1
|
Gjølberg TT, Mester S, Calamera G, Telstad JS, Sandlie I, Andersen JT. Targeting the Neonatal Fc Receptor in Autoimmune Diseases: Pipeline and Progress. BioDrugs 2025; 39:373-409. [PMID: 40156757 PMCID: PMC12031853 DOI: 10.1007/s40259-025-00708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 04/01/2025]
Abstract
Autoimmune diseases are highly prevalent and affect people at all ages, women more often than men. The most prominent immunological manifestation is the production of antibodies directed against self-antigens. In many cases, these antibodies (Abs) drive the pathogenesis by attacking the body's own healthy cells, causing serious health problems that may be life threatening. Most autoantibodies are of the immunoglobulin G (IgG) isotype, which has a long plasma half-life and potent effector functions. Thus, there is a need for specific treatment options that rapidly eliminate these pathogenic IgG auto-Abs. In this review, we discuss how the neonatal Fc receptor (FcRn) acts as a regulator of the high levels of not only IgG Abs, but also albumin, by rescuing both these soluble proteins from cellular catabolism, and how a molecular and cellular understanding of this complex biology has spurred an intense interest in the development of FcRn-targeting strategies for the treatment of IgG-driven autoimmune diseases. We find that this emerging therapeutic class demonstrates efficacy within several autoimmune diseases with distinct pathophysiology. This offers hope for both new therapeutic avenues for highly prevalent diseases currently treated by other means, and rare diseases with no approved therapies to date. In addition, we elaborate on studies that have led to approval of the first FcRn antagonists, the clinical progress and structural design of molecules in the pipeline, their position in the overall therapeutic landscape of autoimmunity, the design of next-generation antagonists as well as the use of this receptor-targeting principle for other therapeutic applications.
Collapse
Affiliation(s)
- Torleif Tollefsrud Gjølberg
- Authera AS, 0349, Oslo, Norway.
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway.
- Department of Immunology, Oslo University Hospital and University of Oslo, 0372, Oslo, Norway.
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway.
| | - Simone Mester
- Authera AS, 0349, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | | | | | - Inger Sandlie
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Jan Terje Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway.
- Department of Immunology, Oslo University Hospital and University of Oslo, 0372, Oslo, Norway.
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zhu G, Ma Y, Zhou H, Nie X, Qi W, Hao L, Guo X. Case report: Rapid clinical improvement in acute exacerbation of MuSK-MG with efgartigimod. Front Immunol 2024; 15:1401972. [PMID: 38911858 PMCID: PMC11190065 DOI: 10.3389/fimmu.2024.1401972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Myasthenia gravis with positive MuSK antibody often involves the bulbar muscles and is usually refractory to acetylcholinesterase inhibitors. For MuSK-MG patients who experience acute exacerbations and do not respond to conventional treatments, there is an urgent need to find more suitable treatment options. With the advent of biologic agents, efgartigimod has shown promising results in the treatment of MG. We report a 65-year-old MuSK-MG patient who presented with impaired eye movements initially, and the symptoms rapidly worsened within a week, affecting the limbs and neck muscles, and had difficulties in chewing and swallowing. Lymphoplasmapheresis did not achieve satisfactory results, but after a cycle of efgartigimod treatment, the patient's symptoms gradually improved and remained in a good clinical state for several months.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Hao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
He T, Chen K, Li Y, Luo Z, Luo M, Yang H. Clinical Features and Prognostic Analysis of MuSK-Antibody-Positive Myasthenia Gravis versus Double-Seropositive Myasthenia Gravis: A Single-Center Study from Central South China. Neuropsychiatr Dis Treat 2024; 20:725-735. [PMID: 38566882 PMCID: PMC10986406 DOI: 10.2147/ndt.s450651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose To decipher the discrepancies between muscle-specific kinase antibody-positive myasthenia gravis (MuSK-MG) and double-seropositive myasthenia gravis (DSP-MG), and to determine prognostic factors for minimal manifestation status (MMS) achievement in MG patients with MuSK autoantibodies (MuSK-Ab). Patients and Methods A total of 34 MG patients seropositive for MuSK-Ab were enrolled in this study. The demographic and clinical features were compared between MuSK-MG (n = 28) and DSP-MG (n = 6) patients, and factors affecting MMS induction in all patients with MuSK-Ab were identified using Cox regression analysis. Results Compared to MuSK-MG patients, those with DSP-MG had similar clinical characteristics, except that they had a lower frequency of bulbar muscle involvement at nadir (50% vs 92.9%; P = 0.029) and higher proportions of comorbidities with diabetes mellitus (33.3% vs 0%; P = 0.027) and thymic abnormalities (33.3% vs 0%; P = 0.027). Higher MG Activities of Daily Living (MG-ADL) scores (HR = 0.16, 95% CI: 0.037-0.7, P = 0.015) and axial muscle involvement at nadir (HR = 0.39, 95% CI: 0.16-0.94, P = 0.035) were negative prognostic factors for MMS achievement in patients with MuSK-Ab regardless of acetylcholine receptor antibody (AChR-Ab) positivity. Multivariable Cox regression analysis further established higher MG-ADL scores at the nadir (HR = 0.19, 95% CI: 0.04-0.94; P = 0.042) as an independent risk factor for MMS achievement. Conclusion DSP-MG was comparable to MuSK-MG and could be considered a single entity in our cohort. In all MG patients with MuSK-Ab, a higher MG-ADL score at nadir may herald a lower chance of MMS achievement, with no observed potential effect of AChR-Ab presence.
Collapse
Affiliation(s)
- Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
5
|
Tannemaat MR, Huijbers MG, Verschuuren JJGM. Myasthenia gravis-Pathophysiology, diagnosis, and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:283-305. [PMID: 38494283 DOI: 10.1016/b978-0-12-823912-4.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction of the neuromuscular junction resulting in skeletal muscle weakness. It is equally prevalent in males and females, but debuts at a younger age in females and at an older age in males. Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes. Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test. Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.
Collapse
Affiliation(s)
- Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
6
|
Uyen Dao TM, Barbeau S, Messéant J, Della-Gaspera B, Bouceba T, Semprez F, Legay C, Dobbertin A. The collagen ColQ binds to LRP4 and regulates the activation of the Muscle-Specific Kinase-LRP4 receptor complex by agrin at the neuromuscular junction. J Biol Chem 2023; 299:104962. [PMID: 37356721 PMCID: PMC10382678 DOI: 10.1016/j.jbc.2023.104962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.
Collapse
Affiliation(s)
- Thi Minh Uyen Dao
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Susie Barbeau
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Julien Messéant
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | - Tahar Bouceba
- Sorbonne Université, CNRS, IBPS, Protein Engineering Platform, Paris, France
| | - Fannie Semprez
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Claire Legay
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Alexandre Dobbertin
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
| |
Collapse
|
7
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Prömer J, Barresi C, Herbst R. From phosphorylation to phenotype - Recent key findings on kinase regulation, downstream signaling and disease surrounding the receptor tyrosine kinase MuSK. Cell Signal 2023; 104:110584. [PMID: 36608736 DOI: 10.1016/j.cellsig.2022.110584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Muscle-specific kinase (MuSK) is the key regulator of neuromuscular junction development. MuSK acts via several distinct pathways and is responsible for pre- and postsynaptic differentiation. MuSK is unique among receptor tyrosine kinases as activation and signaling are particularly tightly regulated. Initiation of kinase activity requires Agrin, a heparan sulphate proteoglycan derived from motor neurons, the low-density lipoprotein receptor-related protein-4 (Lrp4) and the intracellular adaptor protein Dok-7. There is a great knowledge gap between MuSK activation and downstream signaling. Recent studies using omics techniques have addressed this knowledge gap, thereby greatly contributing to a better understanding of MuSK signaling. Impaired MuSK signaling causes severe muscle weakness as described in congenital myasthenic syndromes or myasthenia gravis but the underlying pathophysiology is often unclear. This review focuses on recent advances in deciphering MuSK activation and downstream signaling. We further highlight latest break-throughs in understanding and treatment of MuSK-related disorders and discuss the role of MuSK in non-muscle tissue.
Collapse
Affiliation(s)
- Jakob Prömer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
10
|
Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21:163-175. [DOI: 10.1016/s1474-4422(21)00357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
|
11
|
Petrov KA, Proskurina SE, Krejci E. Cholinesterases in Tripartite Neuromuscular Synapse. Front Mol Neurosci 2022; 14:811220. [PMID: 35002624 PMCID: PMC8733319 DOI: 10.3389/fnmol.2021.811220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The neuromuscular junction (NMJ) is a tripartite synapse in which not only presynaptic and post-synaptic cells participate in synaptic transmission, but also terminal Schwann cells (TSC). Acetylcholine (ACh) is the neurotransmitter that mediates the signal between the motor neuron and the muscle but also between the motor neuron and TSC. ACh action is terminated by acetylcholinesterase (AChE), anchored by collagen Q (ColQ) in the basal lamina of NMJs. AChE is also anchored by a proline-rich membrane anchor (PRiMA) to the surface of the nerve terminal. Butyrylcholinesterase (BChE), a second cholinesterase, is abundant on TSC and anchored by PRiMA to its plasma membrane. Genetic studies in mice have revealed different regulations of synaptic transmission that depend on ACh spillover. One of the strongest is a depression of ACh release that depends on the activation of α7 nicotinic acetylcholine receptors (nAChR). Partial AChE deficiency has been described in many pathologies or during treatment with cholinesterase inhibitors. In addition to changing the activation of muscle nAChR, AChE deficiency results in an ACh spillover that changes TSC signaling. In this mini-review, we will first briefly outline the organization of the NMJ. This will be followed by a look at the role of TSC in synaptic transmission. Finally, we will review the pathological conditions where there is evidence of decreased AChE activity.
Collapse
Affiliation(s)
- Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Svetlana E Proskurina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Eric Krejci
- CNRS, Université de Paris, ENS Paris Saclay, Centre Borelli UMR 9010, Paris, France
| |
Collapse
|
12
|
Bortone F, Scandiffio L, Cavalcante P, Mantegazza R, Bernasconi P. Epstein-Barr Virus in Myasthenia Gravis: Key Contributing Factor Linking Innate Immunity with B-Cell-Mediated Autoimmunity. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epstein-Barr virus (EBV), a common human herpes virus latently infecting most of the world’s population with periodic reactivations, is the main environmental factor suspected to trigger and/or sustain autoimmunity by its ability to disrupt B-cell tolerance checkpoints. Myasthenia gravis (MG) is a prototypic autoimmune disorder, mostly caused by autoantibodies to acetylcholine receptor (AChR) of the neuromuscular junction, which cause muscle weakness and fatigability. Most patients display hyperplastic thymus, characterized by ectopic germinal center formation, chronic inflammation, exacerbated Toll-like receptor activation, and abnormal B-cell activation. After an overview on MG clinical features and intra-thymic pathogenesis, in the present chapter, we describe our main findings on EBV presence in MG thymuses, including hyperplastic and thymoma thymuses, in relationship with innate immunity activation and data from other autoimmune conditions. Our overall data strongly indicate a critical contribution of EBV to innate immune dysregulation and sustained B-cell-mediated autoimmune response in the pathological thymus of MG patients.
Collapse
|
13
|
Yu Z, Zhang M, Jing H, Chen P, Cao R, Pan J, Luo B, Yu Y, Quarles BM, Xiong W, Rivner MH, Mei L. Characterization of LRP4/Agrin Antibodies From a Patient With Myasthenia Gravis. Neurology 2021; 97:e975-e987. [PMID: 34233932 PMCID: PMC8448554 DOI: 10.1212/wnl.0000000000012463] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/22/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE To determine whether human anti-LRP4/agrin antibodies are pathogenic in mice and to investigate underpinning pathogenic mechanisms. METHODS Immunoglobulin (Ig) was purified from a patient with myasthenia gravis (MG) with anti-LRP4/agrin antibodies and transferred to mice. Mice were characterized for body weight, muscle strength, twitch and tetanic force, neuromuscular junction (NMJ) functions including compound muscle action potential (CMAP) and endplate potentials, and NMJ structure. Effects of the antibodies on agrin-elicited muscle-specific tyrosine kinase (MuSK) activation and AChR clustering were studied and the epitopes of these antibodies were identified. RESULTS Patient Ig-injected mice had MG symptoms, including weight loss and muscle weakness. Decreased CMAPs, reduced twitch and tetanus force, compromised neuromuscular transmission, and NMJ fragmentation and distortion were detected in patient Ig-injected mice. Patient Ig inhibited agrin-elicited MuSK activation and AChR clustering. The patient Ig recognized the β3 domain of LRP4 and the C-terminus of agrin and reduced agrin-enhanced LRP4-MuSK interaction. DISCUSSION Anti-LRP4/agrin antibodies in the patient with MG is pathogenic. It impairs the NMJ by interrupting agrin-dependent LRP4-MuSK interaction.
Collapse
Affiliation(s)
- Zheng Yu
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Meiying Zhang
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Hongyang Jing
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Peng Chen
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Rangjuan Cao
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Jinxiu Pan
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Bin Luo
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Yue Yu
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Brandy M Quarles
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Wencheng Xiong
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH
| | - Michael H Rivner
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH.
| | - Lin Mei
- From the Department of Neurosciences (Z.Y., M.Z., H.J., P.C., R.C., J.P., B.L., W.X., L.M.), School of Medicine, Case Western Reserve University, Cleveland; Beachwood High School (Y.Y.), OH; Department of Neurology (B.M.Q., M.H.R.), Augusta University, GA; and Louis Stokes Cleveland Veterans Affairs Medical Center (W.X., L.M.), OH.
| |
Collapse
|
14
|
Evoli A, Spagni G, Monte G, Damato V. Heterogeneity in myasthenia gravis: considerations for disease management. Expert Rev Clin Immunol 2021; 17:761-771. [PMID: 34043932 DOI: 10.1080/1744666x.2021.1936500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Myasthenia gravis is a rare disease of the neuromuscular junction and a prototype of B cell-driven immunopathology. Pathogenic antibodies target post-synaptic transmembrane proteins, most commonly the nicotinic acetylcholine receptor and the muscle-specific tyrosine kinase, inducing end-plate alterations and neuromuscular transmission impairment. Several clinical subtypes are distinct on the basis of associated antibodies, age at symptom onset, thymus pathology, genetic factors, and weakness distribution. These subtypes have distinct pathogenesis that can account for different responses to treatment. Conventional therapy is based on the use of symptomatic agents, steroids, immunosuppressants and thymectomy. Of late, biologics have emerged as effective therapeutic options.Areas covered: In this review, we will discuss the management of myasthenia gravis in relation to its phenotypic and biological heterogeneity, in the light of recent advances in the disease immunopathology, new diagnostic tools, and results of clinical trialsExpert opinion: Clinical management is shaped on serological subtype, and patient age at onset, lifestyle and comorbidities, balancing therapeutic needs and safety. Although reliable biomarkers predictive of clinical and biologic outcome are still lacking, recent developments promise a more effective and safe treatment. Disease subtyping according to serological testing and immunopathology is crucial to the appropriateness of clinical management.
Collapse
Affiliation(s)
- Amelia Evoli
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy.,Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gregorio Spagni
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gabriele Monte
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Valentina Damato
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
15
|
Modoni A, Mastrorosa A, Spagni G, Evoli A. Cholinergic hyperactivity in patients with myasthenia gravis with MuSK antibodies: A neurophysiological study. Clin Neurophysiol 2021; 132:1845-1849. [PMID: 34147009 DOI: 10.1016/j.clinph.2021.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Patients with myasthenia gravis associated with muscle-specific tyrosine kinase antibodies (MuSK-MG) often manifest signs of cholinergic hyperactivity with standard doses of acetylcholinesterase inhibitors (AChE-Is). Aim of the study was to investigate whether repetitive compound muscle action potential (R-CMAP), the neurophysiological correlate of cholinergic hyperactivity, was present in MuSK-MG irrespective of AChE-I treatment. METHODS Patients with confirmed diagnosis of MuSK-MG were consecutively enrolled during follow-up visits, from January 2019 to April 2020. All these subjects underwent the same neurophysiological protocol, including motor nerve conduction studies and repetitive nerve stimulation. In patients taking pyridostigmine, neurophysiological testing was performed at least 12 hours after the last dose. For comparison, the presence of R-CMAP was investigated in 20 consecutive acetylcholine receptor antibody positive myasthenia gravis (AChR-MG) patients. RESULTS We enrolled 25 MuSK-MG patients (20 females), aged 16-79 years at the study time, with disease duration ranging 0.6-48.8 years (median: 17.7 years). R-CMAP was detected in 12/25 (48%) MuSK-MG cases and in none of the AChR-MG controls (p = 0.0003). In the MuSK-MG population, a history of muscle cramps and fasciculations, during low-dose pyridostigmine therapy, was significantly more frequent in R-CMAP positive than in R-CMAP negative patients (100% vs 31%, p = 0.001). At the time of the study, the proportion of patients still symptomatic for MG was higher among R-CMAP positive cases (92% vs 23%, p = 0.0005). CONCLUSIONS Cholinergic hyperactivity is a relatively common finding in MuSK-MG patients, independent of AChE-I treatment, and may constitute an intrinsic feature of the disease. SIGNIFICANCE R-CMAP detection can represent a useful diagnostic clue for MuSK-MG and predicts poor tolerance to AChE-Is.
Collapse
Affiliation(s)
- Anna Modoni
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli, 8 - 00168 Rome, Italy
| | - Alessia Mastrorosa
- IRCCS Fondazione Don Gnocchi ONLUS, via di Scandicci 269, 50143, Florence, Italy
| | - Gregorio Spagni
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo F. Vito, 1 - 00168 Rome, Italy.
| | - Amelia Evoli
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli, 8 - 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo F. Vito, 1 - 00168 Rome, Italy
| |
Collapse
|
16
|
Yang L, Guo S, Chen X. Afterdischarges in Myasthenia Gravis. Front Neurol 2021; 12:599744. [PMID: 33927677 PMCID: PMC8078411 DOI: 10.3389/fneur.2021.599744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: This study aimed to analyze the clinical features of myasthenia gravis (MG) in combination with the afterdischarges and compare the characteristics of afterdischarges in MG with different serum antibodies. Methods: Ninety-two patients with MG were analyzed retrospectively. The afterdischarges were investigated using motor nerve conduction examination, F-wave examination, and repetitive nerve stimulation (RNS). Results: Afterdischarges were observed after the M wave in 14 of 92 patients. Three of these 14 patients tested positive for the muscle-specific tyrosine kinase antibody (MuSK-Ab), and 11 patients tested positive for the acetylcholine receptor antibody (AchR-Ab). The characteristics of the afterdischarges on RNS differed distinctly between the two antibody groups. The afterdischarges occurred on the first stimulation, but decreased on the second and subsequent stimulations in patients with MuSK-MG, while the afterdischarges continued to occur on each stimulation in patients with AchR-MG. Discussion: The characteristics of the afterdischarges on RNS enabled easy identification of their synaptic or neurogenic nature.
Collapse
Affiliation(s)
- Li Yang
- Electromyography Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiuying Chen
- Electromyography Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Lazaridis K, Tzartos SJ. Myasthenia Gravis: Autoantibody Specificities and Their Role in MG Management. Front Neurol 2020; 11:596981. [PMID: 33329350 PMCID: PMC7734299 DOI: 10.3389/fneur.2020.596981] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Myasthenia gravis (MG) is the most common autoimmune disorder affecting the neuromuscular junction, characterized by skeletal muscle weakness and fatigability. It is caused by autoantibodies targeting proteins of the neuromuscular junction; ~85% of MG patients have autoantibodies against the muscle acetylcholine receptor (AChR-MG), whereas about 5% of MG patients have autoantibodies against the muscle specific kinase (MuSK-MG). In the remaining about 10% of patients no autoantibodies can be found with the classical diagnostics for AChR and MuSK antibodies (seronegative MG, SN-MG). Since serological tests are relatively easy and non-invasive for disease diagnosis, the improvement of methods for the detection of known autoantibodies or the discovery of novel autoantibody specificities to diminish SN-MG and to facilitate differential diagnosis of similar diseases, is crucial. Radioimmunoprecipitation assays (RIPA) are the staple for MG antibody detection, but over the past years, using cell-based assays (CBAs) or improved highly sensitive RIPAs, it has been possible to detect autoantibodies in previously SN-MG patients. This led to the identification of more patients with antibodies to the classical antigens AChR and MuSK and to the third MG autoantigen, the low-density lipoprotein receptor-related protein 4 (LRP4), while antibodies against other extracellular or intracellular targets, such as agrin, Kv1.4 potassium channels, collagen Q, titin, the ryanodine receptor and cortactin have been found in some MG patients. Since the autoantigen targeted determines in part the clinical manifestations, prognosis and response to treatment, serological tests are not only indispensable for initial diagnosis, but also for monitoring treatment efficacy. Importantly, knowing the autoantibody profile of MG patients could allow for more efficient personalized therapeutic approaches. Significant progress has been made over the past years toward the development of antigen-specific therapies, targeting only the specific immune cells or autoantibodies involved in the autoimmune response. In this review, we will present the progress made toward the development of novel sensitive autoantibody detection assays, the identification of new MG autoantigens, and the implications for improved antigen-specific therapeutics. These advancements increase our understanding of MG pathology and improve patient quality of life by providing faster, more accurate diagnosis and better disease management.
Collapse
Affiliation(s)
| | - Socrates J Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece.,Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
18
|
Zhang Z, Guan Y, Han J, Li M, Shi M, Deng H. Regional Features of MuSK Antibody-Positive Myasthenia Gravis in Northeast China. Front Neurol 2020; 11:516211. [PMID: 33123066 PMCID: PMC7566902 DOI: 10.3389/fneur.2020.516211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
Objective: To summarize the characteristics of muscle-specific receptor tyrosine kinase antibody-positive myasthenia gravis (MuSK-MG) in Northeast China. Methods: We retrospectively collected 183 confirmed MG patients and divided them into three groups based on the type of serum antibodies: MuSK-MG (14 cases), acetylcholine receptor (AChR)-MG (130 cases), and double-seronegative (DSN)-MG (39 cases). The clinical, diagnostic, therapeutic, and prognosis data were analyzed. Results: MuSK antibody was detected in 26.7% of seronegative MG. The mean age of onset in MuSK-MG was 53.2 ± 13.6 years. Fifty percent of MuSK-MG patients with an onset symptom of pure ocular muscle weakness. The time from onset to other muscle groups' involvement and the time from onset to myasthenic crisis had no significant difference among the three groups (P > 0.05). The proportion of Osserman classification I in MuSK-MG group was lower than that in DSN-MG group. The proportion of Osserman classification IV in MuSK-MG group was higher than that in the other two groups. The incidences of other coexisting autoimmune diseases in MuSK-MG group were higher. Prognosis after the treatment of steroid combined with tacrolimus for MuSK-MG was similar to AChR-MG treated with steroid combined with an immunosuppressant agent (P > 0.05). Conclusion: Patients with MuSK-MG in Northeast China have a modestly later onset age and a proportion of patients may have a mild form of the disease with delayed disease progression. We confirmed the existence of a rare ocular MuSK-MG phenotype, a high proportion of coexisting with other autoimmune diseases, and a good response to steroids combined with tacrolimus for our MuSK-MG series.
Collapse
Affiliation(s)
- Zunwei Zhang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Yujia Guan
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jiale Han
- Department of Endocrinology, First Hospital of Jilin University, Changchun, China
| | - Mingming Li
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Miao Shi
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Hui Deng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Cao M, Koneczny I, Vincent A. Myasthenia Gravis With Antibodies Against Muscle Specific Kinase: An Update on Clinical Features, Pathophysiology and Treatment. Front Mol Neurosci 2020; 13:159. [PMID: 32982689 PMCID: PMC7492727 DOI: 10.3389/fnmol.2020.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Muscle Specific Kinase myasthenia gravis (MuSK-MG) is an autoimmune disease that impairs neuromuscular transmission leading to generalized muscle weakness. Compared to the more common myasthenia gravis with antibodies against the acetylcholine receptor (AChR), MuSK-MG affects mainly the bulbar and respiratory muscles, with more frequent and severe myasthenic crises. Treatments are usually less effective with the need for prolonged, high doses of steroids and other immunosuppressants to control symptoms. Under physiological condition, MuSK regulates a phosphorylation cascade which is fundamental for the development and maintenance of postsynaptic AChR clusters at the neuromuscular junction (NMJ). Agrin, secreted by the motor nerve terminal into the synaptic cleft, binds to low density lipoprotein receptor-related protein 4 (LRP4) which activates MuSK. In MuSK-MG, monovalent MuSK-IgG4 autoantibodies block MuSK-LRP4 interaction preventing MuSK activation and leading to the dispersal of AChR clusters. Lower levels of divalent MuSK IgG1, 2, and 3 antibody subclasses are also present but their contribution to the pathogenesis of the disease remains controversial. This review aims to provide a detailed update on the epidemiological and clinical features of MuSK-MG, focusing on the pathophysiological mechanisms and the latest indications regarding the efficacy and safety of different treatment options.
Collapse
Affiliation(s)
- Michelangelo Cao
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Collagens at the vertebrate neuromuscular junction, from structure to pathologies. Neurosci Lett 2020; 735:135155. [PMID: 32534096 DOI: 10.1016/j.neulet.2020.135155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
The extracellular matrix at the neuromuscular junction is built upon components secreted by the motoneuron, the muscle cell and terminal Schwann cells, the cells constituting this specific synapse. This compartment contains glycoproteins, proteoglycans and collagens that form a dense and specialized layer, the synaptic basal lamina. A number of these molecules are known to play a crucial role in anterograde and retrograde signalings that are active in neuromuscular junction formation, maintenance and function. Here, we focus on the isoforms of collagens which are enriched at the synapse. We summarize what we know of their structure, their function and their interactions with transmembrane receptors and other components of the synaptic basal lamina. A number of neuromuscular diseases, congenital myastenic syndromes and myasthenia gravis are caused by human mutations and autoantibodies against these proteins. Analysis of these diseases and of the specific collagen knock-out mice highlights the roles of some of these collagens in promoting a functional synapse.
Collapse
|
21
|
Vergoossen DLE, Augustinus R, Huijbers MG. MuSK antibodies, lessons learned from poly- and monoclonality. J Autoimmun 2020; 112:102488. [PMID: 32505442 DOI: 10.1016/j.jaut.2020.102488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
Abstract
Muscle-specific kinase (MuSK) plays a critical role in establishing and maintaining neuromuscular synapses. Antibodies derived from immunizing animals with MuSK were important tools to help detect MuSK and its activity. The role of antibodies in MuSK-related research got an extra dimension when autoantibodies to MuSK were found to cause myasthenia gravis (MG) in 2001. Active immunization with MuSK or passive transfer of polyclonal purified IgG(4) fractions from patients reproduced myasthenic muscle weakness in a range of animal models. Polyclonal patient-purified autoantibodies were furthermore found to block agrin-Lrp4-MuSK signaling, explaining the synaptic disassembly, failure of neuromuscular transmission and ultimately muscle fatigue observed in vivo. MuSK autoantibodies are predominantly of the IgG4 subclass. Low levels of other subclass MuSK antibodies coexist, but their role in the pathogenesis is unclear. Patient-derived monoclonal antibodies revealed that MuSK antibody subclass and valency alters their functional effects and possibly their pathogenicity. Interestingly, recombinant functional bivalent MuSK antibodies might even have therapeutic potential for a variety of neuromuscular disorders, due to their agonistic nature on the MuSK signaling cascade. Thus, MuSK antibodies have proven to be helpful tools to study neuromuscular junction physiology, contributed to our understanding of the pathophysiology of MuSK MG and might be used to treat neuromuscular disorders. The source of MuSK antibodies and consequently their (mixed) polyclonal or monoclonal nature were important confounding factors in these experiments. Here we review the variety of MuSK antibodies described thus far, the insights they have given us and their potential for the future.
Collapse
Affiliation(s)
- Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Roy Augustinus
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands; Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
22
|
Takamori M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front Mol Neurosci 2020; 13:86. [PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) is a disease of the postsynaptic neuromuscular junction (NMJ) where nicotinic acetylcholine (ACh) receptors (AChRs) are targeted by autoantibodies. Search for other pathogenic antigens has detected the antibodies against muscle-specific tyrosine kinase (MuSK) and low-density lipoprotein-related protein 4 (Lrp4), both causing pre- and post-synaptic impairments. Agrin is also suspected as a fourth pathogen. In a complex NMJ organization centering on MuSK: (1) the Wnt non-canonical pathway through the Wnt-Lrp4-MuSK cysteine-rich domain (CRD)-Dishevelled (Dvl, scaffold protein) signaling acts to form AChR prepatterning with axonal guidance; (2) the neural agrin-Lrp4-MuSK (Ig1/2 domains) signaling acts to form rapsyn-anchored AChR clusters at the innervated stage of muscle; (3) adaptor protein Dok-7 acts on MuSK activation for AChR clustering from “inside” and also on cytoskeleton to stabilize AChR clusters by the downstream effector Sorbs1/2; (4) the trans-synaptic retrograde signaling contributes to the presynaptic organization via: (i) Wnt-MuSK CRD-Dvl-β catenin-Slit 2 pathway; (ii) Lrp4; and (iii) laminins. The presynaptic Ca2+ homeostasis conditioning ACh release is modified by autoreceptors such as M1-type muscarinic AChR and A2A adenosine receptors. The post-synaptic structure is stabilized by: (i) laminin-network including the muscle-derived agrin; (ii) the extracellular matrix proteins (including collagen Q/perlecan and biglycan which link to MuSK Ig1 domain and CRD); and (iii) the dystrophin-associated glycoprotein complex. The study on MuSK ectodomains (Ig1/2 domains and CRD) recognized by antibodies suggested that the MuSK antibodies were pathologically heterogeneous due to their binding to multiple functional domains. Focussing one of the matrix proteins, biglycan which functions in the manner similar to collagen Q, our antibody assay showed the negative result in MG patients. However, the synaptic stability may be impaired by antibodies against MuSK ectodomains because of the linkage of biglycan with MuSK Ig1 domain and CRD. The pathogenic diversity of MG is discussed based on NMJ signaling molecules.
Collapse
|
23
|
Multiple MuSK signaling pathways and the aging neuromuscular junction. Neurosci Lett 2020; 731:135014. [PMID: 32353380 DOI: 10.1016/j.neulet.2020.135014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
The neuromuscular junction (NMJ) is the vehicle for fast, reliable and robust communication between motor neuron and muscle. The unparalleled accessibility of this synapse to morphological, electrophysiological and genetic analysis has yielded an in depth understanding of many molecular components mediating its formation, maturation and stability. However, key questions surrounding the signaling pathways mediating these events and how they play out across the lifetime of the synapse remain unanswered. Such information is critical since the NMJ is necessary for normal movement and is compromised in several settings including myasthenia gravis, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), muscular dystrophy, sarcopenia and aging. Muscle specific kinase (MuSK) is a central player in most if not all contexts of NMJ formation and stability. However, elucidating the function of this receptor in this range of settings is challenging since MuSK participates in at least three signaling pathways: as a tyrosine kinase-dependent receptor for agrin-LRP4 and Wnts; and, as a kinase-independent BMP co-receptor. Here we focus on NMJ stability during aging and discuss open questions regarding the molecular mechanisms that govern active maintenance of the NMJ, with emphasis on MuSK and the potential role of its multiple signaling contexts.
Collapse
|
24
|
Lazaridis K, Tzartos SJ. Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Front Immunol 2020; 11:212. [PMID: 32117321 PMCID: PMC7033452 DOI: 10.3389/fimmu.2020.00212] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness and fatiguability of skeletal muscles. It is an antibody-mediated disease, caused by autoantibodies targeting neuromuscular junction proteins. In the majority of patients (~85%) antibodies against the muscle acetylcholine receptor (AChR) are detected, while in 6% antibodies against the muscle-specific kinase (MuSK) are detected. In ~10% of MG patients no autoantibodies can be found with the classical diagnostics for AChR and MuSK antibodies (seronegative MG, SN-MG), making the improvement of methods for the detection of known autoantibodies or the discovery of novel antigenic targets imperative. Over the past years, using cell-based assays or improved highly sensitive immunoprecipitation assays, it has been possible to detect autoantibodies in previously SN-MG patients, including the identification of the low-density lipoprotein receptor-related protein 4 (LRP4) as a third MG autoantigen, as well as AChR and MuSK antibodies undetectable by conventional methods. Furthermore, antibodies against other extracellular or intracellular targets, such as titin, the ryanodine receptor, agrin, collagen Q, Kv1.4 potassium channels and cortactin have been found in some MG patients, which can be useful biomarkers. In addition to the improvement of diagnosis, the identification of the patients' autoantibody specificity is important for their stratification into respective subgroups, which can differ in terms of clinical manifestations, prognosis and most importantly their response to therapies. The knowledge of the autoantibody profile of MG patients would allow for a therapeutic strategy tailored to their MG subgroup. This is becoming especially relevant as there is increasing progress toward the development of antigen-specific therapies, targeting only the specific autoantibodies or immune cells involved in the autoimmune response, such as antigen-specific immunoadsorption, which have shown promising results. We will herein review the advances made by us and others toward development of more sensitive detection methods and the identification of new antibody targets in MG, and discuss their significance in MG diagnosis and therapy. Overall, the development of novel autoantibody assays is aiding in the more accurate diagnosis and classification of MG patients, supporting the development of advanced therapeutics and ultimately the improvement of disease management and patient quality of life.
Collapse
Affiliation(s)
| | - Socrates J Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece.,Tzartos NeuroDiagnostics, Athens, Greece
| |
Collapse
|
25
|
Vilquin JT, Bayer AC, Le Panse R, Berrih-Aknin S. The Muscle Is Not a Passive Target in Myasthenia Gravis. Front Neurol 2020; 10:1343. [PMID: 31920954 PMCID: PMC6930907 DOI: 10.3389/fneur.2019.01343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by pathogenic antibodies (Ab) directed against components of the neuromuscular junction (NMJ), mainly the acetylcholine receptor (AChR). The etiological mechanisms are not totally elucidated, but they include a combination of genetic predisposition, triggering event(s), and hormonal components. MG disease is associated with defective immune regulation, chronic cell activation, inflammation, and the thymus is frequently abnormal. MG is characterized by muscle fatigability that is very invalidating and can be life-threatening when respiratory muscles are affected. MG is not cured, and symptomatic treatments with acetylcholinesterase inhibitors and immunosuppressors are life-long medications associated with severe side effects (especially glucocorticoids). While the muscle is the ultimate target of the autoimmune attack, its place and role are not thoroughly described, and this mini-review will focus on the cascade of pathophysiologic mechanisms taking place at the NMJ and its consequences on the muscle biology, function, and regeneration in myasthenic patients, at the histological, cellular, and molecular levels. The fine structure of the synaptic cleft is damaged by the Ab binding that is coupled to focal complement-dependent lysis in the case of MG with anti-AChR antibodies. Cellular and molecular reactions taking place in the muscle involve several cell types as well as soluble factors. Finally, the regenerative capacities of the MG muscle tissue may be altered. Altogether, the studies reported in this review demonstrate that the muscle is not a passive target in MG, but interacts dynamically with its environment in several ways, activating mechanisms of compensation that limit the pathogenic mechanisms of the autoantibodies.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | | | - Rozen Le Panse
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| |
Collapse
|
26
|
Souto EB, Lima B, Campos JR, Martins-Gomes C, Souto SB, Silva AM. Myasthenia gravis: State of the art and new therapeutic strategies. J Neuroimmunol 2019; 337:577080. [PMID: 31670062 DOI: 10.1016/j.jneuroim.2019.577080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
Myasthenia Gravis (MG) - an autoimmune neuromuscular disease - is known by the production of autoantibodies against components of the neuromuscular junction mainly to the acetylcholine receptor, which cause the destruction and compromises the synaptic transmission. This disease is characterized by fluctuating and fatigable muscle weakness, becoming more intensive with activity, but with an improvement under resting. There are many therapeutic strategies used to alleviate MG symptoms, either by improving the transmission of the nerve impulse or by ameliorating autoimmune reactions with e.g. steroids, immunosuppressant drugs, or monoclonal antibodies (rituximab and eculizumab). Many breakthroughs in the discovery of new therapeutic targets have been reported, but MG remains to be a chronic disease where the symptoms are kept in the majority of patients. In this review, we discuss the different therapeutic strategies that have been used over the years to alleviate MG symptoms, as well as innovative therapeutic approaches currently under study.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Bernardo Lima
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Joana R Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Carlos Martins-Gomes
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Selma B Souto
- Department of Endocrinology of S. João Hospital, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Amélia M Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
27
|
Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8:cells8070671. [PMID: 31269763 PMCID: PMC6678492 DOI: 10.3390/cells8070671] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ). Autoantibodies target key molecules at the NMJ, such as the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low-density lipoprotein receptor-related protein 4 (Lrp4), that lead by a range of different pathogenic mechanisms to altered tissue architecture and reduced densities or functionality of AChRs, reduced neuromuscular transmission, and therefore a severe fatigable skeletal muscle weakness. In this review, we give an overview of the history and clinical aspects of MG, with a focus on the structure and function of myasthenic autoantigens at the NMJ and how they are affected by the autoantibodies' pathogenic mechanisms. Furthermore, we give a short overview of the cells that are implicated in the production of the autoantibodies and briefly discuss diagnostic challenges and treatment strategies.
Collapse
|
28
|
Legay C. Congenital myasthenic syndromes with acetylcholinesterase deficiency, the pathophysiological mechanisms. Ann N Y Acad Sci 2019; 1413:104-110. [PMID: 29405353 DOI: 10.1111/nyas.13595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
The neuromuscular junction (NMJ) is a cholinergic synapse in vertebrates. This synapse connects motoneurons to muscles and is responsible for muscle contraction, a physiological process that is essential for survival. A key factor for the normal functioning of this synapse is the regulation of acetylcholine (ACh) levels in the synaptic cleft. This is ensured by acetylcholinesterase (AChE), which degrades ACh. A number of mutations in synaptic genes expressed in motoneurons or muscle cells have been identified and are causative for a class of neuromuscular diseases called congenital myasthenic syndromes (CMSs). One of these CMSs is due to deficiency in AChE, which is absent or diffuse in the synaptic cleft. Here, I focus on the origins of the syndrome. The role of ColQ, a collagen that anchors AChE in the synaptic cleft, is discussed in this context. Studies performed on patient biopsies, transgenic mice, and muscle cultures have provided a more comprehensive view of the connectome at the NMJ that should be useful for understanding the differences in the symptoms observed in specific CMSs due to mutated proteins in the synaptic cleft.
Collapse
Affiliation(s)
- Claire Legay
- CNRS 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
29
|
Huijbers MG, Vergoossen DL, Fillié-Grijpma YE, van Es IE, Koning MT, Slot LM, Veelken H, Plomp JJ, van der Maarel SM, Verschuuren JJ. MuSK myasthenia gravis monoclonal antibodies: Valency dictates pathogenicity. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e547. [PMID: 30882021 PMCID: PMC6410930 DOI: 10.1212/nxi.0000000000000547] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Objective To isolate and characterize muscle-specific kinase (MuSK) monoclonal antibodies from patients with MuSK myasthenia gravis (MG) on a genetic and functional level. Methods We generated recombinant MuSK antibodies from patient-derived clonal MuSK-specific B cells and produced monovalent Fab fragments from them. Both the antibodies and Fab fragments were tested for their effects on neural agrin-induced MuSK phosphorylation and acetylcholine receptor (AChR) clustering in myotube cultures. Results The isolated MuSK monoclonal antibody sequences included IgG1, IgG3, and IgG4 that had undergone high levels of affinity maturation, consistent with antigenic selection. We confirmed their specificity for the MuSK Ig-like 1 domain and binding to neuromuscular junctions. Monovalent MuSK Fab, mimicking functionally monovalent MuSK MG patient Fab-arm exchanged serum IgG4, abolished agrin-induced MuSK phosphorylation and AChR clustering. Surprisingly, bivalent monospecific MuSK antibodies instead activated MuSK phosphorylation and partially induced AChR clustering, independent of agrin. Conclusions Patient-derived MuSK antibodies can act either as MuSK agonist or MuSK antagonist, depending on the number of MuSK binding sites. Functional monovalency, induced by Fab-arm exchange in patient serum, makes MuSK IgG4 antibodies pathogenic.
Collapse
Affiliation(s)
- Maartje G Huijbers
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Dana L Vergoossen
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Yvonne E Fillié-Grijpma
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Inge E van Es
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Marvyn T Koning
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Linda M Slot
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Hendrik Veelken
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Jaap J Plomp
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Silvère M van der Maarel
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Jan J Verschuuren
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| |
Collapse
|
30
|
Hong Y, Li HF, Romi F, Skeie GO, Gilhus NE. HLA and MuSK-positive myasthenia gravis: A systemic review and meta-analysis. Acta Neurol Scand 2018; 138:219-226. [PMID: 29736936 DOI: 10.1111/ane.12951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Myasthenia gravis (MG) represents a spectrum of clinical subtypes with differences in disease mechanisms and treatment response. MG with muscle-specific tyrosine kinase (MuSK) antibodies accounts for 1%-10% of all MG patients. We conducted a meta-analysis to evaluate the association between HLA genes and MuSK-MG susceptibility. SUBJECTS AND METHODS Studies were searched in Pubmed, EMBASE database and other sources between 2001 and 2018. Genotype, allele and haplotype frequencies of HLA loci in MuSK-MG patients and healthy controls were extracted from each included study. RESULTS The meta-analysis showed that HLA DQB1*05, DRB1*14 and DRB1*16 were strongly associated with an increased risk of MuSK-MG (P < .0001), whereas HLA DQB*03 was less frequent in MuSK patients compared with healthy controls (P < .05). Haplotype analysis showed that these DQB1 and DRB1 alleles were closely linked, forming both risk (DQ5-DR14, DQ5-DR16, P < .0001) and protective (DQ3-DR4, DQ3-DR11, P < .05) haplotypes. CONCLUSION The distinct genetic patterns of MuSK-MG indicate that variation in HLA class II genes plays an important role in the pathogenesis of MuSK-MG patients.
Collapse
Affiliation(s)
- Y Hong
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - H-F Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - F Romi
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - G O Skeie
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - N E Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
31
|
Trampert DC, Hubers LM, van de Graaf SF, Beuers U. On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1401-1409. [DOI: 10.1016/j.bbadis.2017.07.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
|
32
|
Morren J, Li Y. Myasthenia gravis with muscle-specific tyrosine kinase antibodies: A narrative review. Muscle Nerve 2018; 58:344-358. [DOI: 10.1002/mus.26107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- John Morren
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S90; Cleveland Ohio 44195 USA
| | - Yuebing Li
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S90; Cleveland Ohio 44195 USA
| |
Collapse
|
33
|
Huijbers MG, Plomp JJ, van der Maarel SM, Verschuuren JJ. IgG4-mediated autoimmune diseases: a niche of antibody-mediated disorders. Ann N Y Acad Sci 2018; 1413:92-103. [PMID: 29377160 DOI: 10.1111/nyas.13561] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Immunoglobulin 4 (IgG4) is one of four human IgG subclasses and has several unique functional characteristics. It exhibits low affinity for complement and for most Fc receptors. It furthermore has generally high affinity for its antigen, with binding occurring in a monovalent fashion, as IgG4 can exchange Fab-arms with other IgG4 molecules. Because of these characteristics, IgG4 is believed to block its targets and prevent inflammation, which, depending on the setting, can have a protective or pathogenic effect. One example of IgG4 pathogenicity is muscle-specific kinase (MuSK) myasthenia gravis (MG), in which patients develop IgG4 MuSK autoantibodies, resulting in muscle weakness. As a consequence of the distinct IgG4 characteristics, the pathomechanism of MuSK MG is very different from IgG1-and IgG3-mediated autoimmune diseases, such as acetylcholine receptor MG. In recent years, new autoantibodies in a spectrum of autoimmune diseases have been discovered. Interestingly, some were found to be predominantly IgG4. These IgG4-mediated autoimmune diseases share many pathomechanistic aspects with MuSK MG, suggesting that IgG4-mediated autoimmunity forms a separate niche among the antibody-mediated disorders. In this review, we summarize the group of IgG4-mediated autoimmune diseases, discuss the role of IgG4 in MuSK MG, and highlight interesting future research questions for IgG4-mediated autoimmunity.
Collapse
Affiliation(s)
- Maartje G Huijbers
- Departments of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jaap J Plomp
- Departments of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Jan J Verschuuren
- Departments of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
34
|
Verschuuren JJGM, Plomp JJ, Burden SJ, Zhang W, Fillié-Grijpma YE, Stienstra-van Es IE, Niks EH, Losen M, van der Maarel SM, Huijbers MG. Passive transfer models of myasthenia gravis with muscle-specific kinase antibodies. Ann N Y Acad Sci 2018; 1413:111-118. [PMID: 29356029 DOI: 10.1111/nyas.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
Myasthenia gravis (MG) with antibodies to muscle-specific kinase (MuSK) is characterized by fluctuating fatigable weakness. In MuSK MG, involvement of bulbar muscles, neck, and shoulder and respiratory weakness are more prominent than in acetylcholine receptor (AChR) MG. MuSK autoantibodies are mainly of the IgG4 subclass, and as such are unable to activate complement, have low affinity for Fc receptors, and are functionally monovalent. Therefore, the pathogenicity of IgG4 MuSK autoantibodies was initially questioned. A broad collection of in vitro active immunization and passive transfer models has been developed that have shed light on the pathogenicity of MuSK autoantibodies. Passive transfer studies with purified IgG4 from MuSK MG patients confirmed that IgG4 is sufficient to reproduce clear clinical, electrophysiological, and histological signs of myasthenia. In vitro experiments revealed that MuSK IgG4 autoantibodies preferably bind the first Ig-like domain of MuSK, correlate with disease severity, and interfere with the association between MuSK and low-density lipoprotein receptor-related protein 4 and collagen Q. Some patients have additional IgG1 MuSK autoantibodies, but their role in the disease is unclear. Altogether, this provides a rationale for epitope-specific or IgG4-specific treatment strategies for MuSK MG and emphasizes the importance of the development of different experimental models.
Collapse
Affiliation(s)
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Steve J Burden
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Medical School, New York, New York
| | - Wei Zhang
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Medical School, New York, New York
| | | | | | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Maartje G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
35
|
Patterson KR, Dalmau J, Lancaster E. Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia. Ann Neurol 2018; 83:40-51. [PMID: 29244234 PMCID: PMC5876120 DOI: 10.1002/ana.25120] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine the pathogenic mechanisms of autoantibodies to the cell adhesion molecule Caspr2 in acquired neuromyotonia and autoimmune encephalitis. METHODS Caspr2-positive samples were confirmed using a cell-based assay, and their IgG subtypes were determined by enzyme-linked immunosorbent assay and cell-based assay. A solid phase binding assay quantified the binding of Caspr2 to contactin-2 in the presence of Caspr2 autoantibodies. Living cultures of primary rat hippocampal neurons were incubated with Caspr2-positive or control sera, and the distribution of Caspr2-positive immunofluorescent puncta and total surface Caspr2 was quantified. HEK cells transfected to express Caspr2 were incubated with Caspr2-positive or control samples, and cell-surface biotinylation and Western blot were used to assess total, internalized, and surface levels of Caspr2. RESULTS We confirmed 6 samples with strong Caspr2 reactivity. IgG4 Caspr2 antibodies were present in all 6 cases. Caspr2 interacted with another cell adhesion molecule, contactin-2, with nanomolar affinity in the solid phase assay, and Caspr2 autoantibodies inhibited this interaction. Caspr2 autoantibodies did not affect the surface expression of Caspr2 in rat primary hippocampal neurons or transfected HEK cells. INTERPRETATION Caspr2 autoantibodies inhibit the interaction of Caspr2 with contactin-2 but do not cause internalization of Caspr2. Functional blocking of cell adhesion molecule interactions represents a potential mechanism with therapeutic implications for IgG4 autoantibodies to cell adhesion molecules in neurological diseases. Ann Neurol 2018;83:40-51.
Collapse
Affiliation(s)
- Kristina R Patterson
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Josep Dalmau
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Hospital Clinic-August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies Barcelona, Spain
| | - Eric Lancaster
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
36
|
Ghazanfari N, Trajanovska S, Morsch M, Liang SX, Reddel SW, Phillips WD. The mouse passive-transfer model of MuSK myasthenia gravis: disrupted MuSK signaling causes synapse failure. Ann N Y Acad Sci 2017; 1412:54-61. [DOI: 10.1111/nyas.13513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| | - Sofie Trajanovska
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| | - Marco Morsch
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
- Department of Biomedical Sciences; Macquarie University; Sydney New South Wales Australia
| | - Simon X. Liang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences; Liaoning Medical University; Jinzhou China
| | - Stephen W. Reddel
- Department of Molecular Medicine; Concord Hospital; Sydney New South Wales Australia
| | - William D. Phillips
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
37
|
Illa I, Cortés-Vicente E, Martínez MÁ, Gallardo E. Diagnostic utility of cortactin antibodies in myasthenia gravis. Ann N Y Acad Sci 2017; 1412:90-94. [PMID: 29068555 DOI: 10.1111/nyas.13502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
Patients with myasthenia gravis (MG) without antibodies to the acetylcholine receptor (AChR) or muscle-specific tyrosine kinase (MuSK) have been classified as having double-seronegative myasthenia gravis (dSNMG). We used the sera from six dSNMG patients with positive immunohistochemistry assays in a protein array to screen reactivity with 9000 human proteins. We identified cortactin, an intracellular protein that interacts with agrin/MuSK favoring AChR aggregation, as a new antigen in dSNMG. We then designed an in-house enzyme-linked immunosorbent assay as a screening assay and confirmed these results by western blot. We found that 19.7% of dSNMG patients had anti-cortactin antibodies. In contrast, patients with AChR+ MG or other autoimmune disorders and healthy controls were positive at significantly lower rates. Five percent of healthy controls were positive. In a recent study, we screened sera from 250 patients (AChR+ MG, MuSK+ MG, dSNMG) and 29 healthy controls. Cortactin antibodies were identified in 23.7% of dSNMG and 9.5% AChR+ MG patients (P = 0.02). None of the MuSK+ MG patients, patients with other autoimmune disorders, or healthy controls had antibodies against cortactin. Patients with dSNMG cortactin+ MG were negative for anti-striated muscle and anti-LRP4 antibodies. Patients with dSNMG cortactin+ MG presented ocular or mild generalized MG without bulbar symptoms. We conclude that cortactin autoantibodies are biomarkers of MG that, when present, suggest that the disease will be mild.
Collapse
Affiliation(s)
- Isabel Illa
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - María Ángeles Martínez
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
38
|
Ohno K, Ohkawara B, Ito M. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opin Ther Targets 2017; 21:949-958. [PMID: 28825343 DOI: 10.1080/14728222.2017.1369960] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.
Collapse
Affiliation(s)
- Kinji Ohno
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Bisei Ohkawara
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mikako Ito
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
39
|
Takamori M. Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders. Int J Mol Sci 2017; 18:ijms18040896. [PMID: 28441759 PMCID: PMC5412475 DOI: 10.3390/ijms18040896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
In the neuromuscular junction, postsynaptic nicotinic acetylcholine receptor (nAChR) clustering, trans-synaptic communication and synaptic stabilization are modulated by the molecular mechanisms underlying synaptic plasticity. The synaptic functions are based presynaptically on the active zone architecture, synaptic vesicle proteins, Ca2+ channels and synaptic vesicle recycling. Postsynaptically, they are based on rapsyn-anchored nAChR clusters, localized sensitivity to ACh, and synaptic stabilization via linkage to the extracellular matrix so as to be precisely opposed to the nerve terminal. Focusing on neural agrin, Wnts, muscle-specific tyrosine kinase (a mediator of agrin and Wnts signalings and regulator of trans-synaptic communication), low-density lipoprotein receptor-related protein 4 (the receptor of agrin and Wnts and participant in retrograde signaling), laminin-network (including muscle-derived agrin), extracellular matrix proteins (participating in the synaptic stabilization) and presynaptic receptors (including muscarinic and adenosine receptors), we review the functional structures of the synapse by making reference to immunological pathogenecities in postsynaptic disease, myasthenia gravis. The synapse-related proteins including cortactin, coronin-6, caveolin-3, doublecortin, R-spondin 2, amyloid precursor family proteins, glia cell-derived neurotrophic factor and neurexins are also discussed in terms of their possible contribution to efficient synaptic transmission at the neuromuscular junction.
Collapse
Affiliation(s)
- Masaharu Takamori
- Neurological Center, Kanazawa-Nishi Hospital, Kanazawa, Ishikawa 920-0025, Japan.
| |
Collapse
|
40
|
Verschuuren J, Strijbos E, Vincent A. Neuromuscular junction disorders. HANDBOOK OF CLINICAL NEUROLOGY 2017; 133:447-66. [PMID: 27112691 DOI: 10.1016/b978-0-444-63432-0.00024-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diseases of the neuromuscular junction comprise a wide range of disorders. Antibodies, genetic mutations, specific drugs or toxins interfere with the number or function of one of the essential proteins that control signaling between the presynaptic nerve ending and the postsynaptic muscle membrane. Acquired autoimmune disorders of the neuromuscular junction are the most common and are described here. In myasthenia gravis, antibodies to acetylcholine receptors or to proteins involved in receptor clustering, particularly muscle-specific kinase, cause direct loss of acetylcholine receptors or interfere with the agrin-induced acetylcholine receptor clustering necessary for efficient neurotransmission. In the Lambert-Eaton myasthenic syndrome (LEMS), loss of the presynaptic voltage-gated calcium channels results in reduced release of the acetylcholine transmitter. The conditions are generally recognizable clinically and the diagnosis confirmed by serologic testing and electromyography. Screening for thymomas in myasthenia or small cell cancer in LEMS is important. Fortunately, a wide range of symptomatic treatments, immunosuppressive drugs, or other immunomodulating therapies is available. Future research is directed to understanding the pathogenesis, discovering new antigens, and trying to develop disease-specific treatments.
Collapse
Affiliation(s)
- Jan Verschuuren
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Ellen Strijbos
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
41
|
Lee JI, Jander S. Myasthenia gravis: recent advances in immunopathology and therapy. Expert Rev Neurother 2016; 17:287-299. [PMID: 27690672 DOI: 10.1080/14737175.2017.1241144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- John-Ih Lee
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| | - Sebastian Jander
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
42
|
Abstract
Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms.
Collapse
Affiliation(s)
- William D Phillips
- Physiology and Bosch Institute, University of Sydney, Anderson Stuart Bldg (F13), Sydney, 2006, Australia
| | - Angela Vincent
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Ohno K, Otsuka K, Ito M. Roles of collagen Q in MuSK antibody-positive myasthenia gravis. Chem Biol Interact 2016; 259:266-270. [PMID: 27119269 DOI: 10.1016/j.cbi.2016.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/25/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The low-density lipoprotein receptor-related protein 4 (LRP4) and the muscle-specific receptor tyrosine kinase (MuSK) form a tetrameric protein complex on the postsynaptic membrane at the neuromuscular junction (NMJ). Binding of agrin to LRP4 triggers phosphorylation of MuSK. Activated MuSK drives clustering of acetylcholine receptor (AChR). Wnt ligands also directly bind to MuSK to induce AChR clustering. MuSK anchors the acetylcholinesterase (AChE)/collagen Q (ColQ) complex to the synaptic basal lamina. In addition, an extracellular proteoglycan, biglycan, binds to MuSK. Anti-MuSK autoantibodies (MuSK-IgG) are observed in 5-15% of autoimmune myasthenia gravis (MG) patients. MuSK-IgG blocks both ColQ-MuSK and LRP4-MuSK interactions. MuSK-IgG, LRP4, ColQ, and biglycan bind to the immunoglobulin-like domains 1 and 4 of MuSK. Lack of the effects of cholinesterase inhibitors in MuSK-MG patients is likely due to hindrance of ColQ-MuSK interaction by MuSK-IgG and subsequent deficiency of AChE observed in model mice, which, however, has not been proven in MuSK-MG patients. As ColQ enhances expression of membrane-bound MuSK, inhibition of ColQ-MuSK interaction by MuSK-IgG may account for lack of AChR clusters in MuSK-MG. We thus made passive transfer models using Colq+/+ and Colq-/- mice to dissect the effect of ColQ on AChR clustering in MuSK-MG. We found that MuSK-IgG-mediated suppression of LRP4-MuSK interaction, not of ColQ-MuSK interaction, caused defective AChR clustering. We also unexpectedly observed that both MuSK-IgG and ColQ suppressed agrin/LRP4/MuSK signaling in dose-dependent manners. Quantitative comparison revealed that MuSK-IgG blocked agrin-LRP4-MuSK signaling more than ColQ. We propose that attenuation of AChR clustering in MuSK-MG is due to hindrance of LRP4-MuSK interaction in the presence of agrin by MuSK-IgG.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya 466-8550, Japan.
| | - Kenji Otsuka
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya 466-8550, Japan
| |
Collapse
|
44
|
Myasthenia gravis — autoantibody characteristics and their implications for therapy. Nat Rev Neurol 2016; 12:259-68. [DOI: 10.1038/nrneurol.2016.44] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Kamada M, Nakane S, Matsui N, Higuchi O, Sakai W, Fujita K, Izumi Y, Matsuo H, Kaji R. Ocular myasthenia gravis with anti‐muscle‐specific tyrosine kinase antibodies: Two new cases and a systematic literature review. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Masaki Kamada
- Department of Neurology Institute of Health Bioscience Tokushima University Graduate School of Medicine Tokushima Japan
- Department of Neurological Intractable Disease Research Kagawa University School of Medicine Kagawa Japan
| | - Shunya Nakane
- Department of Clinical Research Nagasaki Kawatana Medical Center Nagasaki Japan
- Department of Neurology Nagasaki Kawatana Medical Center Nagasaki Japan
| | - Naoko Matsui
- Department of Neurology Institute of Health Bioscience Tokushima University Graduate School of Medicine Tokushima Japan
| | - Osamu Higuchi
- Department of Clinical Research Nagasaki Kawatana Medical Center Nagasaki Japan
| | - Waka Sakai
- Department of Neurology Institute of Health Bioscience Tokushima University Graduate School of Medicine Tokushima Japan
- Department of Neurology Nagasaki Kawatana Medical Center Nagasaki Japan
| | - Koji Fujita
- Department of Neurology Institute of Health Bioscience Tokushima University Graduate School of Medicine Tokushima Japan
| | - Yuishin Izumi
- Department of Neurology Institute of Health Bioscience Tokushima University Graduate School of Medicine Tokushima Japan
| | - Hidenori Matsuo
- Department of Neurology Nagasaki Kawatana Medical Center Nagasaki Japan
| | - Ryuji Kaji
- Department of Neurology Institute of Health Bioscience Tokushima University Graduate School of Medicine Tokushima Japan
| |
Collapse
|
46
|
Hamdoon MNT, Fattouh M, El-Din AN, Elnady HM. The potential role of cell surface complement regulators and circulating CD4+ CD25+ T-cells in the development of autoimmune myasthenia gravis. Electron Physician 2016; 8:1718-26. [PMID: 26955441 PMCID: PMC4768919 DOI: 10.19082/1718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/13/2015] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION CD4+CD25+ regulatory T-lymphocytes (T-regs) and regulators of complement activity (RCA) involving CD55 and CD59 play an important role in the prevention of autoimmune diseases. However, their role in the pathogenesis of human autoimmune myasthenia gravis (MG) remains unclear. This study aimed to determine the frequency of peripheral blood T-regs and CD4+ T-helper (T-helper) cells and the red blood cells (RBCs) level of expression of CD55 and CD59 in MG patients. METHODS Fourteen patients with MG in neurology outpatient clinics of Sohag University Hospital and Sohag General Hospital from March 2014 to December 2014, and 10 age-matched healthy controls participated in this case-control study. We did flowcytometric assessments of the percentage of peripheral T-regs and T-helper cells and the level of expression of CD55 and CD59 on RBCs in the peripheral blood of patients and controls. RESULTS There was a statistically significant decrease in the percentage of peripheral blood T-regs and T-regs/T-helper cell ratio in the MG patients group. Moreover, the level of expression of CD55, CD59, and dual expression of CD55/CD59 on RBCs were statistically significantly lower in MG patients than those of healthy controls. However, regression analysis indicated that there was no significant correlation between all the measured parameters and disease duration or staging. CONCLUSION Functional defects in the T-regs and RCA may play a role in the pathogenesis of autoimmune MG and their functional modulation may represent an alternative therapeutic strategy for MG treatment.
Collapse
Affiliation(s)
| | - Mona Fattouh
- Department of Microbiology and Immunology, Sohag University Hospital, Sohag, Egypt
| | - Asmaa Nasr El-Din
- Department of Microbiology and Immunology, Sohag University Hospital, Sohag, Egypt
| | | |
Collapse
|
47
|
Ricciardi R, Melfi F, Maestri M, De Rosa A, Petsa A, Lucchi M, Mussi A. Endoscopic thymectomy: a neurologist's perspective. Ann Cardiothorac Surg 2016; 5:38-44. [PMID: 26904430 DOI: 10.3978/j.issn.2225-319x.2015.12.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by the presence of antibodies interacting at the neuromuscular junction (NMJ), resulting in loss of strength and severe exhaustibility of striated muscles. The abnormal production of these antibodies is triggered mainly in the thymus, and hence thymectomy in MG is considered a universally recommended treatment in order to improve the symptomatologic condition of this pathology. Currently, minimally invasive thymectomy using the Da Vinci robot system is certainly one of the most innovative techniques, performed in Pisa since 2001. This approach provides a valuable alternative to the traditional thymectomy through median sternotomy. The contribution of a neurologist is fundamental for preoperative patient selection and for the peri-operative clinical assistance in both approaches. We believe that in the robotic approach, the multidisciplinary collaboration between the neurologist, thoracic surgeon and anesthetist is important in reducing perioperative complications and ensuring a higher rate of complete remission or stable clinical improvement of MG.
Collapse
Affiliation(s)
- Roberta Ricciardi
- 1 Department of Clinical and Experimental Medicine, Neurology Unit, 2 Division of Thoracic Surgery, Robotic Multidisciplinary Centre for Surgery, Cardiothoracic and Vascular Surgery Department, University of Pisa, Italy ; 3 Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| | - Franca Melfi
- 1 Department of Clinical and Experimental Medicine, Neurology Unit, 2 Division of Thoracic Surgery, Robotic Multidisciplinary Centre for Surgery, Cardiothoracic and Vascular Surgery Department, University of Pisa, Italy ; 3 Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| | - Michelangelo Maestri
- 1 Department of Clinical and Experimental Medicine, Neurology Unit, 2 Division of Thoracic Surgery, Robotic Multidisciplinary Centre for Surgery, Cardiothoracic and Vascular Surgery Department, University of Pisa, Italy ; 3 Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| | - Anna De Rosa
- 1 Department of Clinical and Experimental Medicine, Neurology Unit, 2 Division of Thoracic Surgery, Robotic Multidisciplinary Centre for Surgery, Cardiothoracic and Vascular Surgery Department, University of Pisa, Italy ; 3 Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| | - Afroditi Petsa
- 1 Department of Clinical and Experimental Medicine, Neurology Unit, 2 Division of Thoracic Surgery, Robotic Multidisciplinary Centre for Surgery, Cardiothoracic and Vascular Surgery Department, University of Pisa, Italy ; 3 Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| | - Marco Lucchi
- 1 Department of Clinical and Experimental Medicine, Neurology Unit, 2 Division of Thoracic Surgery, Robotic Multidisciplinary Centre for Surgery, Cardiothoracic and Vascular Surgery Department, University of Pisa, Italy ; 3 Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| | - Alfredo Mussi
- 1 Department of Clinical and Experimental Medicine, Neurology Unit, 2 Division of Thoracic Surgery, Robotic Multidisciplinary Centre for Surgery, Cardiothoracic and Vascular Surgery Department, University of Pisa, Italy ; 3 Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| |
Collapse
|
48
|
Evoli A, Alboini PE, Damato V, Iorio R. 3,4-Diaminopyridine may improve myasthenia gravis with MuSK antibodies. Neurology 2016; 86:1070-1. [DOI: 10.1212/wnl.0000000000002466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/12/2015] [Indexed: 11/15/2022] Open
|
49
|
Huijbers MG, Vink AFD, Niks EH, Westhuis RH, van Zwet EW, de Meel RH, Rojas-García R, Díaz-Manera J, Kuks JB, Klooster R, Straasheijm K, Evoli A, Illa I, van der Maarel SM, Verschuuren JJ. Longitudinal epitope mapping in MuSK myasthenia gravis: implications for disease severity. J Neuroimmunol 2016; 291:82-8. [PMID: 26857500 DOI: 10.1016/j.jneuroim.2015.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
Abstract
Muscle weakness in MuSK myasthenia gravis (MG) is caused predominantly by IgG4 antibodies which block MuSK signalling and destabilize neuromuscular junctions. We determined whether the binding pattern of MuSK IgG4 antibodies change throughout the disease course ("epitope spreading"), and affect disease severity or treatment responsiveness. We mapped the MuSK epitopes of 255 longitudinal serum samples of 53 unique MuSK MG patients from three independent cohorts with ELISA. Antibodies against the MuSK Iglike-1 domain determine disease severity. Epitope spreading outside this domain did not contribute to disease severity nor to pyridostigmine responsiveness. This provides a rationale for epitope specific treatment strategies.
Collapse
Affiliation(s)
- Maartje G Huijbers
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Anna-Fleur D Vink
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ruben H Westhuis
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Erik W van Zwet
- Department of Medical Statistics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert H de Meel
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Jordi Díaz-Manera
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | - Jan B Kuks
- Department of Neurology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse Klooster
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kirsten Straasheijm
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Amelia Evoli
- Department of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Isabel Illa
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | | | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
50
|
Ghazanfari N, Linsao ELTB, Trajanovska S, Morsch M, Gregorevic P, Liang SX, Reddel SW, Phillips WD. Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiol Rep 2015; 3:3/12/e12658. [PMID: 26702075 PMCID: PMC4760443 DOI: 10.14814/phy2.12658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022] Open
Abstract
We investigated the influence of postsynaptic tyrosine kinase signaling in a mouse model of muscle‐specific kinase (MuSK) myasthenia gravis (MG). Mice administered repeated daily injections of IgG from MuSK MG patients developed impaired neuromuscular transmission due to progressive loss of acetylcholine receptor (AChR) from the postsynaptic membrane of the neuromuscular junction. In this model, anti‐MuSK‐positive IgG caused a reduction in motor endplate immunolabeling for phosphorylated Src‐Y418 and AChR β‐subunit‐Y390 before any detectable loss of MuSK or AChR from the endplate. Adeno‐associated viral vector (rAAV) encoding MuSK fused to enhanced green fluorescent protein (MuSK‐EGFP) was injected into the tibialis anterior muscle to increase MuSK synthesis. When mice were subsequently challenged with 11 daily injections of IgG from MuSK MG patients, endplates expressing MuSK‐EGFP retained more MuSK and AChR than endplates of contralateral muscles administered empty vector. Recordings of compound muscle action potentials from myasthenic mice revealed less impairment of neuromuscular transmission in muscles that had been injected with rAAV‐MuSK‐EGFP than contralateral muscles (empty rAAV controls). In contrast to the effects of MuSK‐EGFP, forced expression of rapsyn‐EGFP provided no such protection to endplate AChR when mice were subsequently challenged with MuSK MG IgG. In summary, the immediate in vivo effect of MuSK autoantibodies was to suppress MuSK‐dependent tyrosine phosphorylation of proteins in the postsynaptic membrane, while increased MuSK synthesis protected endplates against AChR loss. These results support the hypothesis that reduced MuSK kinase signaling initiates the progressive disassembly of the postsynaptic membrane scaffold in this mouse model of MuSK MG.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Erna L T B Linsao
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sofie Trajanovska
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Marco Morsch
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Simon X Liang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Liaoning Medical University, Liaoning, China
| | - Stephen W Reddel
- Department of Molecular Medicine, Concord Hospital, Sydney, New South Wales, Australia
| | - William D Phillips
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|