1
|
Okutan B, Frederiksen JL, Houen G, Sellebjerg F, Kyllesbech C, Magyari M, Paunovic M, Sørensen PS, Jacobsen C, Lassmann H, Bramow S. Subcortical plaques and inflammation reflect cortical and meningeal pathologies in progressive multiple sclerosis. Brain Pathol 2025; 35:e13314. [PMID: 39460678 PMCID: PMC11961212 DOI: 10.1111/bpa.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
It remains elusive whether lesions and inflammation in the sub/juxtacortical white matter reflect cortical and/or meningeal pathologies. Elucidating this could have implications for MRI monitoring as sub/juxtacortical lesions are detectable by routine MRI, while cortical lesions and meningeal inflammation are not. By large-area microscopy, we quantified total and mixed active plaque loads along with densities and sizes of perivascular mononuclear infiltrates (infiltrates) in the sub/juxtacortical white matter ≤2 mm from the cortex, intra-cortically and in the meninges. Data were related to ante-mortem clinical parameters in a false discovery rate-corrected analysis. We compared 12 patients with primary progressive multiple sclerosis (PPMS) and 15 with secondary progressive MS to 22 controls. Fifteen patients and 11 controls contributed with hemispheric sections. Sections were stained with haematoxylin-eosin, for myelin and for microglia/macrophages. B cells and T cells were confirmed in a subset. Immunoglobulin G depositions in selected cortical plaques resembled depositions described before in "slowly expanding" plaques in the white matter. We quantified plaque activity by measuring microglia-dominated and macrophage-dominated areas. Sub/juxtacortical plaques (load and activity) reflected plaque activity in the cerebral cortex. Plaque activity and infiltrates were more pronounced in the sub/juxtacortical white matter than in the cerebral cortex while conversely, the total plaque load was highest in the cortex. Infiltrates correlated trans-cortically and sub/juxtacortical plaque activity reflected cortical and meningeal infiltrates. Sub/juxtacortical infiltrate sizes correlated with shorter survival after progression onset. Two patients with PPMS and putatively fatal brain stem lesions argue against incidental findings. Trans-cortical inflammatory flares and plaque activity may be pathogenic in progressive MS. We suggest emphasis on sub/juxtacortical MRI lesions as plausible surrogates for cortical and meningeal pathologies and, when present, as indicators for cognitive testing.
Collapse
Affiliation(s)
- Betül Okutan
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | - Jette L. Frederiksen
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Gunnar Houen
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Biochemistry and Molecular Biology, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cecilie Kyllesbech
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Biochemistry and Molecular Biology, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Neurology, Danish Multiple Sclerosis RegistryCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | - Manuela Paunovic
- Department of NeurologyErasmus Medical CentreRotterdamThe Netherlands
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Per S. Sørensen
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Jacobsen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Hans Lassmann
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Stephan Bramow
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of PathologyCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| |
Collapse
|
2
|
Mirmosayyeb O, Yazdan Panah M, Mokary Y, Mohammadi M, Moases Ghaffary E, Shaygannejad V, Weinstock-Guttman B, Zivadinov R, Jakimovski D. Neuroimaging markers and disability scales in multiple sclerosis: A systematic review and meta-analysis. PLoS One 2024; 19:e0312421. [PMID: 39637162 PMCID: PMC11620670 DOI: 10.1371/journal.pone.0312421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/06/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system disorder marked by progressive neurological impairments. Magnetic resonance imaging (MRI) parameters are key paraclinical measures that play a crucial role in the diagnosis, prognosis, and monitoring of MS-related disability. This study aims to analyze and summarize the existing literature on the correlation between MRI parameters and disability in people with MS (pwMS). METHODS The PubMed/MEDLINE, Embase, Scopus, and Web of Science databases were searched from inception to July 19, 2024, and a meta-analysis was carried out using R software version 4.4.0 and the random effects model used to determine the pooled correlation coefficient, with its 95% confidence interval (CI), between MRI measurements and disability scales. RESULTS Among 5741 studies, 383 studies with 39707 pwMS were included. The meta-analysis demonstrated that Expanded Disability Status Scale (EDSS) had significant correlations with cervical cord volume (r = -0.51, 95% CI: -0.62 to -0.38, I2 = 0%, p-heterogeneity = 0.86, p-value<0.01), cortical lesion volume (r = 0.45, 95% CI: 0.36 to 0.53, I2 = 68%, p-heterogeneity<0.01, p-value<0.01), brain volume (r = -0.40, 95% CI: -0.47 to -0.33, I2 = 41%, p-heterogeneity = 0.05, p-value<0.05), and grey matter volume (GMV) (r = -0.36, 95% CI: -0.49 to -0.21, I2 = 0%, p-heterogeneity = 0.53, p-value<0.01), respectively. CONCLUSION This study offers evidence suggesting that cortical lesion volume, brain volume, GMV, and MRI measurements of the spinal cord may constitute reliable indicators for assessing disability in pwMS.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Mohammad Yazdan Panah
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousef Mokary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mohammadi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Pharmacy School, University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Dejan Jakimovski
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| |
Collapse
|
3
|
Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, De Stefano N, Granziera C, Ropele S, Toosy AT, Vidal-Jordana À, Di Filippo M, Filippi M. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:100978. [PMID: 39444702 PMCID: PMC11496980 DOI: 10.1016/j.lanepe.2024.100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
In the majority of cases, multiple sclerosis (MS) is characterized by reversible episodes of neurological dysfunction, often followed by irreversible clinical disability. Accurate diagnostic criteria and prognostic markers are critical to enable early diagnosis and correctly identify patients with MS at increased risk of disease progression. The 2017 McDonald diagnostic criteria, which include magnetic resonance imaging (MRI) as a fundamental paraclinical tool, show high sensitivity and accuracy for the diagnosis of MS allowing early diagnosis and treatment. However, their inappropriate application, especially in the context of atypical clinical presentations, may increase the risk of misdiagnosis. To further improve the diagnostic process, novel imaging markers are emerging, but rigorous validation and standardization is still needed before they can be incorporated into clinical practice. This Series article discusses the current role of MRI in the diagnosis and prognosis of MS, while examining promising MRI markers, which could serve as reliable predictors of subsequent disease progression, helping to optimize the management of individual patients with MS. We also explore the potential of new technologies, such as artificial intelligence and automated quantification tools, to support clinicians in the management of patients. Yet, to ensure consistency and improvement in the use of MRI in MS diagnosis and patient follow-up, it is essential that standardized brain and spinal cord MRI protocols are applied, and that interpretation of results is performed by qualified (neuro)radiologists in all countries.
Collapse
Affiliation(s)
- Maria A. Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Wallace Brownlee
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Massimiliano Calabrese
- The Multiple Sclerosis Center of University Hospital of Verona, Department of Neurosciences and Biomedicine and Movement, Verona, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ahmed T. Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Àngela Vidal-Jordana
- Servicio de Neurología, Centro de Esclerosis Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Zivadinov R, Schweser F, Jakimovski D, Bergsland N, Dwyer MG. Decoding Gray Matter Involvement in Multiple Sclerosis via Imaging. Neuroimaging Clin N Am 2024; 34:453-468. [PMID: 38942527 DOI: 10.1016/j.nic.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Multiple sclerosis (MS) is increasingly understood not only as a white matter disease but also involving both the deep and cortical gray matter (GM). GM pathology in people with MS (pwMS) includes the presence of lesions, leptomeningeal inflammation, atrophy, altered iron concentration, and microstructural changes. Studies using 7T and 3T MR imaging with optimized protocols established that GM damage is a principal driver of disease progression in pwMS. Future work is needed to incorporate the assessment of these GM imaging biomarkers into the clinical workup of pwMS and the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
5
|
Borrelli S, Martire MS, Stölting A, Vanden Bulcke C, Pedrini E, Guisset F, Bugli C, Yildiz H, Pothen L, Elands S, Martinelli V, Smith B, Jacobson S, Du Pasquier RA, Van Pesch V, Filippi M, Reich DS, Absinta M, Maggi P. Central Vein Sign, Cortical Lesions, and Paramagnetic Rim Lesions for the Diagnostic and Prognostic Workup of Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200253. [PMID: 38788180 PMCID: PMC11129678 DOI: 10.1212/nxi.0000000000200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AND OBJECTIVES The diagnosis of multiple sclerosis (MS) can be challenging in clinical practice because MS presentation can be atypical and mimicked by other diseases. We evaluated the diagnostic performance, alone or in combination, of the central vein sign (CVS), paramagnetic rim lesion (PRL), and cortical lesion (CL), as well as their association with clinical outcomes. METHODS In this multicenter observational study, we first conducted a cross-sectional analysis of the CVS (proportion of CVS-positive lesions or simplified determination of CVS in 3/6 lesions-Select3*/Select6*), PRL, and CL in MS and non-MS cases on 3T-MRI brain images, including 3D T2-FLAIR, T2*-echo-planar imaging magnitude and phase, double inversion recovery, and magnetization prepared rapid gradient echo image sequences. Then, we longitudinally analyzed the progression independent of relapse and MRI activity (PIRA) in MS cases over the 2 years after study entry. Receiver operating characteristic curves were used to test diagnostic performance and regression models to predict diagnosis and clinical outcomes. RESULTS The presence of ≥41% CVS-positive lesions/≥1 CL/≥1 PRL (optimal cutoffs) had 96%/90%/93% specificity, 97%/84%/60% sensitivity, and 0.99/0.90/0.77 area under the curve (AUC), respectively, to distinguish MS (n = 185) from non-MS (n = 100) cases. The Select3*/Select6* algorithms showed 93%/95% specificity, 97%/89% sensitivity, and 0.95/0.92 AUC. The combination of CVS, CL, and PRL improved the diagnostic performance, especially when Select3*/Select6* were used (93%/94% specificity, 98%/96% sensitivity, 0.99/0.98 AUC; p = 0.002/p < 0.001). In MS cases (n = 185), both CL and PRL were associated with higher MS disability and severity. Longitudinal analysis (n = 61) showed that MS cases with >4 PRL at baseline were more likely to experience PIRA at 2-year follow-up (odds ratio 17.0, 95% confidence interval: 2.1-138.5; p = 0.008), whereas no association was observed between other baseline MRI measures and PIRA, including the number of CL. DISCUSSION The combination of CVS, CL, and PRL can improve MS differential diagnosis. CL and PRL also correlated with clinical measures of poor prognosis, with PRL being a predictor of disability accrual independent of clinical/MRI activity.
Collapse
Affiliation(s)
- Serena Borrelli
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Maria Sofia Martire
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anna Stölting
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Colin Vanden Bulcke
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Edoardo Pedrini
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - François Guisset
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Céline Bugli
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Halil Yildiz
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lucie Pothen
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sophie Elands
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vittorio Martinelli
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bryan Smith
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven Jacobson
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Renaud A Du Pasquier
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vincent Van Pesch
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Massimo Filippi
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel S Reich
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Martina Absinta
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pietro Maggi
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Beck ES, Mullins WA, dos Santos Silva J, Filippini S, Parvathaneni P, Maranzano J, Morrison M, Suto DJ, Donnay C, Dieckhaus H, Luciano NJ, Sharma K, Gaitán MI, Liu J, de Zwart JA, van Gelderen P, Cortese I, Narayanan S, Duyn JH, Nair G, Sati P, Reich DS. Contribution of new and chronic cortical lesions to disability accrual in multiple sclerosis. Brain Commun 2024; 6:fcae158. [PMID: 38818331 PMCID: PMC11137753 DOI: 10.1093/braincomms/fcae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Cortical lesions are common in multiple sclerosis and are associated with disability and progressive disease. We asked whether cortical lesions continue to form in people with stable white matter lesions and whether the association of cortical lesions with worsening disability relates to pre-existing or new cortical lesions. Fifty adults with multiple sclerosis and no new white matter lesions in the year prior to enrolment (33 relapsing-remitting and 17 progressive) and a comparison group of nine adults who had formed at least one new white matter lesion in the year prior to enrolment (active relapsing-remitting) were evaluated annually with 7 tesla (T) brain MRI and 3T brain and spine MRI for 2 years, with clinical assessments for 3 years. Cortical lesions and paramagnetic rim lesions were identified on 7T images. Seven total cortical lesions formed in 3/30 individuals in the stable relapsing-remitting group (median 0, range 0-5), four total cortical lesions formed in 4/17 individuals in the progressive group (median 0, range 0-1), and 16 cortical lesions formed in 5/9 individuals in the active relapsing-remitting group (median 1, range 0-10, stable relapsing-remitting versus progressive versus active relapsing-remitting P = 0.006). New cortical lesions were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Individuals with at least three paramagnetic rim lesions had a greater increase in cortical lesion volume over time (median 16 µl, range -61 to 215 versus median 1 µl, range -24 to 184, P = 0.007), but change in lesion volume was not associated with disability change. Baseline cortical lesion volume was higher in people with worsening disability (median 1010 µl, range 13-9888 versus median 267 µl, range 0-3539, P = 0.001, adjusted for age and sex) and in individuals with relapsing-remitting multiple sclerosis who subsequently transitioned to secondary progressive multiple sclerosis (median 2183 µl, range 270-9888 versus median 321 µl, range 0-6392 in those who remained relapsing-remitting, P = 0.01, adjusted for age and sex). Baseline white matter lesion volume was not associated with worsening disability or transition from relapsing-remitting to secondary progressive multiple sclerosis. Cortical lesion formation is rare in people with stable white matter lesions, even in those with worsening disability. Cortical but not white matter lesion burden predicts disability worsening, suggesting that disability progression is related to long-term effects of cortical lesions that form early in the disease, rather than to ongoing cortical lesion formation.
Collapse
Affiliation(s)
- Erin S Beck
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - W Andrew Mullins
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Stefano Filippini
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurosciences, Drug, and Child Health, University of Florence, Florence 50121, Italy
| | - Prasanna Parvathaneni
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada
- Department of Anatomy, University of Quebec, Trois-Rivieres, QC G9A5H7, Canada
| | - Mark Morrison
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel J Suto
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Corinne Donnay
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry Dieckhaus
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas J Luciano
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kanika Sharma
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - María Ines Gaitán
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiaen Liu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacco A de Zwart
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter van Gelderen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irene Cortese
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada
| | - Jeff H Duyn
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pascal Sati
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Nguyen P, Rempe T, Forghani R. Multiple Sclerosis: Clinical Update and Clinically-Oriented Radiologic Reporting. Magn Reson Imaging Clin N Am 2024; 32:363-374. [PMID: 38555146 DOI: 10.1016/j.mric.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the nervous system. MR imaging findings play an integral part in establishing diagnostic hallmarks of the disease during initial diagnosis and evaluating disease status. Multiple iterations of diagnostic criteria and consensus guidelines are put forth by various expert groups incorporating imaging of the brain and spine, and efforts have been made to standardize imaging protocols for MS. Emerging ancillary imaging findings have also attracted increasing interests and should be sought for on radiologic examination. In this paper, the authors review the clinical guidelines and approach to imaging of MS and related disorders, focusing on clinically impactful image interpretation and MR imaging reporting.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Radiology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610-0374, USA
| | - Torge Rempe
- Department of Neurology, University of Florida College of Medicine, Norman Fixel Institute for Neurological Diseases, 3009 SW Williston Road, Gainesville, FL 32608, USA
| | - Reza Forghani
- Department of Radiology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610-0374, USA; Division of Movement Disorders, Department of Neurology, University of Florida College of Medicine, Norman Fixel Institute for Neurological Diseases, 3009 SW Williston Road, Gainesville, FL 32608, USA; Division of Medical Physics, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610-0374, USA; Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Room 221.1, 3011 SW Williston Road, Gainesville, FL 32608, USA.
| |
Collapse
|
8
|
Koubiyr I, Krijnen EA, Eijlers AJC, Dekker I, Hulst HE, Uitdehaag BMJ, Barkhof F, Geurts JJG, Schoonheim MM. Longitudinal fibre-specific white matter damage predicts cognitive decline in multiple sclerosis. Brain Commun 2024; 6:fcae018. [PMID: 38344654 PMCID: PMC10853982 DOI: 10.1093/braincomms/fcae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
During the course of multiple sclerosis, many patients experience cognitive deficits which are not simply driven by lesion number or location. By considering the full complexity of white matter structure at macro- and microstructural levels, our understanding of cognitive impairment in multiple sclerosis may increase substantially. Accordingly, this study aimed to investigate specific patterns of white matter degeneration, the evolution over time, the manifestation across different stages of the disease and their role in cognitive impairment using a novel fixel-based approach. Neuropsychological test scores and MRI scans including 30-direction diffusion-weighted images were collected from 327 multiple sclerosis patients (mean age = 48.34 years, 221 female) and 95 healthy controls (mean age = 45.70 years, 55 female). Of those, 233 patients and 61 healthy controls had similar follow-up assessments 5 years after. Patients scoring 1.5 or 2 standard deviations below healthy controls on at least two out of seven cognitive domains (from the Brief Repeatable Battery of Neuropsychological Tests, BRB-N) were classified as mildly cognitively impaired or cognitively impaired, respectively, or otherwise cognitively preserved. Fixel-based analysis of diffusion data was used to calculate fibre-specific measures (fibre density, reflecting microstructural diffuse axonal damage; fibre cross-section, reflecting macrostructural tract atrophy) within atlas-based white matter tracts at each visit. At baseline, all fixel-based measures were significantly worse in multiple sclerosis compared with healthy controls (P < 0.05). For both fibre density and fibre cross-section, a similar pattern was observed, with secondary progressive multiple sclerosis patients having the most severe damage, followed by primary progressive and relapsing-remitting multiple sclerosis. Similarly, damage was least severe in cognitively preserved (n = 177), more severe in mildly cognitively impaired (n = 63) and worst in cognitively impaired (n = 87; P < 0.05). Microstructural damage was most pronounced in the cingulum, while macrostructural alterations were most pronounced in the corticospinal tract, cingulum and superior longitudinal fasciculus. Over time, white matter alterations worsened most severely in progressive multiple sclerosis (P < 0.05), with white matter atrophy progression mainly seen in the corticospinal tract and microstructural axonal damage worsening in cingulum and superior longitudinal fasciculus. Cognitive decline at follow-up could be predicted by baseline fixel-based measures (R2 = 0.45, P < 0.001). Fixel-based approaches are sensitive to white matter degeneration patterns in multiple sclerosis and can have strong predictive value for cognitive impairment. Longitudinal deterioration was most marked in progressive multiple sclerosis, indicating that degeneration in white matter remains important to characterize further in this phenotype.
Collapse
Affiliation(s)
- Ismail Koubiyr
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Eva A Krijnen
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam 1081 HV, The Netherlands
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Anand J C Eijlers
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Iris Dekker
- MS Center Amsterdam, Rehabilitation, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Hanneke E Hulst
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Leiden University, Leiden 2333 AK, The Netherlands
| | - Bernard M J Uitdehaag
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Frederik Barkhof
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam 1081 HV, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Jeroen J G Geurts
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
9
|
Beck ES, Mullins WA, Dos Santos Silva J, Filippini S, Parvathaneni P, Maranzano J, Morrison M, Suto DJ, Donnay C, Dieckhaus H, Luciano NJ, Sharma K, Gaitán MI, Liu J, de Zwart JA, van Gelderen P, Cortese I, Narayanan S, Duyn JH, Nair G, Sati P, Reich DS. Cortical lesions uniquely predict motor disability accrual and form rarely in the absence of new white matter lesions in multiple sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.22.23295974. [PMID: 37886541 PMCID: PMC10602044 DOI: 10.1101/2023.09.22.23295974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background and objectives Cortical lesions (CL) are common in multiple sclerosis (MS) and associate with disability and progressive disease. We asked whether CL continue to form in people with stable white matter lesions (WML) and whether the association of CL with worsening disability relates to pre-existing or new CL. Methods A cohort of adults with MS were evaluated annually with 7 tesla (T) brain magnetic resonance imaging (MRI) and 3T brain and spine MRI for 2 years, and clinical assessments for 3 years. CL were identified on 7T images at each timepoint. WML and brain tissue segmentation were performed using 3T images at baseline and year 2. Results 59 adults with MS had ≥1 7T follow-up visit (mean follow-up time 2±0.5 years). 9 had "active" relapsing-remitting MS (RRMS), defined as new WML in the year prior to enrollment. Of the remaining 50, 33 had "stable" RRMS, 14 secondary progressive MS (SPMS), and 3 primary progressive MS. 16 total new CL formed in the active RRMS group (median 1, range 0-10), 7 in the stable RRMS group (median 0, range 0-5), and 4 in the progressive MS group (median 0, range 0-1) (p=0.006, stable RR vs PMS p=0.88). New CL were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Baseline CL volume was higher in people with worsening disability (median 1010μl, range 13-9888 vs median 267μl, range 0-3539, p=0.001, adjusted for age and sex) and in individuals with RRMS who subsequently transitioned to SPMS (median 2183μl, range 270-9888 vs median 321μl, range 0-6392 in those who remained RRMS, p=0.01, adjusted for age and sex). Baseline WML volume was not associated with worsening disability or transition from RRMS to SPMS. Discussion CL formation is rare in people with stable WML, even in those with worsening disability. CL but not WML burden predicts future worsening of disability, suggesting that the relationship between CL and disability progression is related to long-term effects of lesions that form in the earlier stages of disease, rather than to ongoing lesion formation.
Collapse
Affiliation(s)
- Erin S Beck
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Andrew Mullins
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Stefano Filippini
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurosciences, Drug, and Child Health, University of Florence, Florence, Italy
| | - Prasanna Parvathaneni
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Department of Anatomy, University of Quebec, Trois-Rivieres, QC, Canada
| | - Mark Morrison
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel J Suto
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Corinne Donnay
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Henry Dieckhaus
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas J Luciano
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kanika Sharma
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - María Ines Gaitán
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jiaen Liu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacco A de Zwart
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter van Gelderen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Irene Cortese
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jeff H Duyn
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Govind Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pascal Sati
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Meyer CE, Smith AW, Padilla-Requerey AA, Farkhondeh V, Itoh N, Itoh Y, Gao JL, Herbig PD, Nguyen Q, Ngo KH, Oberoi MR, Siddarth P, Voskuhl RR, MacKenzie-Graham A. Neuroprotection in Cerebral Cortex Induced by the Pregnancy Hormone Estriol. J Transl Med 2023; 103:100189. [PMID: 37245852 PMCID: PMC11927460 DOI: 10.1016/j.labinv.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
In multiple sclerosis (MS), demyelination occurs in the cerebral cortex, and cerebral cortex atrophy correlates with clinical disabilities. Treatments are needed in MS to induce remyelination. Pregnancy is protective in MS. Estriol is made by the fetoplacental unit, and maternal serum estriol levels temporally align with fetal myelination. Here, we determined the effect of estriol treatment on the cerebral cortex in the preclinical model of MS, experimental autoimmune encephalomyelitis (EAE). Estriol treatment initiated after disease onset decreased cerebral cortex atrophy. Neuropathology of the cerebral cortex showed increased cholesterol synthesis proteins in oligodendrocytes, more newly formed remyelinating oligodendrocytes, and increased myelin in estriol-treated EAE mice. Estriol treatment also decreased the loss of cortical layer V pyramidal neurons and their apical dendrites and preserved synapses. Together, estriol treatment after EAE onset reduced atrophy and was neuroprotective in the cerebral cortex.
Collapse
Affiliation(s)
- Cassandra E Meyer
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Andrew W Smith
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Aitana A Padilla-Requerey
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Vista Farkhondeh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Noriko Itoh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Yuichiro Itoh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Josephine L Gao
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Patrick D Herbig
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Quynhanh Nguyen
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Katelyn H Ngo
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Mandavi R Oberoi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Prabha Siddarth
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Rhonda R Voskuhl
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Allan MacKenzie-Graham
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California.
| |
Collapse
|
11
|
Barateiro A, Barros C, Pinto MV, Ribeiro AR, Alberro A, Fernandes A. Women in the field of multiple sclerosis: How they contributed to paradigm shifts. Front Mol Neurosci 2023; 16:1087745. [PMID: 36818652 PMCID: PMC9937661 DOI: 10.3389/fnmol.2023.1087745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
History is full of women who made enormous contributions to science. While there is little to no imbalance at the early career stage, a decreasing proportion of women is found as seniority increases. In the multiple sclerosis (MS) field, 44% of first authors and only 35% of senior authors were female. So, in this review, we highlight ground-breaking research done by women in the field of MS, focusing mostly on their work as principal investigators. MS is an autoimmune disorder of the central nervous system (CNS), with evident paradigm shifts in the understating of its pathophysiology. It is known that the immune system becomes overactivated and attacks myelin sheath surrounding axons. The resulting demyelination disrupts the communication signals to and from the CNS, which causes unpredictable symptoms, depending on the neurons that are affected. Classically, MS was reported to cause mostly physical and motor disabilities. However, it is now recognized that cognitive impairment affects more than 50% of the MS patients. Another shifting paradigm was the involvement of gray matter in MS pathology, formerly considered to be a white matter disease. Additionally, the identification of different T cell immune subsets and the mechanisms underlying the involvement of B cells and peripheral macrophages provided a better understanding of the immunopathophysiological processes present in MS. Relevantly, the gut-brain axis, recognized as a bi-directional communication system between the CNS and the gut, was found to be crucial in MS. Indeed, gut microbiota influences not only different susceptibilities to MS pathology, but it can also be modulated in order to positively act in MS course. Also, after the identification of the first microRNA in 1993, the role of microRNAs has been investigated in MS, either as potential biomarkers or therapeutic agents. Finally, concerning MS therapeutical approaches, remyelination-based studies have arisen on the spotlight aiming to repair myelin loss/neuronal connectivity. Altogether, here we emphasize the new insights of remarkable women that have voiced the impact of cognitive impairment, white and gray matter pathology, immune response, and that of the CNS-peripheral interplay on MS diagnosis, progression, and/or therapy efficacy, leading to huge breakthroughs in the MS field.
Collapse
Affiliation(s)
- Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Andreia Barateiro,
| | - Catarina Barros
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria V. Pinto
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Ribeiro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Alberro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Multiple Sclerosis Group, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,*Correspondence: Adelaide Fernandes,
| |
Collapse
|
12
|
Siger M. Magnetic Resonance Imaging in Primary Progressive Multiple Sclerosis Patients : Review. Clin Neuroradiol 2022; 32:625-641. [PMID: 35258820 PMCID: PMC9424179 DOI: 10.1007/s00062-022-01144-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
The recently developed effective treatment of primary progressive multiple sclerosis (PPMS) requires the accurate diagnosis of patients with this type of disease. Currently, the diagnosis of PPMS is based on the 2017 McDonald criteria, although the contribution of magnetic resonance imaging (MRI) to this process is fundamental. PPMS, one of the clinical types of MS, represents 10%-15% of all MS patients. Compared to relapsing-remitting MS (RRMS), PPMS differs in terms of pathology, clinical presentation and MRI features. Regarding conventional MRI, focal lesions on T2-weighted images and acute inflammatory lesions with contrast enhancement are less common in PPMS than in RRMS. On the other hand, MRI features of chronic inflammation, such as slowly evolving/expanding lesions (SELs) and leptomeningeal enhancement (LME), and brain and spinal cord atrophy are more common MRI characteristics in PPMS than RRMS. Nonconventional MRI also shows differences in subtle white and grey matter damage between PPMS and other clinical types of disease. In this review, we present separate diagnostic criteria, conventional and nonconventional MRI specificity for PPMS, which may support and simplify the diagnosis of this type of MS in daily clinical practice.
Collapse
Affiliation(s)
- Malgorzata Siger
- Department of Neurology, Medical University of Łódź, 22 Kopcinskiego Str., 90-153, Łódź, Poland.
| |
Collapse
|
13
|
Costagli M, Lapucci C, Zacà D, Bruschi N, Schiavi S, Castellan L, Stemmer A, Roccatagliata L, Inglese M. Improved detection of multiple sclerosis lesions with T2-prepared double inversion recovery at 3T. J Neuroimaging 2022; 32:902-909. [PMID: 35776654 PMCID: PMC9544719 DOI: 10.1111/jon.13021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Double inversion recovery (DIR) imaging is used in multiple sclerosis (MS) clinical protocols to improve the detection of cortical and juxtacortical gray matter lesions by nulling confounding signals originating from the cerebrospinal fluid and white matter. Achieving a high isotropic spatial resolution, to depict the neocortex and its typically small lesions, is challenged by the reduced signal-to-noise ratio (SNR) determined by multiple tissue signal nulling. Here, we evaluate both conventional and optimized DIR implementations to improve tissue contrast (TC), SNR, and MS lesion conspicuity. METHODS DIR images were obtained from MS patients and healthy controls using both conventional and prototype implementations featuring a T2-preparation module (T2P), to improve SNR and TC, as well as an image reconstruction routine with iterative denoising (ID). We obtained quantitative measures of SNR and TC, and evaluated the visibility of MS cortical, cervical cord, and optic nerve lesions in the different DIR images. RESULTS DIR implementations adopting T2P and ID enabled improving the SNR and TC of conventional DIR. In MS patients, 34% of cortical, optic nerve, and cervical cord lesions were visible only in DIR images acquired with T2P, and not in conventional DIR images. In the studied cases, image reconstruction with ID did not improve lesion conspicuity. CONCLUSIONS DIR with T2P should be preferred to conventional DIR imaging in protocols studying MS patients, as it improves SNR and TC and determines an improvement in cortical, optic nerve, and cervical cord lesion conspicuity.
Collapse
Affiliation(s)
- Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genova, Italy.,Laboratory of Medical Physicsand Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Nicolò Bruschi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genova, Italy
| | - Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genova, Italy
| | | | | | - Luca Roccatagliata
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
14
|
Mizell R, Chen H, Lambe J, Saidha S, Harrison DM. Association of retinal atrophy with cortical lesions and leptomeningeal enhancement in multiple sclerosis on 7T MRI. Mult Scler 2021; 28:393-405. [PMID: 34125629 DOI: 10.1177/13524585211023343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Retinal atrophy in multiple sclerosis (MS) as measured by optical coherence tomography (OCT) correlates with demyelinating lesions and brain atrophy, but its relationship with cortical lesions (CLs) and meningeal inflammation is not well known. OBJECTIVES To evaluate the relationship of retinal layer atrophy with leptomeningeal enhancement (LME) and CLs in MS as visualized on 7 Tesla (7T) magnetic resonance imaging (MRI). METHODS Forty participants with MS underwent 7T MRI of the brain and OCT. Partial correlation and mixed-effects regression evaluated relationships between MRI and OCT findings. RESULTS All participants had CLs and 32 (80%) participants had LME on post-contrast MRI. Ganglion cell/inner plexiform layer (GCIPL) thickness correlated with total CL volume (r =-0.45, p < 0.01). Participants with LME at baseline had thinner macular retinal nerve fiber layer (mRNFL; p = 0.01) and GCIPL (p < 0.01). Atrophy in various retinal layers was faster in those with certain patterns of LME. For example, mRNFL declined -1.113 (-1.974, -0.252) μm/year faster in those with spread/fill-pattern LME foci at baseline compared with those without (p = 0.01). CONCLUSION This study associates MRI findings of LME and cortical pathology with thinning of retinal layers as measured by OCT, suggesting a common link between meningeal inflammation, CLs, and retinal atrophy in MS.
Collapse
Affiliation(s)
- Ryan Mizell
- Baltimore VA Medical Center, Baltimore, MD, USA/University of Maryland Medical Center, Baltimore, MD, USA
| | - Hegang Chen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey Lambe
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Harrison
- Baltimore VA Medical Center, Baltimore, MD, USA/University of Maryland Medical Center, Baltimore, MD, USA/Johns Hopkins University School of Medicine, Baltimore, MD, USA/Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Filippi M, Preziosa P, Barkhof F, Chard D, De Stefano N, Fox RJ, Gasperini C, Kappos L, Montalban X, Moraal B, Reich DS, Rovira À, Toosy AT, Traboulsee A, Weinshenker BG, Zeydan B, Banwell B, Rocca MA. Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective: A Review. JAMA Neurol 2021; 78:351-364. [PMID: 33315071 PMCID: PMC11382596 DOI: 10.1001/jamaneurol.2020.4689] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Although magnetic resonance imaging (MRI) is useful for monitoring disease dissemination in space and over time and excluding multiple sclerosis (MS) mimics, there has been less application of MRI to progressive MS, including diagnosing primary progressive (PP) MS and identifying patients with relapsing-remitting (RR) MS who are at risk of developing secondary progressive (SP) MS. This review addresses clinical application of MRI for both diagnosis and prognosis of progressive MS. Observations Although nonspecific, some spinal cord imaging features (diffuse abnormalities and lesions involving gray matter [GM] and ≥2 white matter columns) are typical of PPMS. In patients with PPMS and those with relapse-onset MS, location of lesions in critical central nervous system regions (spinal cord, infratentorial regions, and GM) and MRI-detected high inflammatory activity in the first years after diagnosis are risk factors for long-term disability and future progressive disease course. These measures are evaluable in clinical practice. In patients with established MS, GM involvement and neurodegeneration are associated with accelerated clinical worsening. Subpial demyelination and slowly expanding lesions are novel indicators of progressive MS. Conclusions and Relevance Diagnosis of PPMS is more challenging than diagnosis of RRMS. No qualitative clinical, immunological, histopathological, or neuroimaging features differentiate PPMS and SPMS; both are characterized by imaging findings reflecting neurodegeneration and are also impacted by aging and comorbidities. Unmet diagnostic needs include identification of MRI markers capable of distinguishing PPMS from RRMS and predicting the evolution of RRMS to SPMS. Integration of multiple parameters will likely be essential to achieve these aims.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, MS Center Amsterdam, Amsterdam, Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Declan Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Institute of Neurology, London, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Robert J. Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | - Claudio Gasperini
- Department of Neurology, San Camillo-Forlanini Hospital, Roma, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Xavier Montalban
- Department of Neurology, Cemcat, Hospital Vall d’Hebron, Autonomous University of Barcelona, Barcelona, Spain
- Division of Neurology, St Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, MS Center Amsterdam, Amsterdam, Netherlands
| | - Daniel S. Reich
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology (IDI), Vall d’Hebron University Hospital and Research Institute (VHIR), Autonomous University Barcelona, Spain
| | - Ahmed T. Toosy
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Institute of Neurology, London, UK
| | - Anthony Traboulsee
- MS/MRI Research Group, Djavad Mowafaghian Centre for Brain Health, and Vancouver, British Columbia, Canada
- Faculty of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Burcu Zeydan
- Department of Neurology and Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Brenda Banwell
- Division of Child Neurology, The Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania
| | - Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Cordani C, Hidalgo de la Cruz M, Meani A, Valsasina P, Esposito F, Pagani E, Filippi M, Rocca MA. MRI correlates of clinical disability and hand-motor performance in multiple sclerosis phenotypes. Mult Scler 2020; 27:1205-1221. [DOI: 10.1177/1352458520958356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Hand-motor impairment affects a large proportion of multiple sclerosis (MS) patients; however, its substrates are still poorly understood. Objectives: To investigate the association between global disability, hand-motor impairment, and alterations in motor-relevant structural and functional magnetic resonance imaging (MRI) networks in MS patients with different clinical phenotypes. Methods: One hundred thirty-four healthy controls (HC) and 364 MS patients (250 relapsing-remitting MS (RRMS) and 114 progressive MS (PMS)) underwent Expanded Disability Status Scale (EDSS) rating, nine-hole peg test (9HPT), and electronic finger tapping rate (EFTR). Structural and resting state (RS) functional MRI scans were used to perform a source-based morphometry on gray matter (GM) components, to analyze white matter (WM) tract diffusivity indices and to perform a RS seed-based approach from the primary motor cortex involved in hand movement (hand-motor cortex). Random forest analyses identified the predictors of clinical impairment. Result: In RRMS, global measures of atrophy and lesions together with measures of structural damage of motor-related regions predicted EDSS (out-of-bag (OOB)- R2 = 0.19, p-range = <0.001–0.04), z9HPT (right: OOB- R2 = 0.14; left: OOB- R2 = 0.24, p-range = <0.001–0.03). No RS functional connectivity (FC) abnormalities were identified in RRMS models. In PMS, cerebellar and sensorimotor regions atrophy, cerebellar peduncles integrity and increased RS FC between left hand-motor cortex and right inferior frontal gyrus predicted EDSS (OBB- R2 = 0.16, p-range = 0.02–0.04). Conclusion: In RRMS, only measures of structural damage contribute to explain motor impairment, whereas both structural and functional MRI measures predict clinical disability in PMS. A multiparametric MRI approach could be relevant to investigate hand-motor impairment in different MS phenotypes.
Collapse
Affiliation(s)
- Claudio Cordani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Milagros Hidalgo de la Cruz
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Droby A, Fleysher L, Petracca M, Podranski K, Xu J, Fabian M, Marjańska M, Inglese M. Lower cortical gamma-aminobutyric acid level contributes to increased connectivity in sensory-motor regions in progressive MS. Mult Scler Relat Disord 2020; 43:102183. [DOI: 10.1016/j.msard.2020.102183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
18
|
Ding S, Gu Y, Cai Y, Cai M, Yang T, Bao S, Shen W, Ni X, Chen G, Xing L. Integrative systems and functional analyses reveal a role of dopaminergic signaling in myelin pathogenesis. J Transl Med 2020; 18:109. [PMID: 32122379 PMCID: PMC7053059 DOI: 10.1186/s12967-020-02276-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Myelin sheaths surrounding axons are critical for electrical signal transmission in the central nervous system (CNS). Diseases with myelin defects such as multiple sclerosis (MS) are devastating neurological conditions for which few effective treatments are available. Dysfunction of the dopaminergic system has been observed in multiple neurological disorders. Its role in myelin pathogenesis, however, is unclear. METHODS This work used a combination of literature curation, bioinformatics, pharmacological and genetic manipulation, as well as confocal imaging techniques. Literature search was used to establish a complete set of genes which is associated with MS in humans. Bioinformatics analyses include pathway enrichment and crosstalk analyses with human genetic association studies as well as gene set enrichment and causal relationship analyses with transcriptome data. Pharmacological and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) genetic manipulation were applied to inhibit the dopaminergic signaling in zebrafish. Imaging techniques were used to visualize myelin formation in vivo. RESULTS Systematic analysis of human genetic association studies revealed that the dopaminergic synapse signaling pathway is enriched in candidate gene sets. Transcriptome analysis confirmed that expression of multiple dopaminergic gene sets was significantly altered in patients with MS. Pathway crosstalk analysis and gene set causal relationship analysis reveal that the dopaminergic synapse signaling pathway interacts with or is associated with other critical pathways involved in MS. We also found that disruption of the dopaminergic system leads to myelin deficiency in zebrafish. CONCLUSIONS Dopaminergic signaling may be involved in myelin pathogenesis. This study may offer a novel molecular mechanism of demyelination in the nervous system.
Collapse
Affiliation(s)
- Sujun Ding
- School of Medicine, Nantong University, Nantong, China
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yunyun Cai
- Department of Physiology, School of medicine, Nantong University, Nantong, China
| | - Meijuan Cai
- Department of Clinical Laboratory, Qilu Hospital of Shandong university, Shandong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuangxi Bao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Weixing Shen
- Department of Physiology, School of medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuejun Ni
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Chen
- School of Medicine, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
19
|
Silva BA, Ferrari CC. Cortical and meningeal pathology in progressive multiple sclerosis: a new therapeutic target? Rev Neurosci 2019; 30:221-232. [PMID: 30048237 DOI: 10.1515/revneuro-2018-0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that involves an intricate interaction between the central nervous system and the immune system. Nevertheless, its etiology is still unknown. MS exhibits different clinical courses: recurrent episodes with remission periods ('relapsing-remitting') that can evolve to a 'secondary progressive' form or persistent progression from the onset of the disease ('primary progressive'). The discovery of an effective treatment and cure has been hampered due to the pathological and clinical heterogeneity of the disease. Historically, MS has been considered as a disease exclusively of white matter. However, patients with progressive forms of MS present with cortical lesions associated with meningeal inflammation along with physical and cognitive disabilities. The pathogenesis of the cortical lesions has not yet been fully described. Animal models that represent both the cortical and meningeal pathologies will be critical in addressing MS pathogenesis as well as the design of specific treatments. In this review, we will address the state-of-the-art diagnostic and therapeutic alternatives and the development of strategies to discover new therapeutic approaches, especially for the progressive forms.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Potosi 4240 (C1199ABB), CABA, Buenos Aires, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina, e-mail:
| | - Carina Cintia Ferrari
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Potosi 4240 (C1199ABB), CABA, Buenos Aires, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| |
Collapse
|
20
|
Chronic inflammation in multiple sclerosis - seeing what was always there. Nat Rev Neurol 2019; 15:582-593. [PMID: 31420598 DOI: 10.1038/s41582-019-0240-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
Activation of innate immune cells and other compartmentalized inflammatory cells in the brains and spinal cords of people with relapsing-remitting multiple sclerosis (MS) and progressive MS has been well described histopathologically. However, conventional clinical MRI is largely insensitive to this inflammatory activity. The past two decades have seen the introduction of quantitative dynamic MRI scanning with contrast agents that are sensitive to the reduction in blood-brain barrier integrity associated with inflammation and to the trafficking of inflammatory myeloid cells. New MRI imaging sequences provide improved contrast for better detection of grey matter lesions. Quantitative lesion volume measures and magnetic resonance susceptibility imaging are sensitive to the activity of macrophages in the rims of white matter lesions. PET and magnetic resonance spectroscopy methods can also be used to detect contributions from innate immune activation in the brain and spinal cord. Some of these advanced research imaging methods for visualization of chronic inflammation are practical for relatively routine clinical applications. Observations made with the use of these techniques suggest ways of stratifying patients with MS to improve their care. The imaging methods also provide new tools to support the development of therapies for chronic inflammation in MS.
Collapse
|
21
|
Faizy TD, Broocks G, Thaler C, Rauch G, Gebert P, Stürner KH, Flottmann F, Leischner H, Kniep HC, Stellmann JP, Heesen C, Fiehler J, Gellißen S, Hanning U. Development of Cortical Lesion Volumes on Double Inversion Recovery MRI in Patients With Relapse-Onset Multiple Sclerosis. Front Neurol 2019; 10:133. [PMID: 30873106 PMCID: PMC6401630 DOI: 10.3389/fneur.2019.00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 11/30/2022] Open
Abstract
Background and Objective: In multiple sclerosis (MS) patients, Double Inversion Recovery (DIR) magnetic resonance imaging (MRI) can be used to detect cortical lesions (CL). While the quantity and distribution of CLs seems to be associated with patients' disease course, literature lacks frequent assessments of CL volumes (CL-V) in this context. We investigated the reliability of DIR for the longitudinal assessment of CL-V development with frequent follow-up MRIs and examined the course of CL-V progressions in relation to white-matter lesions (WML), contrast enhancing lesions (CEL) and clinical parameters in patients with Relapsing-Remitting Multiple Sclerosis (RRMS). Methods: In this post-hoc analysis, image- and clinical data of a subset of 24 subjects that were part of a phase IIa clinical trial on the “Safety, Tolerability and Mechanisms of Action of Boswellic Acids in Multiple Sclerosis (SABA)” (ClinicalTrials.gov, NCT01450124) were included. The study was divided in three phases (screening, treatment, study-end). All patients received 12 MRI follow-up-examinations (including DIR) during a 16-months period. CL-Vs were assessed for each patient on each follow-up MRI separately by two experienced neuroradiologists. Results of neurological screening tests, as well as other MRI parameters (WML number and volume and CELs) were included from the SABA investigation data. Results: Inter-rater agreement regarding CL-V assessment over time was good-to-excellent (κ = 0.89). Mean intraobserver variability was 1.1%. In all patients, a total number of 218 CLs was found. Total CL-Vs of all patients increased during the 4 months of baseline screening followed by a continuous and significant decrease from month 5 until study-end (p < 0.001, Kendall'W = 0.413). A positive association between WML volumes and CL-Vs was observed during baseline screening. Decreased CL-V were associated with lower EDSS and also with improvements of SDMT- and SCRIPPS scores. Conclusion: DIR MRI seems to be a reliable tool for the frequent assessment of CL-Vs. Overall CL-Vs decreased during the follow-up period and were associated with improvements of cognitive and disability status scores. Our results suggest the presence of short-term CL-V dynamics in RRMS patients and we presume that the laborious evaluation of lesion volumes may be worthwhile for future investigations. Clinical Trial Numbers:www.ClinicalTrials.gov, “The SABA trial”; number: NCT01450124
Collapse
Affiliation(s)
- Tobias D Faizy
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Geraldine Rauch
- Institute of Medical Biometry and Epidemiology, Charité Berlin-University Medical Center, Berlin, Germany
| | - Pimrapat Gebert
- Institute of Medical Biometry and Epidemiology, Charité Berlin-University Medical Center, Berlin, Germany
| | - Klarissa H Stürner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Fabian Flottmann
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Leischner
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helge C Kniep
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Patrick Stellmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Gellißen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Rossetti I, Zambusi L, Finardi A, Bodini A, Provini L, Furlan R, Morara S. Calcitonin gene-related peptide decreases IL-1beta, IL-6 as well as Ym1, Arg1, CD163 expression in a brain tissue context-dependent manner while ameliorating experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 323:94-104. [PMID: 30196840 DOI: 10.1016/j.jneuroim.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
Activation states of immune cells (among them, the so-called pro- or anti-inflammatory states) influence the pathogenesis of multiple sclerosis (MS). The neuropeptide calcitonin gene-related peptide (CGRP) can exert a pro- or anti-inflammatory role in a context-dependent manner. In mice CGRP was found to attenuate the development of experimental autoimmune encephalomyelitis (EAE, a common MS animal model). We analyzed CGRP effects on the expression of cytokines and markers of activation states, as well as its intracellular cascade, following intrathecal administration during EAE immunization. Real Time quantitative-PCR (RT-PCR) showed that IL-1beta and IL-6 (associated to a pro-inflammatory state in EAE), but also Ym1 (also known as Chil3), Arg1 and CD163 (associated to an anti-inflammatory state in EAE) were decreased in the encephalon (devoid of cerebellum). In the cerebellum itself, IL-1beta and Ym1 were decreased. TNF-alpha (associated to a pro-inflammatory state in EAE), but also IL-10 (associated to another type of anti-inflammatory state) and BDNF were unchanged in these two regions. No changes were detected in the spinal cord. Additional tendencies toward a change (as revealed by RT-PCR) were again decreases: IL-10 in the encephalon and Arg1 in the spinal cord. CGRP decreased percentage of Ym1+/CD68+ immunoreactive cells and cell density of infiltrates in the cervical spinal cord pia mater. Instead, Ym1 in the underlying parenchyma and at thoracic and lumbar levels, as well as Arg1, were unchanged. In cultured microglia the neuropeptide decreased Ym1, but not Arg1, immunoreactivity. Inducible NOS (iNOS) was unchanged in spinal cord microglia and astrocytes. The neuropeptide increased the activation of ERK1/2 in the astrocytes of the spinal cord and in culture, but did not influence the activation of ERK1/2 or p38 in the spinal cord microglia. Finally, in areas adjacent to infiltration sites CGRP-treated microglia showed a larger ramification radius. In conclusion, CGRP-induced EAE amelioration was associated to a concomitant, context-dependent decrease in the expression of markers belonging to both pro- or anti-inflammatory activation states of immune cells. It can be hypothesized that CGRP-induced EAE attenuation is obtained through a novel mechanism that promotes down-regulation of immune cell activation that facilitates the establishment of a beneficial environment in EAE provided possibly also by other factors.
Collapse
Affiliation(s)
- Ilaria Rossetti
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy.
| | - Laura Zambusi
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy; Department of Biotechnology and Translational Medicine, Milano University, Via Vanvitelli 32, Milano 2129, Italy.
| | - Annamaria Finardi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, Milano 20132, Italy.
| | - Antonella Bodini
- Institute of Applied Mathematics and Information Technology "E. Magenes", National Research Council (CNR), Milano Unit, Via Bassini 15, 20133 Milano, (Italy).
| | - Luciano Provini
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy.
| | - Roberto Furlan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, Milano 20132, Italy.
| | - Stefano Morara
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy; Department of Biotechnology and Translational Medicine, Milano University, Via Vanvitelli 32, Milano 2129, Italy.
| |
Collapse
|
23
|
Curti E, Graziuso S, Tsantes E, Crisi G, Granella F. Correlation between cortical lesions and cognitive impairment in multiple sclerosis. Brain Behav 2018; 8:e00955. [PMID: 29974667 PMCID: PMC5991593 DOI: 10.1002/brb3.955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Gray matter (GM) damage is well known as a fundamental aspect of multiple sclerosis (MS). Above all, cortical lesions (CLs) burden, detectable at MRI with double inversion recovery (DIR) sequences, has been demonstrated to correlate with cognitive impairment (CI). The aim of this study was to investigate the role of CLs number in predicting CI in a cohort of patients with MS in a clinical practice setting. MATERIALS AND METHODS Thirty consecutive patients with MS presenting CLs (CL+) at high-field (3.0 T) MRI 3D-DIR sequences and an even group of MS patients without CLs (CL-) as a control, were investigated with the Rao Brief Repeatable Battery of Neuropsychological Tests (BRB), Version A. Total and lobar CLs number were computed in CL+ patients. RESULTS Among the sixty patients with MS enrolled, forty-seven (78.3%) had a relapsing-remitting course, while thirteen (21.7%) a progressive one, eleven secondary progressive, and two primary progressive. Compared to CL-, CL+ patients had a greater proportion of progressive forms (p = .03). The most affected region was the frontal lobe (73.3% of patients), followed by temporal and parietal ones (both 60.0%). Multivariate (logistic regression) analysis revealed a significant correlation between total CLs number and the presence of mild cognitive impairment defined as pathologic score in at least one BRB test (p = .04); it was also correlated with deficit at PASAT 3 (p = .05) and Stroop Test (p = .02). CONCLUSIONS We confirmed CLs number, evaluated with a technique quite commonly available in clinical practice, as a predictive factor of CI in patients with MS, in order to improve the diagnosis and management of CI and monitor potential neuroprotective effects of therapies.
Collapse
Affiliation(s)
- Erica Curti
- Neurosciences UnitDepartment of Medicine and Surgery (DMEC)University of ParmaParmaItaly
| | - Stefania Graziuso
- Neuroradiology UnitDepartment of DiagnosticParma University HospitalParmaItaly
| | - Elena Tsantes
- Neurosciences UnitDepartment of Medicine and Surgery (DMEC)University of ParmaParmaItaly
| | - Girolamo Crisi
- Neuroradiology UnitDepartment of DiagnosticParma University HospitalParmaItaly
| | - Franco Granella
- Neurosciences UnitDepartment of Medicine and Surgery (DMEC)University of ParmaParmaItaly
| |
Collapse
|
24
|
Matsushita F, Kida H, Tabei KI, Nakano C, Matsuura K, Ii Y, Sasaki R, Taniguchi A, Narita Y, Maeda M, Satoh M, Tomimoto H. Clinical significance of cortical lesions in patients with multiple sclerosis: A neuropsychological and neuroimaging study. Brain Behav 2018; 8:e00934. [PMID: 29541544 PMCID: PMC5840446 DOI: 10.1002/brb3.934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION This study aims to investigate the association between the presence and frequency of cortical lesions (CLs), and the clinical and psychological features of multiple sclerosis (MS). METHODS A total of 19 patients with MS were examined using double inversion recovery (DIR) sequences with 3T magnetic resonance imaging (MRI) and classified into two groups: CL and non-CL. In-house software was used to quantitatively determine the atrophy of each brain region. Activities of daily living (ADL) were estimated using the Kurtzke Expanded Disability Status Scale (EDSS). Cognitive function was assessed using the following tests: Mini-Mental State Examination (MMSE), Trail Making Test (TMT), and Paced Auditory Serial Addition Task (PASAT). Z-scores were used to assess significant differences in the neuropsychological test outcomes between the groups. RESULTS Six of 19 patients had subcortical and deep WM lesions (non-CL group; diagnosed with relapsing-remitting MS). Thirteen of 19 patients had both subcortical and cortical lesions (CL group; 9-relapsing-remitting MS; 4-primary/secondary progressive MS). There were no significant differences in age, education, and disease duration, but EDSS scores were significantly higher in the CL group compared to the non-CL group. There were no significant differences in gray and white matter volume between the CL and the non-CL groups, but the white matter lesion volume was significantly higher in the CL group compared to the non-CL group. Neuropsychological tests showed significant performance worsening in the CL group as compared to the standard values for healthy individuals in their age group, especially in the TMT data. CONCLUSIONS Progressive MS, which was associated with decreased physical functioning, ADL, and cognitive impairment, was found in patients in the CL group.
Collapse
Affiliation(s)
- Futoshi Matsushita
- Department of Dementia Prevention and Therapeutics Mie University Mie Japan.,Department of Occupational Therapy Morinomiya University Osaka Japan
| | - Hirotaka Kida
- Department of Dementia Prevention and Therapeutics Mie University Mie Japan
| | - Ken-Ichi Tabei
- Department of Dementia Prevention and Therapeutics Mie University Mie Japan
| | - Chizuru Nakano
- Department of Dementia Prevention and Therapeutics Mie University Mie Japan
| | | | - Yuichiro Ii
- Department of Neurology Mie University Mie Japan
| | | | | | - Yugo Narita
- Department of Neurology Mie University Mie Japan
| | | | - Masayuki Satoh
- Department of Dementia Prevention and Therapeutics Mie University Mie Japan
| | - Hidekazu Tomimoto
- Department of Dementia Prevention and Therapeutics Mie University Mie Japan.,Department of Neurology Mie University Mie Japan
| |
Collapse
|
25
|
Vermersch P, Berger T, Gold R, Lukas C, Rovira A, Meesen B, Chard D, Comabella M, Palace J, Trojano M. The clinical perspective: How to personalise treatment in MS and how may biomarkers including imaging contribute to this? Mult Scler 2018; 22:18-33. [PMID: 27465613 DOI: 10.1177/1352458516650739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/23/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a highly heterogeneous disease, both in its course and in its response to treatments. Effective biomarkers may help predict disability progression and monitor patients' treatment responses. OBJECTIVE The aim of this review was to focus on how biomarkers may contribute to treatment individualisation in MS patients. METHODS This review reflects the content of presentations, polling results and discussions on the clinical perspective of MS during the first and second Pan-European MS Multi-stakeholder Colloquia in Brussels in May 2014 and 2015. RESULTS In clinical practice, magnetic resonance imaging (MRI) measures play a significant role in the diagnosis and follow-up of MS patients. Together with clinical markers, the rate of MRI-visible lesion accrual once a patient has started treatment may also help to predict subsequent treatment responsiveness. In addition, several molecular (immunological, genetic) biomarkers have been established that may play a role in predictive models of MS relapses and progression. To reach personalised treatment decisions, estimates of disability progression and likely treatment response should be carefully considered alongside the risk of serious adverse events, together with the patient's treatment expectations. CONCLUSION Although biomarkers may be very useful for individualised decision making in MS, many are still research tools and need to be validated before implementation in clinical practice.
Collapse
Affiliation(s)
- Patrick Vermersch
- University of Lille, CHRU de Lille, Lille International Research Inflammation Center (LIRIC), INSRRM U995, FHU Imminent, Lille, France
| | - Thomas Berger
- Neuroimmunology and Multiple Sclerosis Clinic, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Carsten Lukas
- Department of Diagnostic and Interventional Radiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Alex Rovira
- Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Bianca Meesen
- Managing Director at Ismar Healthcare, Lier, Belgium
| | - Declan Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, UK/Biomedical Research Centre, University College London Hospitals (UCLH), National Institute for Health Research (NIHR), London, UK
| | - Manuel Comabella
- Department of Clinical Neuroimmunology, Multiple Sclerosis Center of Catalonia (Cemcat), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jacqueline Palace
- Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Trojano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Studies of large longitudinal cohorts of patients with multiple sclerosis (MS) have emphasized the prognostic value of conventional MRI markers, at least during early stages. Advanced imaging metrics derived from quantitative MRI and PET provide relevant information about microstructural damage within and outside visible lesions that may be more sensitive to predict long-term disability. Here, we summarize the most recent findings regarding the prognostic value of imaging markers throughout MS stages. RECENT FINDINGS In clinically isolated syndrome, the presence of at least one brain or spinal cord T2 lesion strongly increases the risk of conversion to clinically definite MS (hazard ratio ranging from 5 to 11). Similarly, the occurrence of new white matter lesions is strongly predictive of subsequent relapse rate and response to current disease modifying therapies. Beyond white matter lesions, volumetric changes in the grey matter and normal-appearing tissue damage are more sensitive prognostic markers for physical and cognitive disability, especially in progressive MS. SUMMARY Although white matter lesion number and volume still remains the imaging metric used in daily clinical practice, further development of advanced imaging predictors of long-term disability should allow a better stratification of patients in future clinical trials aimed at promoting repair or neuroprotection.
Collapse
|
27
|
MRI and multiple sclerosis––the evolving role of MRI in the diagnosis and management of MS: the radiologist’s perspective. Ir J Med Sci 2017; 187:781-787. [DOI: 10.1007/s11845-017-1714-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
28
|
Diagnostic Criteria, Classification and Treatment Goals in Multiple Sclerosis: The Chronicles of Time and Space. Curr Neurol Neurosci Rep 2017; 16:90. [PMID: 27549391 DOI: 10.1007/s11910-016-0688-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is one of the most diverse human diseases. Since its first description by Charcot in the nineteenth century, the diagnostic criteria, clinical course classification, and treatment goals for MS have been constantly revised and updated to improve diagnostic accuracy, physician communication, and clinical trial design. These changes have improved the clinical outcomes and quality of life for patients with the disease. Recent technological and research breakthroughs will almost certainly further change how we diagnose, classify, and treat MS in the future. In this review, we summarize the key events in the history of MS, explain the reasoning behind the current criteria for MS diagnosis, classification, and treatment, and provide suggestions for further improvements that will keep enhancing the clinical practice of MS.
Collapse
|
29
|
Lisak RP, Nedelkoska L, Benjamins JA, Schalk D, Bealmear B, Touil H, Li R, Muirhead G, Bar-Or A. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J Neuroimmunol 2017; 309:88-99. [DOI: 10.1016/j.jneuroim.2017.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/26/2022]
|
30
|
Yong H, Chartier G, Quandt J. Modulating inflammation and neuroprotection in multiple sclerosis. J Neurosci Res 2017; 96:927-950. [PMID: 28580582 DOI: 10.1002/jnr.24090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder of the central nervous system with a presentation and disease course that is largely unpredictable. MS can cause loss of balance, impaired vision or speech, weakness and paralysis, fatigue, depression, and cognitive impairment. Immunomodulation is a major target given the appearance of focal demyelinating lesions in myelin-rich white matter, yet progression and an increasing appreciation for gray matter involvement, even during the earliest phases of the disease, highlights the need to afford neuroprotection and limit neurodegenerative processes that correlate with disability. This review summarizes key aspects of MS pathophysiology and histopathology with a focus on neuroimmune interactions in MS, which may facilitate neurodegeneration through both direct and indirect mechanisms. There is a focus on processes thought to influence disease progression and the role of oxidative stress and mitochondrial dysfunction in MS. The goals and efficacy of current disease-modifying therapies and those in the pipeline are discussed, highlighting recent advances in our understanding of pathways mediating disease progression to identify and translate both immunomodulatory and neuroprotective therapeutics from the bench to the clinic.
Collapse
Affiliation(s)
- Heather Yong
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabrielle Chartier
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline Quandt
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Petracca M, Saiote C, Bender HA, Arias F, Farrell C, Magioncalda P, Martino M, Miller A, Northoff G, Lublin F, Inglese M. Synchronization and variability imbalance underlie cognitive impairment in primary-progressive multiple sclerosis. Sci Rep 2017; 7:46411. [PMID: 28429774 PMCID: PMC5399449 DOI: 10.1038/srep46411] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 12/03/2022] Open
Abstract
We aimed to investigate functional connectivity and variability across multiple frequency bands in brain networks underlying cognitive deficits in primary-progressive multiple sclerosis (PP-MS) and to explore how they are affected by the presence of cortical lesions (CLs). We analyzed functional connectivity and variability (measured as the standard deviation of BOLD signal amplitude) in resting state networks (RSNs) associated with cognitive deficits in different frequency bands in 25 PP-MS patients (12 M, mean age 50.9 ± 10.5 years) and 20 healthy subjects (9 M, mean age 51.0 ± 9.8 years). We confirmed the presence of a widespread cognitive deterioration in PP-MS patients, with main involvement of visuo-spatial and executive domains. Cognitively impaired patients showed increased variability, reduced synchronicity between networks involved in the control of cognitive macro-domains and hyper-synchronicity limited to the connections between networks functionally more segregated. CL volume was higher in patients with cognitive impairment and was correlated with functional connectivity and variability. We demonstrate, for the first time, that a functional reorganization characterized by hypo-synchronicity of functionally-related/hyper-synchronicity of functionally-segregated large scale networks and an abnormal pattern of neural activity underlie cognitive dysfunction in PP-MS, and that CLs possibly play a role in variability and functional connectivity abnormalities.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, 80131, Italy
| | - Catarina Saiote
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Heidi A. Bender
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Franchesca Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Colleen Farrell
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Paola Magioncalda
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child health, University of Genoa, Genoa, 16132, Italy
| | - Matteo Martino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child health, University of Genoa, Genoa, 16132, Italy
| | - Aaron Miller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, K1Z 7K4, Canada
| | - Fred Lublin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child health, University of Genoa, Genoa, 16132, Italy
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 10029, NY, USA
| |
Collapse
|
32
|
Faizy TD, Thaler C, Ceyrowski T, Broocks G, Treffler N, Sedlacik J, Stürner K, Stellmann JP, Heesen C, Fiehler J, Siemonsen S. Reliability of cortical lesion detection on double inversion recovery MRI applying the MAGNIMS-Criteria in multiple sclerosis patients within a 16-months period. PLoS One 2017; 12:e0172923. [PMID: 28235075 PMCID: PMC5325582 DOI: 10.1371/journal.pone.0172923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/10/2017] [Indexed: 01/27/2023] Open
Abstract
PURPOSE In patients with multiple sclerosis (MS), Double Inversion Recovery (DIR) magnetic resonance imaging (MRI) can be used to identify cortical lesions (CL). We sought to evaluate the reliability of CL detection on DIR longitudinally at multiple subsequent time-points applying the MAGNIMs scoring criteria for CLs. METHODS 26 MS patients received a 3T-MRI (Siemens, Skyra) with DIR at 12 time-points (TP) within a 16 months period. Scans were assessed in random order by two different raters. Both raters separately marked all CLs on each scan and total lesion numbers were obtained for each scan-TP and patient. After a retrospective re-evaluation, the number of consensus CLs (conL) was defined as the total number of CLs, which both raters finally agreed on. CLs volumes, relative signal intensities and CLs localizations were determined. Both ratings (conL vs. non-consensus scoring) were compared for further analysis. RESULTS A total number of n = 334 CLs were identified by both raters in 26 MS patients with a first agreement of both raters on 160 out of 334 of the CLs found (κ = 0.48). After the retrospective re-evaluation, consensus agreement increased to 233 out of 334 CL (κ = 0.69). 93.8% of conL were visible in at least 2 consecutive TP. 74.7% of the conL were visible in all 12 consecutive TP. ConL had greater mean lesion volumes and higher mean signal intensities compared to lesions that were only detected by one of the raters (p<0.05). A higher number of CLs in the frontal, parietal, temporal and occipital lobe were identified by both raters than the number of those only identified by one of the raters (p<0.05). CONCLUSIONS After a first assessment, slightly less than a half of the CL were considered as reliably detectable on longitudinal DIR images. A retrospective re-evaluation notably increased the consensus agreement. However, this finding is narrowed, considering the fact that retrospective evaluation steps might not be practicable in clinical routine. Lesions that were not reliably identifiable by both raters seem to be characterized by lower signal intensity and smaller size, or located in distinct anatomical brain regions.
Collapse
Affiliation(s)
- Tobias Djamsched Faizy
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Ceyrowski
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natascha Treffler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sedlacik
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klarissa Stürner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Patrick Stellmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Siemonsen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Yousuf F, Kim G, Tauhid S, Glanz BI, Chu R, Tummala S, Healy BC, Bakshi R. The Contribution of Cortical Lesions to a Composite MRI Scale of Disease Severity in Multiple Sclerosis. Front Neurol 2016; 7:99. [PMID: 27445966 PMCID: PMC4925661 DOI: 10.3389/fneur.2016.00099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Objective To test a new version of the Magnetic Resonance Disease Severity Scale (v.3 = MRDSS3) for multiple sclerosis (MS), incorporating cortical gray matter lesions (CLs) from 3T magnetic resonance imaging (MRI). Background MRDSS1 was a cerebral MRI-defined composite scale of MS disease severity combining T2 lesion volume (T2LV), the ratio of T1 to T2LV (T1/T2), and whole brain atrophy [brain parenchymal fraction (BPF)]. MRDSS2 expanded the scale to include cerebral gray matter fraction (GMF) and upper cervical spinal cord area (UCCA). We tested the contribution of CLs to the scale (MRDSS3) in modeling the MRI relationship to clinical status. Methods We studied 51 patients [3 clinically isolated syndrome, 43 relapsing-remitting, 5 progressive forms, age (mean ± SD) 40.7 ± 9.1 years, Expanded Disability Status Scale (EDSS) score 1.6 ± 1.7] and 20 normal controls by high-resolution cerebrospinal MRI. CLs required visibility on both fluid-attenuated inversion-recovery (FLAIR) and modified driven equilibrium Fourier transform sequences. The MACFIMS battery defined cognitively impaired (n = 18) vs. preserved (n = 33) MS subgroups. Results EDSS significantly correlated with only BPF, UCCA, MRDSS2, and MRDSS3 (all p < 0.05). After adjusting for depressive symptoms, the cognitively impaired group had higher severity of MRI metrics than the cognitively preserved group in regard to only BPF, GMF, T1/T2, MRDSS1, and MRDSS2 (all p < 0.05). CL number was not significantly related to EDSS score or cognition status. Conclusion CLs from 3T MRI did not appear to improve the validity of the MRDSS. Further studies employing advanced sequences or higher field strengths may show more utility for the incorporation of CLs into composite scales.
Collapse
Affiliation(s)
- Fawad Yousuf
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gloria Kim
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahamat Tauhid
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bonnie I Glanz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Renxin Chu
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Subhash Tummala
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Abstract
Over the past few decades, MRI-based visualization of demyelinated CNS lesions has become pivotal to the diagnosis and monitoring of multiple sclerosis (MS). In this Review, we outline current efforts to correlate imaging findings with the pathology of lesion development in MS, and the pitfalls that are being encountered in this research. Multimodal imaging at high and ultra-high magnetic field strengths is yielding biologically relevant insights into the pathophysiology of blood-brain barrier dynamics and both active and chronic inflammation, as well as mechanisms of lesion healing and remyelination. Here, we parallel the results in humans with advances in imaging of a primate model of MS - experimental autoimmune encephalomyelitis (EAE) in the common marmoset - in which demyelinated lesions resemble their human counterparts far more closely than do EAE lesions in the rodent. This approach holds promise for the identification of innovative biological markers, and for next-generation clinical trials that will focus more on tissue protection and repair.
Collapse
|
35
|
Harel A, Ceccarelli A, Farrell C, Fabian M, Howard J, Riley C, Miller A, Lublin F, Inglese M. Phase-Sensitive Inversion-Recovery MRI Improves Longitudinal Cortical Lesion Detection in Progressive MS. PLoS One 2016; 11:e0152180. [PMID: 27002529 PMCID: PMC4803340 DOI: 10.1371/journal.pone.0152180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
Previous studies comparing phase sensitive inversion recovery (PSIR) to double inversion recovery (DIR) have demonstrated that use of PSIR improves cross-sectional in vivo detection of cortical lesions (CL) in multiple sclerosis. We studied the utility of PSIR in detection/characterization of accrual of CL over time in a 1-year longitudinal study in primary progressive multiple sclerosis (PPMS) compared to DIR. PSIR and DIR images were acquired with 3T magnetic resonance imaging (MRI) in 25 patients with PPMS and 19 healthy controls at baseline, and after 1 year in 20 patients with PPMS. CL were classified as intracortical, leucocortical or juxtacortical. Lesion counts and volumes were calculated for both time points from both sequences and compared. Correlations with measures of physical and cognitive disability were determined as well as new CL counts and volumes. Compared to DIR, PSIR led to detection of a higher number of CL involving a larger proportion of patients with PPMS both cross-sectionally (p = 0.006, 88%) and longitudinally (p = 0.007, 95%), and led to the reclassification of a third of CL seen on DIR at each time point. Interestingly, PSIR was more sensitive to new CL accumulation over time compared to DIR. PSIR is a promising technique to monitor cortical damage and disease progression in patients with PPMS over a short-term follow-up.
Collapse
Affiliation(s)
- Asaff Harel
- Department of Neurology, Mount Sinai Hospital, New York, New York, United States of America
| | - Antonia Ceccarelli
- Department of Neurology, Mount Sinai Hospital, New York, New York, United States of America
| | - Colleen Farrell
- Department of Neurology, Mount Sinai Hospital, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michelle Fabian
- Department of Neurology, Mount Sinai Hospital, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jonathan Howard
- Department of Neurology, New York University, Langone Medical Center, New York, New York, United States of America
| | - Claire Riley
- Department of Neurology, The Neurological Institute of New York, Columbia University, New York, New York, United States of America
| | - Aaron Miller
- Department of Neurology, Mount Sinai Hospital, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Fred Lublin
- Department of Neurology, Mount Sinai Hospital, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Matilde Inglese
- Department of Neurology, Mount Sinai Hospital, New York, New York, United States of America
- Department of Radiology, Mount Sinai Hospital, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Spring cleaning: time to rethink imaging research lines in MS? J Neurol 2016; 263:1893-902. [PMID: 26886204 DOI: 10.1007/s00415-016-8060-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/15/2022]
Abstract
Together with recently advanced MRI technological capability, new needs and updated questions are emerging in imaging research in multiple sclerosis (MS), especially with respect to the identification of novel in vivo biomarkers of MS-relevant pathological processes. Expected benefits will involve approaches to diagnosis and clinical classification. In detail, three main points of discussion are addressed in this review: (1) new imaging biomarkers (centrifugal/centripetal lesion enhancement, central vein, paramagnetic rims at the lesion edge, subpial cortical demyelination); (2) thinking about high-resolution MR from a pathological perspective (from postmortem to in vivo staging); and (3) the clinical utility of quantitative MRI. In this context, research efforts should increasingly be focused on the direct in vivo visualization of "hidden" inflammation, beyond what can be detected with conventional gadolinium-based methods, as well as remyelination and repair, since these are likely to represent critical pathological processes and potential therapeutic targets. Concluding remarks concern the limitations, challenges, and ultimately clinical role of non-conventional MRI techniques.
Collapse
|
37
|
Hojjat SP, Cantrell CG, Carroll TJ, Vitorino R, Feinstein A, Zhang L, Symons SP, Morrow SA, Lee L, O'Connor P, Aviv RI. Perfusion reduction in the absence of structural differences in cognitively impaired versus unimpaired RRMS patients. Mult Scler 2016; 22:1685-1694. [PMID: 26846987 DOI: 10.1177/1352458516628656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/31/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cognitive impairment affects 40%-68% of relapsing-remitting multiple sclerosis (RRMS) patients. Gray matter (GM) demyelination is complicit in cognitive impairment, yet cortical lesions are challenging to image clinically. We wanted to determine whether cortical cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) differences exist between cognitively impaired (CI) and unimpaired (NI) RRMS. METHODS Prospective study of healthy controls (n = 19), CI (n = 20), and NI (n = 19) undergoing magnetic resonance imaging (MRI) and cognitive testing <1 week apart. White matter (WM) T2 hyperintense lesions and T1 black holes were traced. General linear regression assessed the relationship between lobar WM volume and cortical and WM CBF, CBV, and MTT. Relationship between global and lobar cortical CBF, CBV, and MTT and cognitive impairment was tested using a generalized linear model. Adjusted Bonferroni p < 0.005 was considered significant. RESULTS No significant differences for age, gender, disease duration, and any fractional brain or lesion volume were demonstrated for RRMS subgroups. Expanded Disability Status Scale (EDSS) and Hospital Anxiety and Depression Scale-Depression (HADS-D) were higher in CI. Lobar cortical CBF and CBV were associated with cognitive impairment (p < 0.0001) after controlling for confounders. Cortical CBV accounted for 7.2% of cognitive impairment increasing to 8.7% with cortical CBF (p = 0.06), while WM and cortical CBF accounted for 8.2% of variance (p = 0.04). CONCLUSION Significant cortical CBF and CBV reduction was present in CI compared to NI in the absence of structural differences.
Collapse
Affiliation(s)
- Seyed-Parsa Hojjat
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada .,University of Toronto, Toronto, ON, Canada
| | | | - Timothy J Carroll
- Department of Radiology, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.,Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Rita Vitorino
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Anthony Feinstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Lying Zhang
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sean P Symons
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Liesly Lee
- Department of Neurology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Paul O'Connor
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Richard I Aviv
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Abstract
Due to its sensitivity to the different multiple sclerosis (MS)-related abnormalities, magnetic resonance imaging (MRI) has become an established tool to diagnose MS and to monitor its evolution. MRI has been included in the diagnostic workup of patients with clinically isolated syndromes suggestive of MS, and ad hoc criteria have been proposed and are regularly updated. In patients with definite MS, the ability of conventional MRI techniques to explain patients' clinical status and progression of disability is still suboptimal. Several advanced MRI-based technologies have been applied to estimate overall MS burden in the different phases of the disease. Their use has allowed the heterogeneity of MS pathology in focal lesions, normal-appearing white matter and gray matter to be graded in vivo. Recently, additional features of MS pathology, including macrophage infiltration and abnormal iron deposition, have become quantifiable. All of this, combined with functional imaging techniques, is improving our understanding of the mechanisms associated with MS evolution. In the near future, the use of ultrahigh-field systems is likely to provide additional insight into disease pathophysiology. However, the utility of advanced MRI techniques in clinical trial monitoring and in assessing individual patients' response to treatment still needs to be assessed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
39
|
The natural history of brain volume loss among patients with multiple sclerosis: A systematic literature review and meta-analysis. J Neurol Sci 2015; 357:8-18. [DOI: 10.1016/j.jns.2015.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 07/09/2015] [Indexed: 11/21/2022]
|
40
|
van Munster CE, Jonkman LE, Weinstein HC, Uitdehaag BM, Geurts JJ. Gray matter damage in multiple sclerosis: Impact on clinical symptoms. Neuroscience 2015; 303:446-61. [DOI: 10.1016/j.neuroscience.2015.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/12/2023]
|
41
|
Prins M, Schul E, Geurts J, van der Valk P, Drukarch B, van Dam AM. Pathological differences between white and grey matter multiple sclerosis lesions. Ann N Y Acad Sci 2015. [PMID: 26200258 DOI: 10.1111/nyas.12841] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a debilitating disease characterized by demyelination of the central nervous system (CNS), resulting in widespread formation of white matter lesions (WMLs) and grey matter lesions (GMLs). WMLs are pathologically characterized by the presence of immune cells that infiltrate the CNS, whereas these immune cells are barely present in GMLs. This striking pathological difference between WMLs and GMLs raises questions about the underlying mechanism. It is known that infiltrating leukocytes contribute to the generation of WMLs; however, since GMLs show a paucity of infiltrating immune cells, their importance in GML formation remains to be determined. Here, we review pathological characteristics of WMLs and GMLs, and suggest some possible explanations for the observed pathological differences. In our view, cellular and molecular characteristics of WM and GM, and local differences within WMLs and GMLs (in particular, in glial cell populations and the molecules they express), determine the pathway to demyelination. Further understanding of GML pathogenesis, considered to contribute to chronic MS, may have a direct impact on the development of novel therapeutic targets to counteract this progressive neurological disorder.
Collapse
Affiliation(s)
| | | | | | - Paul van der Valk
- Department of Pathology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Varosanec M, Uher T, Horakova D, Hagemeier J, Bergsland N, Tyblova M, Seidl Z, Vaneckova M, Krasensky J, Dwyer MG, Havrdova E, Zivadinov R. Longitudinal Mixed-Effect Model Analysis of the Association between Global and Tissue-Specific Brain Atrophy and Lesion Accumulation in Patients with Clinically Isolated Syndrome. AJNR Am J Neuroradiol 2015; 36:1457-64. [PMID: 26113068 DOI: 10.3174/ajnr.a4330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/26/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE The relationship between lesion formation and brain atrophy development in the early phase of multiple sclerosis is unclear. We investigated the association between new lesion accumulation and brain atrophy progression in patients with clinically isolated syndrome over 48 months. MATERIALS AND METHODS Patients with clinically isolated syndrome (n = 210) were evaluated with 1.5T MR imaging at baseline and at 6, 12, 24, 36, and 48 months as part of a multicenter observational study of early administration of intramuscular interferon β-1a. Mixed-effect model analyses, adjusted for age, sex, and treatment status, investigated the association between accumulation of contrast-enhancing and T2 lesions and brain-volume percent changes in a 48-month period. RESULTS In patients with clinically isolated syndrome, the average whole-brain volume decreased 2.5%, the mean lateral ventricle volume increased 16.9%, and a mean of 7.7 new/enlarging T2 lesions accumulated over the follow-up period. Patients with clinically isolated syndrome who showed greater percentages of change in whole-brain, white and gray matter, cortical, and lateral ventricle volumes over the follow-up period had more severe lesion outcomes at baseline (all P < .007). There were significant associations between decreased individual brain-volume measures at baseline and greater percentages of change during follow-up (P < .05). We found a significant association between the total cumulative number of new/enlarging T2 lesions and the evolution of whole-brain (P < .001), lateral ventricle (P = .007), gray matter and thalamic (P = .013), subcortical deep gray matter (P = .015), and cortical (P = .036) volumes over the follow-up period. CONCLUSIONS Lesion accumulation and brain-volume changes occur simultaneously in the early phase of clinically isolated syndrome. More severe lesion and brain-volume outcomes at baseline were associated with greater development of brain atrophy over the follow-up period in patients with clinically isolated syndrome.
Collapse
Affiliation(s)
- M Varosanec
- From the Buffalo Neuroimaging Analysis Center (M.V., T.U., J.H., N.B., M.G.D., R.Z.), Department of Neurology, University at Buffalo SUNY, Buffalo, New York
| | - T Uher
- From the Buffalo Neuroimaging Analysis Center (M.V., T.U., J.H., N.B., M.G.D., R.Z.), Department of Neurology, University at Buffalo SUNY, Buffalo, New York Department of Neurology and Center of Clinical Neuroscience (T.U., D.H., M.T., E.H.)
| | - D Horakova
- Department of Neurology and Center of Clinical Neuroscience (T.U., D.H., M.T., E.H.)
| | - J Hagemeier
- From the Buffalo Neuroimaging Analysis Center (M.V., T.U., J.H., N.B., M.G.D., R.Z.), Department of Neurology, University at Buffalo SUNY, Buffalo, New York
| | - N Bergsland
- From the Buffalo Neuroimaging Analysis Center (M.V., T.U., J.H., N.B., M.G.D., R.Z.), Department of Neurology, University at Buffalo SUNY, Buffalo, New York IRCCS "Santa Maria Nascente" (N.B.), Don Gnocchi Foundation, Milan, Italy
| | - M Tyblova
- Department of Neurology and Center of Clinical Neuroscience (T.U., D.H., M.T., E.H.)
| | - Z Seidl
- Department of Radiology (Z.S., M.V., J.K.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - M Vaneckova
- Department of Radiology (Z.S., M.V., J.K.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - J Krasensky
- Department of Radiology (Z.S., M.V., J.K.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - M G Dwyer
- From the Buffalo Neuroimaging Analysis Center (M.V., T.U., J.H., N.B., M.G.D., R.Z.), Department of Neurology, University at Buffalo SUNY, Buffalo, New York
| | - E Havrdova
- Department of Neurology and Center of Clinical Neuroscience (T.U., D.H., M.T., E.H.)
| | - R Zivadinov
- From the Buffalo Neuroimaging Analysis Center (M.V., T.U., J.H., N.B., M.G.D., R.Z.), Department of Neurology, University at Buffalo SUNY, Buffalo, New York
| |
Collapse
|
43
|
Kawachi I, Nishizawa M. Significance of gray matter brain lesions in multiple sclerosis and neuromyelitis optica. Neuropathology 2015; 35:481-6. [DOI: 10.1111/neup.12216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/05/2015] [Accepted: 04/05/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Izumi Kawachi
- Department of Neurology, Brain Research Institute; Niigata University; Niigata Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute; Niigata University; Niigata Japan
| |
Collapse
|
44
|
Kolber P, Montag S, Fleischer V, Luessi F, Wilting J, Gawehn J, Gröger A, Zipp F. Identification of cortical lesions using DIR and FLAIR in early stages of multiple sclerosis. J Neurol 2015; 262:1473-82. [DOI: 10.1007/s00415-015-7724-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/06/2023]
|
45
|
Calabrese M, Gajofatto A, Benedetti MD. Therapeutic strategies for relapsing-remitting multiple sclerosis: a special focus on reduction of grey matter damage as measured by brain atrophy. Expert Rev Neurother 2014; 14:1417-28. [PMID: 25391525 DOI: 10.1586/14737175.2014.979794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the past two decades, several pathological and radiological findings convincingly demonstrated that damage of the cortical and deep grey matter is a key issue in multiple sclerosis with a significant impact on physical and cognitive disability. Moreover, it has become increasingly evident that the effect of available therapies on the inflammatory white matter damage is not a guarantee of a meaningful effect on the neurodegenerative process mainly affecting the grey matter. Despite the efficacy of all approved disease-modifying drugs should be measured considering such a relevant aspect of the disease, data from clinical trials are few, scattered and heterogeneous. The aim of this review is to summarize the evidence so far acquired on the effect of reducing grey matter damage produced by current and emerging disease-modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Neurology section, Department of Neurological and Movement Sciences, Policlinico di Borgo Roma, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona, Piazzale Ludovico Antonio Scuro, 37134, Verona, Italy
| | | | | |
Collapse
|
46
|
Kuchling J, Ramien C, Bozin I, Dörr J, Harms L, Rosche B, Niendorf T, Paul F, Sinnecker T, Wuerfel J. Identical lesion morphology in primary progressive and relapsing-remitting MS--an ultrahigh field MRI study. Mult Scler 2014; 20:1866-71. [PMID: 24781284 DOI: 10.1177/1352458514531084] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Potential differences between primary progressive (PP) and relapsing-remitting (RR) multiple sclerosis (MS) have been controversially discussed. In this study, we compared lesion morphology and distribution in patients with PPMS and RRMS (nine in each group) using 7 T MRI. We found that gray and white matter lesions in PPMS and RRMS patients did not differ in their respective morphological characteristics (e.g., perivascular p = 0.863, hypointense rim p = 0.796, cortical lesion count p = 0.436). Although limited by a small sample size, our study results suggest that PPMS and RRMS, despite differences in disease course and clinical characteristics, exhibit identical lesion morphology under ultrahigh field MRI.
Collapse
Affiliation(s)
- Joseph Kuchling
- NeuroCure Clinical Research Center, Charité - Universitaetsmedizin Berlin, Germany
| | - Caren Ramien
- NeuroCure Clinical Research Center, Charité - Universitaetsmedizin Berlin, Germany
| | - Ivan Bozin
- NeuroCure Clinical Research Center, Charité - Universitaetsmedizin Berlin, Germany
| | - Jan Dörr
- NeuroCure Clinical Research Center/Clinical and Experimental MS Research Center, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Lutz Harms
- Clinical and Experimental MS Research Center/Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Berit Rosche
- Clinical and Experimental MS Research Center/Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF)/Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center/Clinical and Experimental MS Research Center/Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Tim Sinnecker
- NeuroCure Clinical Research Center, Charité - Universitaetsmedizin Berlin, Germany/Asklepios Fachklinikum Teupitz, Germany
| | - Jens Wuerfel
- NeuroCure Clinical Research Center/BUFF, Max Delbrueck Center for Molecular Medicine, Berlin, Germany/Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin/Institute of Neuroradiology, University Medicine Goettingen, Germany
| |
Collapse
|
47
|
Kawachi I, Nishizawa M. Gray matter involvement in multiple sclerosis and neuromyelitis optica. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Izumi Kawachi
- Department of Neurology; Brain Research Institute; Niigata University; Niigata Japan
| | - Masatoyo Nishizawa
- Department of Neurology; Brain Research Institute; Niigata University; Niigata Japan
| |
Collapse
|
48
|
Prins M, Eriksson C, Wierinckx A, Bol JGJM, Binnekade R, Tilders FJH, Van Dam AM. Interleukin-1β and interleukin-1 receptor antagonist appear in grey matter additionally to white matter lesions during experimental multiple sclerosis. PLoS One 2013; 8:e83835. [PMID: 24376764 PMCID: PMC3871572 DOI: 10.1371/journal.pone.0083835] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/17/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) has been mainly attributed to white matter (WM) pathology. However, recent evidence indicated the presence of grey matter (GM) lesions. One of the principal mediators of inflammatory processes is interleukin-1β (IL-1β), which is known to play a role in MS pathogenesis. It is unknown whether IL-1β is solely present in WM or also in GM lesions. Using an experimental MS model, we questioned whether IL-1β and the IL-1 receptor antagonist (IL-1ra) are present in GM in addition to affected WM regions. METHODS The expression of IL-1β and IL-1ra in chronic-relapsing EAE (cr-EAE) rats was examined using in situ hybridization, immunohistochemistry and real-time PCR. Rats were sacrificed at the peak of the first disease phase, the trough of the remission phase, and at the peak of the relapse. Histopathological characteristics of CNS lesions were studied using immunohistochemistry for PLP, CD68 and CD3 and Oil-Red O histochemistry. RESULTS IL-1β and IL-ra expression appears to a similar extent in affected GM and WM regions in the brain and spinal cord of cr-EAE rats, particularly in perivascular and periventricular locations. IL-1β and IL-1ra expression was dedicated to macrophages and/or activated microglial cells, at sites of starting demyelination. The time-dependent expression of IL-1β and IL-1ra revealed that within the spinal cord IL-1β and IL-1ra mRNA remained present throughout the disease, whereas in the brain their expression disappeared during the relapse. CONCLUSIONS The appearance of IL-1β expressing cells in GM within the CNS during cr-EAE may explain the occurrence of several clinical deficits present in EAE and MS which cannot be attributed solely to the presence of IL-1β in WM. Endogenously produced IL-1ra seems not capable to counteract IL-1β-induced effects. We put forward that IL-1β may behold promise as a target to address GM, in addition to WM, related pathology in MS.
Collapse
Affiliation(s)
- Marloes Prins
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Charlotta Eriksson
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Anne Wierinckx
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy and Neurosciences, Amsterdam, The Netherlands
- UNIV UMR1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - John G. J. M. Bol
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Rob Binnekade
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Fred J. H. Tilders
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Anne-Marie Van Dam
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy and Neurosciences, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Maarouf A, Audoin B, Konstandin S, Rico A, Soulier E, Reuter F, Le Troter A, Confort-Gouny S, Cozzone PJ, Guye M, Schad LR, Pelletier J, Ranjeva JP, Zaaraoui W. Topography of brain sodium accumulation in progressive multiple sclerosis. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 27:53-62. [DOI: 10.1007/s10334-013-0396-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/30/2022]
|
50
|
Future MRI tools in multiple sclerosis. J Neurol Sci 2013; 331:14-8. [DOI: 10.1016/j.jns.2013.04.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/20/2022]
|