1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Flaugher TG, Chang S, Reistetter T, Norman RS. Relationship between language comprehension and chronic neurobehavioral symptoms in adults with mild traumatic brain injury. Brain Inj 2025; 39:482-495. [PMID: 39734260 DOI: 10.1080/02699052.2024.2445700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/31/2024]
Abstract
PRIMARY OBJECTIVES Annually, millions of Americans sustain mild traumatic brain injuries (mTBI), and some may experience neurobehavioral symptoms (NBS), like slow processing speed that persist chronically or longer than 6 months post injury. In turn, cognitive processes like language comprehension may be compromised. This study investigates the relationship between NBS and language comprehension in individuals with mTBI history and low or high NBS. METHODS & PROCEDURES Thirty-one adults with mTBI and high (n = 13; female = 11) and low (n = 18; female = 10) NBS completed a language comprehension task in speeded and unspeeded conditions. Reduced language comprehension, as measured by slower response times (RTs) and reduced accuracy, was expected to be high compared to low NBS group, regardless of condition. Language comprehension correlates (e.g. cognition and general processing speed) were also measured. MAIN OUTCOMES & RESULTS Adults with high NBS showed reduced comprehension, measured by slower RTs in the unspeeded condition compared to low NBS. No difference in accuracy or errors produced was observed. Cognitive skills and processing speed are negatively correlated and predicted language comprehension task performance. CONCLUSIONS NBS and predictive factors specific to the individual are important to monitor post-mTBI, as they may affect language functioning.
Collapse
Affiliation(s)
- T G Flaugher
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - S Chang
- Department of Head and Neck Surgery, MD Cancer Center, Houston, Texas, USA
| | - T Reistetter
- Department of Occupational Therapy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - R S Norman
- Department of Communication Sciences and Disorders, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Sassani M, Ghafari T, Arachchige PRW, Idrees I, Gao Y, Waitt A, Weaver SRC, Mazaheri A, Lyons HS, Grech O, Thaller M, Witton C, Bagshaw AP, Wilson M, Park H, Brookes M, Novak J, Mollan SP, Hill LJ, Lucas SJE, Mitchell JL, Sinclair AJ, Mullinger K, Fernández-Espejo D. Current and prospective roles of magnetic resonance imaging in mild traumatic brain injury. Brain Commun 2025; 7:fcaf120. [PMID: 40241788 PMCID: PMC12001801 DOI: 10.1093/braincomms/fcaf120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/26/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
There is unmet clinical need for biomarkers to predict recovery or the development of long-term sequelae of mild traumatic brain injury, a highly prevalent condition causing a constellation of disabling symptoms. A substantial proportion of patients live with long-lasting sequelae affecting their quality of life and ability to work. At present, symptoms can be assessed through clinical tests; however, there are no imaging or laboratory tests fully reflective of pathophysiology routinely used by clinicians to characterize post-concussive symptoms. Magnetic resonance imaging has potential to link subtle pathophysiological alterations to clinical outcomes. Here, we review the state of the art of MRI research in adults with mild traumatic brain injury and provide recommendations to facilitate transition into clinical practice. Studies utilizing MRI can inform on pathophysiology of mild traumatic brain injury. They suggest presence of early cytotoxic and vasogenic oedema. They also show that mild traumatic brain injury results in cellular injury and microbleeds affecting the integrity of myelin and white matter tracts, all processes that appear to induce delayed vascular reactions and functional changes. Crucially, correlates between MRI parameters and post-concussive symptoms are emerging. Clinical sequences such as T1-weighted MRI, susceptibility-weighted MRI or fluid attenuation inversion recovery could be easily implementable in clinical practice, but are not sufficient, in isolation for prognostication. Diffusion sequences have shown promises and, although in need of analysis standardization, are a research priority. Lastly, arterial spin labelling is emerging as a high-utility research as it could become useful to assess delayed neurovascular response and possible long-term symptoms.
Collapse
Affiliation(s)
- Matilde Sassani
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Tara Ghafari
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Pradeepa R W Arachchige
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Iman Idrees
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Yidian Gao
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice Waitt
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Samuel R C Weaver
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ali Mazaheri
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah S Lyons
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Olivia Grech
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Mark Thaller
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Caroline Witton
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Andrew P Bagshaw
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hyojin Park
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jan Novak
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Susan P Mollan
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham Neuro-ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust Birmingham, Birmingham B15 2WB, UK
| | - Lisa J Hill
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Samuel J E Lucas
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James L Mitchell
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Alexandra J Sinclair
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Karen Mullinger
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Davinia Fernández-Espejo
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Rayfield AC, Wu T, Rifkin JA, Meaney DF. Individualized mouse brain network models produce asymmetric patterns of functional connectivity after simulated traumatic injury. Netw Neurosci 2025; 9:326-351. [PMID: 40161980 PMCID: PMC11949614 DOI: 10.1162/netn_a_00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/17/2024] [Indexed: 04/02/2025] Open
Abstract
The functional and cognitive effects of traumatic brain injury (TBI) are poorly understood, as even mild injuries (concussion) can lead to long-lasting, untreatable symptoms. Simplified brain dynamics models may help researchers better understand the relationship between brain injury patterns and functional outcomes. Properly developed, these computational models provide an approach to investigate the effects of both computational and in vivo injury on simulated dynamics and cognitive function, respectively, for model organisms. In this study, we apply the Kuramoto model and an existing mesoscale mouse brain structural network to develop a simplified computational model of mouse brain dynamics. We explore how to optimize our initial model to predict existing mouse brain functional connectivity collected from mice under various anesthetic protocols. Finally, to determine how strongly the changes in our optimized models' dynamics can predict the extent of a brain injury, we investigate how our simulations respond to varying levels of structural network damage. Results predict a mixture of hypo- and hyperconnectivity after experimental TBI, similar to results in TBI survivors, and also suggest a compensatory remodeling of connections that may have an impact on functional outcomes after TBI.
Collapse
Affiliation(s)
- Adam C. Rayfield
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
| | - Taotao Wu
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
- University of Georgia School of Chemical, Material, and Biomedical Engineering
| | - Jared A. Rifkin
- University of Virginia Department of Mechanical and Aerospace Engineering
| | - David F. Meaney
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
| |
Collapse
|
5
|
Boone KB, Vane RP, Victor TL. Critical Review of Recently Published Studies Claiming Long-Term Neurocognitive Abnormalities in Mild Traumatic Brain Injury. Arch Clin Neuropsychol 2025; 40:272-288. [PMID: 39564962 DOI: 10.1093/arclin/acae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 11/21/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common claimed personal injury condition for which neuropsychologists are retained as forensic experts in litigation. Therefore, it is critical that experts have accurate information when testifying as to neurocognitive outcome from concussion. Systematic reviews and six meta-analyses from 1997 to 2011 regarding objective neurocognitive outcome from mTBI provide no evidence that concussed individuals do not return to baseline by weeks to months post-injury. In the current manuscript, a critical review was conducted of 21 research studies published since the last meta-analysis in 2011 that have claimed to demonstrate long-term (i.e., ≥12 months post-injury) neurocognitive abnormalities in adults with mTBI. Using seven proposed methodological criteria for research investigating neurocognitive outcome from mTBI, no studies were found to be scientifically adequate. In particular, more than 50% of the 21 studies reporting cognitive dysfunction did not appropriately diagnose mTBI, employ prospective research designs, use standard neuropsychological tests, include appropriate control groups, provide information on motive to feign or use PVTs, or exclude, or adequately consider the impact of, comorbid conditions known to impact neurocognitive scores. We additionally analyzed 15 studies published during the same period that documented no longer term mTBI-related cognitive abnormalities, and demonstrate that they were generally more methodologically robust than the studies purporting to document cognitive dysfunction. The original meta-analytic conclusions remain the most empirically-sound evidence informing our current understanding of favorable outcomes following mTBI.
Collapse
Affiliation(s)
- Kyle B Boone
- Private Practice, Torrance, 24564 Hawthorne Blvd., Suite 208, Torrance, California 90505, USA
| | - Ryan P Vane
- Department of Psychology, California State University, Dominguez Hills, 1000 E. Victoria Street Carson, California 90747, USA
| | - Tara L Victor
- Department of Psychology, California State University, Dominguez Hills, 1000 E. Victoria Street Carson, California 90747, USA
| |
Collapse
|
6
|
Levy AM, Saling MM, Anderson JFI. Cognitive Symptoms Are Not Associated with Cognitive Performance in Post-Acute mTBI. Arch Clin Neuropsychol 2025; 40:63-74. [PMID: 39110919 PMCID: PMC11754668 DOI: 10.1093/arclin/acae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE Subjective cognitive symptoms are commonly reported after mild traumatic brain injury (mTBI) but are often not associated with objective cognitive performance. This may be due to limitations in traditional cognitive performance measures, which may not be sensitive to subtle variations in cognition in post-acute mTBI. This study explored associations between objective and subjective cognition using computer-based tasks of increasing cognitive load, proposed to be more sensitive to subtle differences in performance. METHOD Individuals with mTBI (n = 68) and trauma controls (n = 40) were prospectively recruited and assessed approximately 8 weeks post-injury. Participants completed measures of subjective symptom reporting, objective cognitive performance (including two computer-based tasks of increasing cognitive load), and psychological distress. RESULTS There were no significant associations between subjective and objective cognition reporting in the mTBI group, both in bivariate correlations (|r| = 0.01-0.20, p > .05) and when controlling for psychological distress (|r| = 0.00-0.17, p > .05). A similar pattern of results was observed in trauma controls, suggesting that the limited relationships between objective and subjective cognition in mTBI may not be specific to this population. CONCLUSIONS Despite employing measures of cognitive performance proposed to be more sensitive than traditional tasks, no significant relationships were observed between objective and subjective cognition in post-acute mTBI, and estimated effect sizes were small to negligible. This provides further evidence that at a group level 8 weeks after mTBI subjective cognitive symptoms primarily reflect factors aside from objective cognition.
Collapse
Affiliation(s)
- Arielle M Levy
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Michael M Saling
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jacqueline F I Anderson
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- Psychology Department, The Alfred hospital, Commercial Rd, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
7
|
Snell DL, Wynands P, Dunn J, Nunnerley J, Theadom A. Screening and outcomes of co-occurring traumatic brain injury among people with spinal cord injury: a scoping review. J Rehabil Med 2025; 57:jrm41897. [PMID: 39750040 PMCID: PMC11681146 DOI: 10.2340/jrm.v57.41897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE To map existing knowledge on screening and rehabilitation outcomes for co-occurring traumatic brain injury among people with traumatic spinal cord injury (SCI). METHODS Articles focusing on screening and rehabilitation outcomes in participants sustaining co-occurring traumatic brain injury and traumatic spinal cord injury (all ages) were identified in Ovid, Scopus, Web of Science, CINAHL, and ProQuest Dissertations and Theses electronic databases. There were no limitations on study design, date, or geographical location. Articles were excluded if they were not available in English. Data were extracted into the Rayyan online collaboration platform and summarized descriptively. RESULTS Twenty-five studies were included, with a mix of retrospective, case-control, and prospective cohort designs. Screening under-estimated traumatic brain injury incidence when approaches relied on inconsistently collected traumatic brain injury indicators, especially for mild traumatic brain injury. Rehabilitation outcomes included length of stay, functional outcomes, cognitive functioning, complication rates, and employment. Although mixed, outcomes among persons with moderate to severe co-occurring traumatic brain injury especially, appeared poorer than those with spinal cord injury alone. CONCLUSIONS Multivariable approaches to traumatic brain injury ascertainment and greater consistency in documenting acute traumatic brain injury indicators may improve reliability of capturing traumatic brain injury and traumatic brain injury severity among persons with traumatic spinal cord injury. Impacts of co-occurring traumatic brain injury appear greater relative to SCI alone but few studies analysed outcomes based on traumatic brain injury severity.
Collapse
Affiliation(s)
- Deborah L Snell
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.
| | - Phoebe Wynands
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Jennifer Dunn
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Joanne Nunnerley
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience and the TBI Network, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
8
|
Fraunberger EA, Wilson AJ, Idriss A, Campbell C, King R, Wang M, Debert CT. Cluster-based analysis of PTSD-Checklist for DSM-5 (PCL-5) in civilians with post-concussive cognitive changes. Brain Inj 2024; 38:1236-1244. [PMID: 39082467 DOI: 10.1080/02699052.2024.2381065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE This study explores the relationship between PTSD symptoms and cognition in patients with persistent post-concussive symptoms (PPCS). METHODS Adults with PPCS presenting to a specialized brain injury clinic provided demographic and injury information and completed the PTSD checklist for DSM-5, Generalized Anxiety Disorder Scale-7 (GAD-7) and Patient Health Questionnaire-9 (PHQ-9). The Montreal Cognitive Assessment (MoCA) was used to screen for possible cognitive concerns. Multiple regression analysis (MLR) adjusting for age, sex, mechanism of injury, psychiatric history, number of previous concussions, months since most recent injury, and mental health questionnaire scores was used to determine associations between PTSD and cognition. Binomial logistic regression explored the relationship between domains of the MoCA and PCL-5 scores. RESULTS We found a negative correlation between MoCA scores, PCL-5 (ρ=-0.211, p = 0.009) and PHQ-9 (ρ=-0.187, p = 0.021) in patients with PPCS and collinearity of PCL-5 and PHQ-9 scores. Significantly higher Arousal and Reactivity cluster scores within the PCL-5 were associated with poorer scores on naming and abstract tasks on the MoCA. CONCLUSION The association between specific PCL-5 clusters and lower MoCA scores may represent a viable target for psychotherapeutic and psychopharmacologic intervention in patients with cognitive changes associated with PPCS.
Collapse
Affiliation(s)
- Erik A Fraunberger
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Alison J Wilson
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Adam Idriss
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Christina Campbell
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Regan King
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Meng Wang
- Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| |
Collapse
|
9
|
Bigler ED, Allder S, Victoroff J. What traditional neuropsychological assessment got wrong about mild traumatic brain injury. II: limitations in test development, research design, statistical and psychometric issues. Brain Inj 2024; 38:1053-1074. [PMID: 39066740 DOI: 10.1080/02699052.2024.2376261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
PRIMARY OBJECTIVE This is Part II of a four-part opinion review on traditional neuropsychological assessment methods and findings associated with mild traumatic brain injury (mTBI). This Part II review focuses on historical, psychometric and statistical issues involving traditional neuropsychological methods that have been used in neuropsychological outcome studies of mTBI, but demonstrates the critical limitations of traditional methods. RESEARCH DESIGN This is an opinion review. METHODS AND PROCEDURES Traditional neuropsychological tests are dated and lack specificity in evaluating such a heterogenous and complex injury as occurs with mTBI. MAIN OUTCOME AND RESULTS In this review, we demonstrate traditional neuropsychological methods were never developed as standalone measures for detecting subtle changes in neurocognitive or neurobehavioral functioning and likewise, never designed to address the multifaceted issues related to underlying mTBI neuropathology symptom burden from having sustained a concussive brain injury. CONCLUSIONS For neuropsychological assessment to continue to contribute to clinical practice and outcome literature involving mTBI, major innovative changes are needed that will likely require technological advances of novel assessment techniques more specifically directed to evaluating the mTBI patient. These will be discussed in Part IV.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, Utah, USA
- Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Steven Allder
- Consultant Neurologist and Clinical Director, Re: Cognition Health, London, UK
| | - Jeff Victoroff
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Fox AJ, Matthews N, Qiu Z, Filmer HL, Dux PE. On the lasting impact of mild traumatic brain injury on working memory: Behavioural and electrophysiological evidence. Neuropsychologia 2024; 204:109005. [PMID: 39313130 DOI: 10.1016/j.neuropsychologia.2024.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Despite increasing recognition of the significance of mild traumatic brain injury (mTBI), the long-term cognitive consequences of the injury remain unclear. More sensitive measures that can detect subtle cognitive changes and consideration of individual variability are needed to properly characterise cognitive outcomes following mTBI. Here, we used complex behavioural tasks, individual differences approaches, and electrophysiology to investigate the long-term cognitive effects of a history of mTBI. In Experiment 1, participants with self-reported mTBI history (n=82) showed poorer verbal working memory performance on the operation span task compared to control participants (n=88), but there were no group differences in visual working memory, multitasking, cognitive flexibility, attentional control, visuospatial ability, or information processing speed. Individual differences analyses revealed that time since injury and presence of memory loss predicted visual working memory capacity and visuospatial ability, respectively, in those with mTBI history. In Experiment 2, participants with mTBI history (n=20) again demonstrated poorer verbal working memory on the operation span task compared to control participants (n=38), but no group differences were revealed on a visuospatial complex span task or simpler visual working memory measures. We also explored the electrophysiological indices of visual working memory using EEG during a change detection task. No differences were observed in early sensory event-related potentials (P1, N1) or the later negative slow wave associated with visual working memory capacity. Together, these findings suggest that mTBI history may be associated with a lasting, isolated disruption in the subsystem underlying verbal working memory storage. The results emphasise the importance of sensitive cognitive measures and accounting for individual variability in injury characteristics when assessing mTBI outcomes.
Collapse
Affiliation(s)
- Amaya J Fox
- School of Psychology, The University of Queensland, St Lucia, Queensland, Australia.
| | - Natasha Matthews
- School of Psychology, The University of Queensland, St Lucia, Queensland, Australia
| | - Zeguo Qiu
- Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Queensland, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
11
|
Snider SB, Temkin NR, Sun X, Stubbs JL, Rademaker QJ, Markowitz AJ, Rosenthal ES, Diaz-Arrastia R, Fox MD, Manley GT, Jain S, Edlow BL. Automated Measurement of Cerebral Hemorrhagic Contusions and Outcomes After Traumatic Brain Injury in the TRACK-TBI Study. JAMA Netw Open 2024; 7:e2427772. [PMID: 39212991 PMCID: PMC11365003 DOI: 10.1001/jamanetworkopen.2024.27772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 09/04/2024] Open
Abstract
Importance Because withdrawal of life-sustaining therapy based on perceived poor prognosis is the most common cause of death after moderate or severe traumatic brain injury (TBI), the accuracy of clinical prognoses is directly associated with mortality. Although the location of brain injury is known to be important for determining recovery potential after TBI, the best available prognostic models, such as the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) score, do not currently incorporate brain injury location. Objective To test whether automated measurement of cerebral hemorrhagic contusion size and location is associated with improved prognostic performance of the IMPACT score. Design, Setting, and Participants This prognostic cohort study was performed in 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018. Adult participants aged 17 years or older from the US-based Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study with moderate or severe TBI (Glasgow Coma Scale score 3-12) and contusions detected on brain computed tomography (CT) scans were included. The data analysis was performed between January 2023 and February 2024. Exposures Labeled contusions detected on CT scans using Brain Lesion Analysis and Segmentation Tool for Computed Tomography (BLAST-CT), a validated artificial intelligence algorithm. Main Outcome and Measure The primary outcome was a Glasgow Outcome Scale-Extended (GOSE) score of 4 or less at 6 months after injury. Whether frontal or temporal lobe contusion volumes improved the performance of the IMPACT score was tested using logistic regression and area under the receiver operating characteristic curve comparisons. Sparse canonical correlation analysis was used to generate a disability heat map to visualize the strongest brainwide associations with outcomes. Results The cohort included 291 patients with moderate or severe TBI and contusions (mean [SD] age, 42 [18] years; 221 [76%] male; median [IQR] emergency department arrival Glasgow Coma Scale score, 5 [3-10]). Only temporal contusion volumes improved the discrimination of the IMPACT score (area under the receiver operating characteristic curve, 0.86 vs 0.84; P = .03). The data-derived disability heat map of contusion locations showed that the strongest association with unfavorable outcomes was within the bilateral temporal and medial frontal lobes. Conclusions and Relevance These findings suggest that CT-based automated contusion measurement may be an immediately translatable strategy for improving TBI prognostic models.
Collapse
Affiliation(s)
- Samuel B. Snider
- Division of Neurocritical Care, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nancy R. Temkin
- Department of Neurological Surgery, University of Washington, Seattle
- Department of Biostatistics, University of Washington, Seattle
| | - Xiaoying Sun
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego
| | - Jacob L. Stubbs
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Quinn J. Rademaker
- Division of Neurocritical Care, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Amy J. Markowitz
- Department of Neurological Surgery, University of California, San Francisco
| | - Eric S. Rosenthal
- Harvard Medical School, Boston, Massachusetts
- Division of Clinical Neurophysiology, Department of Neurology, Massachusetts General Hospital, Boston
| | | | - Michael D. Fox
- Harvard Medical School, Boston, Massachusetts
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California, San Francisco
- Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego
| | - Brian L. Edlow
- Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston
| |
Collapse
|
12
|
Zhang H, Zhao Y, Qu Y, Du J, Peng Y. Transcutaneous Cervical Vagus Nerve Magnetic Stimulation in Patients With Traumatic Brain Injury: A Feasibility Study. Neuromodulation 2024; 27:672-680. [PMID: 37865889 DOI: 10.1016/j.neurom.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Transcutaneous vagus nerve stimulation has shown promising results in improving cognitive and motor function after stroke. However, to our knowledge, there have been no studies in the modulation of the cervical vagus nerve using repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury (TBI) with cognitive dysfunction. Thus, we conducted a single-arm feasibility trial to assess the safety and effectiveness of rTMS of the vagus nerve in patients with TBI. MATERIALS AND METHODS We enrolled ten patients with TBI and administered half-hour vagus nerve magnetic stimulation (VNMS) sessions for ten days to evaluate the feasibility of the treatment. The Montreal cognitive assessment-Beijing (MoCA-B), the Digit Span Test, and the Auditory Verbal Learning Test (AVLT) were used to measure cognitive function before and after the VNMS treatment. Physiological parameters of all subjects were assessed by electrocardiogram. RESULTS The findings showed that daily half-hour VNMS for ten days was feasible in patients with TBI, with minimal side effects and no clinically significant effects on physiological parameters. Eight patients showed improvement in MoCA-B, and five patients showed improvement in immediate memory as measured by AVLT. CONCLUSIONS We conclude that VNMS is a safe and feasible treatment option for patients with TBI with cognitive dysfunction. However, further controlled studies are necessary to establish the efficacy of VNMS in promoting cognitive recovery after TBI. SIGNIFICANCE This study is, to our knowledge, the first study to investigate the feasibility of VNMS for cognitive dysfunction in patients with TBI. Our findings offer the possibility of rTMS applied to the vagus nerve in clinical practice.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Juan Du
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yi Peng
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
13
|
Yang D, Nie BB, He JG, Lv ZQ, Mo FF, Ouyang SY, Wang J, Chen J, Tao T. Exploring cerebral structural and functional abnormalities in a mouse model of post-traumatic headache induced by mild traumatic brain injury. Zool Res 2024; 45:648-662. [PMID: 38766747 PMCID: PMC11188605 DOI: 10.24272/j.issn.2095-8137.2023.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 05/22/2024] Open
Abstract
Mild traumatic brain injury (mTBI)-induced post-traumatic headache (PTH) is a pressing public health concern and leading cause of disability worldwide. Although PTH is often accompanied by neurological disorders, the exact underlying mechanism remains largely unknown. Identifying potential biomarkers may prompt the diagnosis and development of effective treatments for mTBI-induced PTH. In this study, a mouse model of mTBI-induced PTH was established to investigate its effects on cerebral structure and function during short-term recovery. Results indicated that mice with mTBI-induced PTH exhibited balance deficits during the early post-injury stage. Metabolic kinetics revealed that variations in neurotransmitters were most prominent in the cerebellum, temporal lobe/cortex, and hippocampal regions during the early stages of PTH. Additionally, variations in brain functional activities and connectivity were further detected in the early stage of PTH, particularly in the cerebellum and temporal cortex, suggesting that these regions play central roles in the mechanism underlying PTH. Moreover, our results suggested that GABA and glutamate may serve as potential diagnostic or prognostic biomarkers for PTH. Future studies should explore the specific neural circuits involved in the regulation of PTH by the cerebellum and temporal cortex, with these two regions potentially utilized as targets for non-invasive stimulation in future clinical treatment.
Collapse
Affiliation(s)
- Dan Yang
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524045, China
| | - Bin-Bin Nie
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Gang He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430071, China
| | - Zong-Qiang Lv
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - Feng-Feng Mo
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Si-Yi Ouyang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430071, China
- Institute of Neuroscience and Brain Diseases
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China. E-mail:
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200082, China. E-mail:
| | - Tao Tao
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524045, China
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| |
Collapse
|
14
|
Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A 2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson's disease. Chin J Traumatol 2024; 27:125-133. [PMID: 37679245 PMCID: PMC11138351 DOI: 10.1016/j.cjtee.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have been clinically pursued for the last 2 decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
15
|
Evans RW. The Postconcussion Syndrome and Posttraumatic Headaches in Civilians, Soldiers, and Athletes. Neurol Clin 2024; 42:341-373. [PMID: 38575256 DOI: 10.1016/j.ncl.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Posttraumatic headaches are one of the most common and controversial secondary headache types. After a mild traumatic brain, an estimated 11% to 82% of people develop a postconcussion syndrome, which has been controversial for more than 160 years. Headache is estimated as present in 30% to 90% of patients after a mild head injury. Most headaches are tension-type-like or migraine-like. Headaches in civilians, soldiers, athletes, and postcraniotomy are reviewed. The treatments are the same as for the primary headaches. Persistent posttraumatic headaches can continue for many years.
Collapse
Affiliation(s)
- Randolph W Evans
- Neurology, Baylor College of Medicine, 1200 Binz #1370, Houston, TX 77004, USA.
| |
Collapse
|
16
|
Nwakamma MC, Stillman AM, Gabard-Durnam LJ, Cavanagh JF, Hillman CH, Morris TP. Slowing of Parameterized Resting-State Electroencephalography After Mild Traumatic Brain Injury. Neurotrauma Rep 2024; 5:448-461. [PMID: 38666007 PMCID: PMC11044859 DOI: 10.1089/neur.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Reported changes in electroencephalography (EEG)-derived spectral power after mild traumatic brain injury (mTBI) remains inconsistent across existing literature. However, this may be a result of previous analyses depending solely on observing spectral power within traditional canonical frequency bands rather than accounting for the aperiodic activity within the collected neural signal. Therefore, the aim of this study was to test for differences in rhythmic and arrhythmic time series across the brain, and in the cognitively relevant frontoparietal (FP) network, and observe whether those differences were associated with cognitive recovery post-mTBI. Resting-state electroencephalography (rs-EEG) was collected from 88 participants (56 mTBI and 32 age- and sex-matched healthy controls) within 14 days of injury for the mTBI participants. A battery of executive function (EF) tests was collected at the first session with follow-up metrics collected approximately 2 and 4 months after the initial visit. After spectral parameterization, a significant between-group difference in aperiodic-adjusted alpha center peak frequency within the FP network was observed, where a slowing of alpha peak frequency was found in the mTBI group in comparison to the healthy controls. This slowing of week 2 (collected within 2 weeks of injury) aperiodic-adjusted alpha center peak frequency within the FP network was associated with increased EF over time (evaluated using executive composite scores) post-mTBI. These findings suggest alpha center peak frequency within the FP network as a candidate prognostic marker of EF recovery and may inform clinical rehabilitative methods post-mTBI.
Collapse
Affiliation(s)
- Mark C. Nwakamma
- Department of Physical Therapy Human Movement Sciences, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - Alexandra M. Stillman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Laurel J. Gabard-Durnam
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Charles H. Hillman
- Department of Physical Therapy Human Movement Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - Timothy P. Morris
- Department of Physical Therapy Human Movement Sciences, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
- Department of Applied Psychology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
18
|
Liu T, Yu S, Liu M, Zhao Z, Yuan J, Sha Z, Liu X, Qian Y, Nie M, Jiang R. Cognitive impairment in Chinese traumatic brain injury patients: from challenge to future perspectives. Front Neurosci 2024; 18:1361832. [PMID: 38529265 PMCID: PMC10961372 DOI: 10.3389/fnins.2024.1361832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Traumatic Brain Injury (TBI) is a prevalent form of neurological damage that may induce varying degrees of cognitive dysfunction in patients, consequently impacting their quality of life and social functioning. This article provides a mini review of the epidemiology in Chinese TBI patients and etiology of cognitive impairment. It analyzes the risk factors of cognitive impairment, discusses current management strategies for cognitive dysfunction in Chinese TBI patients, and summarizes the strengths and limitations of primary testing tools for TBI-related cognitive functions. Furthermore, the article offers a prospective analysis of future challenges and opportunities. Its objective is to contribute as a reference for the prevention and management of cognitive dysfunction in Chinese TBI patients.
Collapse
Affiliation(s)
- Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Shaohui Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihao Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Richey LN, Daneshvari NO, Young L, Bray MJ, Gottesman RF, Mosley T, Walker KA, Peters ME, Schneider AL. Associations of Prior Head Injury With Mild Behavioral Impairment Domains. J Head Trauma Rehabil 2024; 39:E48-E58. [PMID: 37335212 PMCID: PMC10728342 DOI: 10.1097/htr.0000000000000880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVE This study investigated associations of prior head injury and number of prior head injuries with mild behavioral impairment (MBI) domains. SETTING The Atherosclerosis Risk in Communities (ARIC) Study. PARTICIPANTS A total of 2534 community-dwelling older adults who took part in the ARIC Neurocognitive Study stage 2 examination were included. DESIGN This was a prospective cohort study. Head injury was defined using self-reported and International Classification of Diseases, Ninth Revision ( ICD -9) code data. MBI domains were defined using the Neuropsychiatric Inventory Questionnaire (NPI-Q) via an established algorithm mapping noncognitive neuropsychiatric symptoms to the 6 domains of decreased motivation, affective dysregulation, impulse dyscontrol, social inappropriateness, and abnormal perception/thought content. MAIN MEASURES The primary outcome was the presence of impairment in MBI domains. RESULTS Participants were a mean age of 76 years, with a median time from first head injury to NPI-Q administration of 32 years. The age-adjusted prevalence of symptoms in any 1+ MBI domains was significantly higher among individuals with versus without prior head injury (31.3% vs 26.0%, P = .027). In adjusted models, a history of 2+ head injuries, but not 1 prior head injury, was associated with increased odds of impairment in affective dysregulation and impulse dyscontrol domains, compared with no history of head injury (odds ratio [OR] = 1.83, 95% CI = 1.13-2.98, and OR = 1.74, 95% CI = 1.08-2.78, respectively). Prior head injury was not associated with symptoms in MBI domains of decreased motivation, social inappropriateness, and abnormal perception/thought content (all P > .05). CONCLUSION Prior head injury in older adults was associated with greater MBI domain symptoms, specifically affective dysregulation and impulse dyscontrol. Our results suggest that the construct of MBI can be used to systematically examine the noncognitive neuropsychiatric sequelae of head injury; further studies are needed to examine whether the systematic identification and rapid treatment of neuropsychiatric symptoms after head injury is associated with improved outcomes.
Collapse
Affiliation(s)
- Lisa N. Richey
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences
| | - Nicholas O. Daneshvari
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences
| | - Lisa Young
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences
| | - Michael J.C. Bray
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences
| | - Rebecca F. Gottesman
- National Institutes of Health, National Institute of Neurological Disorders and Stroke Intramural Research Program
| | | | | | - Matthew E. Peters
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences
| | - Andrea L.C. Schneider
- University of Pennsylvania Perelman School of Medicine, Department of Neurology, Division of Neurocritical Care
- University of Pennsylvania Perelman School of Medicine, Department of Biostatistics, Epidemiology, and Informatics
| |
Collapse
|
20
|
Lang B, Kerr ZY, Chandran A, Walton SR, Mannix R, Lempke LB, DeFreese JD, Echemendia RJ, Guskiewicz KM, Meehan III WP, McCrea MA, Brett BL. The Longitudinal Relationship Between Concussion History, Years of American Football Participation, and Alcohol Use Among Former National Football League Players: an NFL-LONG Study. Arch Clin Neuropsychol 2024; 39:221-226. [PMID: 37609946 PMCID: PMC10879921 DOI: 10.1093/arclin/acad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
OBJECTIVE Investigate the relationships between concussion history and years of football participation (repetitive head impact proxy) with alcohol use across multiple decades in former professional football players. METHODS Participants (n = 348; mean age = 49.0 ± 9.4) completed health questionnaires in 2001 and 2019, which included self-reported concussion history and years of participation. Alcohol use frequency and amount per occasion were reported for three timepoints: during professional career, 2001, and 2019. Ordinal logistic regression models were fit to test associations of concussion history and years of participation with alcohol use at each timepoint. RESULTS There were no significant associations between either concussion history or years of football participation with alcohol use (frequency and amount per occasion) at any timepoint. Effect estimates for concussion history and years of football participation with alcohol use were generally comparable across timepoints. CONCLUSIONS Later life alcohol use by former American football players is not associated with concussion history or years of exposure to football.
Collapse
Affiliation(s)
- Brittany Lang
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI 53226, United States
| | - Zachary Yukio Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27559, United States
| | - Avinash Chandran
- Datalys Center for Sports Injury Research and Prevention, Indianapolis, IN 46220, United States
| | - Samuel R Walton
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, VA 23284, United States
| | - Rebekah Mannix
- Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Landon B Lempke
- Michigan Concussion Center, School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - J D DeFreese
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27559, United States
| | - Ruben J Echemendia
- Psychological and Neurobehavioral Associates, Inc., State College, PA 16801, United States
| | - Kevin M Guskiewicz
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27559, United States
| | - William P Meehan III
- Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Pediatrics and Orthopedics, Harvard Medical School, Boston, MA 02115, United States
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI 53226, United States
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI 53226, United States
| |
Collapse
|
21
|
Theadom A, Jones K, Starkey N, Barker-Collo S, Ameratunga S, Faulkner J, Ao BT, Feigin V. Symptoms and Engagement in Anti-social Behavior 10 Years After Mild Traumatic Brain Injury Within a Community Civilian Sample: A Prospective Cohort Study With Age-Sex Matched Control Group. Arch Phys Med Rehabil 2024; 105:295-302. [PMID: 37558153 DOI: 10.1016/j.apmr.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To determine if there are longer-term effects on symptoms, health status, mood, and behavior 10 years after a mild traumatic brain injury (mTBI). DESIGN Prospective cohort study. SETTING Community-based, civilian sample. PARTICIPANTS Adults aged ≥16 years at follow-up who experienced an mTBI 10 years ago, and an age and sex-matched non-injured control group. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES mTBI cases and controls were asked to complete self-report assessments of functioning (WHO Disability Assessment Schedule Version 2), symptoms (Rivermead Post-Concussion Symptom Questionnaire), health status (100-point scale), alcohol (Alcohol Use Disorders Identification Test) and substance use (Alcohol, Smoking and Substance Involvement Screening Test), and whether they had engaged in any anti-social behaviors over the past 12 months. RESULTS Data were analyzed for 368 participants (184 mTBI cases and 184 age-sex matched controls). Just over a third of mTBI cases (64, 34.8%) reported that they were still affected by their index mTBI 10 years later. After adjusting for education and ethnicity, the mTBI group had statistically higher overall symptom burden (F=22.32, P<.001, ηp2=0.07) compared with controls. This difference remained after excluding those who experienced a recurrent TBI. The mTBI group were more than 3 times as likely to have engaged in anti-social behavior during the previous 12 months (F=5.89, P=.02). There were no group differences in health status, functioning, or problematic alcohol or substance use 10 years post-injury. CONCLUSIONS This study provides evidence of potential longer-term associations between mTBI, post-concussion symptoms, and anti-social behavior which warrants further evaluation. Future research should also examine if longer-term effects may be preventable with access to early rehabilitation post-injury.
Collapse
Affiliation(s)
- Alice Theadom
- Traumatic Brain Injury Network, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand; National Institute for Stroke and Applied Neuroscience, Auckland University of Technology, Auckland, New Zealand.
| | - Kelly Jones
- National Institute for Stroke and Applied Neuroscience, Auckland University of Technology, Auckland, New Zealand
| | - Nicola Starkey
- School of Psychology, University of Waikato, Hamilton, New Zealand
| | | | - Shanthi Ameratunga
- Department of Epidemiology and Biostatistics, University of Auckland and Te Whatu Ora, Auckland, New Zealand
| | - Josh Faulkner
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Braden Te Ao
- School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Valery Feigin
- National Institute for Stroke and Applied Neuroscience, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
22
|
Baker TL, Wright DK, Uboldi AD, Tonkin CJ, Vo A, Wilson T, McDonald SJ, Mychasiuk R, Semple BD, Sun M, Shultz SR. A pre-existing Toxoplasma gondii infection exacerbates the pathophysiological response and extent of brain damage after traumatic brain injury in mice. J Neuroinflammation 2024; 21:14. [PMID: 38195485 PMCID: PMC10775436 DOI: 10.1186/s12974-024-03014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Traumatic brain injury (TBI) is a key contributor to global morbidity that lacks effective treatments. Microbial infections are common in TBI patients, and their presence could modify the physiological response to TBI. It is estimated that one-third of the human population is incurably infected with the feline-borne parasite, Toxoplasma gondii, which can invade the central nervous system and result in chronic low-grade neuroinflammation, oxidative stress, and excitotoxicity-all of which are also important pathophysiological processes in TBI. Considering the large number of TBI patients that have a pre-existing T. gondii infection prior to injury, and the potential mechanistic synergies between the conditions, this study investigated how a pre-existing T. gondii infection modified TBI outcomes across acute, sub-acute and chronic recovery in male and female mice. Gene expression analysis of brain tissue found that neuroinflammation and immune cell markers were amplified in the combined T. gondii + TBI setting in both males and females as early as 2-h post-injury. Glutamatergic, neurotoxic, and oxidative stress markers were altered in a sex-specific manner in T. gondii + TBI mice. Structural MRI found that male, but not female, T. gondii + TBI mice had a significantly larger lesion size compared to their uninfected counterparts at 18-weeks post-injury. Similarly, diffusion MRI revealed that T. gondii + TBI mice had exacerbated white matter tract abnormalities, particularly in male mice. These novel findings indicate that a pre-existing T. gondii infection affects the pathophysiological aftermath of TBI in a sex-dependent manner, and may be an important modifier to consider in the care and prognostication of TBI patients.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Alessandro D Uboldi
- Division of Infectious Disease and Immune Defense, , The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christopher J Tonkin
- Division of Infectious Disease and Immune Defense, , The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
23
|
Reyes-Esteves S, Kumar M, Kasner SE, Witsch J. Clinical Grading Scales and Neuroprognostication in Acute Brain Injury. Semin Neurol 2023; 43:664-674. [PMID: 37788680 DOI: 10.1055/s-0043-1775749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Prediction of neurological clinical outcome after acute brain injury is critical because it helps guide discussions with patients and families and informs treatment plans and allocation of resources. Numerous clinical grading scales have been published that aim to support prognostication after acute brain injury. However, the development and validation of clinical scales lack a standardized approach. This in turn makes it difficult for clinicians to rely on prognostic grading scales and to integrate them into clinical practice. In this review, we discuss quality measures of score development and validation and summarize available scales to prognosticate outcomes after acute brain injury. These include scales developed for patients with coma, cardiac arrest, ischemic stroke, nontraumatic intracerebral hemorrhage, subarachnoid hemorrhage, and traumatic brain injury; for each scale, we discuss available validation studies.
Collapse
Affiliation(s)
- Sahily Reyes-Esteves
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monisha Kumar
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott E Kasner
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jens Witsch
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Whitehouse DP, Newcombe VF. Management of sports-related concussion in the emergency department. Br J Hosp Med (Lond) 2023; 84:1-9. [PMID: 37769260 DOI: 10.12968/hmed.2023.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Sports-related concussion is a common presentation to the emergency department, with increasing evidence of short and long-term morbidity. The heterogeneity of symptoms and clinical outcomes, alongside a lack of familiarity with current guidance, can present significant challenges to clinicians. This article presents an overview of the current literature concerning assessment and management of sports-related concussion in the emergency department and outlines a framework for graduated return to activity as based upon the current national guidance.
Collapse
Affiliation(s)
- Daniel P Whitehouse
- Department of Medicine: Perioperative, Acute, Critical Care and Emergency Medicine (PACE), University of Cambridge, Cambridge, UK
| | - Virginia Fj Newcombe
- Department of Medicine: Perioperative, Acute, Critical Care and Emergency Medicine (PACE), University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Levy AM, Saling MM, Anderson JFI. Frequency and extent of cognitive complaint following adult civilian mild traumatic brain injury: a systematic review and meta-analysis. BRAIN IMPAIR 2023; 24:309-332. [PMID: 38167200 DOI: 10.1017/brimp.2022.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Cognitive symptoms are associated with return to work, healthcare use and quality of life after mild traumatic brain injury (mTBI). Additionally, while overall 'post-concussion' symptoms are often present at similar levels in mTBI and control groups, cognitive complaints may be specifically elevated in mTBI. A systematic review and meta-analysis was conducted to investigate the frequency and extent of cognitive complaints following adult civilian mTBI, and compare it to the frequency and extent of complaints in control populations (PROSPERO: CRD42020151284). METHOD This review included studies published up to March 2022. Thirteen studies were included in the systematic review, and six were included in the meta-analysis. Data extraction and quality assessment were conducted by two independent reviewers. RESULTS Cognitive complaints are common after mTBI, although reported rates differed greatly across studies. Results suggested that mTBI groups report cognitive complaints to a significantly greater extent than control groups (Hedges' g = 0.85, 95% CI 0.31-1.40, p = .0102). Heterogeneity between studies was high (τ2 = 0.20, 95% CI 0.04-1.58; I2 = 75.0%, 95% CI 43.4%-89.0%). Between-group differences in symptom reporting were most often found when healthy rather than injured controls were employed. CONCLUSIONS Cognitive complaints are consistently reported after mTBI, and are present at greater levels in mTBI patients than in controls. Despite the importance of these complaints, including in regards to return to work, healthcare use and quality of life, there has been limited research in this area, and heterogeneity in research methodology is common.
Collapse
Affiliation(s)
- Arielle M Levy
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Michael M Saling
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Jacqueline F I Anderson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC3010, Australia
- Psychology Department, The Alfred Hospital, Melbourne, VIC3004, Australia
| |
Collapse
|
26
|
Chen J, Zhu T, Yu D, Yan B, Zhang Y, Jin J, Yang Z, Zhang B, Hao X, Chen Z, Yan C, Yu J. Moderate Intensity of Treadmill Exercise Rescues TBI-Induced Ferroptosis, Neurodegeneration, and Cognitive Impairments via Suppressing STING Pathway. Mol Neurobiol 2023; 60:4872-4896. [PMID: 37193866 PMCID: PMC10415513 DOI: 10.1007/s12035-023-03379-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Traumatic brain injury (TBI) is a universal leading cause of long-term neurological disability and causes a huge burden to an ever-growing population. Moderate intensity of treadmill exercise has been recognized as an efficient intervention to combat TBI-induced motor and cognitive disorders, yet the underlying mechanism is still unclear. Ferroptosis is known to be highly implicated in TBI pathophysiology, and the anti-ferroptosis effects of treadmill exercise have been reported in other neurological diseases except for TBI. In addition to cytokine induction, recent evidence has demonstrated the involvement of the stimulator of interferon genes (STING) pathway in ferroptosis. Therefore, we examined the possibility that treadmill exercise might inhibit TBI-induced ferroptosis via STING pathway. In this study, we first found that a series of ferroptosis-related characteristics, including abnormal iron homeostasis, decreased glutathione peroxidase 4 (Gpx4), and increased lipid peroxidation, were detected at 44 days post TBI, substantiating the involvement of ferroptosis at the chronic stage following TBI. Furthermore, treadmill exercise potently decreased the aforementioned ferroptosis-related changes, suggesting the anti-ferroptosis role of treadmill exercise following TBI. In addition to alleviating neurodegeneration, treadmill exercise effectively reduced anxiety, enhanced spatial memory recovery, and improved social novelty post TBI. Interestingly, STING knockdown also obtained the similar anti-ferroptosis effects after TBI. More importantly, overexpression of STING largely reversed the ferroptosis inactivation caused by treadmill exercise following TBI. To conclude, moderate-intensity treadmill exercise rescues TBI-induced ferroptosis and cognitive deficits at least in part via STING pathway, broadening our understanding of neuroprotective effects induced by treadmill exercise against TBI.
Collapse
Affiliation(s)
- Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Tong Zhu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Bing Yan
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Yuxiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Jungong Jin
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Zhuojin Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Bao Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Chunxia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China.
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China.
| | - Jun Yu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
27
|
Zhao Y, Ning YL, Zhou YG. A 2AR and traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:225-265. [PMID: 37741693 DOI: 10.1016/bs.irn.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Accumulating evidence has revealed the adenosine 2A receptor is a key tuner for neuropathological and neurobehavioral changes following traumatic brain injury by experimental animal models and a few clinical trials. Here, we highlight recent data involving acute/sub-acute and chronic alterations of adenosine and adenosine 2A receptor-associated signaling in pathological conditions after trauma, with an emphasis of traumatic brain injury, including neuroinflammation, cognitive and psychiatric disorders, and other severe consequences. We expect this would lead to the development of therapeutic strategies for trauma-related disorders with novel mechanisms of action.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
28
|
Wang X, Hui X, Wang X, Huang B, Gan X, Liu X, Shen Z, Sun Y, Li L. Utilization of clinical and radiological parameters to predict cognitive prognosis in patients with mild-to-moderate traumatic brain injury. Front Neurosci 2023; 17:1222541. [PMID: 37575301 PMCID: PMC10412890 DOI: 10.3389/fnins.2023.1222541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Background Cognitive impairment is a common sequela following traumatic brain injury (TBI). This study aimed to identify risk factors for cognitive impairment after 3 and 12 months of TBI and to create nomograms to predict them. Methods A total of 305 mild-to-moderate TBI patients admitted to the First Affiliated Hospital with Nanjing Medical University from January 2018 to January 2022 were retrospectively recruited. Risk factors for cognitive impairment after 3 and 12 months of TBI were identified by univariable and multivariable logistic regression analyses. Based on these factors, we created two nomograms to predict cognitive impairment after 3 and 12 months of TBI, the discrimination and calibration of which were validated by plotting the receiver operating characteristic (ROC) curve and calibration curve, respectively. Results Cognitive impairment was detected in 125/305 and 52/305 mild-to-moderate TBI patients after 3 and 12 months of injury, respectively. Age, the Glasgow Coma Scale (GCS) score, >12 years of education, hyperlipidemia, temporal lobe contusion, traumatic subarachnoid hemorrhage (tSAH), very early rehabilitation (VER), and intensive care unit (ICU) admission were independent risk factors for cognitive impairment after 3 months of mild-to-moderate TBI. Meanwhile, age, GCS score, diabetes mellitus, tSAH, and surgical treatment were independent risk factors for cognitive impairment after 12 months of mild-to-moderate TBI. Two nomograms were created based on the risk factors identified using logistic regression analyses. The areas under the curve (AUCs) of the two nomograms to predict cognitive impairment after 3 and 12 months of mild-to-moderate TBI were 0.852 (95% CI [0.810, 0.895]) and 0.817 (95% CI [0.762, 0.873]), respectively. Conclusion Two nomograms are created to predict cognitive impairment after 3 and 12 months of TBI. Age, GCS score, >12 years of education, hyperlipidemia, temporal lobe contusion, tSAH, VER, and ICU admission are independent risk factors for cognitive impairment after 3 months of TBI; meanwhile, age, the GCS scores, diabetes mellitus, tSAH, and surgical treatment are independent risk factors of cognitive impairment after 12 months of TBI. Two nomograms, based on both groups of factors, respectively, show strong discriminative abilities.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobo Hui
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xiangyu Wang
- Department of Rehabilitation Medicine, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Baosheng Huang
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaokui Gan
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xingdong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyan Shen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lixin Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Sabayan B, Doyle S, Rost NS, Sorond FA, Lakshminarayan K, Launer LJ. The role of population-level preventive care for brain health in ageing. THE LANCET. HEALTHY LONGEVITY 2023; 4:e274-e283. [PMID: 37201543 PMCID: PMC10339354 DOI: 10.1016/s2666-7568(23)00051-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/20/2023] Open
Abstract
Over the past several decades, a worldwide demographic transition has led to an increasing number of older adults with chronic neurological conditions. These conditions, which have a profound effect on the cognitive function and physical ability of older adults, also have a long preclinical phase. This feature provides a unique opportunity to implement preventive measures for high-risk groups and the population as a whole, and therefore to reduce the burden of neurological diseases. The concept of brain health has emerged as the overarching theme to define overall brain function independently of underlying pathophysiological processes. We review the concept of brain health from the ageing and preventive care perspectives, discuss the mechanisms underpinning ageing and brain ageing, highlight the interplay of various forces resulting in deviation from brain health towards brain disease, and provide an overview of strategies to promote brain health with a life-course approach.
Collapse
Affiliation(s)
- Behnam Sabayan
- Department of Neurology, HealthPartners Neuroscience Center, St Paul, MN, USA; Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Sara Doyle
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Natalia S Rost
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Farzaneh A Sorond
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
30
|
Liu Y, Wang C, Pi Z, Wang T, Zhang C, Cai J. Research on the Potential Biomarkers of Mild Traumatic Brain Injury: a Systematic Review and Bibliometric Analysis. Mol Neurobiol 2023:10.1007/s12035-023-03350-7. [PMID: 37103686 DOI: 10.1007/s12035-023-03350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Reliable diagnostic methods for mild traumatic brain injury (mTBI) are lacking, and many researchers continue to search for objective biomarkers that can both define and detect mTBI. Although much research has been conducted in this field, there have not been many bibliometric studies. In this study, we aim to analyze the development over the last two decades in scientific output relating to the diagnosis of mTBI. To do this, we extracted documents from Web of Science, PubMed, and Embase and performed descriptive analysis (number of publications, primary journals, authors, and countries/regions), trend topics analysis, and citation analysis for papers across the globe, with a particular focus on molecular markers. One thousand twenty-three publications spanning 390 journals were identified on Web of Science, PubMed, and Embase for the period from 2000 to 2022. The number of publications increased every year (from 2 in 2000 to 137 in 2022). Of all the publications we analyzed, 58.7% had authors from the USA. Our analysis shows that molecular markers are the most studied markers in the field of mTBI diagnostics, accounting for 28.4% of all publications, and that the number of studies focused on this specific aspect has increased sharply in the past 5 years, indicating that molecular markers may become a research trend in the future.
Collapse
Affiliation(s)
- Yishu Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Chudong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Zhiyun Pi
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Tingting Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China.
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
31
|
Gugger JJ, Walter AE, Parker D, Sinha N, Morrison J, Ware J, Schneider AL, Petrov D, Sandsmark DK, Verma R, Diaz-Arrastia R. Longitudinal Abnormalities in White Matter Extracellular Free Water Volume Fraction and Neuropsychological Functioning in Patients with Traumatic Brain Injury. J Neurotrauma 2023; 40:683-692. [PMID: 36448583 PMCID: PMC10061336 DOI: 10.1089/neu.2022.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Traumatic brain injury is a global public health problem associated with chronic neurological complications and long-term disability. Biomarkers that map onto the underlying brain pathology driving these complications are urgently needed to identify individuals at risk for poor recovery and to inform design of clinical trials of neuroprotective therapies. Neuroinflammation and neurodegeneration are two endophenotypes potentially associated with increases in brain extracellular water content, but the nature of extracellular free water abnormalities after neurotrauma and its relationship to measures typically thought to reflect traumatic axonal injury are not well characterized. The objective of this study was to describe the relationship between a neuroimaging biomarker of extracellular free water content and the clinical features of a cohort with primarily complicated mild traumatic brain injury. We analyzed a cohort of 59 adult patients requiring hospitalization for non-penetrating traumatic brain injury of all severities as well as 36 healthy controls. Patients underwent brain magnetic resonance imaging (MRI) at 2 weeks (n = 59) and 6 months (n = 29) post-injury, and controls underwent a single MRI. Of the participants with TBI, 50 underwent clinical neuropsychological assessment at 2 weeks and 28 at 6 months. For each subject, we derived a summary score representing deviations in whole brain white matter extracellular free water volume fraction (VF) and free water-corrected fractional anisotropy (fw-FA). The summary specific anomaly score (SAS) for VF was significantly higher in TBI patients at 2 weeks and 6 months post-injury relative to controls. SAS for VF exhibited moderate correlation with neuropsychological functioning, particularly on measures of executive function. These findings indicate abnormalities in whole brain white matter extracellular water fraction in patients with TBI and are an important step toward identifying and validating noninvasive biomarkers that map onto the pathology driving disability after TBI.
Collapse
Affiliation(s)
- James J. Gugger
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexa E. Walter
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Drew Parker
- Department of Radiology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Diffusion and Connectomics in Precision Healthcare Research Lab, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nishant Sinha
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Justin Morrison
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jeffrey Ware
- Department of Radiology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea L.C. Schneider
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dmitriy Petrov
- Department of Neurosurgery, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Danielle K. Sandsmark
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ragini Verma
- Department of Radiology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Diffusion and Connectomics in Precision Healthcare Research Lab, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Norman R, Flaugher T, Chang S, Power E. Self-Perception of Cognitive-Communication Functions After Mild Traumatic Brain Injury. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:883-906. [PMID: 36645876 PMCID: PMC10166193 DOI: 10.1044/2022_ajslp-22-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 05/10/2023]
Abstract
PURPOSE A mixed-method approach was used to investigate the lived experiences of adults with mild traumatic brain injury (mTBI). The study aimed to understand the perceived relationship between cognitive-communication problems, thinking and communication concerns, and neurobehavioral symptoms. We hypothesized that individuals with cognitive-communication problems would attribute their problems with communication to their mTBI history and their self-perceived problems would be correlated with symptomatology. METHOD The Neurobehavioral Symptom Inventory (NSI) and an online cognitive-communication survey was used to conduct a study of 30 adults with mTBI history. Quantitative survey and NSI scores were analyzed with content analysis and correlational statistics. RESULTS The average NSI Total score was 17 with the following subscale scores: somatic (5), affective (8), and cognitive (3.9). Participants reported problems with expressive communication (56%), comprehension (80%), thinking (63%), and social skills (60%). Content analysis revealed problems in the following areas: expression (e.g., verbal, and written language), comprehension (reading and verbal comprehension), cognition (e.g., attention, memory and speed of processing, error regulation), and functional consequences (e.g., academic work, social problems, and anxiety and stress). A Pearson correlation indicated a statistically significant relationship (p < .01) between the Communication Survey Total and the Total, Somatic, Affective, and Cognitive subscales. CONCLUSIONS This study highlights a multifactorial basis of cognitive-communication impairment in adults with mTBI. We show that those with mTBI history perceive difficulties with cognitive-communication skills: conversations, writing, and short-term memory/attention. Furthermore, those with mTBI perceive their cognitive-communication problems after injury have impacted their vocational, social, and academic success.
Collapse
Affiliation(s)
- Rocio Norman
- Department of Communication Sciences and Disorders, University of Texas Health Science Center at San Antonio
| | - Tara Flaugher
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio
| | - Sharon Chang
- Department of Otolaryngology—Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Emma Power
- University of Technology Sydney, Speech Pathology, New South Wales, Australia
| |
Collapse
|
33
|
Moro F, Lisi I, Tolomeo D, Vegliante G, Pascente R, Mazzone E, Hussain R, Micotti E, Dallmeier J, Pischiutta F, Bianchi E, Chiesa R, Wang KK, Zanier ER. Acute Blood Levels of Neurofilament Light Indicate One-Year White Matter Pathology and Functional Impairment in Repetitive Mild Traumatic Brain Injured Mice. J Neurotrauma 2023. [PMID: 36576018 DOI: 10.1089/neu.2022.0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mild traumatic brain injury (mTBI) mostly causes transient symptoms, but repeated (r)mTBI can lead to neurodegenerative processes. Diagnostic tools to evaluate the presence of ongoing occult neuropathology are lacking. In a mouse model of rmTBI, we investigated MRI and plasma biomarkers of brain damage before chronic functional impairment arose. Anesthetized adult male and female C57BL/6J mice were subjected to rmTBI or a sham procedure. Sensorimotor deficits were evaluated up to 12 months post-injury in SNAP and Neuroscore tests. Cognitive function was assessed in the novel object recognition test at six and 12 months. Diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI) were performed at six and 12 months to examine white matter and structural damage. Plasma levels of neurofilament light (NfL) were assessed longitudinally up to 12 months. Brain histopathology was performed at 12 months. Independent groups of mice were used to examine the effects of 2-, 7- and 14-days inter-injury intervals on acute plasma NfL levels and on hyperactivity. Twelve months after an acute transient impairment, sensorimotor functions declined again in rmTBI mice (p < 0.001 vs sham), but not earlier. Similarly, rmTBI mice showed memory impairment at 12 (p < 0.01 vs sham) but not at 6 months. White matter damage examined by DTI was evident in rmTBI mice at both six and 12 months (p < 0.001 vs sham). This was associated with callosal atrophy (p < 0.001 vs sham) evaluated by structural MRI. Plasma NfL at one week was elevated in rmTBI (p < 0.001 vs sham), and its level correlated with callosal atrophy at 12 months (Pearson r = 0.72, p < 0.01). Histopathology showed thinning of the corpus callosum and marked astrogliosis in rmTBI mice. The NfL levels were higher in mice subjected to short (2 days) compared with longer (7 and 14 days) inter-injury intervals (p < 0.05), and this correlated with hyperactivity in mice (Pearson r = 0.50; p < 0.05). These findings show that rmTBI causes white matter pathology detectable by MRI before chronic functional impairment. Early quantification of plasma NfL correlates with the degree of white matter atrophy one year after rmTBI and can serve to monitor the brain's susceptibility to a second mTBI, supporting its potential clinical application to guide the return to practice in sport-related TBI.
Collapse
Affiliation(s)
- Federico Moro
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Lisi
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gloria Vegliante
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Pascente
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Mazzone
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Riaz Hussain
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Julian Dallmeier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Bianchi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
34
|
Wang Y, Zhou Y, Zhang X, Wang K, Chen X, Cheng H. Orienting network impairment of attention in patients with mild traumatic brain injury. Behav Brain Res 2023; 437:114133. [PMID: 36179805 DOI: 10.1016/j.bbr.2022.114133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022]
Abstract
The incomplete understanding of mild traumatic brain injury (MTBI)-related cognitive impairment in the acute stage and the low cognitive needs of patients in the later stage might be the main reasons for the neglect of clinical symptoms in patients with MTBI. Patients often experience attention deficits; however, it is unclear whether these patients suffer from general deficits or selective impairment of the brain attention network. Therefore, we investigated deficits in the attention function of patients with mild brain traumatic injury. Patients (n = 50) and matched healthy controls (n = 49) completed a general neuropsychological background test and the Attention Network Test, which provided an independent assessment of the three attention networks (alerting, orienting, and executive control). We found that patients had significant deficits in the orienting network but none in the alerting and executive control networks. Furthermore, patients' cognitive task scores in attention, memory, and information processing tasks were significantly lower than the scores of the controls. Our results demonstrated that patients with MTBI had selective impairment in the orienting network and extensive cognitive impairments, including those related to general attention, memory, and information processing speed.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yuwei Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinyu Zhang
- Department of Neurosurgery, Funan County People's Hospital, Fuyang, China
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingui Chen
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
35
|
Liu Y, Li F, Shang S, Wang P, Yin X, Krishnan Muthaiah VP, Lu L, Chen YC. Functional-structural large-scale brain networks are correlated with neurocognitive impairment in acute mild traumatic brain injury. Quant Imaging Med Surg 2023; 13:631-644. [PMID: 36819289 PMCID: PMC9929413 DOI: 10.21037/qims-22-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Background This study was conducted to investigate topological changes in large-scale functional connectivity (FC) and structural connectivity (SC) networks in acute mild traumatic brain injury (mTBI) and determine their potential relevance to cognitive impairment. Methods Seventy-one patients with acute mTBI (29 males, 42 females, mean age 43.54 years) from Nanjing First Hospital and 57 matched healthy controls (HC) (33 males, 24 females, mean age 46.16 years) from the local community were recruited in this prospective study. Resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were acquired within 14 days (mean 3.29 days) after the onset of mTBI. Then, large-scale FC and SC networks with 116 regions from the automated anatomical labeling (AAL) brain atlas were constructed. Graph theory analysis was used to analyze global and nodal metrics. Finally, correlations were assessed between topological properties and neurocognitive performances evaluated by the Montreal Cognitive Assessment (MoCA). Bonferroni correction was performed out for multiple comparisons in all involved analyses. Results Compared with HC, acute mTBI patients had a higher normalized clustering coefficient (γ) for FC (Cohen's d=4.076), and higher γ and small worldness (σ) for SC (Cohen's d=0.390 and Cohen's d=0.395). The mTBI group showed aberrant nodal degree (Dc), nodal efficiency (Ne), and nodal local efficiency (Nloc) for FC and aberrant Dc, nodal betweenness (Bc), nodal clustering coefficient (NCp) and Ne for SC mainly in the frontal and temporal, cerebellum, and subcortical areas. Acute mTBI patients also had higher functional-structural coupling strength at both the group and individual levels (Cohen's d=0.415). These aberrant global and nodal topological properties at functional and structural levels were associated with attention, orientation, memory, and naming performances (all P<0.05). Conclusions Our findings suggested that large-scale FC and SC network changes, higher correlation between FC and SC and cognitive impairment can be detected in the acute stage of mTBI. These network aberrances may be a compensatory mechanism for cognitive impairment in acute mTBI patients.
Collapse
Affiliation(s)
- Yin Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Song’an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Schreyer CC, Pletch A, Vanzhula IA, Guarda AS. Evaluating individual- and sample-level response to treatment for inpatients with eating disorders: Is change clinically significant? Int J Eat Disord 2023; 56:452-457. [PMID: 36300553 DOI: 10.1002/eat.23842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Evaluating treatment efficacy solely on whether sample-level change is statistically significant does not indicate whether clinically significant change (CSC) has occurred at the individual-level. We assessed whether change in measures of eating disorder psychopathology was statistically significant at the sample-level and clinically significant at the individual-level for inpatients treated in a hospital-based eating disorder program. METHOD Participants (N = 143) were consecutive underweight distinct admissions diagnosed with anorexia nervosa or other specified feeding and eating disorder. The Eating Disorder Examination Questionnaire (EDEQ) and Eating Disorder Recovery Self-efficacy Questionnaire (EDRSQ) were assessed at admission and program discharge. CSC was defined as individual score change that was both statistically reliable and shifted from dysfunctional to normative. RESULTS Mean EDRSQ and EDEQ scores significantly improved with treatment across the sample; effect sizes were moderate to large. Individual-level analyses demonstrated that 85%, 50%, and 20-35% of participants had CSC or statistically reliable change in BMI, eating symptomatology, and body image respectively. One-third of participants showed CSC on BMI and on at least one self-report measure. DISCUSSION Individual-level analyses offer more nuanced outcome data that could identify patients at higher risk of relapse who may benefit from adjunctive interventions during or immediately post-discharge. PUBLIC SIGNIFICANCE STATEMENT This study examined change in eating pathology for inpatients with eating disorders using sample- and individual-level analyses, including whether change was statistically reliable and clinically significant (scores statistically improved and moved into the healthy range). Only half of patients responded robustly to treatment, which may be related to high relapse rates following discharge. Individual-level analyses provided a detailed view of treatment response and may identify patients at higher relapse risk.
Collapse
Affiliation(s)
| | - Allisyn Pletch
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina A Vanzhula
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angela S Guarda
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Kooper CC, van der Zee CW, Oosterlaan J, Plötz FB, Königs M. Prediction Models for Neurocognitive Outcome of Mild Traumatic Brain Injury in Children: A Systematic Review. J Neurotrauma 2023. [PMID: 36472215 DOI: 10.1089/neu.2022.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is highly prevalent in children. Recent literature suggests that children with mTBI are at considerable risk of persisting neurocognitive deficits, threatening post-injury child development. Nevertheless, clinical tools for early identification of children at risk are currently not available. This systematic review aims to describe the available literature on neurocognitive outcome prediction models in children with mTBI. Findings are highly relevant for early identification of children at risk of persistent neurocognitive deficits, allowing targeted treatment of these children to optimize recovery. The electronic literature search was conducted in PubMed, EMBASE, CINAHL, Cochrane, PsychINFO and Web of Science on February 9, 2022. We included all studies with multi-variate models for neurocognitive outcome based on original data from only children (age <18 years) with mTBI. Following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, two authors independently performed data extraction and risk of bias analysis using the Prediction model Risk of Bias Assessment Tool (PROBAST). This systematic review identified eight original studies (nine articles) reporting prediction models for neurocognitive outcome, representing a total of 1033 children diagnosed with mTBI (mean age at injury = 10.5 years, 37.6% girls). Neurocognitive outcome assessment took place between 1 month and 7 years post-injury. Models were identified with significant predictive value for the following outcomes: memory, working memory, inhibition, processing speed, and general neurocognitive functioning. Prediction performance of these models varied greatly between weak and substantial (R2 = 10.0%-54.7%). The best performing model was based on demographic and pre-morbid risk factors in conjunction with a subacute neurocognitive screening to predict the presence of a deficit in general neurocognitive functioning at 12 months post-injury. This systematic review reflects the absence of robust prediction models for neurocognitive outcome of children with mTBI. The findings indicate that demographic factors, pre-morbid factors as well as acute and subacute clinical factors have relevance for neurocognitive outcome. Based on the available evidence, evaluation of demographic and pre-morbid risk factors in conjunction with a subacute neurocognitive screening may have the best potential to predict neurocognitive outcome in children with mTBI. The findings underline the importance of future research contributing to early identification of children at risk of persisting neurocognitive deficits.
Collapse
Affiliation(s)
- Cece C Kooper
- Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Amsterdam, the Netherlands.,Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Emma Neuroscience Group, Amsterdam, the Netherlands.,Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Carlijn W van der Zee
- Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Amsterdam, the Netherlands
| | - Jaap Oosterlaan
- Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Amsterdam, the Netherlands.,Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Emma Neuroscience Group, Amsterdam, the Netherlands.,Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Follow-Me Program, Amsterdam, the Netherlands.,Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Frans B Plötz
- Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Amsterdam, the Netherlands.,Tergooi Hospital, Department of Pediatrics, Blaricum, the Netherlands
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Amsterdam, the Netherlands.,Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Emma Neuroscience Group, Amsterdam, the Netherlands.,Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Follow-Me Program, Amsterdam, the Netherlands.,Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
38
|
Gartell R, Morris J, Wallace T. Feasibility of Using a Mobile App Supported Executive Function Intervention in Military Service Members and Veterans with mTBI and Co-Occurring Psychological Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2457. [PMID: 36767823 PMCID: PMC9915093 DOI: 10.3390/ijerph20032457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This pilot study assessed the feasibility of using SwapMyMood, a smartphone application supporting evidence-based strategies for emotion regulation and problem-solving as a supplement to conventional care for military service members and veterans (SM/Vs) experiencing chronic symptoms of mild traumatic brain injury (mTBI) and co-occurring psychological conditions. Eight military SM/Vs were recruited from an intensive outpatient program. Participants were block randomized to an experimental group (conventional care plus use of the SwapMyMood app) or a conventional care only group for six weeks. Conventional care included instruction on problem-solving and emotion regulation strategies using traditional paper manuals and protocols. Effects on the knowledge and use of strategies and related goal attainment were measured. Patient-reported outcomes were measured via several validated problem-solving and emotion regulation scales. No differences were found between groups in goal attainment, global executive function, problem-solving, emotion regulation, and knowledge of how to use the problem-solving and emotion regulation strategies targeted. Experimental group participants rated the application positively, demonstrating feasibility of integration of the app into clinical care. The implementation of SwapMyMood is feasible in a clinical setting. SwapMyMood may be a clinically effective supplemental tool for supporting executive function in SM/Vs with mTBI and co-occurring psychological conditions.
Collapse
Affiliation(s)
- Rebecca Gartell
- SHARE Military Initiative, Shepherd Center, Atlanta, GA 30309, USA
| | - John Morris
- Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, GA 30309, USA
| | - Tracey Wallace
- SHARE Military Initiative, Shepherd Center, Atlanta, GA 30309, USA
- Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, GA 30309, USA
| |
Collapse
|
39
|
Conklin JP, McCauley KL, Breitenstein J, Edelman L, Gore RK, Wallace T. Implementation of telehealth and hybrid service delivery of interdisciplinary rehabilitation for military populations with traumatic brain injury. NeuroRehabilitation 2023; 53:535-545. [PMID: 38143391 DOI: 10.3233/nre-230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND The COVID-19 pandemic necessitated the implementation of telehealth and hybrid service delivery models and provided an opportunity to study the impact of this care model in military populations with history of traumatic brain injury (TBI). OBJECTIVE To present telehealth service utilization rates across rehabilitation specialties, treatment outcome indicators, and patient satisfaction outcomes from a retrospective clinical sample. METHODS The study sample consists of 34 patients who underwent telehealth/hybrid Intensive Outpatient Programming (IOP) at a major rehabilitation hospital. Retrospective chart review and clinical data extraction were performed. A historical cohort receiving in-person care was used as a comparison group. Statistical analyses included partial correlations, mixed method analysis of variance (ANOVA), and independent sample t-tests. RESULTS Medical, behavioral health, physical, occupational, and speech-language therapy providers exhibited similar rates of telehealth service delivery (35 to 41% of all sessions). No significant association was found between percent telehealth sessions and the global treatment outcome indicator. Comparison of treatment effects across cohorts revealed similar benefits of IOP. No between-group differences were noted in satisfaction ratings. CONCLUSION The comparable treatment-related gains and reports of positive patient experience support the use of a telehealth and hybrid delivery model for military service members and veterans with TBI.
Collapse
Affiliation(s)
| | | | | | - Lyndsey Edelman
- SHARE Military Initiative, Shepherd Center, Atlanta, GA, USA
| | - Russell K Gore
- SHARE Military Initiative, Shepherd Center, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tracey Wallace
- SHARE Military Initiative, Shepherd Center, Atlanta, GA, USA
| |
Collapse
|
40
|
Kim JT, Kim TY, Youn DH, Han SW, Park CH, Lee Y, Jung H, Rhim JK, Park JJ, Ahn JH, Kim HC, Cho SM, Jeon JP. Human embryonic stem cell-derived cerebral organoids for treatment of mild traumatic brain injury in a mouse model. Biochem Biophys Res Commun 2022; 635:169-178. [PMID: 36274367 DOI: 10.1016/j.bbrc.2022.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE There are no effective treatments for relieving neuronal dysfunction after mild traumatic brain injury (TBI). Here, we evaluated therapeutic efficacy of human embryonic stem cell-derived cerebral organoids (hCOs) in a mild TBI model, in terms of repair of damaged cortical regions, neurogenesis, and improved cognitive function. METHODS Male C57BL/6 J mice were randomly divided into sham-operated, mild TBI, and mild TBI with hCO groups. hCOs cultured at 8 weeks were used for transplantation. Mice were sacrificed at 7 and 14 days after transplantation followed by immunofluorescence staining, cytokine profile microarray, and novel object recognition test. RESULTS 8W-hCOs transplantation significantly reduced neuronal cell death, recovered microvessel density, and promoted neurogenesis in the ipsilateral subventricular zone and dentate gyrus of hippocampus after mild TBI. In addition, increased angiogenesis into the engrafted hCOs was observed. Microarray results of hCOs revealed neuronal differentiation potential and higher expression of early brain development proteins associated with neurogenesis, angiogenesis and extracellular matrix remodeling. Ultimately, 8W-hCO transplantation resulted in reconstruction of damaged cortex and improvement in cognitive function after mild TBI. CONCLUSION hCO transplantation may be feasible for treating mild TBI-related neuronal dysfunction via reconstruction of damaged cortex and neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Younghyurk Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, South Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, South Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, South Korea
| | - Heung Cheol Kim
- Department of Radiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea.
| |
Collapse
|
41
|
Fox AJ, Filmer HL, Dux PE. The influence of self-reported history of mild traumatic brain injury on cognitive performance. Sci Rep 2022; 12:16999. [PMID: 36220885 PMCID: PMC9554181 DOI: 10.1038/s41598-022-21067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/22/2022] [Indexed: 12/29/2022] Open
Abstract
The long-term cognitive consequences of mild traumatic brain injury (mTBI) are poorly understood. Studies investigating cognitive performance in the chronic stage of injury in both hospital-based and population-based samples have revealed inconsistent findings. Importantly, population-based mTBI samples remain under-studied in the literature. This study investigated cognitive performance among individuals with a history of self-reported mTBI using a battery of cognitively demanding behavioural tasks. Importantly, more than half of the mTBI participants had experienced multiple mild head injuries. Compared to control participants (n = 49), participants with a history of mTBI (n = 30) did not demonstrate deficits in working memory, multitasking ability, cognitive flexibility, visuospatial ability, response inhibition, information processing speed or social cognition. There was moderate evidence that the mTBI group performed better than control participants on the visual working memory measure. Overall, these findings suggest that even multiple instances of mTBI do not necessarily lead to long-term cognitive impairment at the group level. Thus, we provide important evidence of the impact of chronic mTBI across a number of cognitive processes in a population-based sample. Further studies are necessary to determine the impact that individual differences in injury-related variables have on cognitive performance in the chronic stage of injury.
Collapse
Affiliation(s)
- Amaya J. Fox
- grid.1003.20000 0000 9320 7537School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, QLD 4072 Australia
| | - Hannah L. Filmer
- grid.1003.20000 0000 9320 7537School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, QLD 4072 Australia
| | - Paul E. Dux
- grid.1003.20000 0000 9320 7537School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, QLD 4072 Australia
| |
Collapse
|