1
|
Besnard A, Pelle J, Pruvost-Robieux E, Ginguay A, Vigneron C, Pène F, Mira JP, Cariou A, Benghanem S. Multimodal assessment of favorable neurological outcome using NSE levels and kinetics, EEG and SSEP in comatose patients after cardiac arrest. Crit Care 2025; 29:149. [PMID: 40217465 PMCID: PMC11992829 DOI: 10.1186/s13054-025-05378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Prognostic markers of good neurological outcome after cardiac arrest (CA) remain limited. We aimed to evaluate the prognostic value of neuron-specific enolase (NSE), electroencephalogram (EEG) and somatosensory evoked potentials (SSEP) in predicting good outcome, assessed separately and in combination. METHODS A retrospective study was conducted in a tertiary CA center, using a prospective registry. We included all patients comatose after discontinuation of sedation and with one EEG and NSE blood measurement at 24, 48 or/and 72 h after CA. The primary outcome was favorable neurological outcome at three months, a Cerebral Performance Categories (CPC) scale 1-2 defining a good outcome. RESULTS Between January 2017 and April 2024, 215 patients were included. Participants were 63 years old (IQR [52-73]), and 73% were male. At 3 months, 54 patients (25.1%) had a good outcome. Compared to the poor outcome group, NSE blood levels were significantly lower in the good outcome group at 24 h (39 IQR[27-45] vs 54 IQR[37-82]µg/L, p < 0.001), 48 h (26 [18-43] vs 107 [54-227]µg/L, p < 0.001) and 72 h (20 µg/L IQR [15-30] vs 184 µg/l IQR [60-300], p < 0,001). Normal NSE (i.e., < 17 µg/L) at 24 h was highly predictive of good outcome, with a predictive positive value (PPV) of 71% despite a sensitivity (Se) of 9%. The best cut-off values for NSE at 24, 48 and 72 h were below 45.5, 51.5 and 41.5 µg/L, yielding PPV of 64%, 80% and 83% and sensitivities of 74%, 93% and 90%, respectively. A decreasing trend in NSE levels between 24 and 72 h was also highly predictive of good outcome (PPV 82%, Se 81%). A benign EEG pattern was more frequently observed in the good outcome group (87.1 vs 14.9%, p < 0.001) and predicted a good outcome with a PPV of 72% and a Se of 94%. Regarding SSEPs, a bilateral N20-baseline amplitude > 0.85 µV was predictive of good outcome (PPV 75%, Se 100%). The combination of NSE < 51.5 µg/l at 48 h, a decreasing NSE trend between 24 and 72 h and a benign EEG showed the best predictive value (PPV 96%, Se 76%). CONCLUSION In comatose patients after CA, a low NSE levels at 24, 48 h or 72 h, a decreasing trend in NSE over time, a benign EEG and a high N20 amplitude are robust markers of favorable outcome, reducing prognosis uncertainty.
Collapse
Affiliation(s)
- Aurélie Besnard
- Medical ICU, Cochin Hospital, Assistance Publique - Hôpitaux de Paris (AP‑HP) AP-HP Centre Université Paris Cité, 27 Rue du Faubourg Saint‑Jacques, 75014, Paris, France
| | - Juliette Pelle
- Medical ICU, Cochin Hospital, Assistance Publique - Hôpitaux de Paris (AP‑HP) AP-HP Centre Université Paris Cité, 27 Rue du Faubourg Saint‑Jacques, 75014, Paris, France
| | - Estelle Pruvost-Robieux
- University Paris Cité - Medical School, Paris, France
- Neurophysiology and Epileptology Department, GHU Paris Psychiatry et Neurosciences, Sainte Anne Hospital, Paris, France
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Paris, France
| | - Antonin Ginguay
- Clinical Chemistry Department, Cochin Hospital, AP-HP Paris Centre, Paris, France
| | - Clara Vigneron
- Medical ICU, Cochin Hospital, Assistance Publique - Hôpitaux de Paris (AP‑HP) AP-HP Centre Université Paris Cité, 27 Rue du Faubourg Saint‑Jacques, 75014, Paris, France
| | - Frédéric Pène
- Medical ICU, Cochin Hospital, Assistance Publique - Hôpitaux de Paris (AP‑HP) AP-HP Centre Université Paris Cité, 27 Rue du Faubourg Saint‑Jacques, 75014, Paris, France
- University Paris Cité - Medical School, Paris, France
| | - Jean-Paul Mira
- Medical ICU, Cochin Hospital, Assistance Publique - Hôpitaux de Paris (AP‑HP) AP-HP Centre Université Paris Cité, 27 Rue du Faubourg Saint‑Jacques, 75014, Paris, France
- University Paris Cité - Medical School, Paris, France
| | - Alain Cariou
- Medical ICU, Cochin Hospital, Assistance Publique - Hôpitaux de Paris (AP‑HP) AP-HP Centre Université Paris Cité, 27 Rue du Faubourg Saint‑Jacques, 75014, Paris, France
- University Paris Cité - Medical School, Paris, France
- After ROSC Network, Paris, France
| | - Sarah Benghanem
- Medical ICU, Cochin Hospital, Assistance Publique - Hôpitaux de Paris (AP‑HP) AP-HP Centre Université Paris Cité, 27 Rue du Faubourg Saint‑Jacques, 75014, Paris, France.
- University Paris Cité - Medical School, Paris, France.
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Paris, France.
- After ROSC Network, Paris, France.
| |
Collapse
|
2
|
Feng J, Lin R, Zhang Y, Ning S, Du N, Li J, Cui Y, Huang G, Wang H, Chen X, Liu T, Chen W, Ma L, Li J. Postoperative EEG abnormalities in relation to neurodevelopmental outcomes after pediatric cardiac surgery. Pediatr Res 2025; 97:735-743. [PMID: 38992156 DOI: 10.1038/s41390-024-03401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND We had reported that postoperative EEG background including sleep-wake cycle (SWC) and discharge (seizures, spikes/sharp waves) abnormalities were significantly correlated with adverse early outcomes in children after cardiac surgery. We aimed to analyze the relations between these EEG abnormalities and neurodevelopmental outcomes at about 2 years after cardiac surgery. METHODS We enrolled 121 patients undergoing cardiac surgery at 3.3 months (0.03 ~ 28 months). EEG abnormalities described above during the first postoperative 48 h were evaluated. Griffiths Mental Development Scales-Chinese was used to evaluate the quotients of overall development and 5 subscales of the child's locomotor, language, personal-social, eye-hand coordination and performance skills at 16 ~ 31 months of age. RESULTS EEG background abnormalities occurred in 59/121 (48.8%) patients and 33 (55.9%) unrecovered to normal by 48 h. Abnormal SWC occurred in 15 (12.4%) patients and 7 (5.8%) unrecovered to normal by 48 h. EEG seizures occurred in 11 (9.1%) patients with frontal lobe seizures in 4. Spikes/sharp waves occurred in 100 (82.6%). EEG background abnormalities, number of spikes/sharp waves and frontal lobe seizures were significantly associated with neurodevelopmental impairment at about 1 ~ 2 year after surgery (Ps ≤ 0.05). CONCLUSIONS Most parameters of EEG abnormalities were significantly associated with neurodevelopmental impairment after cardiac surgery. IMPACT Neurodevelopmental impairment in children with congenital heart disease remain poorly understood. Previous studies had reported that either EEG seizures or background abnormalities were associated with worse neurodevelopmental outcomes. Our present study showed that all the EEG background and discharge abnormalities including EEG background, seizures and spikes/sharp waves in the early postoperative period were significantly associated with neurodevelopmental impairment at about 1 ~ 2 years after cardiac surgery. Comprehensive evaluation of early postoperative EEG may provide further insights about postoperative brain injury, its relation with neurodevelopmental impairment, and guide to improve clinical management.
Collapse
Affiliation(s)
- Jinqing Feng
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Rouyi Lin
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yani Zhang
- Department of Neurology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuyao Ning
- Department of Electroneurophysiology, Guangzlhou Medical University, Guangzhou, Guangdong Province, China
| | - Na Du
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jianbin Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yanqin Cui
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guodong Huang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Huaizhen Wang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xinxin Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Techang Liu
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wenxiong Chen
- Department of Neurology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Li Ma
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Pelle J, Pruvost-Robieux E, Dumas F, Ginguay A, Charpentier J, Vigneron C, Pène F, Mira JP, Cariou A, Benghanem S. Personalized neuron-specific enolase level based on EEG pattern for prediction of poor outcome after cardiac arrest. Ann Intensive Care 2025; 15:11. [PMID: 39821725 PMCID: PMC11739441 DOI: 10.1186/s13613-024-01406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND After cardiac arrest (CA), the European recommendations suggest to use a neuron-specific enolase (NSE) level > 60 µg/L at 48-72 h to predict poor outcome. However, the prognostic performance of NSE can vary depending on electroencephalogram (EEG). The objective was to determine whether the NSE threshold which predicts poor outcome varies according to EEG patterns and the effect of electrographic seizures on NSE level. METHODS A retrospective study was conducted in a tertiary CA center, using a prospective registry of 155 adult patients comatose 72 h after CA. EEG patterns were classified according to the Westhall classification (benign, malignant or highly malignant). Neurological outcome was evaluated using the CPC scale at 3 months (CPC 3-5 defining a poor outcome). RESULTS Participants were 64 years old (IQR [53; 72,5]), and 74% were male. 83% were out-of-hospital CA and 48% were initial shockable rhythm. Electrographic seizures were observed in 5% and 8% of good and poor outcome patients, respectively (p = 0.50). NSE blood levels were significantly lower in the good outcome (median 20 µg/L IQR [15; 30]) compared to poor outcome group (median 110 µg/l IQR [49;308], p < 0,001). Benign EEG was associated with lower level of NSE compared to malignant and highly malignant patterns (p < 0.001). The NSE level was not significantly increased in patients with seizures as compared with malignant patterns (p = 0.15). In patients with a malignant EEG, a NSE > 45.2 µg/L was predictive of unfavorable outcome with 100% specificity and a higher sensitivity (70.8%) compared to the recommended NSE cut-off of 60 µg/l (Se = 66%). Combined to electrographic seizures, a NSE > 53.5 µg/L predicts poor outcome with 100% specificity and a higher sensitivity (77.7%) compared to the recommended cut-off (Se = 66.6%). Combined to a benign EEG, a NSE level > 78.2 µg/L was highly predictive of a poor outcome with a higher specificity (Sp = 100%) compared to the recommended cut-off (Sp = 94%). CONCLUSION In comatose patients after AC, a personalized approach of NSE according to EEG pattern could improve the specificity and sensitivity of this biomarker for poor outcome prediction. Compared to others malignant EEG, no significant difference of NSE level was observed in case of electrographic seizures.
Collapse
Affiliation(s)
- Juliette Pelle
- Medical Intensive Care Unit, AP-HP Centre Université Paris Cité, Cochin hospital, 27 rue du Faubourg Saint Jacques, Paris, 7501, France
- University Paris Cité - Medical School, Paris, France
| | - Estelle Pruvost-Robieux
- University Paris Cité - Medical School, Paris, France
- Neurophysiology and Epileptology Department, GHU Paris Psychiatry et Neurosciences, Sainte Anne Hospital, Paris, France
- INSERM, U1266, Pyschiatry and Neurosciences Institute (IPNP), Paris, France
| | - Florence Dumas
- University Paris Cité - Medical School, Paris, France
- Emergency Department, AP-HP Paris Centre, Cochin hospital, Paris, France
| | - Antonin Ginguay
- Clinical Chemistry Department, AP-HP Paris Centre, Cochin hospital, Paris, France
| | - Julien Charpentier
- Medical Intensive Care Unit, AP-HP Centre Université Paris Cité, Cochin hospital, 27 rue du Faubourg Saint Jacques, Paris, 7501, France
| | - Clara Vigneron
- Medical Intensive Care Unit, AP-HP Centre Université Paris Cité, Cochin hospital, 27 rue du Faubourg Saint Jacques, Paris, 7501, France
- University Paris Cité - Medical School, Paris, France
| | - Frédéric Pène
- Medical Intensive Care Unit, AP-HP Centre Université Paris Cité, Cochin hospital, 27 rue du Faubourg Saint Jacques, Paris, 7501, France
- University Paris Cité - Medical School, Paris, France
| | - Jean Paul Mira
- Medical Intensive Care Unit, AP-HP Centre Université Paris Cité, Cochin hospital, 27 rue du Faubourg Saint Jacques, Paris, 7501, France
- University Paris Cité - Medical School, Paris, France
| | - Alain Cariou
- Medical Intensive Care Unit, AP-HP Centre Université Paris Cité, Cochin hospital, 27 rue du Faubourg Saint Jacques, Paris, 7501, France
- University Paris Cité - Medical School, Paris, France
| | - Sarah Benghanem
- Medical Intensive Care Unit, AP-HP Centre Université Paris Cité, Cochin hospital, 27 rue du Faubourg Saint Jacques, Paris, 7501, France.
- University Paris Cité - Medical School, Paris, France.
- INSERM, U1266, Pyschiatry and Neurosciences Institute (IPNP), Paris, France.
| |
Collapse
|
4
|
Shivji Z, Bendahan N, McInnis C, Woodford T, Einspenner M, Calder L, Boissé Lomax L, Shukla G, Winston GP. Electroencephalography (EEG) for Neurological Prognostication in Post-Anoxic Coma Following Cardiac Arrest and Its Relationship to Outcome. Brain Sci 2024; 14:1264. [PMID: 39766463 PMCID: PMC11674226 DOI: 10.3390/brainsci14121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cardiac arrest may cause significant hypoxic-ischemic injury leading to coma, seizures, myoclonic jerks, or status epilepticus. Mortality is high, but accurate prognostication is challenging. A multimodal approach is employed, in which electroencephalography (EEG) forms a key part with several recognised patterns of prognostic significance. METHODS In this retrospective study, clinical and qualitative features of the EEG of patients admitted to the Intensive Care Unit (ICU) at Kingston General Hospital following cardiac arrest from 2017 to 2020 were reviewed. The study included 81 adult patients (≥18 years). Outcome was assessed using the Cerebral Performance Category (CPC) as 1-2 (favourable) or 3-5 (unfavourable). EEG patterns were divided into groups within the highly malignant, malignant and benign patterns described in the literature. RESULTS There were a wide range of causes and 22% had a favourable outcome. Highly malignant, malignant and benign patterns were associated with survival in 0%, 70% and 100%, respectively, and favourable outcomes in 0%, 48% and 100%. All patients with seizures died, and 94% with myoclonus had unfavourable outcomes. In contrast, EEG reactivity and improvement on follow-up EEG were associated with a favourable outcome. CONCLUSIONS Highly malignant EEG, seizures and myoclonus were associated with unfavourable outcomes, while patients with malignant EEG had better outcomes.
Collapse
Affiliation(s)
- Zaitoon Shivji
- EEG Department, Kingston Health Science Center, Kingston, ON K7L 2V7, Canada; (Z.S.)
| | - Nathaniel Bendahan
- Edmond J. Safra Program in Parkinson’s Disease, Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Carter McInnis
- Department of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Timothy Woodford
- EEG Department, Kingston Health Science Center, Kingston, ON K7L 2V7, Canada; (Z.S.)
| | - Michael Einspenner
- EEG Department, Kingston Health Science Center, Kingston, ON K7L 2V7, Canada; (Z.S.)
| | - Lisa Calder
- EEG Department, Kingston Health Science Center, Kingston, ON K7L 2V7, Canada; (Z.S.)
| | - Lysa Boissé Lomax
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Garima Shukla
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Gavin P. Winston
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Fahrner MG, Hwang J, Cho SM, Thakor NV, Habela CW, Kaplan PW, Geocadin RG. EEG reactivity in neurologic prognostication in post-cardiac arrest patients: A narrative review. Resuscitation 2024; 204:110398. [PMID: 39277070 DOI: 10.1016/j.resuscitation.2024.110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Electroencephalographic reactivity (EEG-R) is a promising early predictor of arousal in comatose patients after cardiac arrest. Despite recent guidelines advocating for the integration of EEG-R into the multimodal prognostication model, EEG-R testing methods remain heterogeneous across studies. While efforts towards standardization have been made to reduce interrater variability by the development of quantitative approaches and machine learning models, future validation studies are needed to increase clinical applicability. Furthermore, the specific neurophysiological mechanisms and neuroanatomical correlates underlying EEG-R are not fully understood. In this narrative review, we explore the value and possible mechanisms of EEG-R, focusing on post-cardiac arrest comatose patients. We aim to discuss the current standard of knowledge and future directions, as well as elucidate possible implications for patient care and research.
Collapse
Affiliation(s)
- Marlen G Fahrner
- Department of Neurology, Division of Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jaeho Hwang
- Department of Neurology, Division of Epilepsy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Min Cho
- Departments of Neurology, Surgery, and Anesthesiology - Critical Care Medicine, Division of Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christa W Habela
- Department of Neurology, Division of Epilepsy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter W Kaplan
- Department of Neurology, Division of Epilepsy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Romergryko G Geocadin
- Departments of Neurology, Anesthesiology - Critical Care Medicine, and Neurosurgery, Division of Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Senthil K, Ranganathan A, Piel S, Hefti MM, Reeder RW, Kirschen MP, Starr J, Morton S, Gaudio HA, Slovis JC, Herrmann JR, Berg RA, Kilbaugh TJ, Morgan RW. Elevated serum neurologic biomarker profiles after cardiac arrest in a porcine model. Resusc Plus 2024; 19:100726. [PMID: 39149222 PMCID: PMC11325790 DOI: 10.1016/j.resplu.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Swine exhibit cerebral cortex mitochondrial dysfunction and neuropathologic injury after hypoxic cardiac arrest treated with hemodynamic-directed CPR (HD-CPR) despite normal Cerebral Performance Category scores. We analyzed the temporal evolution of plasma protein biomarkers of brain injury and inflammatory cytokines, as well as cerebral cortical mitochondrial injury and neuropathology for five days following pediatric asphyxia-associated cardiac arrest treated with HD-CPR. Methods One-month-old swine underwent asphyxia associated cardiac arrest, 10-20 min of HD-CPR (goal SBP 90 mmHg, coronary perfusion pressure 20 mmHg), and randomization to post-ROSC survival duration (24, 48, 72, 96, 120 h; n = 3 per group) with standardized post-resuscitation care. Plasma neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and cytokine levels were collected pre-injury and 1, 6, 24, 48, 72, 96, and 120 h post-ROSC. Cerebral cortical tissue was assessed for: mitochondrial respirometry, mass, and dynamic proteins; oxidative injury; and neuropathology. Results Relative to pre-arrest baseline (9.4 pg/ml [6.7-12.6]), plasma NfL was increased at all post-ROSC time points. Each sequential NfL measurement through 48 h was greater than the previous value {1 h (12.7 pg/ml [8.4-14.6], p = 0.01), 6 h (30.9 pg/ml [17.7-44.0], p = 0.0004), 24 h (59.4 pg/ml [50.8-96.1], p = 0.0003) and 48 h (85.7 pg/ml [61.9-118.7], p = 0.046)}. Plasma GFAP, inflammatory cytokines or cerebral cortical tissue measurements were not demonstrably different between time points. Conclusions In a swine model of pediatric cardiac arrest, plasma NfL had an upward trajectory until 48 h post-ROSC after which it remained elevated through five days, suggesting it may be a sensitive marker of neurologic injury following pediatric cardiac arrest.
Collapse
Affiliation(s)
- Kumaran Senthil
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Abhay Ranganathan
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Sarah Piel
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
- University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Department of Cardiology, Pulmonology and Vascular Medicine, Germany
- University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Cardiovascular Research Institute, Germany
| | | | - Ron W Reeder
- University of Utah, Department of Pediatrics, USA
| | - Matthew P Kirschen
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Jonathan Starr
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Sarah Morton
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Hunter A Gaudio
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Julia C Slovis
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Jeremy R Herrmann
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Robert A Berg
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Todd J Kilbaugh
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Ryan W Morgan
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| |
Collapse
|
7
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Hermann B, Candia‐Rivera D, Sharshar T, Gavaret M, Diehl J, Cariou A, Benghanem S. Aberrant brain-heart coupling is associated with the severity of post cardiac arrest brain injury. Ann Clin Transl Neurol 2024; 11:866-882. [PMID: 38243640 PMCID: PMC11021613 DOI: 10.1002/acn3.52000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/24/2023] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVE To investigate autonomic nervous system activity measured by brain-heart interactions in comatose patients after cardiac arrest in relation to the severity and prognosis of hypoxic-ischemic brain injury. METHODS Strength and complexity of bidirectional interactions between EEG frequency bands (delta, theta, and alpha) and ECG heart rate variability frequency bands (low frequency, LF and high frequency, HF) were computed using a synthetic data generation model. Primary outcome was the severity of brain injury, assessed by (i) standardized qualitative EEG classification, (ii) somatosensory evoked potentials (N20), and (iii) neuron-specific enolase levels. Secondary outcome was the 3-month neurological status, assessed by the Cerebral Performance Category score [good (1-2) vs. poor outcome (3-4-5)]. RESULTS Between January 2007 and July 2021, 181 patients were admitted to ICU for a resuscitated cardiac arrest. Poor neurological outcome was observed in 134 patients (74%). Qualitative EEG patterns suggesting high severity were associated with decreased LF/HF. Severity of EEG changes were proportional to higher absolute values of brain-to-heart coupling strength (p < 0.02 for all brain-to-heart frequencies) and lower values of alpha-to-HF complexity (p = 0.049). Brain-to-heart coupling strength was significantly higher in patients with bilateral absent N20 and correlated with neuron-specific enolase levels at Day 3. This aberrant brain-to-heart coupling (increased strength and decreased complexity) was also associated with 3-month poor neurological outcome. INTERPRETATION Our results suggest that autonomic dysfunctions may well represent hypoxic-ischemic brain injury post cardiac arrest pathophysiology. These results open avenues for integrative monitoring of autonomic functioning in critical care patients.
Collapse
Affiliation(s)
- Bertrand Hermann
- Faculté de MédecineUniversité Paris CitéParisFrance
- Medical Intensive Care UnitHEGP Hospital, Assistance Publique ‐ Hôpitaux de Paris‐Centre (APHP.Centre)ParisFrance
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP)Université Paris CitéParisFrance
| | - Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS UMR 722, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Tarek Sharshar
- Faculté de MédecineUniversité Paris CitéParisFrance
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP)Université Paris CitéParisFrance
- GHU Paris Psychiatrie Neurosciences, Service hospitalo‐universitaire de Neuro‐anesthésie réanimationParisFrance
| | - Martine Gavaret
- Faculté de MédecineUniversité Paris CitéParisFrance
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP)Université Paris CitéParisFrance
- Neurophysiology and Epileptology DepartmentGHU Paris Psychiatrie et NeurosciencesParisFrance
| | - Jean‐Luc Diehl
- Faculté de MédecineUniversité Paris CitéParisFrance
- Medical Intensive Care UnitHEGP Hospital, Assistance Publique ‐ Hôpitaux de Paris‐Centre (APHP.Centre)ParisFrance
- Université Paris Cité, INSERM, Innovative Therapies in HaemostasisParisFrance
- Biosurgical Research Lab (Carpentier Foundation)ParisFrance
| | - Alain Cariou
- Faculté de MédecineUniversité Paris CitéParisFrance
- Medical Intensive Care UnitCochin Hospital, Assistance Publique ‐ Hôpitaux de Paris‐Centre (APHP‐Centre)ParisFrance
- Paris‐Cardiovascular‐Research‐CenterINSERM U970ParisFrance
| | - Sarah Benghanem
- Faculté de MédecineUniversité Paris CitéParisFrance
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP)Université Paris CitéParisFrance
- Medical Intensive Care UnitCochin Hospital, Assistance Publique ‐ Hôpitaux de Paris‐Centre (APHP‐Centre)ParisFrance
| |
Collapse
|
9
|
Disanto G, Villa M, Maleska Maceski A, Prosperetti C, Gobbi C, Kuhle J, Cassina T, Agazzi P. Longitudinal serum neurofilament light kinetics in post-anoxic encephalopathy. Ann Clin Transl Neurol 2023; 10:2407-2412. [PMID: 37743737 PMCID: PMC10723239 DOI: 10.1002/acn3.51903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Serum neurofilament light (sNfL) is a promising marker of outcome after cardiac arrest, but its kinetics are unclear. We prospectively measured sNfL concentrations in 62 patients at 0, 1, 3, 5, 7 and 10 days after cardiac arrest. Survivors and non-survivors had similar sNfL at admission (14.2 [8.6-21.9] vs. 22.5 [14.2-46.9] pg/mL) but largely different at 24 h (16.4 [10.2-293] vs. 464.3 [151.8-1658.2], respectively). The AUC for sNfL concentrations predicting death was above 0.95 from Day 1 to 10 (highest on Day 3). Late sNfL measurements may exert prognostic value, especially when early samples are unavailable or prognosis remains unclear.
Collapse
Affiliation(s)
- Giulio Disanto
- Neurocenter of Southern Switzerland, Civic Hospital, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Michele Villa
- Department of Cardiac Anesthesia and Intensive CareCardiocentro Ticino Institute, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Aleksandra Maleska Maceski
- Department of NeurologyUniversity Hospital and University of BaselBaselSwitzerland
- Multiple Sclerosis Centre and Research Centre for Clinical Neurimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical ResearchUniversity Hospital and University of BaselBaselSwitzerland
| | - Chiara Prosperetti
- Neurocenter of Southern Switzerland, Civic Hospital, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Claudio Gobbi
- Neurocenter of Southern Switzerland, Civic Hospital, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Jens Kuhle
- Department of NeurologyUniversity Hospital and University of BaselBaselSwitzerland
- Multiple Sclerosis Centre and Research Centre for Clinical Neurimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical ResearchUniversity Hospital and University of BaselBaselSwitzerland
| | - Tiziano Cassina
- Department of Cardiac Anesthesia and Intensive CareCardiocentro Ticino Institute, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Pamela Agazzi
- Neurocenter of Southern Switzerland, Civic Hospital, Ente Ospedaliero CantonaleLuganoSwitzerland
| |
Collapse
|
10
|
Hoedemaekers C, Hofmeijer J, Horn J. Value of EEG in outcome prediction of hypoxic-ischemic brain injury in the ICU: A narrative review. Resuscitation 2023; 189:109900. [PMID: 37419237 DOI: 10.1016/j.resuscitation.2023.109900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Prognostication of comatose patients after cardiac arrest aims to identify patients with a large probability of favourable or unfavouble outcome, usually within the first week after the event. Electroencephalography (EEG) is a technique that is increasingly used for this purpose and has many advantages, such as its non-invasive nature and the possibility to monitor the evolution of brain function over time. At the same time, use of EEG in a critical care environment faces a number of challenges. This narrative review describes the current role and future applications of EEG for outcome prediction of comatose patients with postanoxic encephalopathy.
Collapse
Affiliation(s)
- Cornelia Hoedemaekers
- Department of Critical Care, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Technical Medical Center, University of Twente, Enschede, the Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Janneke Horn
- Department of Critical Care, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Tziakouri A, Novy J, Ben-Hamouda N, Rossetti AO. Relationship between serum neuron-specific enolase and EEG after cardiac arrest: A reappraisal. Clin Neurophysiol 2023; 151:100-106. [PMID: 37236128 DOI: 10.1016/j.clinph.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Electroencephalogram (EEG) and serum neuron specific enolase (NSE) are frequently used prognosticators after cardiac arrest (CA). This study explored the association between NSE and EEG, considering the role of EEG timing, its background continuity, reactivity, occurrence of epileptiform discharges, and pre-defined malignancy degree. METHODS Retrospective analysis including 445 consecutive adults from a prospective registry, surviving the first 24 hours after CA and undergoing multimodal evaluation. EEG were interpreted blinded to NSE results. RESULTS Higher NSE was associated with poor EEG prognosticators, such as increasing malignancy, repetitive epileptiform discharges and lack of background reactivity, independently of EEG timing (including sedation and temperature). When stratified for background continuity, NSE was higher with repetitive epileptiform discharges, except in the case of suppressed EEGs. This relationship showed some variation according to the recording time. CONCLUSIONS Neuronal injury after CA, reflected by NSE, correlates with several EEG features: increasing EEG malignancy, lack of background reactivity, and presence of repetitive epileptiform discharges. The correlation between epileptiform discharges and NSE is influenced by underlying EEG background and timing. SIGNIFICANCE This study, describing the complex interplay between serum NSE and epileptiform features, suggests that epileptiform discharges reflect neuronal injury particularly in non-suppressed EEG.
Collapse
Affiliation(s)
- Andria Tziakouri
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jan Novy
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nawfel Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Delaby C, Bousiges O, Bouvier D, Fillée C, Fourier A, Mondésert E, Nezry N, Omar S, Quadrio I, Rucheton B, Schraen-Maschke S, van Pesch V, Vicca S, Lehmann S, Bedel A. Neurofilaments contribution in clinic: state of the art. Front Aging Neurosci 2022; 14:1034684. [PMID: 36389064 PMCID: PMC9664201 DOI: 10.3389/fnagi.2022.1034684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 07/26/2023] Open
Abstract
Neurological biomarkers are particularly valuable to clinicians as they can be used for diagnosis, prognosis, or response to treatment. This field of neurology has evolved considerably in recent years with the improvement of analytical methods, allowing the detection of biomarkers not only in cerebrospinal fluid (CSF) but also in less invasive fluids like blood. These advances greatly facilitate the repeated quantification of biomarkers, including at asymptomatic stages of the disease. Among the various informative biomarkers of neurological disorders, neurofilaments (NfL) have proven to be of particular interest in many contexts, such as neurodegenerative diseases, traumatic brain injury, multiple sclerosis, stroke, and cancer. Here we discuss these different pathologies and the potential value of NfL assay in the management of these patients, both for diagnosis and prognosis. We also describe the added value of NfL compared to other biomarkers currently used to monitor the diseases described in this review.
Collapse
Affiliation(s)
- Constance Delaby
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau—Biomedical Research Institute Sant Pau—Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olivier Bousiges
- Laboratoire de biochimie et biologie moléculaire (LBBM)—Pôle de biologie Hôpital de Hautepierre—CHU de Strasbourg, CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France
| | - Damien Bouvier
- Service de Biochimie et Génétique Moléculaire, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Catherine Fillée
- Cliniques universitaires Saint-Luc UCLouvain, Service de Biochimie Médicale, Brussels, Belgium
| | - Anthony Fourier
- Biochimie et Biologie Moléculaire—LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France
| | - Etienne Mondésert
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
| | - Nicolas Nezry
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Souheil Omar
- Laboratoire de biologie médicale de l’Institut de Neurologie de Tunis, Tunis, Tunisia
| | - Isabelle Quadrio
- Biochimie et Biologie Moléculaire—LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France
| | - Benoit Rucheton
- Laboratoire de Biologie, Institut Bergonié, Bordeaux, France
| | - Susanna Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Vincent van Pesch
- Cliniques universitaires Saint-Luc UCLouvain, Service de Neurologie, Brussels, Belgium
| | - Stéphanie Vicca
- Hôpital Necker-Enfants malades, Paris, Laboratoire de Biochimie générale, DMU BioPhyGen, AP-HP.Centre—Université de Paris, Paris, France
| | - Sylvain Lehmann
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
| | - Aurelie Bedel
- Service de Biochimie, CHU Pellegrin, Bordeaux, France
| |
Collapse
|
13
|
Jha RM, Sheth KN. Neurocritical Care Updates in Cerebrovascular Disease. Stroke 2022; 53:2954-2957. [PMID: 35968703 PMCID: PMC9998243 DOI: 10.1161/strokeaha.122.038881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|