1
|
Kanon H, Ishihara T, Ban-Ishihara R, Ota A, Yasuda T, Ichikawa A, Ueyama R, Baba T, Takeda K, Ogasawara E, Ishihara N. Mitochondria-targeting siRNA screening identifies mitochondrial calcium uniporter as a factor involved in nucleoid morphology. J Biochem 2025; 177:339-350. [PMID: 39928408 DOI: 10.1093/jb/mvaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025] Open
Abstract
Mitochondria are believed to have originated from the endosymbiosis of bacteria and they still contain their own genome, which is called mitochondrial DNA (mtDNA). Under fluorescence microscopy of cultured mammalian cells, mtDNA is observed as numerous tiny dot-like structures called mitochondrial nucleoids. In live-imaging, the morphology and distribution of nucleoids are changed dynamically, but the molecular details remain poorly understood. In this study, we constructed a custom siRNA library targeting 1,164 human mitochondria-related genes, and from live-imaging-based screening of HeLa cells, we identified that mitochondrial calcium uniporter (MCU), a pore-forming subunit of the mitochondrial Ca2+ channel, is involved in nucleoid morphology. We found that suppression of MCU by RNAi induced the formation of highly enlarged nucleoids as well as respiratory dysfunction and that the re-introduction of MCU or treatment with Ca2+ ionophore recovered the enlarged nucleoid morphology. These results suggest that mitochondrial Ca2+ uptake via MCU is associated with nucleoid morphology. The constructed siRNA library might be widely applied to analyze the roles of mitochondrial proteins in various cellular events, making it useful to understand the multifaceted functions of mitochondria in human cells.
Collapse
Affiliation(s)
- Hirotaka Kanon
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Takaya Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Reiko Ban-Ishihara
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Azusa Ota
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Tatsuki Yasuda
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Aoi Ichikawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Ruo Ueyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Taiki Baba
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Emi Ogasawara
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
2
|
Harrer P, Krygier M, Krenn M, Kittke V, Danis M, Krastev G, Saparov A, Pichon V, Malbos M, Scherer C, Dzinovic I, Skorvanek M, Kopajtich R, Prokisch H, Silvaieh S, Grisold A, Mazurkiewicz-Bełdzińska M, de Sainte Agathe JM, Winkelmann J, Necpal J, Jech R, Zech M. Expanding the Allelic and Clinical Heterogeneity of Movement Disorders Linked to Defects of Mitochondrial Adenosine Triphosphate Synthase. Mov Disord 2025. [PMID: 40276935 DOI: 10.1002/mds.30209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Defects of mitochondrial ATP synthase (ATPase) represent an emerging, yet incompletely understood group of neurodevelopmental diseases with abnormal movements. OBJECTIVE The aim of this study was to redefine the phenotypic and mutational spectrum of movement disorders linked to the ATPase subunit-encoding genes ATP5F1A and ATP5F1B. METHODS We recruited regionally distant patients who had been genome or exome sequenced. Fibroblast cultures from two patients were established to perform RNA sequencing, immunoblotting, mass spectrometry-based high-throughput quantitative proteomics, and ATPase activity assays. In silico three-dimensional missense variant modeling was performed. RESULTS We identified a patient with developmental delay, myoclonic dystonia, and spasticity who carried a heterozygous frameshift c.1404del (p.Glu469Serfs*3) variant in ATP5F1A. The patient's cells exhibited significant reductions in ATP5F1A mRNA, underexpression of the α-subunit of ATPase in association with other aberrantly expressed ATPase components, and compromised ATPase activity. In addition, a novel deleterious heterozygous ATP5F1A missense c.1252G>A (p.Gly418Arg) variant was discovered, shared by three patients from two families with hereditary spastic paraplegia (HSP). This variant mapped to a functionally important intersubunit communication site. A third heterozygous variant, c.1074+1G>T, affected a canonical donor splice site of ATP5F1B and resulted in exon skipping with significantly diminished ATP5F1B mRNA levels, as well as impaired ATPase activity. The associated phenotype consisted of cerebral palsy (CP) with prominent generalized dystonia. CONCLUSIONS Our data confirm and expand the role of dominant ATP5F1A and ATP5F1B variants in neurodevelopmental movement disorders. ATP5F1A/ATP5F1B-related ATPase diseases should be considered as a cause of dystonia, HSP, and CP. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Philip Harrer
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Magdalena Krygier
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, Poland
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Volker Kittke
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Martin Danis
- Neurological Clinic of Faculty Hospital Trnava and Slovak Health University Bratislava, Bratislava, Slovakia
| | - Georgi Krastev
- Neurological Clinic of Faculty Hospital Trnava and Slovak Health University Bratislava, Bratislava, Slovakia
| | - Alice Saparov
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Virginie Pichon
- CRMR Neurogenetique, Service de Neurologie, Centre Hospitalier, Universitaire d'Angers, Angers, France
| | - Marlène Malbos
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares," FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- Laboratoire de Génomique Médicale, UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Clarisse Scherer
- CRMR Neurogenetique, Service de Neurologie, Centre Hospitalier, Universitaire d'Angers, Angers, France
| | - Ivana Dzinovic
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Matej Skorvanek
- Department of Neurology, P.J. Safarik University, Kosice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovakia
| | - Robert Kopajtich
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Sara Silvaieh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Anna Grisold
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Jean-Madeleine de Sainte Agathe
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Laboratoire de Biologie Médicale Multi-Site SeqOIA, Sorbonne Université, Paris, France
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- DZPG (German Center for Mental Health), Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Jan Necpal
- Department of Neurology, Zvolen Hospital, Zvolen, Slovakia
- Parkinsonism and Movement Disorders Treatment Center, Zvolen Hospital, Zvolen, Slovakia
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michael Zech
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
Hoytema van Konijnenburg EMM, Rohof J, Kok G, van Hasselt PM, van Karnebeek CD, Muffels IJJ, Fuchs SA. Setting the Stage for Treatment of Aminoacyl-tRNA Synthetase (ARS)1-Deficiencies: Phenotypic Characterization and a Review of Treatment Effects. J Inherit Metab Dis 2025; 48:e70017. [PMID: 40044141 PMCID: PMC11882346 DOI: 10.1002/jimd.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025]
Abstract
Aminoacyl-transfer RNA (tRNA) synthetases (ARSs) are key enzymes for protein translation. The number of identified patients with recessive ARS1 deficiencies is rapidly increasing. Initially, only supportive care was available, but in recent years beneficial effects of targeted amino acid supplementation have been described. To allow early treatment and prevention of symptoms, rapid recognition is necessary, as well as insight into the natural history to evaluate treatment effects. We performed a scoping literature search for clinical characteristics and treatment effects of patients with ARS1 deficiencies. Symptoms were matched to Human Phenotype Ontology terms. We identified 438 patients with 20 different ARS1 deficiencies. Overall mortality was 22%. Neurological symptoms were most prevalent across all ARS1 deficiencies (in 87% of patients), including neurodevelopmental disorder (79%), microcephaly (50%) and seizures (46%). Growth issues and ophthalmological symptoms were also prevalent in many ARS1 deficiencies. Two distinct phenotypical clusters were seen: one with multisystemic disease including liver- and lung disease and another with a predominantly neurological phenotype. Supplementation with cognate amino acids was described in 21 patients, with beneficial effects (e.g., improvements in growth, development, liver and lung disease) in the majority. Treatment did not alleviate the most severe phenotypes. Specific symptoms relate to (a cluster of) specific ARS1 deficiencies; the mechanism is not yet understood. Multi-organ involvement should trigger inclusion of ARS1 genes in the diagnostic work-up. Treatment with cognate amino acids is promising, but it remains challenging to distinguish treatment effects from natural history. Synopsis: Treatment with cognate amino acids in ARS1 deficiencies is promising, but it remains challenging to distinguish treatment effects from natural history.
Collapse
Affiliation(s)
- Eva M. M. Hoytema van Konijnenburg
- Department of Metabolic DiseasesWilhelmina Children's Hospital University Medical Centre Utrechtthe Netherlands
- On Behalf of United for Metabolic DiseasesAmsterdamthe Netherlands
| | - Joline Rohof
- Department of Metabolic DiseasesWilhelmina Children's Hospital University Medical Centre Utrechtthe Netherlands
| | - Gautam Kok
- Department of Metabolic DiseasesWilhelmina Children's Hospital University Medical Centre Utrechtthe Netherlands
- On Behalf of United for Metabolic DiseasesAmsterdamthe Netherlands
| | - Peter M. van Hasselt
- Department of Metabolic DiseasesWilhelmina Children's Hospital University Medical Centre Utrechtthe Netherlands
- On Behalf of United for Metabolic DiseasesAmsterdamthe Netherlands
| | - Clara D. van Karnebeek
- On Behalf of United for Metabolic DiseasesAmsterdamthe Netherlands
- Emma Center for Personalized Medicine, Department of Pediatrics and Human GeneticsAmsterdam UMCthe Netherlands
| | - Irena J. J. Muffels
- Department of Metabolic DiseasesWilhelmina Children's Hospital University Medical Centre Utrechtthe Netherlands
- On Behalf of United for Metabolic DiseasesAmsterdamthe Netherlands
| | - Sabine A. Fuchs
- Department of Metabolic DiseasesWilhelmina Children's Hospital University Medical Centre Utrechtthe Netherlands
- On Behalf of United for Metabolic DiseasesAmsterdamthe Netherlands
| |
Collapse
|
4
|
Hassaan HM, Pyle A, Almenabawy N, Robertson FM, Elkhateeb N, Girgis MY, Mahmoud IGED, Amer F, Samaha M, Shaheen Y, ElNaggar W, Abdoh D, Mehaney DA, Meguid IEA, Taylor RW, McFarland R, Selim L. Clinical and Genetic Spectrum of Patients With Mitochondrial Disease in a Pediatric Egyptian Cohort: Novel Variants and Phenotypic Expansion. Am J Med Genet A 2025; 197:e63881. [PMID: 39400921 DOI: 10.1002/ajmg.a.63881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Mitochondrial disorders exhibit clinical and genetic diversity. Nearly 400 distinct genes, located in both the mitochondrial and nuclear genomes, harbor pathogenic variants that can produce a broad spectrum of mitochondrial diseases. This work aims to explore the genetic etiology of a cohort of Egyptian pediatric patients who were clinically suspected of having a mitochondrial disorder. A total of 49 patients from 44 unrelated families were studied. Selection criteria included age below 18 years and meeting Morava criteria (a score ≥ 3). The mitochondrial disease criteria (MDC) have been developed to quantify the clinical picture and evaluate the probability of an underlying mitochondrial disorder Exome sequencing, including mitochondrial genome sequencing, was carried out for each participant. Causative variants likely responsible for the phenotypes were identified in 68% of the study population. The mitochondrial subgroup constituted 41% of the studied population with a median age of 4 years. No primary pathogenic variants in mitochondrial DNA were detected. Pathogenic or likely pathogenic variants in eight mitochondrial genes were identified in 78% of the mitochondrial cohort. Additionally, seven novel variants were identified. Nonmitochondrial diagnoses accounted for 27% of the study population. In 32% of cases, disease-causing variants were not identified. The current study underscores the diverse phenotypic and genetic landscape of mitochondrial disorders among Egyptian patients.
Collapse
Affiliation(s)
- Hebatallah M Hassaan
- Pediatric Department, Genetic Division, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nihal Almenabawy
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Fiona M Robertson
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marian Y Girgis
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Iman Gamal El Din Mahmoud
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Fawzia Amer
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Mona Samaha
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Yara Shaheen
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Walaa ElNaggar
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Doaa Abdoh
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Ahmed Mehaney
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Laila Selim
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Bharadwaj A. A Review over Mitochondrial Diseases Due to mtDNA Mutations: Recent Advances and Remedial Aspects. Infect Disord Drug Targets 2025; 25:e18715265304029. [PMID: 39234902 DOI: 10.2174/0118715265304029240801092834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria, also called 'powerhouse of the cell', is meant for energy generation in eukaryotic cells. This action is performed by mitochondria through the oxidative phosphorylation (OXPHOS) of the respiratory chain (RC). Based on the functioning of the cell, the number of mitochondria varies up to thousands in number. Mutations in the mitochondrial DNA (mtDNA) and/or nuclear DNA (nDNA) genes may lead to the generation of primary mitochondrial disease (PMD) that affects the structure and function of mitochondria. The diagnosis of such mitochondrial diseases occurs in early childhood and it can lead to serious, fetal and multi-organ diseases. Understanding epigenetic events and changes in the pathway can help improve the effectiveness of treatment. However, there are several reasons lack of the disease symptoms (age, sign, symptoms, morbidity and lethality), restricted availability of preclinical models along with extensive phenotypes that hamper the development of efficient drugs. Despite the introduction of new treatments and the encouraging results of treatments and therapies, there is no effective cure for PMD. This article contains information about the changes associated with cytopathic diseases that make possible the analysis of various diseases by genetic techniques. Increasing our understanding of how mitochondrial DNA mutations affect mitochondrial metabolism and subsequently result in neurodegenerative disease will prove vital to the development of targeted therapies and treatments.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura (U.P.), India
| |
Collapse
|
6
|
Ambrose A, Bahl S, Sharma S, Zhang D, Hung C, Jain-Ghai S, Chan A, Mercimek-Andrews S. Genetic landscape of primary mitochondrial diseases in children and adults using molecular genetics and genomic investigations of mitochondrial and nuclear genome. Orphanet J Rare Dis 2024; 19:424. [PMID: 39533303 PMCID: PMC11555972 DOI: 10.1186/s13023-024-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMD) are one of the most common metabolic genetic disorders. They are due to pathogenic variants in the mitochondrial genome (mtDNA) or nuclear genome (nDNA) that impair mitochondrial function and/or structure. We hypothesize that there is overlap between PMD and other genetic diseases that are mimicking PMD. For this reason, we performed a retrospective cohort study. METHODS All individuals with suspected PMD that underwent molecular genetic and genomic investigations were included. Individuals were grouped for comparison: (1) individuals with mtDNA-PMD; (2) individuals with nDNA-PMD; (3) individuals with other genetic diseases mimicking PMD (non-PMD); (4) individuals without a confirmed genetic diagnosis. RESULTS 297 individuals fulfilled inclusion criteria. The diagnostic yield of molecular genetics and genomic investigations was 31.3%, including 37% for clinical exome sequencing and 15.8% for mitochondrial genome sequencing. We identified 71 individuals with PMD (mtDNA n = 41, nDNA n = 30) and 22 individuals with non-PMD. Adults had higher percentage of mtDNA-PMD compared to children (p-value = 0.00123). There is a statistically significant phenotypic difference between children and adults with PMD. CONCLUSION We report a large cohort of individuals with PMD and the diagnostic yield of urine mitochondrial genome sequencing (16.1%). We think liver phenotype might be progressive and should be studied further in PMD. We showed a relationship between non-PMD genes and their indirect effects on mitochondrial machinery. Differentiation of PMD from non-PMD can be achieved using specific phenotypes as there was a statistically significant difference for muscular, cardiac, and ophthalmologic phenotypes, seizures, hearing loss, peripheral neuropathy in PMD group compared to non-PMD group.
Collapse
Affiliation(s)
- Anastasia Ambrose
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shalini Bahl
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Saloni Sharma
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Dan Zhang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Clara Hung
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shailly Jain-Ghai
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Alicia Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
- Alberta Health Services, Edmonton Zone, AB, Canada.
| |
Collapse
|
7
|
Tauchmannová K, Pecinová A, Houštěk J, Mráček T. Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. Physiol Res 2024; 73:S243-S278. [PMID: 39016153 PMCID: PMC11412354 DOI: 10.33549/physiolres.935407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
Collapse
Affiliation(s)
- K Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
8
|
Borsche M, Dulovic-Mahlow M, Baumann H, Tunc S, Lüth T, Schaake S, Özcakir S, Westenberger A, Münchau A, Knappe E, Trinh J, Brüggemann N, Lohmann K. POLG2-Linked Mitochondrial Disease: Functional Insights from New Mutation Carriers and Review of the Literature. CEREBELLUM (LONDON, ENGLAND) 2024; 23:479-488. [PMID: 37085601 PMCID: PMC10951043 DOI: 10.1007/s12311-023-01557-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
Different pathogenic variants in the DNA polymerase-gamma2 (POLG2) gene cause a rare, clinically heterogeneous mitochondrial disease. We detected a novel POLG2 variant (c.1270 T > C, p.Ser424Pro) in a family with adult-onset cerebellar ataxia and progressive ophthalmoplegia. We demonstrated altered mitochondrial integrity in patients' fibroblast cultures but no changes of the mitochondrial DNA were found when compared to controls. We consider this novel, segregating POLG2 variant as disease-causing in this family. Moreover, we systematically screened the literature for POLG2-linked phenotypes and re-evaluated all mutations published to date for pathogenicity according to current knowledge. Thereby, we identified twelve published, likely disease-causing variants in 19 patients only. The core features included progressive ophthalmoplegia and cerebellar ataxia; parkinsonism, neuropathy, cognitive decline, and seizures were also repeatedly found in adult-onset heterozygous POLG2-related disease. A severe phenotype relates to biallelic pathogenic variants in POLG2, i.e., newborn-onset liver failure, referred to as mitochondrial depletion syndrome. Our work underlines the broad clinical spectrum of POLG2-related disease and highlights the importance of functional characterization of variants of uncertain significance to enable meaningful genetic counseling.
Collapse
Affiliation(s)
- Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Hauke Baumann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sinem Tunc
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Selin Özcakir
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Evelyn Knappe
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
- Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Özkan Kart P, Sahin Y, Yildiz N, Cebi AH, Esenulku G, Cansu A. A Homozygous Missense Variant in HSD17B4 Identified in Two Different Families. Mol Syndromol 2024; 15:143-148. [PMID: 38585549 PMCID: PMC10996346 DOI: 10.1159/000534785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/23/2023] [Indexed: 04/09/2024] Open
Abstract
Background Perrault syndrome is an inherited disorder with clinical findings that differ according to sex. It is characterized by a variable age of onset and sensorineural hearing loss in both sexes, as well as ovarian dysfunction in females with a 46,XX karyotype. Although it is a rare autosomal recessive syndrome, with approximately 100 affected individuals reported in the literature, it shows both genotypic and phenotypic variations. Mutations in the HSD17B4 gene have been identified as one of the genetic causes of Perrault syndrome. Case Presentation A female case and a male case from two different unrelated families with a new variant in the HSD17B4 gene, which were not previously described in the literature and were accompanied by hearing loss, skeletal anomalies, and neurological symptoms, were presented. Conclusion We defined Perrault syndrome cases in Turkey caused by a novel mutation in HSD17B4. Whole-exome sequencing is a useful diagnostic technique with varying clinical results due to genetic and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Pınar Özkan Kart
- Department of Pediatric Neurology, Faculty of Medicine, Farabi Hospital, Karadeniz Technical University, Trabzon, Turkey
| | - Yavuz Sahin
- Medical Geneticist, Genoks Genetic Laboratory, Ankara, Turkey
| | - Nihal Yildiz
- Department of Pediatric Neurology, Faculty of Medicine, Farabi Hospital, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Han Cebi
- Department of Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gulnur Esenulku
- Department of Pediatric Neurology, Faculty of Medicine, Farabi Hospital, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Faculty of Medicine, Farabi Hospital, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
10
|
Sabharwal A, Gupta V, Kv S, Kumar Manokaran R, Verma A, Mishra A, Bhoyar RC, Jain A, Sivadas A, Rawat S, Jolly B, Mohanty S, Gulati S, Gupta N, Kabra M, Scaria V, Sivasubbu S. Whole genome sequencing followed by functional analysis of genomic deletion encompassing ERCC8 and NDUFAF2 genes in a non-consanguineous Indian family reveals dysfunctional mitochondrial bioenergetics leading to infant mortality. Mitochondrion 2024; 75:101844. [PMID: 38237647 DOI: 10.1016/j.mito.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/07/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Genomic investigations on an infant who presented with a putative mitochondrial disorder led to identification of compound heterozygous deletion with an overlapping region of ∼142 kb encompassing two nuclear encoded genes namely ERCC8 and NDUFAF2. Investigations on fetal-derived fibroblast culture demonstrated impaired bioenergetics and mitochondrial dysfunction, which explains the phenotype and observed infant mortality in the present study. The genetic findings from this study extended the utility of whole-genome sequencing as it led to development of a MLPA-based assay for carrier screening in the extended family and the prenatal testing aiding in the birth of two healthy children.
Collapse
Affiliation(s)
- Ankit Sabharwal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States.
| | - Vishu Gupta
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shamsudheen Kv
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Ankit Verma
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Anushree Mishra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ambily Sivadas
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonali Rawat
- Stem Cell Facility, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Sheffali Gulati
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Neerja Gupta
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Madhulika Kabra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India.
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Indelicato E, Boesch S, Mencacci NE, Ghezzi D, Prokisch H, Winkelmann J, Zech M. Dystonia in ATP Synthase Defects: Reconnecting Mitochondria and Dopamine. Mov Disord 2024; 39:29-35. [PMID: 37964479 DOI: 10.1002/mds.29657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Niccolo' E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- DZPG, Deutsches Zentrum für Psychische Gesundheit, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
12
|
Ghaffari S, Bouchonville KJ, Saleh E, Schmidt RE, Offer SM, Sinha S. BEDwARS: a robust Bayesian approach to bulk gene expression deconvolution with noisy reference signatures. Genome Biol 2023; 24:178. [PMID: 37537644 PMCID: PMC10399072 DOI: 10.1186/s13059-023-03007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Differential gene expression in bulk transcriptomics data can reflect change of transcript abundance within a cell type and/or change in the proportions of cell types. Expression deconvolution methods can help differentiate these scenarios. BEDwARS is a Bayesian deconvolution method designed to address differences between reference signatures of cell types and corresponding true signatures underlying bulk transcriptomic profiles. BEDwARS is more robust to noisy reference signatures and outperforms leading in-class methods for estimating cell type proportions and signatures. Application of BEDwARS to dihydropyridine dehydrogenase deficiency identified the possible involvement of ciliopathy and impaired translational control in the etiology of the disorder.
Collapse
Affiliation(s)
- Saba Ghaffari
- Department of Computer Science, University of Illinois at Urbana-Champaign, Thomas M. Siebel Center, 201 N. Goodwin Ave., Urbana, IL, USA
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ehsan Saleh
- Department of Computer Science, University of Illinois at Urbana-Champaign, Thomas M. Siebel Center, 201 N. Goodwin Ave., Urbana, IL, USA
| | - Remington E Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St. SW, Rochester, MN, 55905, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Saurabh Sinha
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, 3108 U.A. Whitaker Bldg., 313 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
13
|
Deen D, Alston CL, Hudson G, Taylor RW, Pyle A. Genomic Strategies in Mitochondrial Diagnostics. Methods Mol Biol 2023; 2615:397-425. [PMID: 36807806 DOI: 10.1007/978-1-0716-2922-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pathogenic variants in both mitochondrial and nuclear genes contribute to the clinical and genetic heterogeneity of mitochondrial diseases. There are now pathogenic variants in over 300 nuclear genes linked to human mitochondrial diseases. Nonetheless, diagnosing mitochondrial disease with a genetic outcome remains challenging. However, there are now many strategies that help us to pinpoint causative variants in patients with mitochondrial disease. This chapter describes some of the approaches and recent advancements in gene/variant prioritization using whole-exome sequencing (WES).
Collapse
Affiliation(s)
- Dasha Deen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
14
|
You W, Liu S, Ji J, Ling D, Tu Y, Zhou Y, Chen W, Valencak TG, Wang Y, Shan T. Growth arrest and DNA damage-inducible alpha regulates muscle repair and fat infiltration through ATP synthase F1 subunit alpha. J Cachexia Sarcopenia Muscle 2023; 14:326-341. [PMID: 36511343 PMCID: PMC9891974 DOI: 10.1002/jcsm.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain unclear. Here, we identified the growth arrest and DNA damage-inducible alpha (GADD45A), a stress-inducible histone folding protein, as a critical regulator of intramuscular fat (IMAT) infiltration. METHODS To explore the role of GADD45A on IMAT infiltration and muscle regeneration, the gain or loss function of GADD45A in intramuscular preadipocytes was performed. The adipocyte-specific GADD45A knock-in (KI) mice and high IMAT-infiltrated muscle model by glycerol injection (50 μL of 50% v/v GLY) were generated. RNA-sequencing, histological changes, gene expression, lipid metabolism, mitochondrial function and the effect of dietary factor epigallocatechin-3-gallate (EGCG) treatment (100 mg/kg) on IMAT infiltration were studied. RESULTS The unbiased transcriptomics data analysis indicated that GADD45A expression positively correlates with IMAT infiltration and muscle metabolic disorders in humans (correlation: young vs. aged people, Gadd45a and Cebpa, r2 = 0.20, P < 0.05) and animals (correlation: wild-type [WT] vs. mdx mice, Gadd45a and Cebpa, r2 = 0.38, P < 0.05; NaCl vs. GLY mice, Gadd45a and Adipoq/Fabp4, r2 = 0.80/0.71, both P < 0.0001). In vitro, GADD45A overexpression promotes intramuscular preadipocyte adipogenesis, upregulating the expression of adipogenic genes (Ppara: +47%, Adipoq: +28%, P < 0.001; Cebpa: +135%, Fabp4: +16%, P < 0.01; Pparg: +66%, Leptin: +77%, P < 0.05). GADD45A knockdown robustly decreased lipid accumulation (Pparg: -57%, Adipoq: -35%, P < 0.001; Fabp4: -37%, P < 0.01; Leptin: -28%, P < 0.05). GADD45A KI mice exhibit inhibited skeletal muscle regeneration (myofibres: -40%, P < 0.01) and enhanced IMAT infiltration (adipocytes: +20%, P < 0.05). These KI mice have impaired exercise endurance and mitochondrial function. Mechanistically, GADD45A affects ATP synthase F1 subunit alpha (ATP5A1) ubiquitination degradation (ubiquitinated ATP5A1, P < 0.001) by recruiting the E3 ubiquitin ligase TRIM25, which decreases ATP synthesis (ATP production: -23%, P < 0.01) and inactivates the cAMP/PKA/LKB1 signalling pathway (cAMP: -36%, P < 0.01; decreased phospho-PKA and phospho-LKB1 protein content, P < 0.01). The dietary factor EGCG can protect against muscle fat infiltration (triglyceride: -64%, P < 0.05) via downregulating GADD45A (decreased GADD45A protein content, P < 0.001). CONCLUSIONS Our findings reveal a crucial role of GADD45A in regulating muscle repair and fat infiltration and suggest that inhibition of GADD45A by EGCG might be a potential strategy to combat fat infiltration and its associated muscle dysfunction.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Shiqi Liu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Jianfei Ji
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Defeng Ling
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yuang Tu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yanbing Zhou
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Wentao Chen
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | | | - Yizhen Wang
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Tizhong Shan
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| |
Collapse
|
15
|
Starosta RT, Shinawi M. Primary Mitochondrial Disorders in the Neonate. Neoreviews 2022; 23:e796-e812. [PMID: 36450643 DOI: 10.1542/neo.23-12-e796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Primary mitochondrial disorders (PMDs) are a heterogeneous group of disorders characterized by functional or structural abnormalities in the mitochondria that lead to a disturbance of cellular energy, reactive oxygen species, and free radical production, as well as impairment of other intracellular metabolic functions, causing single- or multiorgan dysfunction. PMDs are caused by pathogenic variants in nuclear and mitochondrial genes, resulting in distinct modes of inheritance. Onset of disease is variable and can occur in the neonatal period, with a high morbidity and mortality. In this article, we review the most common methods used for the diagnosis of PMDs, as well as their prenatal and neonatal presentations. We highlight the shift in the diagnostic approach for PMDs since the introduction of nontargeted molecular tests into clinical practice, which has significantly reduced the use of invasive studies. We discuss common PMDs that can present in the neonate, including general, nonsyndromic presentations as well as specific syndromic disorders. We also review current treatment advances, including the use of mitochondrial "cocktails" based on limited scientific evidence and theoretical reasoning, as well as the impending arrival of personalized mitochondrial-specific treatments.
Collapse
Affiliation(s)
| | - Marwan Shinawi
- Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
16
|
Chinnery PF. Precision mitochondrial medicine. CAMBRIDGE PRISMS. PRECISION MEDICINE 2022; 1:e6. [PMID: 38550943 PMCID: PMC10953752 DOI: 10.1017/pcm.2022.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2024]
Abstract
Mitochondria play a key role in cell homeostasis as a major source of intracellular energy (adenosine triphosphate), and as metabolic hubs regulating many canonical cell processes. Mitochondrial dysfunction has been widely documented in many common diseases, and genetic studies point towards a causal role in the pathogenesis of specific late-onset disorder. Together this makes targeting mitochondrial genes an attractive strategy for precision medicine. However, the genetics of mitochondrial biogenesis is complex, with over 1,100 candidate genes found in two different genomes: the nuclear DNA and mitochondrial DNA (mtDNA). Here, we review the current evidence associating mitochondrial genetic variants with distinct clinical phenotypes, with some having clear therapeutic implications. The strongest evidence has emerged through the investigation of rare inherited mitochondrial disorders, but genome-wide association studies also implicate mtDNA variants in the risk of developing common diseases, opening to door for the incorporation of mitochondrial genetic variant analysis in population disease risk stratification.
Collapse
Affiliation(s)
- Patrick F. Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
17
|
Becker N, Sharma A, Gosse M, Kubat B, Conway KS. The neuropathologic findings in a case of progressive cavitating leukoencephalopathy due to NDUFV1 pathogenic variants. Acta Neuropathol Commun 2022; 10:142. [PMID: 36163075 PMCID: PMC9511743 DOI: 10.1186/s40478-022-01445-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pathogenic variants in the NDUFV1 gene, which codes for complex I of the mitochondrial respiratory chain, have been associated with a variety of clinical phenotypes, including a progressive cavitating leukoencephalopathy. The neuropathology of NDUFV1-associated leukoencephalopathy is not well-described. We present a report of a 24-year-old female with two pathogenic variants in the NDUFV1 gene, together with antemortem skeletal muscle biopsy and postmortem neuropathologic examination. Autopsy neuropathology showed a cavitating leukoencephalopathy with extensive white matter involvement, regions of active demyelination, and sparing of the subcortical U-fibers. Muscle biopsy showed subtle but distinct histologic abnormalities by light microscopy, and ultrastructural analysis demonstrated mitochondrial abnormalities including abnormal subsarcolemmal mitochondrial accumulation, electron-dense inclusions, and enlarged mitochondria with abnormal cristae. Our report is the first comprehensive description of the neuropathology in a patient with compound heterozygous variants in the NDUFV1 gene and progressive cavitating leukoencephalopathy. This case is evidence of pathogenicity of one NDUFV1 variant (c.565 T > C, p.S189P), which has not been previously described as pathogenic. These findings, in combination with the ultrastructural abnormalities in the mitochondria by electron microscopy, support the mitochondrial nature of the pathology. Together, this case highlights the link between mitochondrial abnormalities and demyelinating processes in the central nervous system (CNS).
Collapse
Affiliation(s)
- Nicole Becker
- Department of Pathology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Aditi Sharma
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Matthew Gosse
- Department of Pathology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Brooke Kubat
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Kyle S Conway
- Department of Pathology, University of Michigan, 2800 Plymouth Rd., Building 35, Faculty Suite Room 36-1221-68, Ann Arbor, MI, 48109-2800, USA.
| |
Collapse
|
18
|
Manini A, Caporali L, Meneri M, Zanotti S, Piga D, Arena IG, Corti S, Toscano A, Comi GP, Musumeci O, Carelli V, Ronchi D. Case Report: Rare Homozygous RNASEH1 Mutations Associated With Adult-Onset Mitochondrial Encephalomyopathy and Multiple Mitochondrial DNA Deletions. Front Genet 2022; 13:906667. [PMID: 35711919 PMCID: PMC9194440 DOI: 10.3389/fgene.2022.906667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance disorders embrace a broad range of clinical syndromes distinguished by the evidence of mtDNA depletion and/or deletions in affected tissues. Among the nuclear genes associated with mtDNA maintenance disorders, RNASEH1 mutations produce a homogeneous phenotype, with progressive external ophthalmoplegia (PEO), ptosis, limb weakness, cerebellar ataxia, and dysphagia. The encoded enzyme, ribonuclease H1, is involved in mtDNA replication, whose impairment leads to an increase in replication intermediates resulting from mtDNA replication slowdown. Here, we describe two unrelated Italian probands (Patient 1 and Patient 2) affected by chronic PEO, ptosis, and muscle weakness. Cerebellar features and severe dysphagia requiring enteral feeding were observed in one patient. In both cases, muscle biopsy revealed diffuse mitochondrial abnormalities and multiple mtDNA deletions. A targeted next-generation sequencing analysis revealed the homozygous RNASEH1 mutations c.129-3C>G and c.424G>A in patients 1 and 2, respectively. The c.129-3C>G substitution has never been described as disease-related and resulted in the loss of exon 2 in Patient 1 muscle RNASEH1 transcript. Overall, we recommend implementing the use of high-throughput sequencing approaches in the clinical setting to reach genetic diagnosis in case of suspected presentations with impaired mtDNA homeostasis.
Collapse
Affiliation(s)
- Arianna Manini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Leonardo Caporali
- Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Megi Meneri
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Department of Neuroscience, Milan, Italy
| | - Simona Zanotti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy
| | - Daniela Piga
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Department of Neuroscience, Milan, Italy
| | - Ignazio Giuseppe Arena
- Unit of Neurology and Neuromuscular disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stefania Corti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Department of Neuroscience, Milan, Italy
| | - Antonio Toscano
- Unit of Neurology and Neuromuscular disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Valerio Carelli
- Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Department of Neuroscience, Milan, Italy
| |
Collapse
|
19
|
Clinical Experience of Neurological Mitochondrial Diseases in Children and Adults: A Single-Center Study. Balkan J Med Genet 2022; 24:5-14. [PMID: 36249517 PMCID: PMC9524181 DOI: 10.2478/bjmg-2021-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of the study was to retrospectively evaluate a cohort of children and adults with mitochondrial diseases (MDs) in a single-center experience. Neurological clinical examination, brain magnetic resonance imaging (MRI) and spectroscopy, muscle biopsy, metabolic and molecular-genetic analysis were evaluated in 26 children and 36 adult patients with MD in Slovenia from 2004 to 2018. Nijmegen MD criteria (MDC) were applied to all patients and the need for a muscle biopsy was estimated. Exome-sequencing was used in half of the patients. Twenty children (77.0%) and 12 adults (35.0%) scored a total of ≥8 on MDC, a result that is compatible with the diagnosis of definite MD. Yield of exome-sequencing was 7/22 (31.0%), but the method was not applied systematically in all patients from the beginning of diagnostics. Brain MRI morphological changes, which can be an imaging clue for the diagnosis of MD, were found in 17/24 children (71.0%). In 7/26 (29.0%) children, and in 20/30 (67.0%) adults, abnormal mitochondria were found on electron microscopy (EM) and ragged-red fibers were found in 16/30 (53.0%) adults. Respiratory chain enzymes (RCEs) and/or pyruvate dehydrogenase complex (PDHc) activities were abnormal in all the children and six adult cases. First, our data revealed that MDC was useful in the clinical diagnosis of MD, and second, until the use of NGS methods, extensive, laborious and invasive diagnostic procedures were performed to reach a final diagnosis. In patients with suspected MD, there is a need to prioritize molecular diagnosis with the more modern next-generation sequencing (NGS) method.
Collapse
|
20
|
Aldossary AM, Tawfik EA, Alomary MN, Alsudir SA, Alfahad AJ, Alshehri AA, Almughem FA, Mohammed RY, Alzaydi MM. Recent Advances in Mitochondrial Diseases: from Molecular Insights to Therapeutic Perspectives. Saudi Pharm J 2022; 30:1065-1078. [PMID: 36164575 PMCID: PMC9508646 DOI: 10.1016/j.jsps.2022.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
Mitochondria are double-membraned cytoplasmic organelles that are responsible for the production of energy in eukaryotic cells. The process is completed through oxidative phosphorylation (OXPHOS) by the respiratory chain (RC) in mitochondria. Thousands of mitochondria may be present in each cell, depending on the function of that cell. Primary mitochondria disorder (PMD) is a clinically heterogeneous disease associated with germline mutations in mitochondrial DNA (mtDNA) and/or nuclear DNA (nDNA) genes, and impairs mitochondrial structure and function. Mitochondrial dysfunction can be detected in early childhood and may be severe, progressive and often multi-systemic, involving a wide range of organs. Understanding epigenetic factors and pathways mutations can help pave the way for developing an effective cure. However, the lack of information about the disease (including age of onset, symptoms, clinical phenotype, morbidity and mortality), the limits of current preclinical models and the wide range of phenotypic presentations hamper the development of effective medicines. Although new therapeutic approaches have been introduced with encouraging preclinical and clinical outcomes, there is no definitive cure for PMD. This review highlights recent advances, particularly in children, in terms of etiology, pathophysiology, clinical diagnosis, molecular pathways and epigenetic alterations. Current therapeutic approaches, future advances and proposed new therapeutic plans will also be discussed.
Collapse
|
21
|
Gschwind M, Garcia Segarra N, Schaller A, Bolognini R, Nuoffer JM, Hourez R, Deprez M, Lhermitte B, Maeder P, Tran C, Kuntzer T. Early-onset leukoencephalomyelopathy due to a biallelic NDUFV1 variant in a mid-forties patient. Ann Clin Transl Neurol 2022; 9:888-892. [PMID: 35482023 PMCID: PMC9186134 DOI: 10.1002/acn3.51556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/11/2022] [Accepted: 03/26/2022] [Indexed: 11/09/2022] Open
Abstract
We present a patient who developed, after an early-onset, a stable course of spastic paraplegia and ataxia for 4 decades and eventually succumbed to two episodes of postinfectious lactic acidosis. Diagnostic workup including muscle biopsy and postmortem analysis, oxymetric analysis, spectrophotometric enzyme analysis, and MitoExome sequencing revealed a necrotizing leukoencephalomyelopathy due to the so far unreported biallelic variant of the NDUFV1 gene (p.(Pro122Leu)). This case extends our understanding of NDUFV1 variants with a 14-fold longer lifetime than so far reported cases, and will foster sensitivity toward respiratory chain disease also in adult patients with sudden deteriorating neurological deficits.
Collapse
Affiliation(s)
- Markus Gschwind
- Clinic of Neurology, Kantonsspital Aarau, Aarau, Switzerland.,Department of Neurology, Geneva University Hospital and University of Geneva, Geneva, Switzerland.,Department of Neurology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Nuria Garcia Segarra
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - André Schaller
- Division of Human Genetics, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ramona Bolognini
- Division of Human Genetics, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Raphael Hourez
- Department of Neurology, Centre Hospitalier Universitaire Brugman, Brussels, Belgium
| | - Manuel Deprez
- Department of Pathology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Benoit Lhermitte
- Departement of Pathology, Hautepierre University Hospital, France
| | - Philippe Maeder
- Department of Neuroradiology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Christel Tran
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Thierry Kuntzer
- Department of Neurology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| |
Collapse
|
22
|
Lopriore P, Ricciarini V, Siciliano G, Mancuso M, Montano V. Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity. Neurol Int 2022; 14:337-356. [PMID: 35466209 PMCID: PMC9036286 DOI: 10.3390/neurolint14020028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Ataxia is increasingly being recognized as a cardinal manifestation in primary mitochondrial diseases (PMDs) in both paediatric and adult patients. It can be caused by disruption of cerebellar nuclei or fibres, its connection with the brainstem, or spinal and peripheral lesions leading to proprioceptive loss. Despite mitochondrial ataxias having no specific defining features, they should be included in hereditary ataxias differential diagnosis, given the high prevalence of PMDs. This review focuses on the clinical and neuropathological features and genetic background of PMDs in which ataxia is a prominent manifestation.
Collapse
|
23
|
Garone C, Pietra A, Nesci S. From the Structural and (Dys)Function of ATP Synthase to Deficiency in Age-Related Diseases. Life (Basel) 2022; 12:401. [PMID: 35330152 PMCID: PMC8949411 DOI: 10.3390/life12030401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/21/2022] Open
Abstract
The ATP synthase is a mitochondrial inner membrane complex whose function is essential for cell bioenergy, being responsible for the conversion of ADP into ATP and playing a role in mitochondrial cristae morphology organization. The enzyme is composed of 18 protein subunits, 16 nuclear DNA (nDNA) encoded and two mitochondrial DNA (mtDNA) encoded, organized in two domains, FO and F1. Pathogenetic variants in genes encoding structural subunits or assembly factors are responsible for fatal human diseases. Emerging evidence also underlines the role of ATP-synthase in neurodegenerative diseases as Parkinson's, Alzheimer's, and motor neuron diseases such as Amyotrophic Lateral Sclerosis. Post-translational modification, epigenetic modulation of ATP gene expression and protein level, and the mechanism of mitochondrial transition pore have been deemed responsible for neuronal cell death in vivo and in vitro models for neurodegenerative diseases. In this review, we will explore ATP synthase assembly and function in physiological and pathological conditions by referring to the recent cryo-EM studies and by exploring human disease models.
Collapse
Affiliation(s)
- Caterina Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40137 Bologna, Italy;
- Center for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, 40137 Bologna, Italy
- UOC Neuropsichiatria dell’età Pediatrica, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40137 Bologna, Italy
| | - Andrea Pietra
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40137 Bologna, Italy;
- UO Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40137 Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy
| |
Collapse
|
24
|
Mahmud S, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Paul GK, Chung S, Saleh MA, Alshehri S, Ghoneim MM, Alruwaily M, Kim B. Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders. Curr Issues Mol Biol 2022; 44:1127-1148. [PMID: 35723297 PMCID: PMC8947152 DOI: 10.3390/cimb44030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mst. Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Momammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
25
|
Rigoli L, Caruso V, Aloi C, Salina A, Maghnie M, d’Annunzio G, Lamacchia O, Salzano G, Lombardo F, Picca G. An Atypical Case of Late-Onset Wolfram Syndrome 1 without Diabetes Insipidus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2473. [PMID: 35206658 PMCID: PMC8872384 DOI: 10.3390/ijerph19042473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022]
Abstract
Wolfram syndrome 1, a rare autosomal recessive neurodegenerative disease, is caused by mutations in the WFS1 gene. It is characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (DIDMOAD), and other clinical manifestations such as urological and neurological disorders. Here we described the case of a patient with an atypical late-onset Wolfram syndrome 1 without DI. Our WS1 patient was a c.1620_1622delGTG (p.Trp540del)/c.124 C > T (p.Arg42*) heterozygous compound. The p.Arg42* nonsense mutation was also found in heterozygosity in his sister and niece, both suffering from psychiatric disorders. The p.Arg42* nonsense mutation has never been found in WS1 and its pathogenicity is unclear so far. Our study underlined the need to study a greater number of WS1 cases in order to better understand the clinical significance of many WFS1 variants.
Collapse
Affiliation(s)
- Luciana Rigoli
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy; (G.S.); (F.L.)
| | - Valerio Caruso
- Psychiatry 2 Unit, Clinical and Experimental Medicine Department, University of Pisa, 56126 Pisa, Italy;
| | - Concetta Aloi
- Pediatric Clinic, LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Institute Giannina Gaslini, 16147 Genoa, Italy; (C.A.); (A.S.); (M.M.); (G.d.)
| | - Alessandro Salina
- Pediatric Clinic, LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Institute Giannina Gaslini, 16147 Genoa, Italy; (C.A.); (A.S.); (M.M.); (G.d.)
| | - Mohamad Maghnie
- Pediatric Clinic, LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Institute Giannina Gaslini, 16147 Genoa, Italy; (C.A.); (A.S.); (M.M.); (G.d.)
| | - Giuseppe d’Annunzio
- Pediatric Clinic, LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Institute Giannina Gaslini, 16147 Genoa, Italy; (C.A.); (A.S.); (M.M.); (G.d.)
| | - Olga Lamacchia
- Unit of Endocrinology and Diabetology, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (O.L.); (G.P.)
| | - Giuseppina Salzano
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy; (G.S.); (F.L.)
| | - Fortunato Lombardo
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy; (G.S.); (F.L.)
| | - Giuseppe Picca
- Unit of Endocrinology and Diabetology, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (O.L.); (G.P.)
| |
Collapse
|
26
|
Zech M, Kopajtich R, Steinbrücker K, Bris C, Gueguen N, Feichtinger RG, Achleitner MT, Duzkale N, Périvier M, Koch J, Engelhardt H, Freisinger P, Wagner M, Brunet T, Berutti R, Smirnov D, Navaratnarajah T, Rodenburg RJ, Pais LS, Austin-Tse C, O’Leary M, Boesch S, Jech R, Bakhtiari S, Jin SC, Wilbert F, Kruer MC, Wortmann SB, Eckenweiler M, Mayr JA, Distelmaier F, Steinfeld R, Winkelmann J, Prokisch H. Variants in Mitochondrial ATP Synthase Cause Variable Neurologic Phenotypes. Ann Neurol 2022; 91:225-237. [PMID: 34954817 PMCID: PMC9939050 DOI: 10.1002/ana.26293] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.
Collapse
Affiliation(s)
- Michael Zech
- Technical University of Munich, Munich, Germany; School of Medicine, Institute of Human Genetics
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Robert Kopajtich
- Technical University of Munich, Munich, Germany; School of Medicine, Institute of Human Genetics
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Katja Steinbrücker
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Céline Bris
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Naig Gueguen
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - René G. Feichtinger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Melanie T. Achleitner
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Neslihan Duzkale
- Department of Medical Genetic, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | | | - Johannes Koch
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Harald Engelhardt
- Kinderkrankenhaus St. Marien gGmbH, Zentrum für Kinder- und Jugendmedizin, Landshut, Germany
| | | | - Matias Wagner
- Technical University of Munich, Munich, Germany; School of Medicine, Institute of Human Genetics
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Theresa Brunet
- Technical University of Munich, Munich, Germany; School of Medicine, Institute of Human Genetics
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Riccardo Berutti
- Technical University of Munich, Munich, Germany; School of Medicine, Institute of Human Genetics
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Dmitrii Smirnov
- Technical University of Munich, Munich, Germany; School of Medicine, Institute of Human Genetics
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Tharsini Navaratnarajah
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Richard J.T. Rodenburg
- Radboud Centre for Mitochondrial Medicine, Department of Paediatrics Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre Nijmegen, The Netherlands
| | - Lynn S Pais
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Christina Austin-Tse
- Harvard Medical School & Center for Genomic Medicine, Massachusetts General Hospital, Boston & Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA
| | - Melanie O’Leary
- Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Friederike Wilbert
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Saskia B. Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes A. Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Robert Steinfeld
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Juliane Winkelmann
- Technical University of Munich, Munich, Germany; School of Medicine, Institute of Human Genetics
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Holger Prokisch
- Technical University of Munich, Munich, Germany; School of Medicine, Institute of Human Genetics
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
27
|
Bischof C, Mirtschink P, Yuan T, Wu M, Zhu C, Kaur J, Pham MD, Gonzalez-Gonoggia S, Hammer M, Rogg EM, Sharma R, Bottermann K, Gercken B, Hagag E, Berthonneche C, Sossalla S, Stehr SN, Maxeiner J, Duda MA, Latreille M, Zamboni N, Martelli F, Pedrazzini T, Dimmeler S, Krishnan J. Mitochondrial-cell cycle cross-talk drives endoreplication in heart disease. Sci Transl Med 2021; 13:eabi7964. [PMID: 34878823 DOI: 10.1126/scitranslmed.abi7964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Corinne Bischof
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.,Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Fetscherstasse 74, 01307 Dresden, Germany
| | - Ting Yuan
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Meiqian Wu
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Chaonan Zhu
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jaskiran Kaur
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Minh Duc Pham
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Genome Biologics, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | - Marie Hammer
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Eva-Maria Rogg
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Rahul Sharma
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Katharina Bottermann
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Bettina Gercken
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Fetscherstasse 74, 01307 Dresden, Germany
| | - Eman Hagag
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Fetscherstasse 74, 01307 Dresden, Germany
| | - Corinne Berthonneche
- Cardiovascular Assessment Facility, University of Lausanne, CHUV, CH-1011 Lausanne, Switzerland
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany.,Klinik für Kardiologie und Pneumologie, Georg-August-Universität Goettingen, DZHK (German Centre for Cardiovascular Research), Robert-Koch Str. 40, D-37075 Goettingen, Germany
| | - Sebastian N Stehr
- Department of Anesthesiology and Critical Care Medicine, University Hospital Leipzig, Liebigstrasse 20, D-04103 Leipzig, Germany
| | - Joachim Maxeiner
- Genome Biologics, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Maria Anna Duda
- Genome Biologics, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Mathieu Latreille
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, 20097, San Donato Milanese, Milan, Italy
| | - Thierry Pedrazzini
- Department of Medicine, University of Lausanne Medical School, CHUV, MP14-220, 1011 Lausanne, Switzerland
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,DZHK Partner Site RheinMain, Mainz, Germany.,Cardio-Pulmonary Institute, Giessen, Germany
| | - Jaya Krishnan
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.,Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Cardio-Pulmonary Institute, Giessen, Germany
| |
Collapse
|
28
|
Mitochondrial Plasticity Promotes Resistance to Sorafenib and Vulnerability to STAT3 Inhibition in Human Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13236029. [PMID: 34885140 PMCID: PMC8657239 DOI: 10.3390/cancers13236029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Enhanced expression of mitochondrial ribosomal proteins and marked reprogramming of the mitochondrial network are associated with sorafenib resistance in human cell lines and hepatocarcinoma patients, providing novel actionable targets for increasing therapeutic efficacy. Abstract The multi-kinase inhibitor sorafenib is a primary treatment modality for advanced-stage hepatocellular carcinoma (HCC). However, the therapeutic benefits are short-lived due to innate and acquired resistance. Here, we examined how HCC cells respond to sorafenib and adapt to continuous and prolonged exposure to the drug. Sorafenib-adapted HCC cells show a profound reprogramming of mitochondria function and marked activation of genes required for mitochondrial protein translation and biogenesis. Mitochondrial ribosomal proteins and components of translation and import machinery are increased in sorafenib-resistant cells and sorafenib-refractory HCC patients show similar alterations. Sorafenib-adapted cells also exhibited increased serine 727 phosphorylated (pSer727) STAT3, the prevalent form in mitochondria, suggesting that STAT3 might be an actionable target to counteract resistance. Consistently, a small-molecule STAT3 inhibitor reduces pSer727, reverts mitochondrial alterations, and enhances the response to sorafenib in resistant cells. These results sustain the importance of mitochondria plasticity in response to sorafenib and identify a clinically actionable strategy for improving the treatment efficacy in HCC patients.
Collapse
|
29
|
Abstract
Mitochondrial diseases (MD) include an heterogenous group of systemic disorders caused by sporadic or inherited mutations in nuclear or mitochondrial DNA (mtDNA), causing impairment of oxidative phosphorylation system. Hypertrophic cardiomyopathy is the dominant pattern of cardiomyopathy in all forms of mtDNA disease, being observed in almost 40% of the patients. Dilated cardiomyopathy, left ventricular noncompaction, and conduction system disturbances have been also reported. In this article, the authors discuss the current clinical knowledge on MD, focusing on diagnosis and management of mitochondrial diseases caused by mtDNA mutations.
Collapse
|
30
|
Schon KR, Horvath R, Wei W, Calabrese C, Tucci A, Ibañez K, Ratnaike T, Pitceathly RDS, Bugiardini E, Quinlivan R, Hanna MG, Clement E, Ashton E, Sayer JA, Brennan P, Josifova D, Izatt L, Fratter C, Nesbitt V, Barrett T, McMullen DJ, Smith A, Deshpande C, Smithson SF, Festenstein R, Canham N, Caulfield M, Houlden H, Rahman S, Chinnery PF. Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study. BMJ 2021; 375:e066288. [PMID: 34732400 PMCID: PMC8565085 DOI: 10.1136/bmj-2021-066288] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether whole genome sequencing can be used to define the molecular basis of suspected mitochondrial disease. DESIGN Cohort study. SETTING National Health Service, England, including secondary and tertiary care. PARTICIPANTS 345 patients with suspected mitochondrial disorders recruited to the 100 000 Genomes Project in England between 2015 and 2018. INTERVENTION Short read whole genome sequencing was performed. Nuclear variants were prioritised on the basis of gene panels chosen according to phenotypes, ClinVar pathogenic/likely pathogenic variants, and the top 10 prioritised variants from Exomiser. Mitochondrial DNA variants were called using an in-house pipeline and compared with a list of pathogenic variants. Copy number variants and short tandem repeats for 13 neurological disorders were also analysed. American College of Medical Genetics guidelines were followed for classification of variants. MAIN OUTCOME MEASURE Definite or probable genetic diagnosis. RESULTS A definite or probable genetic diagnosis was identified in 98/319 (31%) families, with an additional 6 (2%) possible diagnoses. Fourteen of the diagnoses (4% of the 319 families) explained only part of the clinical features. A total of 95 different genes were implicated. Of 104 families given a diagnosis, 39 (38%) had a mitochondrial diagnosis and 65 (63%) had a non-mitochondrial diagnosis. CONCLUSION Whole genome sequencing is a useful diagnostic test in patients with suspected mitochondrial disorders, yielding a diagnosis in a further 31% after exclusion of common causes. Most diagnoses were non-mitochondrial disorders and included developmental disorders with intellectual disability, epileptic encephalopathies, other metabolic disorders, cardiomyopathies, and leukodystrophies. These would have been missed if a targeted approach was taken, and some have specific treatments.
Collapse
Affiliation(s)
- Katherine R Schon
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Wei Wei
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Claudia Calabrese
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Kristina Ibañez
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Thiloka Ratnaike
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Rosaline Quinlivan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Emma Clement
- Department of Clinical Genetics and Genomic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Emma Ashton
- NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Brennan
- Northern Genetics Service, Newcastle Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Dragana Josifova
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Louise Izatt
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Carl Fratter
- NHS Highly Specialised Services for Rare Mitochondrial Disorders - Oxford Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Victoria Nesbitt
- NHS Highly Specialised Services for Rare Mitochondrial Disorders - Oxford Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Timothy Barrett
- Central and South Genome Medicine Service Alliance and Genomics Laboratory Hub, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dominic J McMullen
- Central and South Genome Medicine Service Alliance and Genomics Laboratory Hub, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Audrey Smith
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Charulata Deshpande
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Sarah F Smithson
- Department of Brain Sciences, London Institute of Medical Sciences, Mansfield Centre for Inovation, Imperial College, Hammersmith Hospital, London, UK
| | | | - Natalie Canham
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Mark Caulfield
- Genomics England, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
- Neurology and Mitochondrial Disorders Genomics Clinical Interpretation Partnership, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Shamima Rahman
- Neurology and Mitochondrial Disorders Genomics Clinical Interpretation Partnership, William Harvey Research Institute, Queen Mary University of London, London, UK
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Mitochondrial Research Group, Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Neurology and Mitochondrial Disorders Genomics Clinical Interpretation Partnership, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Lin SJ, Vona B, Barbalho PG, Kaiyrzhanov R, Maroofian R, Petree C, Severino M, Stanley V, Varshney P, Bahena P, Alzahrani F, Alhashem A, Pagnamenta AT, Aubertin G, Estrada-Veras JI, Hernández HAD, Mazaheri N, Oza A, Thies J, Renaud DL, Dugad S, McEvoy J, Sultan T, Pais LS, Tabarki B, Villalobos-Ramirez D, Rad A, Galehdari H, Ashrafzadeh F, Sahebzamani A, Saeidi K, Torti E, Elloumi HZ, Mora S, Palculict TB, Yang H, Wren JD, Ben Fowler, Joshi M, Behra M, Burgess SM, Nath SK, Hanna MG, Kenna M, Merritt JL, Houlden H, Karimiani EG, Zaki MS, Haaf T, Alkuraya FS, Gleeson JG, Varshney GK. Biallelic variants in KARS1 are associated with neurodevelopmental disorders and hearing loss recapitulated by the knockout zebrafish. Genet Med 2021; 23:1933-1943. [PMID: 34172899 PMCID: PMC8956360 DOI: 10.1038/s41436-021-01239-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.
Collapse
Affiliation(s)
- Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Barbara Vona
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University of Tübingen, Tübingen, Germany.,Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Patricia G Barbalho
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Valentina Stanley
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Paulina Bahena
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Fatema Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gudrun Aubertin
- Division of Medical Genetics, Department of Pathology and Lab Medicine, Island Health, Victoria General Hospital, Victoria, BC, Canada
| | - Juvianee I Estrada-Veras
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Pediatric Subspecialty Genetics Walter Reed National Military Medical Center, Bethesda, MD, USA.,Murtha Cancer Center / Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Héctor Adrián Díaz Hernández
- Department of Gastrointestinal Endoscopy, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnostics Laboratory, East Mihan Ave., Kianpars, Iran
| | - Andrea Oza
- Otolaryngology and Communication Enhancement, Boston Children's Hospital, and Dept. of Otolaryngology, Harvard medical School, Boston, USA
| | - Jenny Thies
- Department of Biochemical Genetics, Seattle Children's Hospital, Seattle, WA, USA
| | - Deborah L Renaud
- Departments of Neurology and Pediatrics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Sanmati Dugad
- Bioinformatics Centre, S. P. Pune University, Pune, India
| | - Jennifer McEvoy
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tipu Sultan
- Department of Pediatric Neurology, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Lynn S Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Aboulfazl Rad
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Hamid Galehdari
- Department of Gastrointestinal Endoscopy, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Farah Ashrafzadeh
- Department of Pediatric Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Sahebzamani
- Pediatric and Genetic Counselling Center, Kerman Welfare Organization, Kerman, Iran
| | - Kolsoum Saeidi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Erin Torti
- GeneDx, 207 Perry Parkway Gaithersburg, Gaithersburg, MD, USA
| | - Houda Z Elloumi
- GeneDx, 207 Perry Parkway Gaithersburg, Gaithersburg, MD, USA
| | - Sara Mora
- GeneDx, 207 Perry Parkway Gaithersburg, Gaithersburg, MD, USA
| | | | - Hui Yang
- GeneDx, 207 Perry Parkway Gaithersburg, Gaithersburg, MD, USA
| | - Jonathan D Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ben Fowler
- Imaging core facility, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Manali Joshi
- Bioinformatics Centre, S. P. Pune University, Pune, India
| | - Martine Behra
- Department of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | - Shawn M Burgess
- Translational & Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Swapan K Nath
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael G Hanna
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Margaret Kenna
- Otolaryngology and Communication Enhancement, Boston Children's Hospital, and Dept. of Otolaryngology, Harvard medical School, Boston, USA
| | - J Lawrence Merritt
- Department of Pediatrics, Biochemical Genetics, University of Washington, Seattle, WA, USA
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace London, London, UK.,Innovative Medical Research Center, Mashhad Branch, Islamic Azdad University, Mashhad, Iran
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Joseph G Gleeson
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
32
|
A recurrent de novo ATP5F1A substitution associated with neonatal complex V deficiency. Eur J Hum Genet 2021; 29:1719-1724. [PMID: 34483339 DOI: 10.1038/s41431-021-00956-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of rare, degenerative multisystem disorders affecting the cell's core bioenergetic and signalling functions. Spontaneous improvement is rare. We describe a novel neonatal-onset mitochondriopathy in three infants with failure to thrive, hyperlactatemia, hyperammonemia, and apparent clinical resolution before 18 months. Exome sequencing showed all three probands to be identically heterozygous for a recurrent de novo substitution, c.620G>A [p.(Arg207His)] in ATP5F1A, encoding the α-subunit of complex V. Patient-derived fibroblasts exhibited multiple deficits in complex V function and expression in vitro. Structural modelling predicts the observed substitution to create an abnormal region of negative charge on ATP5F1A's β-subunit-interacting surface, adjacent to the nearby β subunit's active site. This disorder, which presents with life-threatening neonatal manifestations, appears to follow a remitting course; the long-term prognosis remains unknown.
Collapse
|
33
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
34
|
Shen L, McCormick EM, Muraresku CC, Falk MJ, Gai X. Clinical Bioinformatics in Precise Diagnosis of Mitochondrial Disease. Clin Lab Med 2021; 40:149-161. [PMID: 32439066 DOI: 10.1016/j.cll.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clinical bioinformatics system is well-established for diagnosing genetic disease based on next-generation sequencing, but requires special considerations when being adapted for the next-generation sequencing-based genetic diagnosis of mitochondrial diseases. Challenges are caused by the involvement of mitochondrial DNA genome in disease etiology. Heteroplasmy and haplogroup are key factors in interpreting mitochondrial DNA variant effects. Data resources and tools for analyzing variant and sequencing data are available at MSeqDR, MitoMap, and HmtDB. Revised specifications of the American College of Medical Genetics/Association of Molecular Pathology standards and guidelines for mitochondrial DNA variant interpretation are proposed by the MSeqDr Consortium and community experts.
Collapse
Affiliation(s)
- Lishuang Shen
- Keck School of Medicine of USC, Center for Personalized Medicine, Children's Hospital Los Angeles, Suite 300, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Colleen Clarke Muraresku
- Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Marni J Falk
- CHOP Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, ARC 1002c, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Xiaowu Gai
- Keck School of Medicine of USC, Center for Personalized Medicine, Children's Hospital Los Angeles, Suite 300, 2100 West 3rd Street, Los Angeles, CA 90057, USA.
| |
Collapse
|
35
|
Cappuccio G, Ceccatelli Berti C, Baruffini E, Sullivan J, Shashi V, Jewett T, Stamper T, Maitz S, Canonico F, Revah-Politi A, Kupchik GS, Anyane-Yeboa K, Aggarwal V, Benneche A, Bratland E, Berland S, D'Arco F, Alves CA, Vanderver A, Longo D, Bertini E, Torella A, Nigro V, D'Amico A, van der Knaap MS, Goffrini P, Brunetti-Pierri N. Bi-allelic KARS1 pathogenic variants affecting functions of cytosolic and mitochondrial isoforms are associated with a progressive and multisystem disease. Hum Mutat 2021; 42:745-761. [PMID: 33942428 PMCID: PMC8251883 DOI: 10.1002/humu.24210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
KARS1 encodes a lysyl‐transfer RNA synthetase (LysRS) that links lysine to its cognate transfer RNA. Two different KARS1 isoforms exert functional effects in cytosol and mitochondria. Bi‐allelic pathogenic variants in KARS1 have been associated to sensorineural hearing and visual loss, neuropathy, seizures, and leukodystrophy. We report the clinical, biochemical, and neuroradiological features of nine individuals with KARS1‐related disorder carrying 12 different variants with nine of them being novel. The consequences of these variants on the cytosol and/or mitochondrial LysRS were functionally validated in yeast mutants. Most cases presented with severe neurological features including congenital and progressive microcephaly, seizures, developmental delay/intellectual disability, and cerebral atrophy. Oculo‐motor dysfunction and immuno‐hematological problems were present in six and three cases, respectively. A yeast growth defect of variable severity was detected for most variants on both cytosolic and mitochondrial isoforms. The detrimental effects of two variants on yeast growth were partially rescued by lysine supplementation. Congenital progressive microcephaly, oculo‐motor dysfunction, and immuno‐hematological problems are emerging phenotypes in KARS1‐related disorder. The data in yeast emphasize the role of both mitochondrial and cytosolic isoforms in the pathogenesis of KARS1‐related disorder and supports the therapeutic potential of lysine supplementation at least in a subset of patients.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Camilla Ceccatelli Berti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Jennifer Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Tamison Jewett
- Department of Pediatrics, Section on Medical Genetics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Tara Stamper
- Department of Pediatrics, Section on Medical Genetics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, Hospital San Gerardo, Monza, Italy
| | - Francesco Canonico
- Department of Neuroradiology, San Gerardo Hospital, ASST di Monza, Università degli Studi di Milano Bicocca, Monza, Italy
| | - Anya Revah-Politi
- Department of Pathology and Cell Biology, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabriel S Kupchik
- Division of Medical Genetics, Maimonides Children's Hospital of Brooklyn at Maimonides Medical Center, Downstate Medical Center, State University of New York, New York, New York, USA
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Institute for Genomic Medicine Columbia University Medical Center, New York, New York, USA
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Eirik Bratland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Felice D'Arco
- Department of Paediatric Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Cesar A Alves
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniela Longo
- Department of Diagnostic Imaging, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Alessandra D'Amico
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| |
Collapse
|
36
|
Galber C, Carissimi S, Baracca A, Giorgio V. The ATP Synthase Deficiency in Human Diseases. Life (Basel) 2021; 11:life11040325. [PMID: 33917760 PMCID: PMC8068106 DOI: 10.3390/life11040325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/29/2022] Open
Abstract
Human diseases range from gene-associated to gene-non-associated disorders, including age-related diseases, neurodegenerative, neuromuscular, cardiovascular, diabetic diseases, neurocognitive disorders and cancer. Mitochondria participate to the cascades of pathogenic events leading to the onset and progression of these diseases independently of their association to mutations of genes encoding mitochondrial protein. Under physiological conditions, the mitochondrial ATP synthase provides the most energy of the cell via the oxidative phosphorylation. Alterations of oxidative phosphorylation mainly affect the tissues characterized by a high-energy metabolism, such as nervous, cardiac and skeletal muscle tissues. In this review, we focus on human diseases caused by altered expressions of ATP synthase genes of both mitochondrial and nuclear origin. Moreover, we describe the contribution of ATP synthase to the pathophysiological mechanisms of other human diseases such as cardiovascular, neurodegenerative diseases or neurocognitive disorders.
Collapse
Affiliation(s)
- Chiara Galber
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| | - Stefania Carissimi
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| | - Valentina Giorgio
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| |
Collapse
|
37
|
Macken WL, Vandrovcova J, Hanna MG, Pitceathly RDS. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 2021; 17:215-230. [PMID: 33623159 DOI: 10.1038/s41582-021-00455-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has increased our understanding of the molecular basis of many primary mitochondrial diseases (PMDs). Despite this progress, many patients with suspected PMD remain without a genetic diagnosis, which restricts their access to in-depth genetic counselling, reproductive options and clinical trials, in addition to hampering efforts to understand the underlying disease mechanisms. Although they represent a considerable improvement over their predecessors, current methods for sequencing the mitochondrial and nuclear genomes have important limitations, and molecular diagnostic techniques are often manual and time consuming. However, recent advances in genomics and transcriptomics offer realistic solutions to these challenges. In this Review, we discuss the current genetic testing approach for PMDs and the opportunities that exist for increased use of whole-genome NGS of nuclear and mitochondrial DNA (mtDNA) in the clinical environment. We consider the possible role for long-read approaches in sequencing of mtDNA and in the identification of novel nuclear genomic causes of PMDs. We examine the expanding applications of RNA sequencing, including the detection of cryptic variants that affect splicing and gene expression and the interpretation of rare and novel mitochondrial transfer RNA variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
38
|
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett 2021; 595:1132-1158. [PMID: 33655490 DOI: 10.1002/1873-3468.14068] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany
| |
Collapse
|
39
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
40
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
41
|
Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T. MitImpact 3: modeling the residue interaction network of the Respiratory Chain subunits. Nucleic Acids Res 2021; 49:D1282-D1288. [PMID: 33300029 PMCID: PMC7779045 DOI: 10.1093/nar/gkaa1032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/14/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Numerous lines of evidence have shown that the interaction between the nuclear and mitochondrial genomes ensures the efficient functioning of the OXPHOS complexes, with substantial implications in bioenergetics, adaptation, and disease. Their interaction is a fascinating and complex trait of the eukaryotic cell that MitImpact explores with its third major release. MitImpact expands its collection of genomic, clinical, and functional annotations of all non-synonymous substitutions of the human mitochondrial genome with new information on putative Compensated Pathogenic Deviations and co-varying amino acid sites of the Respiratory Chain subunits. It further provides evidence of energetic and structural residue compensation by techniques of molecular dynamics simulation. MitImpact is freely accessible at http://mitimpact.css-mendel.it.
Collapse
Affiliation(s)
- Stefano Castellana
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Tommaso Biagini
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Luca Parca
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Noemi Panzironi
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Angelo Luigi Vescovi
- ISBReMIT Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Massimo Carella
- Laboratory of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG) 71013, Italy
| | - Tommaso Mazza
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| |
Collapse
|
42
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
43
|
Ahmad R, Hasan MY. Next-generation sequencing technology in the diagnosis of mitochondrial disorders. Int J Health Sci (Qassim) 2021; 15:1-2. [PMID: 33456435 PMCID: PMC7786442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Rizwan Ahmad
- Vice Deanship of Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, KSA,
Address for correspondence: Dr. Rizwan Ahmad, Vice Deanship of Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, 34221, Saudi Arabia. Cell: +966-567810999. E-mail: ;
| | - Mohammad Yusuf Hasan
- Department of Biomedical Sciences, School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
44
|
Martinez N, Rosales J, Medina N, Perez-Maturo J, Salinas V, Zavala L, Vega P, Rodríguez-Quiroga S, Morón DG, Kauffman MA. Molecular Diagnosis in an Argentinean Mitochondrial Disorders Cohort. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nerina Martinez
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Universidad Austral, Argentina
| | - Julieta Rosales
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina
| | - Nancy Medina
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina
| | - Josefina Perez-Maturo
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Universidad Austral, Argentina
| | - Valeria Salinas
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Universidad Austral, Argentina
| | - Lucia Zavala
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina
| | - Patricia Vega
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina
| | - Sergio Rodríguez-Quiroga
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Centro Universitario de Neurologia “Jose Maria Ramos Mejia”, Argentina
| | | | - Marcelo A. Kauffman
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Universidad Austral, Argentina
| |
Collapse
|
45
|
Mutation in KARS: A novel mechanism for severe anaphylaxis. J Allergy Clin Immunol 2020; 147:1855-1864.e9. [PMID: 33385443 DOI: 10.1016/j.jaci.2020.12.637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Anaphylaxis is a severe allergic reaction that can be lethal if not treated adequately. The underlying molecular mechanisms responsible for the severity are mostly unknown. OBJECTIVE This study is based on a clinical case of a patient with extremely severe anaphylaxis to paper wasp venom. This patient has a mutation in the KARS gene, which encodes lysyl-tRNA synthetase (LysRS), a moonlight protein with a canonical function in protein synthesis and a noncanonical function in antigen dependent-FcεRI activation in mast cells. In this study, the objective was to characterize the mutation at the molecular level. METHODS Analysis of the KARS mutation was carried out using biochemical and functional approaches, cell transfection, Western blot, confocal microscopy, cell degranulation, prostaglandin D2 secretion, and proteases gene transcription. Structural analysis using molecular dynamics simulations and well-tempered metadynamics was also performed. RESULTS The mutation found, P542R (proline was replaced by arginine at aminoacid 542), affects the location of the protein as we show in biochemical and structural analyses. The mutation resembles active LysRS and causes a constitutive activation of the microphthalmia transcription factor, which is involved in critical mast cell functions such as synthesis of mediators and granule biogenesis. Moreover, the structural analysis provides insights into how LysRS works in mast cell activation. CONCLUSIONS A link between the aberrant LysRS-P542R function and mast cell-exacerbated activation with increase in proinflammatory mediator release after antigen-IgE-dependent response could be established.
Collapse
|
46
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
47
|
Levy MA, Kerkhof J, Belmonte FR, Kaufman BA, Bhai P, Brady L, Bursztyn LLCD, Tarnopolsky M, Rupar T, Sadikovic B. Validation and clinical performance of a combined nuclear-mitochondrial next-generation sequencing and copy number variant analysis panel in a Canadian population. Am J Med Genet A 2020; 185:486-499. [PMID: 33300680 DOI: 10.1002/ajmg.a.61998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Diagnosing mitochondrial disorders is a challenge due to the heterogeneous clinical presentation and large number of associated genes. A custom next generation sequencing (NGS) panel was developed incorporating the full mitochondrial genome (mtDNA) plus 19 nuclear genes involved in structural mitochondrial defects and mtDNA maintenance. This assay is capable of simultaneously detecting small gene sequence variations and larger copy number variants (CNVs) in both the nuclear and mitochondrial components along with heteroplasmy detection down to 5%. We describe technical validations of this panel and its implementation for clinical testing in a Canadian reference laboratory, and report its clinical performance in the initial 950 patients tested. Using this assay, we demonstrate a diagnostic yield of 18.1% of patients with known pathogenic variants. In addition to the common 5 kb mtDNA deletion, we describe significant contribution of pathogenic CNVs in both the mitochondrial genome and nuclear genes in this patient population.
Collapse
Affiliation(s)
- Michael A Levy
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Frances R Belmonte
- Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brett A Kaufman
- Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pratibha Bhai
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Lauren Brady
- Division of Neuromuscular and Neurometabolic Disease, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Mark Tarnopolsky
- Division of Neuromuscular and Neurometabolic Disease, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Tony Rupar
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Departments of Biochemistry and Paediatrics, Schulich School of Medicine & Dentistry, Western University, and Biochemical Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
48
|
Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, Goodman RP, Grabarek Z, Haas ME, Hung WHW, Joshi PR, Jourdain AA, Kim SH, Kotrys AV, Lam SS, McCoy JG, Meisel JD, Miranda M, Panda A, Patgiri A, Rogers R, Sadre S, Shah H, Skinner OS, To TL, Walker M, Wang H, Ward PS, Wengrod J, Yuan CC, Calvo SE, Mootha VK. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res 2020; 49:D1541-D1547. [PMID: 33174596 PMCID: PMC7778944 DOI: 10.1093/nar/gkaa1011] [Citation(s) in RCA: 984] [Impact Index Per Article: 196.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/04/2023] Open
Abstract
The mammalian mitochondrial proteome is under dual genomic control, with 99% of proteins encoded by the nuclear genome and 13 originating from the mitochondrial DNA (mtDNA). We previously developed MitoCarta, a catalogue of over 1000 genes encoding the mammalian mitochondrial proteome. This catalogue was compiled using a Bayesian integration of multiple sequence features and experimental datasets, notably protein mass spectrometry of mitochondria isolated from fourteen murine tissues. Here, we introduce MitoCarta3.0. Beginning with the MitoCarta2.0 inventory, we performed manual review to remove 100 genes and introduce 78 additional genes, arriving at an updated inventory of 1136 human genes. We now include manually curated annotations of sub-mitochondrial localization (matrix, inner membrane, intermembrane space, outer membrane) as well as assignment to 149 hierarchical 'MitoPathways' spanning seven broad functional categories relevant to mitochondria. MitoCarta3.0, including sub-mitochondrial localization and MitoPathway annotations, is freely available at http://www.broadinstitute.org/mitocarta and should serve as a continued community resource for mitochondrial biology and medicine.
Collapse
Affiliation(s)
| | | | | | - Tslil Ast
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Connie Chan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Durham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Russell P Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zenon Grabarek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mary E Haas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Wendy H W Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pallavi R Joshi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexis A Jourdain
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon H Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anna V Kotrys
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S Lam
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason G McCoy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua D Meisel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Miranda
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Apekshya Panda
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anupam Patgiri
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Rogers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shayan Sadre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hardik Shah
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Owen S Skinner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tsz-Leung To
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa A Walker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick S Ward
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan Wengrod
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chen-Ching Yuan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Calvo
- Correspondence may also be addressed to Sarah E. Calvo.
| | - Vamsi K Mootha
- To whom correspondence should be addressed. Tel: +1 617 643 3059;
| |
Collapse
|
49
|
Pedroso JL, de Rezende Pinto WBV, Barsottini OGP, Oliveira ASB. Should we investigate mitochondrial disorders in progressive adult-onset undetermined ataxias? CEREBELLUM & ATAXIAS 2020; 7:13. [PMID: 32922825 PMCID: PMC7444269 DOI: 10.1186/s40673-020-00122-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
Background Despite the broad development of next-generation sequencing approaches recently, such as whole-exome sequencing, diagnostic workup of adult-onset progressive cerebellar ataxias without remarkable family history and with negative genetic panel testing for SCAs remains a complex and expensive clinical challenge. Case presentation In this article, we report a Brazilian man with adult-onset slowly progressive pure cerebellar ataxia, which developed neuropathy and hearing loss after fifteen years of ataxia onset, in which a primary mitochondrial DNA defect (MERRF syndrome - myoclonus epilepsy with ragged-red fibers) was confirmed through muscle biopsy evaluation and whole-exome sequencing. Conclusions Mitochondrial disorders are a clinically and genetically complex and heterogenous group of metabolic diseases, resulting from pathogenic variants in the mitochondrial DNA or nuclear DNA. In our case, a correlation with histopathological changes identified on muscle biopsy helped to clarify the definitive diagnosis. Moreover, in neurodegenerative and neurogenetic disorders, some symptoms may be evinced later during disease course. We suggest that late-onset and adult pure undetermined ataxias should be considered and investigated for mitochondrial disorders, particularly MERRF syndrome and other primary mitochondrial DNA defects, together with other more commonly known nuclear genes.
Collapse
Affiliation(s)
- José Luiz Pedroso
- Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650. ZIP CODE: 04039-002. Vila Clementino, São Paulo, SP Brazil
| | | | - Orlando Graziani Povoas Barsottini
- Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650. ZIP CODE: 04039-002. Vila Clementino, São Paulo, SP Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP Brazil
| |
Collapse
|
50
|
Tsang MHY, Kwong AKY, Chan KLS, Fung JLF, Yu MHC, Mak CCY, Yeung KS, Rodenburg RJT, Smeitink JAM, Chan R, Tsoi T, Hui J, Wong SSN, Tai SM, Chan VCM, Ma CK, Fung STH, Wu SP, Chak WK, Chung BHY, Fung CW. Delineation of molecular findings by whole-exome sequencing for suspected cases of paediatric-onset mitochondrial diseases in the Southern Chinese population. Hum Genomics 2020; 14:28. [PMID: 32907636 PMCID: PMC7488033 DOI: 10.1186/s40246-020-00278-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mitochondrial diseases (MDs) are a group of clinically and genetically heterogeneous disorders characterized by defects in oxidative phosphorylation. Since clinical phenotypes of MDs may be non-specific, genetic diagnosis is crucial for guiding disease management. In the current study, whole-exome sequencing (WES) was performed for our paediatric-onset MD cohort of a Southern Chinese origin, with the aim of identifying key disease-causing variants in the Chinese patients with MDs. METHODS We recruited Chinese patients who had paediatric-onset MDs and a minimum mitochondrial disease criteria (MDC) score of 3. Patients with positive target gene or mitochondrial DNA sequencing results were excluded. WES was performed, variants with population frequency ≤ 1% were analysed for pathogenicity on the basis of the American College of Medical Genetics and Genomics guidelines. RESULTS Sixty-six patients with pre-biopsy MDC scores of 3-8 were recruited. The overall diagnostic yield was 35% (23/66). Eleven patients (17%) were found to have mutations in MD-related genes, with COQ4 having the highest mutation rate owing to the Chinese-specific founder mutation (4/66, 6%). Twelve patients (12/66, 18%) had mutations in non-MD-related genes: ATP1A3 (n = 3, two were siblings), ALDH5A1, ARX, FA2H, KCNT1, LDHD, NEFL, NKX2-2, TBCK, and WAC. CONCLUSIONS We confirmed that the COQ4:c.370G>A, p.(Gly124Ser) variant, was a founder mutation among the Southern Chinese population. Screening for this mutation should therefore be considered while diagnosing Chinese patients suspected to have MDs. Furthermore, WES has proven to be useful in detecting variants in patients suspected to have MDs because it helps to obtain an unbiased and precise genetic diagnosis for these diseases, which are genetically heterogeneous.
Collapse
Affiliation(s)
- Mandy H Y Tsang
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Anna K Y Kwong
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Kate L S Chan
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Jasmine L F Fung
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Mullin H C Yu
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Christopher C Y Mak
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Kit-San Yeung
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Richard J T Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rachel Chan
- Department of Paediatrics, Centro Hospitalar Conde de São Januário (CHCSJ) Hospital, SAR, Macau, China
| | - Thomas Tsoi
- Department of Paediatrics, Centro Hospitalar Conde de São Januário (CHCSJ) Hospital, SAR, Macau, China
| | - Joannie Hui
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Doctors' Office, 9/F, Tower B, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong, SAR, China
| | - Shelia S N Wong
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Doctors' Office, 9/F, Tower B, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong, SAR, China
| | - Shuk-Mui Tai
- Department of Paediatrics & Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, China
| | - Victor C M Chan
- Department of Paediatrics & Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, China
| | - Che-Kwan Ma
- Department of Paediatrics and Adolescent Medicine, United Christian Hospital, Hong Kong, SAR, China
| | - Sharon T H Fung
- Department of Paediatrics, Kwong Wah Hospital, Hong Kong, SAR, China
| | - Shun-Ping Wu
- Department of Paediatrics and Adolescent Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - W K Chak
- Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, Hong Kong, SAR, China
| | - Brian H Y Chung
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China. .,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Doctors' Office, 9/F, Tower B, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong, SAR, China. .,Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, Room 115, 1/F, New Clinical Building, 102 Pokfulam Road, Hong Kong, SAR, China. .,Department of Paediatrics & Adolescent Medicine, Duchess of Kent Children's Hospital, Hong Kong, SAR, China.
| | - Cheuk-Wing Fung
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China. .,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Doctors' Office, 9/F, Tower B, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|