. Further, clinical trial simulations indicate with 160-patients (randomized 1:1), RewinD-LB conducted in patients without AD co-pathology has >95% (approaching 100%) statistical power to detect significant improvement over placebo on the CDR-SB. Preliminary evidence of positive treatment effects on beta functional connectivity by EEG and basal forebrain atrophy by MRI were obtained in AscenD-LB and the Early AD study, respectively. CONCLUSION In addition to use of a single dose regimen of neflamapimod (40mg TID), key distinctions between phase 2b and phase 2a include RewinD-LB (1) excluding patients with AD co-pathology, (2) having CDR-SB as the primary endpoint, and (3) having MRI studies to evaluate effects on basal forebrain atrophy.
Collapse
Affiliation(s)
- N D Prins
- John J. Alam, MD, CervoMed, Inc., 20 Park Plaza, Suite 424, Boston, MA 02116, , Tel: +1-617-948-2107
| | | | | | | | | | | | | |
Collapse
|
7
|
Jellinger KA. Mild cognitive impairment in dementia with Lewy bodies: an update and outlook. J Neural Transm (Vienna) 2023; 130:1491-1508. [PMID: 37418039 DOI: 10.1007/s00702-023-02670-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Dementia with Lewy bodies (DLB), the second most common degenerative neurocognitive disorder after Alzheimer disease (AD), is frequently preceded by a period of mild cognitive impairment (MCI), in which cognitive decline is associated with impairment of executive functions/attention, visuospatial deficits, or other cognitive domains and a variety of noncognitive and neuropsychiatric symptoms, many of which are similar but less severe than in prodromal AD. While 36-38% remain in the MCI state, at least the same will convert to dementia. Biomarkers are slowing of the EEG rhythms, atrophy of hippocampus and nucleus basalis of Meynert, temporoparietal hypoperfusion, signs of degeneration of the nigrostriatal dopaminergic, cholinergic and other neurotransmitter systems, and inflammation. Functional neuroimaging studies revealed disturbed connectivity of frontal and limbic networks associated with attention and cognitive controls, dopaminergic and cholinergic circuits manifested prior to overt brain atrophy. Sparse neuropathological data showed varying Lewy body and AD-related stages associated with atrophy of entorhinal, hippocampal, and mediotemporal cortices. Putative pathomechanisms of MCI are degeneration of limbic, dopaminergic, and cholinergic systems with Lewy pathology affecting specific neuroanatomical pathways associated with progressing AD-related lesions, but many pathobiological mechanisms involved in the development of MCI in LBD remain to be elucidated as a basis for early diagnosis and future adequate treatment modalities to prevent progression of this debilitating disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
8
|
Alam JJ, Maruff P, Doctrow SR, Chu HM, Conway J, Gomperts SN, Teunissen C. Association of Plasma Phosphorylated Tau With the Response to Neflamapimod Treatment in Patients With Dementia With Lewy Bodies. Neurology 2023; 101:e1708-e1717. [PMID: 37657939 PMCID: PMC10624490 DOI: 10.1212/wnl.0000000000207755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In a proportion of patients, dementia with Lewy bodies (DLB) is associated with Alzheimer disease (AD) copathology, which is linked to accelerated cognitive decline and more extensive cortical atrophy. The objective was to evaluate the relationship between a biomarker of AD copathology, plasma tau phosphorylated at residue 181 (ptau181), and the treatment effects of the p38α kinase inhibitor neflamapimod, which targets the cholinergic degenerative process in DLB. METHODS The AscenD-LB study was a phase 2a, randomized (1:1), 16-week, placebo-controlled clinical trial of neflamapimod in DLB, the main results of which have been published. After the study was completed (i.e., post hoc), pretreatment plasma ptau181 levels were determined and participants were grouped based on a cutoff for AD pathology of 2.2 pg/mL (established in a separate cohort to identify AD from healthy controls). Clinical outcomes for the comparison of placebo with neflamapimod 40 mg three times daily (TID; the higher and more clinically active of 2 doses studied) were analyzed using mixed models for repeated measures within each subgroup (baseline plasma ptau181 < and ≥2.2 pg/mL). RESULTS Pretreatment plasma ptau181 levels were determined in eighty-five participants with mild-to-moderate DLB receiving cholinesterase inhibitors, with 45 participants below and 40 above the 2.2 pg/mL cutoff at baseline. In the 16-week treatment period, in the comparison of placebo with neflamapimod 40 mg TID, for all end points evaluated, improvements with neflamapimod treatment were greater in participants below the cutoff, compared with those above the cutoff. In addition, participants below the ptau181 cutoff at baseline showed significant improvement over placebo in an attention composite measure (+0.42, 95% CI 0.07-0.78, p = 0.023, d = 0.78), the Clinical Dementia Rating Scale Sum of Boxes (-0.60, 95% CI -1.04 to -0.06, p = 0.031, d = 0.70), the Timed Up and Go test (-3.1 seconds, 95% CI -4.7 to -1.6, p < 0.001, d = 0.74), and International Shopping List Test-Recognition (+1.4, 95% CI 0.2-2.5, p = 0.024, d = 1.00). DISCUSSION Exclusion of patients with elevated plasma ptau181, potentially through excluding patients with extensive cortical neurodegeneration, enriches for a patient with DLB population that is more responsive to neflamapimod. More generally, plasma biomarkers of AD copathology at study entry should be considered as stratification variables in DLB clinical trials. TRIAL REGISTRATION INFORMATION NCT04001517 at ClinicalTrials.gov.
Collapse
Affiliation(s)
- John J Alam
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| | - Paul Maruff
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Susan R Doctrow
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Hui-May Chu
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jennifer Conway
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Stephen N Gomperts
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Charlotte Teunissen
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
9
|
Teipel SJ, Dyrba M, Levin F, Altenstein S, Berger M, Beyle A, Brosseron F, Buerger K, Burow L, Dobisch L, Ewers M, Fliessbach K, Frommann I, Glanz W, Goerss D, Gref D, Hansen N, Heneka MT, Incesoy EI, Janowitz D, Keles D, Kilimann I, Laske C, Lohse A, Munk MH, Perneczky R, Peters O, Preis L, Priller J, Rostamzadeh A, Roy N, Schmid M, Schneider A, Spottke A, Spruth EJ, Wiltfang J, Düzel E, Jessen F, Kleineidam L, Wagner M. Cognitive Trajectories in Preclinical and Prodromal Alzheimer's Disease Related to Amyloid Status and Brain Atrophy: A Bayesian Approach. J Alzheimers Dis Rep 2023; 7:1055-1076. [PMID: 37849637 PMCID: PMC10578328 DOI: 10.3233/adr-230027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023] Open
Abstract
Background Cognitive decline is a key outcome of clinical studies in Alzheimer's disease (AD). Objective To determine effects of global amyloid load as well as hippocampus and basal forebrain volumes on longitudinal rates and practice effects from repeated testing of domain specific cognitive change in the AD spectrum, considering non-linear effects and heterogeneity across cohorts. Methods We included 1,514 cases from three cohorts, ADNI, AIBL, and DELCODE, spanning the range from cognitively normal people to people with subjective cognitive decline and mild cognitive impairment (MCI). We used generalized Bayesian mixed effects analysis of linear and polynomial models of amyloid and volume effects in time. Robustness of effects across cohorts was determined using Bayesian random effects meta-analysis. Results We found a consistent effect of amyloid and hippocampus volume, but not of basal forebrain volume, on rates of memory change across the three cohorts in the meta-analysis. Effects for amyloid and volumetric markers on executive function were more heterogeneous. We found practice effects in memory and executive performance in amyloid negative cognitively normal controls and MCI cases, but only to a smaller degree in amyloid positive controls and not at all in amyloid positive MCI cases. Conclusions We found heterogeneity between cohorts, particularly in effects on executive functions. Initial increases in cognitive performance in amyloid negative, but not in amyloid positive MCI cases and controls may reflect practice effects from repeated testing that are lost with higher levels of cerebral amyloid.
Collapse
Affiliation(s)
- Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Fedor Levin
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Moritz Berger
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Aline Beyle
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Frederic Brosseron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Klaus Fliessbach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany
| | - Ingo Frommann
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Doreen Goerss
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Daria Gref
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Michael T. Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enise I. Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany pGerman Center for Neurodegenerative Diseases (DZNE), T¨ubingen, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Deniz Keles
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), T¨ubingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of T¨ubingen, T¨ubingen, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Matthias H. Munk
- German Center for Neurodegenerative Diseases (DZNE), T¨ubingen, Germany
- Department of Psychiatry and Psychotherapy, University of T¨ubingen, T¨ubingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Lukas Preis
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
- School of Medicine, Technical University of Munich; Department of Psychiatry and Psychotherapy, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Nina Roy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Anja Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany
| | - Annika Spottke
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Frank Jessen
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Luca Kleineidam
- University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany
| | - Michael Wagner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany
| | | |
Collapse
|
10
|
Xu S, Liu Y, Wang Q, Liu F, Xu F, Liu Y. Mendelian randomization study reveals a causal relationship between coronary artery disease and cognitive impairment. Front Cardiovasc Med 2023; 10:1150432. [PMID: 37288257 PMCID: PMC10242088 DOI: 10.3389/fcvm.2023.1150432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Background Growing evidence suggests that Coronary artery disease (CAD) is associated with cognitive impairment. However, these results from observational studies was not entirely consistent, with some detecting no such association. And it is necessary to explore the causal relationship between CAD and cognitive impairment. Objective We aimed to explore the potential causal relationship between CAD and cognitive impairment by using bidirectional two-sample mendelian randomization (MR) analyses. Methods Instrument variants were extracted according to strict selection criteria. And we used publicly available summary-level GWAS data. Five different methods of MR [random-effect inverse-variance weighted (IVW), MR Egger, weighted median, weighted mode and Wald ratio] were used to explore the causal relationship between CAD and cognitive impairment. Results There was little evidence to support a causal effect of CAD on cognitive impairment in the forward MR analysis. In the reverse MR analyses, We detect causal effects of fluid intelligence score (IVW: β = -0.12, 95% CI of -0.18 to -0.06, P = 6.8 × 10-5), cognitive performance (IVW: β = -0.18, 95% CI of -0.28 to -0.08, P = 5.8 × 10-4) and dementia with lewy bodies (IVW: OR = 1.07, 95% CI of 1.04-1.10, P = 1.1 × 10-5) on CAD. Conclusion This MR analysis provides evidence of a causal association between cognitive impairment and CAD. Our findings highlight the importance of screening for coronary heart disease in patients of cognitive impairment, which might provide new insight into the prevention of CAD. Moreover, our study provides clues for risk factor identification and early prediction of CAD.
Collapse
Affiliation(s)
- Shihan Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Wang
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fenglan Liu
- Graduate School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengqin Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
12
|
Toledo JB, Abdelnour C, Weil RS, Ferreira D, Rodriguez-Porcel F, Pilotto A, Wyman-Chick KA, Grothe MJ, Kane JPM, Taylor A, Rongve A, Scholz S, Leverenz JB, Boeve BF, Aarsland D, McKeith IG, Lewis S, Leroi I, Taylor JP. Dementia with Lewy bodies: Impact of co-pathologies and implications for clinical trial design. Alzheimers Dement 2023; 19:318-332. [PMID: 36239924 PMCID: PMC9881193 DOI: 10.1002/alz.12814] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 02/01/2023]
Abstract
Dementia with Lewy bodies (DLB) is clinically defined by the presence of visual hallucinations, fluctuations, rapid eye movement (REM) sleep behavioral disorder, and parkinsonism. Neuropathologically, it is characterized by the presence of Lewy pathology. However, neuropathological studies have demonstrated the high prevalence of coexistent Alzheimer's disease, TAR DNA-binding protein 43 (TDP-43), and cerebrovascular pathologic cases. Due to their high prevalence and clinical impact on DLB individuals, clinical trials should account for these co-pathologies in their design and selection and the interpretation of biomarkers values and outcomes. Here we discuss the frequency of the different co-pathologies in DLB and their cross-sectional and longitudinal clinical impact. We then evaluate the utility and possible applications of disease-specific and disease-nonspecific biomarkers and how co-pathologies can impact these biomarkers. We propose a framework for integrating multi-modal biomarker fingerprints and step-wise selection and assessment of DLB individuals for clinical trials, monitoring target engagement, and interpreting outcomes in the setting of co-pathologies.
Collapse
Affiliation(s)
- Jon B Toledo
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas, USA
| | - Carla Abdelnour
- Fundació ACE. Barcelona Alzheimer Treatment and Research Center, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Rimona S Weil
- Dementia Research Centre, Wellcome Centre for Human Neuroimaging, Movement Disorders Consortium, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer's Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, University of Brescia, Parkinson's Disease Rehabilitation Centre, FERB ONLUS-S, Isidoro Hospital, Trescore Balneario (BG), Italy
| | - Kathryn A Wyman-Chick
- HealthPartners Center for Memory and Aging and Struthers Parkinson's Center, Saint Paul, Minnesota, USA
| | - Michel J Grothe
- Instituto de Biomedicina de Sevilla (IBiS), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Joseph P M Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Angela Taylor
- Lewy Body Dementia Association, Lilburn, Georgia, USA
| | - Arvid Rongve
- Department of Research and Innovation, Institute of Clinical Medicine (K1), Haugesund Hospital, Norway and The University of Bergen, Bergen, Norway
| | - Sonja Scholz
- Department of Neurology, National Institute of Neurological Disorders and Stroke, Neurodegenerative Diseases Research Unit, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bradley F Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Ian G McKeith
- Newcastle University Translational and Clinical Research Institute (NUTCRI, Newcastle upon Tyne, UK
| | - Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, School of Medical Sciences, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Iracema Leroi
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - John P Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Zeng Q, Qiu T, Li K, Luo X, Wang S, Xu X, Liu X, Hong L, Li J, Huang P, Zhang M. Increased functional connectivity between nucleus basalis of Meynert and amygdala in cognitively intact elderly along the Alzheimer's continuum. Neuroimage Clin 2022; 36:103256. [PMID: 36451361 PMCID: PMC9668640 DOI: 10.1016/j.nicl.2022.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND A growing body of research reported the degeneration of the basal forebrain (BF) cholinergic system in the early course of Alzheimer's disease (AD). However, functional changes of the BF in asymptomatic individuals along the Alzheimer's continuum remain unclear. METHODS A total of 229 cognitively intact participants were included from the Alzheimer's Disease Neuroimaging Initiative dataset and further divided into four groups based on the "A/T" profile using amyloid and tau positron emission tomography (PET). All A-T+ subjects were excluded. One hundred and seventy-three subjects along the Alzheimer's continuum (A-T-, A+ T-, A+ T+) were used for further study. The seed-based functional connectivity (FC) maps of the BF subregions (Ch1-3 and Ch4 [nucleus basalis of Meynert, NBM]) with whole-brain voxels were constructed. Analyses of covariance to detect the between-group differences and to further investigated the relations between FC values and AD biomarkers or cognition. RESULTS We found increased FC between right Ch4 and bilateral amygdala among three groups, and the FC value could well distinguish between the A-T- group and the Alzheimer's continuum groups. Furthermore, increased FC between the Ch4 and amygdala was associated with higher pathological burden reflected by amyloid and tau PET in the entire population as well as better logistic memory function in A + T+ group. CONCLUSION Our study demonstrated the NBM functional connectivity increased in cognitively normal elderly along the Alzheimer's continuum, which indicated a potential compensatory mechanism to counteract pathological changes in AD and maintain intact cognitive function.
Collapse
Affiliation(s)
- Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Qiu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jixuan Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Preclinical and randomized clinical evaluation of the p38α kinase inhibitor neflamapimod for basal forebrain cholinergic degeneration. Nat Commun 2022; 13:5308. [PMID: 36130946 PMCID: PMC9492778 DOI: 10.1038/s41467-022-32944-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration. We also report on the results of an exploratory (hypothesis-generating) phase 2a randomized double-blind 16-week placebo-controlled clinical trial (Clinical trial registration: NCT04001517/EudraCT #2019-001566-15) of neflamapimod in mild-to-moderate dementia with Lewy bodies (DLB), a disease in which BFCN degeneration is an important driver of disease expression. A total of 91 participants, all receiving background cholinesterase inhibitor therapy, were randomized 1:1 between neflamapimod 40 mg or matching placebo capsules (taken orally twice-daily if weight <80 kg or thrice-daily if weight >80 kg). Neflamapimod does not show an effect in the clinical study on the primary endpoint, a cognitive-test battery. On two secondary endpoints, a measure of functional mobility and a dementia rating-scale, improvements were seen that are consistent with an effect on BFCN function. Neflamapimod treatment is well-tolerated with no study drug associated treatment discontinuations. The combined preclinical and clinical observations inform on the validity of the Rab5-based pathogenic model of cholinergic degeneration and provide a foundation for confirmatory (hypothesis-testing) clinical evaluation of neflamapimod in DLB.
Collapse
|
15
|
Tau proteins in blood as biomarkers of Alzheimer's disease and other proteinopathies. J Neural Transm (Vienna) 2022; 129:239-259. [PMID: 35175385 DOI: 10.1007/s00702-022-02471-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, is characterized neuropathologically by extracellular Aβ plaques and intracellular tau neurofibrillary tangles. While in AD tau pathology probably follows early alterations in Aβ metabolism, it develops independently in the so-called primary tauopathies, the main form being frontotemporal lobar degeneration with tau pathology. Tau pathology in AD brain is reflected in the cerebrospinal fluid (CSF) by elevated levels of the two AD tau biomarkers total and phosphorylated tau, which are now used for routine diagnostic purposes. On the contrary, no established neurochemical biomarkers exist for tau pathology in primary tauopathies. Thanks to recent technological advances, total and phosphorylated tau can now be quantified also on peripheral blood, and accumulating evidence shows that measurement of plasma phosphorylated tau species (P-tau181, P-tau217, and P-tau231) has high performances in discriminating AD patients from cognitively unimpaired subjects but also from patients with other dementias. Moreover, plasma P-tau levels are associated with tracer uptake on tau- and amyloid-PET as well as with brain atrophy, cognitive measures and longitudinal changes of these parameters. These features, together with the low invasiveness, scalability, and ease of longitudinal sampling, which differentiate plasma P-tau species from their CSF counterparts, make these proteins promising peripheral biomarkers for AD in both research and clinical setting. This review discusses the recent developments in the field of plasma tau proteins as diagnostic, pathophysiological and prognostic biomarkers of Alzheimer's disease; additional findings from the fields of genetic forms of AD and of non-AD proteinopathies are also summarized.
Collapse
|