1
|
Gupta C, Kim C, Guzy S, Yoneyama T, Gharahi H, Siripuram VK, Iadevaia S, Barua D, Hang Y, Iakovleva T, Boucher C, Vakilynejad M, Schmidt S, Vozmediano V. Establishment of a Biomarker-Directed Clinical Endpoint Model for Early-Stage Parkinson's Disease Patients. Clin Pharmacol Ther 2025; 117:1460-1469. [PMID: 40077911 DOI: 10.1002/cpt.3593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/24/2025] [Indexed: 03/14/2025]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by dopaminergic cell death in the substantia nigra. While the interplay between dopamine loss and symptoms is well-recognized, a respective quantitative link has yet to be established. The objective was to establish a biomarker-directed clinical endpoint model for early-stage PD patients. We developed a disease progression model using DATscan data in 196 healthy subjects and 419 Parkinson's patients to characterize the onset and progression of disease in early-stage PD patients. This disease progression model was then linked to MDS-UPDRS Parts I, II, and III data from the Parkinson's Progression Markers Initiative (PPMI) using a modified item response theory (IRT) analysis to characterize and predict the impact of dopamine loss on motor and non-motor symptoms. Disease onset occurs ~4-15 years pre-diagnosis. There is correlation (Spearman's rank correlation: 0.73-0.78, P < 0.001) between striatal binding ratio values (SBR) and MDS-UPDRS total scores in early-stage PD patients once interindividual differences in age at diagnosis and onset of symptoms are considered. Stratification by degree of damage improved the model's performance for putamen/motor symptoms but not for caudate/cognitive symptoms. The model captured changes in MDS-UPDRS Parts I, II, and III in early-stage, moderately progressing PD patients (60-65% of PPMI patients). In conclusion, we developed an SBR-directed IRT model that characterizes changes in MDS-UPDRS in > 60% of early-stage PPMI patients for ~15 years.
Collapse
Affiliation(s)
- Churni Gupta
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA
| | - Chaejin Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA
| | - Serge Guzy
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA
| | | | | | - Vijay Kumar Siripuram
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA
| | | | - Dipak Barua
- DMPK and Modelling, Takeda, Cambridge, Massachusetts, USA
| | - Yaming Hang
- DMPK and Modelling, Takeda, Cambridge, Massachusetts, USA
| | - Tatiana Iakovleva
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | | | - Stephan Schmidt
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA
| | - Valvanera Vozmediano
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA
- Model Informed Development, Regulatory Development and Consulting, CTI Laboratories, Covington, Kentucky, USA
| |
Collapse
|
2
|
Quintero JE, Chau MJ, Slevin JT, Koehl L, Gurwell JA, Wallace E, Kryscio RJ, El Khouli R, Anderson-Mooney AJ, Schmitt FA, Gerhardt GA, van Horne CG. Two-year feasibility and safety of open-label autologous peripheral nerve tissue implantation during deep brain stimulation in patients with Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2025; 15:397-408. [PMID: 40007169 DOI: 10.1177/1877718x241312409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
BackgroundMotor dysfunction in Parkinson's disease (PD) is characterized by a loss of functioning neurons in the substantia nigra. Two options exist when encountering damaged neurons: replace or support. We implemented a strategy of using autologous peripheral nerve tissue, in a reparative state, to provide a collection of neurorestorative support to unhealthy neurons with the goal of modifying the motor progression of PD.ObjectiveReport on two-year compliance feasibility, safety, and clinical experience of combining this delivery at the time of deep brain stimulation (DBS) surgery.MethodsParticipants with PD undergoing open-label peripheral nerve tissue implantation to the substantia nigra at the time of DBS surgery were followed from pre-surgery to two years after surgery through clinical evaluations.ResultsSeventeen of 18 participants who underwent the procedure completed the 2-year study visits. No study-related serious adverse events occurred.ConclusionsThe trial met its primary endpoints of feasibility and safety. We were able to practicably and safely implant participants and have participants comply with 2-year visits and exams. Adverse events related to study participation were deemed manageable by participants.
Collapse
Affiliation(s)
- Jorge E Quintero
- Neurorestoration Center, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Monica J Chau
- Neurorestoration Center, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - John T Slevin
- Neurorestoration Center, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Lisa Koehl
- Neurorestoration Center, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Julie A Gurwell
- Neurorestoration Center, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | | | - Richard J Kryscio
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Riham El Khouli
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | | | - Frederick A Schmitt
- Neurorestoration Center, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Greg A Gerhardt
- Neurorestoration Center, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Craig G van Horne
- Neurorestoration Center, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Kiersnowski OC, Mattioli P, Argenti L, Avanzino L, Calizzano F, Diociasi A, Falcitano L, Liu C, Losa M, Massa F, Morbelli S, Orso B, Pelosin E, Raffa S, Pardini M, Arnaldi D, Roccatagliata L, Costagli M. Magnetic susceptibility components reveal different aspects of neurodegeneration in alpha-synucleinopathies. Sci Rep 2025; 15:4186. [PMID: 39905067 PMCID: PMC11794440 DOI: 10.1038/s41598-024-83593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Nigrostriatal dopaminergic degeneration in alpha-synucleinopathies is indirectly reflected by low dopamine transporter (DaT) uptake through [123I]FP-CIT-SPECT. Bulk magnetic susceptibility (χ) in the substantia nigra, from MRI-based quantitative susceptibility mapping (QSM), is a potential biomarker of nigrostriatal degeneration, however, QSM cannot disentangle paramagnetic (e.g. iron) and diamagnetic (e.g. myelin) sources. Using the susceptibility source-separation technique DECOMPOSE, paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) were studied in prodromal and overt alpha-synucleinopathies, and their relationships with DaT-SPECT specific binding ratio (SBR) and clinical scores. 78 participants were included (23 controls, 30 prodromal and 25 overt alpha-synucleinopathies). Prodromal patients were subdivided into groups with positive or negative DaT-SPECT (SBR Z-scores below or above -1, respectively). Correlations of putamen and caudate SBR Z-scores with PCS and DCS in the substantia nigra, putamen, and caudate were investigated. Increased PCS was observed in the substantia nigra of prodromal alpha-synucleinopathy patients with positive DaT-SPECT compared to controls and prodromal patients with negative DaT-SPECT. SBR Z-scores in the putamen correlated with increased PCS in the substantia nigra and reduced |DCS| in the putamen, which may reflect dopaminergic degeneration ascribable to iron accumulation and nigrostriatal neuron axonal loss, respectively.
Collapse
Affiliation(s)
| | - Pietro Mattioli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucia Argenti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Francesco Calizzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | | | - Chunlei Liu
- University of California Berkeley, Berkeley, United States of America
| | - Mattia Losa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Federico Massa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Silvia Morbelli
- Department of Nuclear Medicine, University of Turin, Turin, Italy
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Stefano Raffa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Luca Roccatagliata
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences, University of Genova, Genova, Italy.
| | - Mauro Costagli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
4
|
Vijiaratnam N, Girges C, Athauda D, King A, Auld G, McComish R, Chowdhury K, Skene S, Maclagan K, Chaudhuri KR, Libri V, Dickson J, Foltynie T. Exploring Analysis Approaches for Using the Dopamine Transporter Striatal Binding Ratio in Early- to Mid-Stage Parkinson's Disease Modification Trials. Mov Disord Clin Pract 2024; 11:1345-1354. [PMID: 39169806 PMCID: PMC11542297 DOI: 10.1002/mdc3.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The dopamine transporter striatal binding ratio (DAT SBR) has been used as an outcome measure in Parkinson's disease (PD) trials of potential disease-modifying therapies; however, both patient characteristics and analysis approach potentially complicate its interpretation. OBJECTIVE The aim was to explore how well DAT SBR reflects PD motor severity across different striatal subregions and the relationship to disease duration, and side of onset. METHODS DAT SBR for the anterior and posterior putamen and caudate in both hemispheres was obtained using validated automated quantitative software on baseline scans of 132 patients recruited for the Exenatide PD2 and PD3 trials. Associations between mean and lateralized SBR subregions (posterior and anterior putamen and caudate) and summed and lateralized motor characteristics were explored using regression analysis. Analyses were repeated considering disease duration and limiting analysis to the less-affected hemisphere. RESULTS Lateralized bradykinesia was most consistently associated with the loss of DAT uptake in the contralateral anterior putamen. There was much higher variance in the posterior putamen, and in all regions in those with longer duration disease, although bradykinesia remained robustly associated with anterior putaminal DAT uptake even in longer-duration patients. Restricting analyses to the less-affected side did not usefully reduce the variance compared to the overall cohort. CONCLUSION These data suggest that DAT SBR could be a useful biomarker in disease-modifying trials, but a focus on anterior striatal subregions and incorporating disease duration into analyses may improve its utility.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement NeurosciencesInstitute of Neurology, University College LondonLondonUnited Kingdom
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen SquareLondonUnited Kingdom
| | - Christine Girges
- Department of Clinical and Movement NeurosciencesInstitute of Neurology, University College LondonLondonUnited Kingdom
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen SquareLondonUnited Kingdom
| | - Dilan Athauda
- Department of Clinical and Movement NeurosciencesInstitute of Neurology, University College LondonLondonUnited Kingdom
- The Francis Crick InstituteLondonUnited Kingdom
| | - Alexa King
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Grace Auld
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Rachel McComish
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Kashfia Chowdhury
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Simon Skene
- Surrey Clinical Trials Unit, University of SurreyGuildfordUnited Kingdom
- Department of Clinical and Experimental MedicineUniversity of SurreyGuildfordUnited Kingdom
| | - Kate Maclagan
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Kallol Ray Chaudhuri
- Parkinson's Foundation International Centre of Excellence, King's College LondonLondonUnited Kingdom
| | - Vincenzo Libri
- Leonard Wolfson Experimental Neurology Centre, National Hospital for Neurology and NeurosurgeryQueen Square, LondonUnited Kingdom
- Institute of NeurologyUniversity College LondonLondonUnited Kingdom
- NIHR Clinical Research Facility, University College London Hospitals NHS Foundation TrustLondonUnited Kingdom
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Thomas Foltynie
- Department of Clinical and Movement NeurosciencesInstitute of Neurology, University College LondonLondonUnited Kingdom
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen SquareLondonUnited Kingdom
| |
Collapse
|
5
|
Houot M, Arnaud S, Mongin M, Pop G, Soussan M, Lannuzel A, Degos B. Relevance of 123I-FP-CIT SPECT prescriptions for the diagnosis of parkinsonian syndromes. Sci Rep 2024; 14:25088. [PMID: 39443529 PMCID: PMC11500384 DOI: 10.1038/s41598-024-73777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
123I-FP-CIT SPECT enables the detection of presynaptic dopaminergic denervation. It allows to differentiate degenerative parkinsonian syndromes from secondary parkinsonian syndromes or essential tremor, and patients with suspected dementia with Lewy bodies from those with other dementia subtypes. The aim of our study was to evaluate the appropriateness of 123I-FP-CIT SPECT prescriptions, identify prescriber profiles and analyze changes in prescriptions over a decade in the Neurology department of Avicenne University hospital. This retrospective study included all patients who underwent 123I-FP-CIT SPECT between February 2009 and May 2019 (n = 723). Clinical and paraclinical data were compared between three groups based on the relevance of 123I-FP-CIT SPECT prescription: "inappropriate", "uncertain" and "relevant". We showed that inappropriate indications accounted for 37.5% of 123I-FP-CIT SPECT requests. Hospital neurologists and neurologists with mixed practice accounted for 74.1% of 123I-FP-CIT SPECT requests, hospital movement disorders specialists being more likely to prescribe appropriately (67.1%) than hospital non-movement disorders specialists (33.3%). Following the replacement of the neuro-oncology team with a team including movement disorders specialists, the percentage of relevant SPECT 123I-FP-CIT prescriptions rose from 37.5% to 81.0%. These observations suggest that seeking the expertise of a movement disorders specialist would be more relevant than the systematic prescription of 123I-FP-CIT SPECT.
Collapse
Affiliation(s)
- Marion Houot
- Center of Excellence of Neurodegenerative Disease (CoEN), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Clinical Investigation Centre (CIC) Neuroscience, Brain Institute, Pitié-Salpêtrière Hospital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Souraya Arnaud
- Neurology Department, Avicenne Hospital, APHP, Hôpitaux Universitaires de Paris-Seine Saint Denis (HUPSSD), Sorbonne Paris Nord, NS-PARK/FCRIN Network, Bobigny, France
- Neurology Department, Guadeloupe University Hospital, Pointe-À-Pitre/Abymes, Guadeloupe
- Faculty of Medicine, University of the Antilles, Pointe-À-Pitre, Guadeloupe
- Sorbonne University, National Institute of Health and Medical Research, U 1127, CNRS, "Unité Mixte de Recherche, (UMR) 7225, Brain Institute, Paris, France
- Antilles Guyane Clinical Investigation Center, Inserm CIC 1424, Pointe-À-Pitre, Guadeloupe
| | - Marie Mongin
- Neurology Department, Avicenne Hospital, APHP, Hôpitaux Universitaires de Paris-Seine Saint Denis (HUPSSD), Sorbonne Paris Nord, NS-PARK/FCRIN Network, Bobigny, France
| | - Gabriel Pop
- Nuclear Medicine Unit, AP-HP, Avicenne University Hospital, Sorbonne Paris Nord, Bobigny, France
| | - Michaël Soussan
- Nuclear Medicine Unit, AP-HP, Avicenne University Hospital, Sorbonne Paris Nord, Bobigny, France
| | - Annie Lannuzel
- Neurology Department, Guadeloupe University Hospital, Pointe-À-Pitre/Abymes, Guadeloupe
- Faculty of Medicine, University of the Antilles, Pointe-À-Pitre, Guadeloupe
- Sorbonne University, National Institute of Health and Medical Research, U 1127, CNRS, "Unité Mixte de Recherche, (UMR) 7225, Brain Institute, Paris, France
- Antilles Guyane Clinical Investigation Center, Inserm CIC 1424, Pointe-À-Pitre, Guadeloupe
| | - Bertrand Degos
- Neurology Department, Avicenne Hospital, APHP, Hôpitaux Universitaires de Paris-Seine Saint Denis (HUPSSD), Sorbonne Paris Nord, NS-PARK/FCRIN Network, Bobigny, France.
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241/INSERM U1050, Université PSL, Paris, France.
| |
Collapse
|
6
|
Di Luca DG, Perlmutter JS. Time for Clinical Dopamine Transporter Scans in Parkinsonism?: Not DAT Yet. Neurology 2024; 102:e209558. [PMID: 38759140 PMCID: PMC11175627 DOI: 10.1212/wnl.0000000000209558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Affiliation(s)
- Daniel G Di Luca
- From the Department of Neurology, Washington University in St. Louis, MO
| | - Joel S Perlmutter
- From the Department of Neurology, Washington University in St. Louis, MO
| |
Collapse
|
7
|
Kwok AJ, Lu J, Huang J, Ip BY, Mok VCT, Lai HM, Ko H. High-resolution omics of vascular ageing and inflammatory pathways in neurodegeneration. Semin Cell Dev Biol 2024; 155:30-49. [PMID: 37380595 DOI: 10.1016/j.semcdb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
High-resolution omics, particularly single-cell and spatial transcriptomic profiling, are rapidly enhancing our comprehension of the normal molecular diversity of gliovascular cells, as well as their age-related changes that contribute to neurodegeneration. With more omic profiling studies being conducted, it is becoming increasingly essential to synthesise valuable information from the rapidly accumulating findings. In this review, we present an overview of the molecular features of neurovascular and glial cells that have been recently discovered through omic profiling, with a focus on those that have potentially significant functional implications and/or show cross-species differences between human and mouse, and that are linked to vascular deficits and inflammatory pathways in ageing and neurodegenerative disorders. Additionally, we highlight the translational applications of omic profiling, and discuss omic-based strategies to accelerate biomarker discovery and facilitate disease course-modifying therapeutics development for neurodegenerative conditions.
Collapse
Affiliation(s)
- Andrew J Kwok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jianning Lu
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bonaventure Y Ip
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Mercer MK, Revels JW, Blacklock LC, Banks KP, Johnson LS, Lewis DH, Kuo PH, Wilson S, Elojeimy S. Practical Overview of 123I-Ioflupane Imaging in Parkinsonian Syndromes. Radiographics 2024; 44:e230133. [PMID: 38236751 DOI: 10.1148/rg.230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Parkinsonian syndromes are a heterogeneous group of progressive neurodegenerative disorders involving the nigrostriatal dopaminergic pathway and are characterized by a wide spectrum of motor and nonmotor symptoms. These syndromes are quite common and can profoundly impact the lives of patients and their families. In addition to classic Parkinson disease, parkinsonian syndromes include multiple additional disorders known collectively as Parkinson-plus syndromes or atypical parkinsonism. These are characterized by the classic parkinsonian motor symptoms with additional distinguishing clinical features. Dopamine transporter SPECT has been developed as a diagnostic tool to assess the levels of dopamine transporters in the striatum. This imaging assessment, which uses iodine 123 (123I) ioflupane, can be useful to differentiate parkinsonian syndromes caused by nigrostriatal degeneration from other clinical mimics such as essential tremor or psychogenic tremor. Dopamine transporter imaging plays a crucial role in diagnosing parkinsonian syndromes, particularly in patients who do not clearly fulfill the clinical criteria for diagnosis. Diagnostic clarification can allow early treatment in appropriate patients and avoid misdiagnosis. At present, only the qualitative interpretation of dopamine transporter SPECT is approved by the U.S. Food and Drug Administration, but quantitative interpretation is often used to supplement qualitative interpretation. The authors provide an overview of patient preparation, common imaging findings, and potential pitfalls that radiologists and nuclear medicine physicians should know when performing and interpreting dopamine transporter examinations. Alternatives to 123I-ioflupane imaging for the evaluation of nigrostriatal degeneration are also briefly discussed. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material. See the invited commentary by Intenzo and Colarossi in this issue.
Collapse
Affiliation(s)
- Megan K Mercer
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Jonathan W Revels
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Lisa C Blacklock
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Kevin P Banks
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Lester S Johnson
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - David H Lewis
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Phillip H Kuo
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Shannon Wilson
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Saeed Elojeimy
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| |
Collapse
|
9
|
Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, Campbell M, Chowdhury S, Coffey C, Concha-Marambio L, Dam T, DiBiaso P, Foroud T, Frasier M, Gochanour C, Jennings D, Kieburtz K, Kopil CM, Merchant K, Mollenhauer B, Montine T, Nudelman K, Pagano G, Seibyl J, Sherer T, Singleton A, Stephenson D, Stern M, Soto C, Tanner CM, Tolosa E, Weintraub D, Xiao Y, Siderowf A, Dunn B, Marek K. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol 2024; 23:178-190. [PMID: 38267190 DOI: 10.1016/s1474-4422(23)00405-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 208.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024]
Abstract
Parkinson's disease and dementia with Lewy bodies are currently defined by their clinical features, with α-synuclein pathology as the gold standard to establish the definitive diagnosis. We propose that, given biomarker advances enabling accurate detection of pathological α-synuclein (ie, misfolded and aggregated) in CSF using the seed amplification assay, it is time to redefine Parkinson's disease and dementia with Lewy bodies as neuronal α-synuclein disease rather than as clinical syndromes. This major shift from a clinical to a biological definition of Parkinson's disease and dementia with Lewy bodies takes advantage of the availability of tools to assess the gold standard for diagnosis of neuronal α-synuclein (n-αsyn) in human beings during life. Neuronal α-synuclein disease is defined by the presence of pathological n-αsyn species detected in vivo (S; the first biological anchor) regardless of the presence of any specific clinical syndrome. On the basis of this definition, we propose that individuals with pathological n-αsyn aggregates are at risk for dopaminergic neuronal dysfunction (D; the second biological anchor). Our biological definition establishes a staging system, the neuronal α-synuclein disease integrated staging system (NSD-ISS), rooted in the biological anchors (S and D) and the degree of functional impairment caused by clinical signs or symptoms. Stages 0-1 occur without signs or symptoms and are defined by the presence of pathogenic variants in the SNCA gene (stage 0), S alone (stage 1A), or S and D (stage 1B). The presence of clinical manifestations marks the transition to stage 2 and beyond. Stage 2 is characterised by subtle signs or symptoms but without functional impairment. Stages 2B-6 require both S and D and stage-specific increases in functional impairment. A biological definition of neuronal α-synuclein disease and an NSD-ISS research framework are essential to enable interventional trials at early disease stages. The NSD-ISS will evolve to include the incorporation of data-driven definitions of stage-specific functional anchors and additional biomarkers as they emerge and are validated. Presently, the NSD-ISS is intended for research use only; its application in the clinical setting is premature and inappropriate.
Collapse
Affiliation(s)
- Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Teresa Buracchio
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Campbell
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sohini Chowdhury
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | | | - Peter DiBiaso
- Patient Advisory Council, New York, NY, USA; Clinical Solutions and Strategic Partnerships, WCG Clinical, Princeton, NJ, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Mark Frasier
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Gochanour
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | - Karl Kieburtz
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine M Kopil
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Thomas Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Singleton
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Diane Stephenson
- Critical Path for Parkinson's, Critical Path Institute, Tucson, AZ, USA
| | - Matthew Stern
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Soto
- Amprion, San Diego, CA, USA; Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Caroline M Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA; Parkinson's Disease Research Education and Clinical Center, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Weintraub
- University of Pennsylvania and the Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center Philadelphia, PA, USA
| | - Yuge Xiao
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy Dunn
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
10
|
Kulcsarova K, Skorvanek M, Postuma RB, Berg D. Defining Parkinson's Disease: Past and Future. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S257-S271. [PMID: 38489197 PMCID: PMC11492139 DOI: 10.3233/jpd-230411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Parkinson's disease (PD) is the second most common still relentlessly progressive neurodegenerative disorder with a long period in which the pathophysiological process is already spreading but cardinal motor symptoms are not present. This review outlines the major developments and milestones in our understanding of PD that have shaped the way we define this disorder. Past criteria and definitions of PD have been based on clinical motor manifestations enabling diagnosis of the disease only in later symptomatic stages. Nevertheless, with advancing knowledge of disease pathophysiology and aim of early disease detection, a major shift of the diagnostic paradigm is being advocated towards a biological definition similar to other neurodegenerative disorders including Alzheimer's disease and Huntington's disease, with the ultimate goal of an earlier, disease course modifying therapy. We summarize the major pillars of this possible approach including in vivo detection of neuronal α-synuclein aggregation, neurodegeneration and genetics and outline their possible application in different contexts of use in the frame of biological PD definition.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Matej Skorvanek
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
| | - Ronald B. Postuma
- Department of Neurology, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
11
|
Mahlknecht P, Poewe W. Pharmacotherapy for Disease Modification in Early Parkinson's Disease: How Early Should We Be? JOURNAL OF PARKINSON'S DISEASE 2024; 14:S407-S421. [PMID: 38427503 PMCID: PMC11492107 DOI: 10.3233/jpd-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Slowing or halting progression continues to be a major unmet medical need in Parkinson's disease (PD). Numerous trials over the past decades have tested a broad range of interventions without ultimate success. There are many potential reasons for this failure and much debate has focused on the need to test 'disease-modifying' candidate drugs in the earliest stages of disease. While generally accepted as a rational approach, it is also associated with significant challenges around the selection of trial populations as well as trial outcomes and durations. From a health care perspective, intervening even earlier and before at-risk subjects have gone on to develop overt clinical disease is at the heart of preventive medicine. Recent attempts to develop a framework for a biological definition of PD are aiming to enable 'preclinical' and subtype-specific diagnostic approaches. The present review addresses past efforts towards disease-modification, including drug targets and reasons for failure, as well as novel targets that are currently being explored in disease-modification trials in early established PD. The new biological definitions of PD may offer new opportunities to intervene even earlier. We critically discuss the potential and challenges around planning 'disease-prevention' trials in subjects with biologically defined 'preclinical' or prodromal PD.
Collapse
Affiliation(s)
- Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
12
|
Lenka A, Jankovic J. How should future clinical trials be designed in the search for disease-modifying therapies for Parkinson's disease? Expert Rev Neurother 2023; 23:107-122. [PMID: 36803618 DOI: 10.1080/14737175.2023.2177535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Although there has been substantial progress in research and innovations in symptomatic treatments, similar success has not been achieved in disease-modifying therapy (DMT) for Parkinson's disease (PD). Considering the enormous motor, psychosocial and financial burden associated with PD, safe and effective DMT is of paramount importance. AREAS COVERED One of the reasons for the lack of progress in DMT for PD is poor or inappropriate design of clinical trials. In the first part of the article, the authors focus on the plausible reasons why the previous trials have failed and in the latter part, they provide their perspectives on future DMT trials. EXPERT OPINION There are several potential reasons why previous trials have failed, including broad clinical and etiopathogenic heterogeneity of PD, poor definition and documentation of target engagement, lack of appropriate biomarkers and outcome measures, and short duration of follow-up. To address these deficiencies, future trials may consider- (i) a more customized approach to select the most suitable participants and therapeutic approaches, (ii) explore combination therapies that would target multiple pathogenetic mechanisms, and (iii) moving beyond targeting only motor symptoms to also assessing non-motor features of PD in well-designed longitudinal studies.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Searching for Biomarkers in the Blood of Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. Int J Mol Sci 2023; 24:ijms24031842. [PMID: 36768161 PMCID: PMC9915927 DOI: 10.3390/ijms24031842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is diagnosed many years after its onset, under a significant degradation of the nigrostriatal dopaminergic system, responsible for the regulation of motor function. This explains the low effectiveness of the treatment of patients. Therefore, one of the highest priorities in neurology is the development of the early (preclinical) diagnosis of PD. The aim of this study was to search for changes in the blood of patients at risk of developing PD, which are considered potential diagnostic biomarkers. Out of 1835 patients, 26 patients were included in the risk group and 20 patients in the control group. The primary criteria for inclusion in a risk group were the impairment of sleep behavior disorder and sense of smell, and the secondary criteria were neurological and mental disorders. In patients at risk and in controls, the composition of plasma and the expression of genes of interest in lymphocytes were assessed by 27 indicators. The main changes that we found in plasma include a decrease in the concentrations of l-3,4-dihydroxyphenylalanine (L-DOPA) and urates, as well as the expressions of some types of microRNA, and an increase in the total oxidative status. In turn, in the lymphocytes of patients at risk, an increase in the expression of the DA D3 receptor gene and the lymphocyte activation gene 3 (LAG3), as well as a decrease in the expression of the Protein deglycase DJ-1 gene (PARK7), were observed. The blood changes we found in patients at risk are considered candidates for diagnostic biomarkers at the prodromal stage of PD.
Collapse
|
14
|
Molsberry SA, Hughes KC, Schwarzschild MA, Ascherio A. Who to Enroll in Parkinson Disease Prevention Trials? The Case for Composite Prodromal Cohorts. Neurology 2022; 99:26-33. [PMID: 35970591 DOI: 10.1212/wnl.0000000000200788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Significant progress has been made in expanding our understanding of prodromal Parkinson disease (PD), particularly for recognition of early motor and nonmotor signs and symptoms. Although identification of these prodromal features may improve our understanding of the earliest stages of PD, they are individually insufficient for early disease detection and enrollment of participants in prevention trials in most cases because of low sensitivity, specificity, and positive predictive value. Composite cohorts, composed of individuals with multiple co-occurring prodromal features, are an important resource for conducting prodromal PD research and eventual prevention trials because they are more representative of the population at risk for PD, allow investigators to evaluate the efficacy of an intervention across individuals with varying prodromal feature patterns, are able to produce larger sample sizes, and capture individuals at different stages of prodromal PD. A key challenge in identifying individuals with prodromal disease for composite cohorts and prevention trial participation is that we know little about the natural history of prodromal PD. To move toward prevention trials, it is critical that we better understand common prodromal feature patterns and be able to predict the probability of progression and phenoconversion. Ongoing research in cohort studies and administrative databases is beginning to address these questions, but further longitudinal analyses in a large population-based sample are necessary to provide a convincing and definitive strategy for identifying individuals to be enrolled in a prevention trial.
Collapse
Affiliation(s)
- Samantha A Molsberry
- From the Department of Nutrition (S.A.M., A.A.), Harvard T.H. Chan School of Public Health; Epidemiology (K.C.H.), Optum; Department of Neurology (M.A.S.), and MassGeneral Institute for Neurodegenerative Disease (M.A.S.), Massachusetts General Hospital; Department of Epidemiology (A.A.), Harvard T.H. Chan School of Public Health; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | - Katherine C Hughes
- From the Department of Nutrition (S.A.M., A.A.), Harvard T.H. Chan School of Public Health; Epidemiology (K.C.H.), Optum; Department of Neurology (M.A.S.), and MassGeneral Institute for Neurodegenerative Disease (M.A.S.), Massachusetts General Hospital; Department of Epidemiology (A.A.), Harvard T.H. Chan School of Public Health; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Michael A Schwarzschild
- From the Department of Nutrition (S.A.M., A.A.), Harvard T.H. Chan School of Public Health; Epidemiology (K.C.H.), Optum; Department of Neurology (M.A.S.), and MassGeneral Institute for Neurodegenerative Disease (M.A.S.), Massachusetts General Hospital; Department of Epidemiology (A.A.), Harvard T.H. Chan School of Public Health; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Alberto Ascherio
- From the Department of Nutrition (S.A.M., A.A.), Harvard T.H. Chan School of Public Health; Epidemiology (K.C.H.), Optum; Department of Neurology (M.A.S.), and MassGeneral Institute for Neurodegenerative Disease (M.A.S.), Massachusetts General Hospital; Department of Epidemiology (A.A.), Harvard T.H. Chan School of Public Health; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|