1
|
Zhu H, Xu G. Electrochemical biosensors for dopamine. Clin Chim Acta 2025; 566:120039. [PMID: 39550057 DOI: 10.1016/j.cca.2024.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Dopamine (DA), a key catecholamine, plays a pivotal role in the regulation of human cognition and emotions. It has profound effects on the hormonal, memory, and cardiovascular systems. Anomalies like Alzheimer's, Parkinson's, schizophrenia, and senile dementia are linked to abnormal DA levels. Consequently, the precise determination of DA levels in biological systems is critical for the accurate diagnosis and treatment of these disorders. Among all analytical techniques, electrochemical studies provide the most selective and highly sensitive methods for detecting DA in biological samples. Ascorbic acid and uric acid are two examples of small biomolecules that can obstruct the detection of DA in biological fluids. To address this issue, numerous attempts have been made to modify bare electrodes to separate the signals of these substances and enhance the electrocatalytic activity towards DA. Various surface modifiers, including coatings, conducting polymers, ionic liquids, nanomaterials, and inorganic complexes, have been employed in the modification process. Despite the reported success in DA detection using electrochemical sensors, many of these approaches are deemed too complex and costly for real-world applications. Therefore, this review aims to provide an overview of DA electrochemical biosensors that are practical for real-world applications.
Collapse
Affiliation(s)
- Hang Zhu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, Fujian 351100, China.
| | - Guifen Xu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China
| |
Collapse
|
2
|
Shen J, Bian N, Zhao L, Wei J. The role of T-lymphocytes in central nervous system diseases. Brain Res Bull 2024; 209:110904. [PMID: 38387531 DOI: 10.1016/j.brainresbull.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The central nervous system (CNS) has been considered an immunologically privileged site. In the past few decades, research on inflammation in CNS diseases has mostly focused on microglia, innate immune cells that respond rapidly to injury and infection to maintain CNS homeostasis. Discoveries of lymphatic vessels within the dura mater and peripheral immune cells in the meningeal layer indicate that the peripheral immune system can monitor and intervene in the CNS. This review summarizes recent advances in the involvement of T lymphocytes in multiple CNS diseases, including brain injury, neurodegenerative diseases, and psychiatric disorders. It emphasizes that a deep understanding of the pathogenesis of CNS diseases requires intimate knowledge of T lymphocytes. Aiming to promote a better understanding of the relationship between the immune system and CNS and facilitate the development of therapeutic strategies targeting T lymphocytes in neurological diseases.
Collapse
Affiliation(s)
- Jianing Shen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
3
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
4
|
Mohapatra L, Mishra D, Shiomurti Tripathi A, Kumar Parida S. Immunosenescence as a convergence pathway in neurodegeneration. Int Immunopharmacol 2023; 121:110521. [PMID: 37385122 DOI: 10.1016/j.intimp.2023.110521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Immunity refers to the body's defense mechanism to protect itself against illness or to produce antibodies against pathogens. Senescence is a cellular phenomenon that integrates a sustainable growth restriction, other phenotypic abnormalities and including a pro-inflammatory secretome. It is highly involved in regulating developmental stages, tissue homeostasis, and tumor proliferation monitoring. Contemporary experimental reports imply that abolition of senescent cells employing evolved genetic and therapeutic approaches augment the chances of survival and boosts the health span of an individual. Immunosenescence is considered as a process in which dysfunction of the immune system occurs with aging and greatly includes remodeling of lymphoid organs. This in turn causes fluctuations in the immune function of the elderly that has strict relation with the expansion of autoimmune diseases, infections, malignant tumors and neurodegenerative disorders. The interaction of the nervous and immune systems during aging is marked by bi-directional influence and mutual correlation of variations. The enhanced systemic inflammatory condition in the elderly, and the neuronal immune cell activity can be modulated by inflamm-aging and peripheral immunosenescence resulting in chronic low-grade inflammatory processes in the central Nervous system known as neuro-inflammaging. For example, glia excitation by cytokines and glia pro-inflammatory productions contribute significantly to memory injury as well as in acute systemic inflammation, which is associated with high levels of Tumor necrosis factor -α and a rise in cognitive decline. In recent years its role in the pathology of Alzheimer's disease has caught research interest to a large extent. This article reviews the connection concerning the immune and nervous systems and highlights how immunosenescence and inflamm-aging can affect neurodegenerative disorders.
Collapse
Affiliation(s)
- Lucy Mohapatra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India.
| | - Deepak Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India
| | | | | |
Collapse
|
5
|
Searching for Biomarkers in the Blood of Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. Int J Mol Sci 2023; 24:ijms24031842. [PMID: 36768161 PMCID: PMC9915927 DOI: 10.3390/ijms24031842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is diagnosed many years after its onset, under a significant degradation of the nigrostriatal dopaminergic system, responsible for the regulation of motor function. This explains the low effectiveness of the treatment of patients. Therefore, one of the highest priorities in neurology is the development of the early (preclinical) diagnosis of PD. The aim of this study was to search for changes in the blood of patients at risk of developing PD, which are considered potential diagnostic biomarkers. Out of 1835 patients, 26 patients were included in the risk group and 20 patients in the control group. The primary criteria for inclusion in a risk group were the impairment of sleep behavior disorder and sense of smell, and the secondary criteria were neurological and mental disorders. In patients at risk and in controls, the composition of plasma and the expression of genes of interest in lymphocytes were assessed by 27 indicators. The main changes that we found in plasma include a decrease in the concentrations of l-3,4-dihydroxyphenylalanine (L-DOPA) and urates, as well as the expressions of some types of microRNA, and an increase in the total oxidative status. In turn, in the lymphocytes of patients at risk, an increase in the expression of the DA D3 receptor gene and the lymphocyte activation gene 3 (LAG3), as well as a decrease in the expression of the Protein deglycase DJ-1 gene (PARK7), were observed. The blood changes we found in patients at risk are considered candidates for diagnostic biomarkers at the prodromal stage of PD.
Collapse
|
6
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
7
|
Nazari S, Pourmand SM, Makki SM, Brand S, Vousooghi N. Potential biomarkers of addiction identified by real-time PCR in human peripheral blood lymphocytes: a narrative review. Biomark Med 2022; 16:739-758. [PMID: 35658670 DOI: 10.2217/bmm-2021-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Addiction-related neurobiological factors could be considered as potential biomarkers. The concentration of peripheral biomarkers in tissues like blood lymphocytes may mirror their brain levels. This review is focused on the mRNA expression of potential addiction biomarkers in human peripheral blood lymphocytes (PBLs). PubMed, EMBASE, Web of Science, Scopus and Google Scholar were searched using the keywords 'addiction', 'biomarker', 'peripheral blood lymphocyte', 'gene expression' and 'real-time PCR'. The results showed the alterations in the regulation of genes such as dopamine receptors, opioid receptors, NMDA receptors, cannabinoid receptors, α-synuclein, DYN, MAO-A, FosB and orexin-A as PBLs biomarkers in addiction stages. Such variations could also be found during abstinence and relapse. PBLs biomarkers may help in drug development and have clinical implications.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience & Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Seyed Mahmoud Pourmand
- Addiction Department, School of Behavioral Sciences & Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, 1445613111, Iran
| | - Seyed Mohammad Makki
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Serge Brand
- Center for Affective-, Stress- and Sleep Disorders (ZASS), Psychiatric Clinics (UPK), University of Basel, Basel, 4002, Switzerland.,Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Department of Sport, Exercise, and Health, Division of Sport Science and Psychosocial Health, University of Basel, Basel, 4052, Switzerland.,Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417466191, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran.,Research Center for Cognitive & Behavioral Sciences, Tehran University of Medical Sciences, Tehran, 13337159140, Iran.,Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, 1336616357, Iran
| |
Collapse
|
8
|
Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson’s Disease. Life (Basel) 2022; 12:life12050751. [PMID: 35629417 PMCID: PMC9146539 DOI: 10.3390/life12050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Processes of intracellular and extracellular transport play one of the most important roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the disruption of many cellular processes and even to cell death. It was shown that disruption of the processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central nervous system, including Parkinson’s disease (PD). Here, we studied changes in the expression of genes whose protein products are involved in the transport processes (Snca, Drd2, Rab5a, Anxa2, and Nsf) in the brain tissues and peripheral blood of mice with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced models of PD. We detected changes in the expressions of Drd2, Anxa2, and Nsf at the earliest modeling stages. Additionally, we have identified conspicuous changes in the expression level of Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of PD in its early stages. These data clearly suggest the involvement of protein products in these genes in the earliest stages of the pathogenesis of PD.
Collapse
|
9
|
Alterations in Proteostasis System Components in Peripheral Blood Mononuclear Cells in Parkinson Disease: Focusing on the HSP70 and p62 Levels. Biomolecules 2022; 12:biom12040493. [PMID: 35454081 PMCID: PMC9030208 DOI: 10.3390/biom12040493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson disease (PD) is attributed to a proteostasis disorder mediated by α-synuclein accumulating in a specific brain region. PD manifestation is often related to extraneuronal alterations, some of which could be used as diagnostic or prognostic PD biomarkers. In this work, we studied the shifts in the expression of proteostasis-associated chaperones of the HSP70 family and autophagy-dependent p62 protein values in the peripheral blood mononuclear cells (PBMC) of mild to moderate PD patients. Although we did not detect any changes in the intracellular HSP70 protein pool in PD patients compared to non-PD controls, an increase in the transcriptional activity of the stress-associated HSPA1A/B and HSPA6 genes was observed in these cells. Basal p62 content was found to be increased in PD patients’ PBMC, similarly to the p62 level in substantia nigra neural cells in PD. Moreover, the spontaneous apoptosis level was increased among PBMC and positively correlated with the p62 intracellular level in the PD group. A combined HSPA6- and p62-based analysis among 26 PD patients and 36 age-matched non-PD controls pointed out the diagnostic significance of these markers, with intermediate sensitivity and high specificity of this combination when observing patients diagnosed with PD.
Collapse
|
10
|
Obray JD, Jang EY, Klomp AM, Small CA, Richardson AP, LeBaron JJ, Lee JG, Yorgason JT, Yang CH, Steffensen SC. The peripheral dopamine 2 receptor antagonist domperidone attenuates ethanol enhancement of dopamine levels in the nucleus accumbens. Alcohol Clin Exp Res 2022; 46:396-409. [PMID: 35040146 PMCID: PMC8920780 DOI: 10.1111/acer.14775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dopamine neuron firing in the ventral tegmental area (VTA) and dopamine release in the nucleus accumbens have been implicated in reward learning. Ethanol is known to increase both dopamine neuron firing in the VTA and dopamine levels in the nucleus accumbens. Despite this, some discrepancies exist between the dose of ethanol required to enhance firing in vivo and ex vivo. In the present study we investigated the effects of peripheral dopamine 2 subtype receptor antagonism on ethanol's effects on dopamine neurotransmission. METHODS Plasma catecholamine levels were assessed following ethanol administration across four different doses of EtOH. Microdialysis and voltammetry were used to assess the effects of domperidone pretreatment on ethanol-mediated increases in dopamine release in the nucleus accumbens. A place conditioning paradigm was used to assess conditioned preference for ethanol and whether domperidone pretreatment altered this preference. Open-field and loss-of-righting reflex paradigms were used to assess the effects of domperidone on ethanol-induced sedation. A rotarod apparatus was used to assess the effects of domperidone on ethanol-induced motor impairment. RESULTS Domperidone attenuated ethanol's enhancement of mesolimbic dopamine release under non-physiological conditions at intermediate (1.0 and 2.0 g/kg) doses of ethanol. Domperidone also decreased EtOH-induced sedation at 2.0 g/kg. Domperidone did not alter ethanol conditioned place preference nor did it affect ethanol-induced motor impairment. CONCLUSIONS These results show that peripheral dopamine 2 receptors mediate some of the effects of ethanol on nonphysiological dopamine neurotransmission, although these effects are not related to the rewarding properties of ethanol.
Collapse
Affiliation(s)
- James Daniel Obray
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Eun Young Jang
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anneke M. Klomp
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Christina A. Small
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Aaron P. Richardson
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Joshua J. LeBaron
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jordan T. Yorgason
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Scott C. Steffensen
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
11
|
Leisman G, Sheldon D. Tics and Emotions. Brain Sci 2022; 12:brainsci12020242. [PMID: 35204005 PMCID: PMC8870550 DOI: 10.3390/brainsci12020242] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Tics can be associated with neurological disorders and are thought to be the result of dysfunctional basal ganglia pathways. In Tourette Syndrome (TS), excess dopamine in the striatum is thought to excite the thalamo-cortical circuits, producing tics. When external stressors activate the hypothalamic-pituitary-adrenal (HPA) axis, more dopamine is produced, furthering the excitation of tic-producing pathways. Emotional processing structures in the limbic are also activated during tics, providing further evidence of a possible emotional component in motor ticking behaviors. The purpose of this review is to better understand the relationship between emotional states and ticking behavior. We found support for the notion that premonitory sensory phenomena (PSP), sensory stimulation, and other environmental stressors that impact the HPA axis can influence tics through dopaminergic neurotransmission. Dopamine plays a vital role in cognition and motor control and is an important neurotransmitter in the pathophysiology of other disorders such as obsessive–compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD), which tend to be comorbid with ticking disorders and are thought to use similar pathways. It is concluded that there is an emotional component to ticking behaviors. Emotions primarily involving anxiety, tension, stress, and frustration have been associated with exacerbated tics, with PSP contributing to these feelings.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa 3498838, Israel
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Universidad de la Ciencias Médicas, Havana 10400, Cuba
- Correspondence:
| | - Dana Sheldon
- Department of Cognitive Neuroscience, George Washington University, Washington, DC 20052, USA;
| |
Collapse
|
12
|
Abstract
The notion that autoimmune responses to α-synuclein may be involved in the pathogenesis of this disorder stems from reports that mutations in α-synuclein or certain alleles of the major histocompatibility complex (MHC) are associated with the disease and that dopaminergic and norepinephrinergic neurons in the midbrain can present antigenic epitopes. Here, we discuss recent evidence that a defined set of peptides derived from α-synuclein act as antigenic epitopes displayed by specific MHC alleles and drive helper and cytotoxic T cell responses in patients with PD. Moreover, phosphorylated α-synuclein may activate T cell responses in a less restricted manner in PD. While the roles for the acquired immune system in disease pathogenesis remain unknown, preclinical animal models and in vitro studies indicate that T cells may interact with neurons and exert effects related to neuronal death and neuroprotection. These findings suggest that therapeutics that target T cells and ameliorate the incidence or disease severity of inflammatory bowel disorders or CNS autoimmune diseases such as multiple sclerosis may be useful in PD.
Collapse
|
13
|
Reduced Immunosenescence of Peripheral Blood T Cells in Parkinson's Disease with CMV Infection Background. Int J Mol Sci 2021; 22:ijms222313119. [PMID: 34884936 PMCID: PMC8658620 DOI: 10.3390/ijms222313119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Immunosenescence is a process of remodeling the immune system under the influence of chronic inflammation during aging. Parkinson’s disease (PD) is a common age-associated neurodegenerative disorder and is frequently accompanied by neuroinflammation. On the other hand, cytomegalovirus (CMV), one of the most spread infections in humans, may induce chronic inflammation which contributes to immunosenescence, differentiation and the inflation of T cells and NK cells. Currently, there is no clear understanding of immunosenescence severity in PD patients infected with CMV. In this study, we analyzed differentiation stages and immunosenescence characteristics of T cells and NK cells in 31 patients with mild and moderate PD severity, 33 age-matched and 30 young healthy donors. The PD patients were 100% CMV-seropositive compared to 76% age-matched and 73% young CMV-infected healthy donors. The proportion of effector memory T cells re-expressing CD45RA, CD57+CD56− T cells and CD57+CD56+ T cells was significantly reduced in PD patients compared with CMV-seropositive age-matched healthy individuals. The CD57+CD56− T cell proportion in PD patients was similar to that of CMV-seropositive young healthy donors. Thus, PD is characterized by reduced peripheral blood T cell immunosenescence, even against the background of CMV infection.
Collapse
|
14
|
Liu Z, Zhai XR, Du ZS, Xu FF, Huang Y, Wang XQ, Qiu YH, Peng YP. Dopamine receptor D2 on CD4 + T cells is protective against neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease. Brain Behav Immun 2021; 98:110-121. [PMID: 34403737 DOI: 10.1016/j.bbi.2021.08.220] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease. Recently, neuroinflammation driven by CD4+ T cells has been involved in PD pathophysiology. Human and murine lymphocytes express all the five subtypes of dopamine receptors (DRs), DRD1 to DRD5. However, roles of DRs particularly DRD2 expressed on CD4+ T cells in PD remain elucidated. Global Drd1- or Drd2-knockout (Drd1-/- or Drd2-/-) mice or CD4+ T cell-specific Drd2-knockout (Drd2fl/fl/CD4Cre) mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD with the different mutants. On the 7th day following MPTP injection, mice were assessed for dopaminergic neurodegeneration, locomotor impairments, microglial activation, as well as CD4+ T-cell differentiation and function. Furthermore, in vitro CD4+ T cells were exposed to DRD2 agonist and antagonist and then differentiation and function of the cells were determined. MPTP induced dopaminergic neuronal loss in the nigrostriatal system, motor coordinative and behavioral impairments, microglial activation, and CD4+ T-cell polarization to pro-inflammatory T-helper (Th)1 and Th17 phenotypes. Importantly, either Drd2-/- or Drd2fl/fl/CD4Cre mice manifested more severe dopaminergic neurodegeneration, motor deficits, microglial activation, and CD4+ T-cell bias towards Th1 and Th17 phenotypes in response to MPTP, but Drd1-/- did not further alter MPTP intoxication. DRD2 agonist sumanirole inhibited shift of CD4+ T cells obtained from MPTP-intoxicated mice to Th1 and Th17 phenotypes and DRD2 antagonist L-741,626 reversed sumanirole effects. These findings suggest that DRD2 expressed on CD4+ T cells is protective against neuroinflammation and neurodegeneration in PD. Thus, developing a therapeutic strategy of stimulating DRD2 may be promising for mitigation of PD.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiao-Run Zhai
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Zhong-Shuai Du
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Fen-Fen Xu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yan Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiao-Qin Wang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| |
Collapse
|
15
|
Cheslow L, Snook AE, Waldman SA. Emerging targets for the diagnosis of Parkinson's disease: examination of systemic biomarkers. Biomark Med 2021; 15:597-608. [PMID: 33988462 DOI: 10.2217/bmm-2020-0654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a highly prevalent and irreversible neurodegenerative disorder that is typically diagnosed in an advanced stage. Currently, there are no approved biomarkers that reliably identify PD patients before they have undergone extensive neuronal damage, eliminating the opportunity for future disease-modifying therapies to intervene in disease progression. This unmet need for diagnostic and therapeutic biomarkers has fueled PD research for decades, but these efforts have not yet yielded actionable results. Recently, studies exploring mechanisms underlying PD progression have offered insights into multisystemic contributions to pathology, challenging the classic perspective of PD as a disease isolated to the brain. This shift in understanding has opened the door to potential new biomarkers from multiple sites in the body. This review focuses on emerging candidates for PD biomarkers in the context of current diagnostic approaches and multiple organ systems that contribute to disease.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094299. [PMID: 33919025 PMCID: PMC8122651 DOI: 10.3390/ijms22094299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most physiologic processes in the brain and related diseases involve more than one neurotransmitter system. Thus, elucidation of the interaction between different neurotransmitter systems could allow for better therapeutic approaches to the treatments of related diseases. Dopaminergic (DAergic) and cholinergic neurotransmitter system regulate various brain functions that include cognition, movement, emotion, etc. This review focuses on the interaction between the brain DAergic and cholinergic systems with respect to the pathogenesis and treatment of schizophrenia and Parkinson’s disease (PD). We first discussed the selection of motor plans at the level of basal ganglia, the major DAergic and cholinergic pathways in the brain, and the receptor subtypes involved in the interaction between the two signaling systems. Next, the roles of each signaling system were discussed in the context of the negative symptoms of schizophrenia, with a focus on the α7 nicotinic cholinergic receptor and the dopamine D1 receptor in the prefrontal cortex. In addition, the roles of the nicotinic and dopamine receptors were discussed in the context of regulation of striatal cholinergic interneurons, which play crucial roles in the degeneration of nigrostriatal DAergic neurons and the development of L-DOPA-induced dyskinesia in PD patients. Finally, we discussed the general mechanisms of nicotine-induced protection of DAergic neurons.
Collapse
|
17
|
Feng Y, Lu Y. Immunomodulatory Effects of Dopamine in Inflammatory Diseases. Front Immunol 2021; 12:663102. [PMID: 33897712 PMCID: PMC8063048 DOI: 10.3389/fimmu.2021.663102] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Dopamine (DA) receptor, a significant G protein-coupled receptor, is classified into two families: D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptor families, with further formation of homodimers, heteromers, and receptor mosaic. Increasing evidence suggests that the immune system can be affected by the nervous system and neurotransmitters, such as dopamine. Recently, the role of the DA receptor in inflammation has been widely studied, mainly focusing on NLRP3 inflammasome, NF-κB pathway, and immune cells. This article provides a brief review of the structures, functions, and signaling pathways of DA receptors and their relationships with inflammation. With detailed descriptions of their roles in Parkinson disease, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, this article provides a theoretical basis for drug development targeting DA receptors in inflammatory diseases.
Collapse
Affiliation(s)
- Yifei Feng
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Franco R, Reyes-Resina I, Navarro G. Dopamine in Health and Disease: Much More Than a Neurotransmitter. Biomedicines 2021; 9:109. [PMID: 33499192 PMCID: PMC7911410 DOI: 10.3390/biomedicines9020109] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Dopamine is derived from an amino acid, phenylalanine, which must be obtained through the diet. Dopamine, known primarily to be a neurotransmitter involved in almost any higher executive action, acts through five types of G-protein-coupled receptors. Dopamine has been studied extensively for its neuronal handling, synaptic actions, and in relation to Parkinson's disease. However, dopamine receptors can be found extra-synaptically and, in addition, they are not only expressed in neurons, but in many types of mammalian cells, inside and outside the central nervous system (CNS). Recent studies show a dopamine link between the gut and the CNS; the mechanisms are unknown, but they probably require cells to act as mediators and the involvement of the immune system. In fact, dopamine receptors are expressed in almost any cell of the immune system where dopamine regulates various processes, such as antigen presentation, T-cell activation, and inflammation. This likely immune cell-mediated linkage opens up a new perspective for the use of dopamine-related drugs, i.e., agonist-antagonist-allosteric modulators of dopamine receptors, in a variety of diseases.
Collapse
Affiliation(s)
- Rafael Franco
- Neurodegenerative Diseases, CiberNed. Network Research Center, Spanish National Health Institute Carlos III, Valderrebollo 5, 28031 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- Neurodegenerative Diseases, CiberNed. Network Research Center, Spanish National Health Institute Carlos III, Valderrebollo 5, 28031 Madrid, Spain;
| | - Gemma Navarro
- Neurodegenerative Diseases, CiberNed. Network Research Center, Spanish National Health Institute Carlos III, Valderrebollo 5, 28031 Madrid, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Pilli D, Zou A, Dawes R, Lopez JA, Tea F, Liyanage G, Lee FX, Merheb V, Houston SD, Pillay A, Jones HF, Ramanathan S, Mohammad S, Kelleher AD, Alexander SI, Dale RC, Brilot F. Pro-inflammatory dopamine-2 receptor-specific T cells in paediatric movement and psychiatric disorders. Clin Transl Immunology 2020; 9:e1229. [PMID: 33425355 PMCID: PMC7780098 DOI: 10.1002/cti2.1229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives A dysregulated inflammatory response against the dopamine‐2 receptor (D2R) has been implicated in movement and psychiatric disorders. D2R antibodies were previously reported in a subset of these patients; however, the role of T cells in these disorders remains unknown. Our objective was to identify and characterise pro‐inflammatory D2R‐specific T cells in movement and psychiatric disorders. Methods Blood from paediatric patients with movement and psychiatric disorders of suspected autoimmune and neurodevelopmental aetiology (n = 24) and controls (n = 16) was cultured in vitro with a human D2R peptide library, and D2R‐specific T cells were identified by flow cytometric quantification of CD4+CD25+CD134+ T cells. Cytokine secretion was analysed using a cytometric bead array and ELISA. HLA genotypes were examined in D2R‐specific T‐cell‐positive patients. D2R antibody seropositivity was determined using a flow cytometry live cell‐based assay. Results Three immunodominant regions of D2R, amino acid (aa)121–131, aa171–181 and aa396–416, specifically activated CD4+ T cells in 8/24 patients. Peptides corresponding to these regions were predicted to bind with high affinity to the HLA of the eight positive patients and had also elicited the secretion of pro‐inflammatory cytokines IL‐2, IFN‐ γ, TNF, IL‐6, IL‐17A and IL‐17F. All eight patients were seronegative for D2R antibodies. Conclusion Autoreactive D2R‐specific T cells and a pro‐inflammatory Th1 and Th17 cytokine profile characterise a subset of paediatric patients with movement and psychiatric disorders, further underpinning the theory of immune dysregulation in these disorders. These findings offer new perspectives into the neuroinflammatory mechanisms of movement and psychiatric disorders and can influence patient diagnosis and treatment.
Collapse
Affiliation(s)
- Deepti Pilli
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Alicia Zou
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Ruebena Dawes
- Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Genomic Medicine Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Joseph A Lopez
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Fiona Tea
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Ganesha Liyanage
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Medical Sciences Discipline of Applied Medical Science Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Fiona Xz Lee
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Vera Merheb
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Samuel D Houston
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Biomedical Engineering The University of Sydney Sydney NSW Australia
| | - Aleha Pillay
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Hannah F Jones
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Shekeeb Mohammad
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | | | - Stephen I Alexander
- Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Centre for Kidney Research Children's Hospital at Westmead Sydney NSW Australia
| | - Russell C Dale
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,School of Medical Sciences Discipline of Applied Medical Science Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| |
Collapse
|
20
|
El Haddad S, Serrano A, Moal F, Normand T, Robin C, Charpentier S, Valery A, Brulé-Morabito F, Auzou P, Mollet L, Ozsancak C, Legrand A. Disturbed expression of autophagy genes in blood of Parkinson’s disease patients. Gene 2020; 738:144454. [DOI: 10.1016/j.gene.2020.144454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022]
|
21
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
22
|
VCP expression decrease as a biomarker of preclinical and early clinical stages of Parkinson's disease. Sci Rep 2020; 10:827. [PMID: 31964996 PMCID: PMC6972783 DOI: 10.1038/s41598-020-57938-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Valosin-containing human protein (VCP) or p97 performs enzyme functions associated with the maintenance of protein homeostasis and control of protein quality. Disruption of its normal functioning might be associated with the development of Parkinson’s disease (PD). Tissues of mice with toxin-induced presymptomatic and early symptomatic stages of PD, as well as 52 treated and untreated patients with newly diagnosed PD and nine patients with a “predicted” form of PD, were investigated. Significant changes in Vcp gene expression were observed in almost all studied mouse tissues. A significant decrease in VCP expression specific for PD was also detected at both the late preclinical and the early clinical stages of PD in untreated patients. Thus, a decrease in VCP expression is important for changes in the function of the nervous system at early stages of PD. Analysis of changes in VCP expression in all patients with PD and in Vcp in the peripheral blood of mice used as models of PD revealed significant decreases in expression specific for PD. These data suggest that a decrease in the relative levels of VCP mRNA might serve as a biomarker for the development of pathology at the early clinical and preclinical stages of human PD.
Collapse
|
23
|
Shahkarami K, Vousooghi N, Golab F, Mohsenzadeh A, Baharvand P, Sadat-Shirazi MS, Babhadi-Ashar N, Shakeri A, Zarrindast MR. Evaluation of dynorphin and kappa-opioid receptor level in the human blood lymphocytes and plasma: Possible role as a biomarker in severe opioid use disorder. Drug Alcohol Depend 2019; 205:107638. [PMID: 31710992 DOI: 10.1016/j.drugalcdep.2019.107638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/31/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The dynorphin (DYN)/kappa opioid receptor (KOR) system plays an important role in the development of addiction, and dysregulation of this system could lead to abnormal activity in the reward pathway. It has been reported that the expression state of the neurotransmitters and their receptors in the brain is reflected in peripheral blood lymphocytes (PBLs). METHODS We have evaluated the PBLs and plasma samples of four groups: 1) subjects with severe opioid use disorder (SOD), 2) methadone-maintenance treated (MMT) individuals, 3) long-term abstinent subjects having former SOD, and 4) healthy control subjects (n = 20 in each group). The mRNA expression level of preprodynorphin (pPDYN) and KOR in PBLs has been evaluated by real-time PCR. Peptide expression of PDYN in PBLs has been studied by western blot, and DYN concentration in plasma has been measured by ELISA. RESULTS The relative expression level of the pPDYN mRNA and PDYN peptide in PBLs were significantly up-regulated in SOD, MMT, and abstinent groups compared to control subjects. No significant difference was found in the plasma DYN concentration between study groups. The expression level of the KOR mRNA in PBLs was significantly decreased in all three study groups compared to the control subjects. CONCLUSION the expression changes in the DYN/KOR system after chronic exposure to opioids, including methadone, seems to be stable and does not return to normal levels even after 12 months abstinence. These long-time and permanent changes in PBLs may serve as a biomarker and footprint of SOD development in the periphery.
Collapse
Affiliation(s)
- Kourosh Shahkarami
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mohsenzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Babhadi-Ashar
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Shakeri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
24
|
Elgueta D, Contreras F, Prado C, Montoya A, Ugalde V, Chovar O, Villagra R, Henríquez C, Abellanas MA, Aymerich MS, Franco R, Pacheco R. Dopamine Receptor D3 Expression Is Altered in CD4 + T-Cells From Parkinson's Disease Patients and Its Pharmacologic Inhibition Attenuates the Motor Impairment in a Mouse Model. Front Immunol 2019; 10:981. [PMID: 31118938 PMCID: PMC6504698 DOI: 10.3389/fimmu.2019.00981] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 04/16/2019] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation constitutes a fundamental process involved in Parkinson's disease (PD). Microglial cells play a central role in the outcome of neuroinflammation and consequent neurodegeneration of dopaminergic neurons in the substantia nigra. Current evidence indicates that CD4+ T-cells infiltrate the brain in PD, where they play a critical role determining the functional phenotype of microglia, thus regulating the progression of the disease. We previously demonstrated that mice bearing dopamine receptor D3 (DRD3)-deficient CD4+ T-cells are completely refractory to neuroinflammation and consequent neurodegeneration induced by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study we aimed to determine whether DRD3-signalling is altered in peripheral blood CD4+ T-cells obtained from PD patients in comparison to healthy controls (HC). Furthermore, we evaluated the therapeutic potential of targeting DRD3 confined to CD4+ T-cells by inducing the pharmacologic antagonism or the transcriptional inhibition of DRD3-signalling in a mouse model of PD induced by the chronic administration of MPTP and probenecid (MPTPp). In vitro analyses performed in human cells showed that the frequency of peripheral blood Th1 and Th17 cells, two phenotypes favoured by DRD3-signalling, were significantly increased in PD patients. Moreover, naïve CD4+ T-cells obtained from PD patients displayed a significant higher Th1-biased differentiation in comparison with those naïve CD4+ T-cells obtained from HC. Nevertheless, DRD3 expression was selectively reduced in CD4+ T-cells obtained from PD patients. The results obtained from in vivo experiments performed in mice show that the transference of CD4+ T-cells treated ex vivo with the DRD3-selective antagonist PG01037 into MPTPp-mice resulted in a significant reduction of motor impairment, although without significant effect in neurodegeneration. Conversely, the transference of CD4+ T-cells transduced ex vivo with retroviral particles codifying for an shRNA for DRD3 into MPTPp-mice had no effects neither in motor impairment nor in neurodegeneration. Notably, the systemic antagonism of DRD3 significantly reduced both motor impairment and neurodegeneration in MPTPp mice. Our findings show a selective alteration of DRD3-signalling in CD4+ T-cells from PD patients and indicate that the selective DRD3-antagonism in this subset of lymphocytes exerts a therapeutic effect in parkinsonian animals dampening motor impairment.
Collapse
Affiliation(s)
- Daniela Elgueta
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | - Carolina Prado
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
| | - Andro Montoya
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
| | - Valentina Ugalde
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
| | - Ornella Chovar
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
| | - Roque Villagra
- Departamento de Ciencias Neurológicas Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Henríquez
- Departamento de Ciencias Neurológicas Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel A Abellanas
- Departamento de Bioquímica y Genética, Programa de Neurociencias, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - María S Aymerich
- Departamento de Bioquímica y Genética, Programa de Neurociencias, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Rarael Franco
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas CiberNed, Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
25
|
Garretti F, Agalliu D, Lindestam Arlehamn CS, Sette A, Sulzer D. Autoimmunity in Parkinson's Disease: The Role of α-Synuclein-Specific T Cells. Front Immunol 2019; 10:303. [PMID: 30858851 PMCID: PMC6397885 DOI: 10.3389/fimmu.2019.00303] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/06/2019] [Indexed: 12/23/2022] Open
Abstract
Evidence from a variety of studies implicates a role for the adaptive immune system in Parkinson's disease (PD). Similar to multiple sclerosis (MS) patients who display a high number of T cells in the brain attacking oligodendrocytes, PD patients show higher numbers of T cells in the ventral midbrain than healthy, age-matched controls. Mouse models of the disease also show the presence of T cells in the brain. The role of these infiltrating T cells in the propagation of disease is controversial; however, recent studies indicate that they may be autoreactive in nature, recognizing disease-altered self-proteins as foreign antigens. T cells of PD patients can generate an autoimmune response to α-synuclein, a protein that is aggregated in PD. α-Synuclein and other proteins are post-translationally modified in an environment in which protein processing is altered, possibly leading to the generation of neo-epitopes, or self-peptides that have not been identified by the host immune system as non-foreign. Infiltrating T cells may also be responding to such modified proteins. Genome-wide association studies (GWAS) have shown associations of PD with haplotypes of major histocompatibility complex (MHC) class II genes, and a polymorphism in a non-coding region that may increase MHC class II in PD patients. We speculate that the inflammation observed in PD may play both pathogenic and protective roles. Future studies on the adaptive immune system in neurodegenerative disorders may elucidate steps in disease pathogenesis and assist with the development of both biomarkers and treatments.
Collapse
Affiliation(s)
- Francesca Garretti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States.,Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States.,Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, United States.,Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
26
|
van Kessel SP, El Aidy S. Bacterial Metabolites Mirror Altered Gut Microbiota Composition in Patients with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2019; 9:S359-S370. [PMID: 31609701 PMCID: PMC6839483 DOI: 10.3233/jpd-191780] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Increasing evidence is supporting the hypothesis of α-synuclein pathology spreading from the gut to the brain although the exact etiology of Parkinson's disease (PD) is unknown. Furthermore, it has been proposed that inflammation, via the gastrointestinal tract, potentially through infections, may contribute to α-synuclein pathogenesis, and thus to the risk of developing PD. Recently, many studies have shown that PD patients have an altered microbiota composition compared to healthy controls. Inflammation in the gut might drive microbiota alterations or vice versa. Many studies focused on the detection of biomarkers of the etiology, onset, or progression of PD however also report metabolites from bacterial origin. These metabolites might reflect the bacterial composition and as well play an important role in immune homeostasis, ultimately affecting the progression of PD. Besides the bacterial metabolites, pharmacological treatment of PD might play a crucial role during the progression and thus treatment of the disease on the immune system. This review aims to establish a link between the microbial composition with the observed alterations of bacterial metabolites and their impact on the immune system, which could have influential effect in onset, progression and etiology of PD.
Collapse
Affiliation(s)
- Sebastiaan P. van Kessel
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
The key role of T cells in Parkinson's disease pathogenesis and therapy. Parkinsonism Relat Disord 2018; 60:25-31. [PMID: 30404763 DOI: 10.1016/j.parkreldis.2018.10.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
This review focuses on the role of T lymphocytes in the pathogenesis of Parkinson's disease and highlights evidence for modulation of the T cell response as an effective neuroprotective strategy. In preclinical models of Parkinson's disease, modulation of the T cell response results in neuroprotection. Peripheral markers of T cell response show changes in Parkinson's patients relative to controls that have potential application as diagnostic and therapeutic biomarkers. The article also discusses the important immunomodulatory effects of dopamine which may confound study of T cells in patients on dopaminergic therapies, and highlights glatiramer acetate, an FDA-approved therapy for multiple sclerosis that works through modulating the T cell response, as a promising target for translation.
Collapse
|
28
|
Emamzadeh FN, Surguchov A. Parkinson's Disease: Biomarkers, Treatment, and Risk Factors. Front Neurosci 2018; 12:612. [PMID: 30214392 PMCID: PMC6125353 DOI: 10.3389/fnins.2018.00612] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused mainly by lack of dopamine in the brain. Dopamine is a neurotransmitter involved in movement, motivation, memory, and other functions; its level is decreased in PD brain as a result of dopaminergic cell death. Dopamine loss in PD brain is a cause of motor deficiency and, possibly, a reason of the cognitive deficit observed in some PD patients. PD is mostly not recognized in its early stage because of a long latency between the first damage to dopaminergic cells and the onset of clinical symptoms. Therefore, it is very important to find reliable molecular biomarkers that can distinguish PD from other conditions, monitor its progression, or give an indication of a positive response to a therapeutic intervention. PD biomarkers can be subdivided into four main types: clinical, imaging, biochemical, and genetic. For a long time protein biomarkers, dopamine metabolites, amino acids, etc. in blood, serum, cerebrospinal liquid (CSF) were considered the most promising. Among the candidate biomarkers that have been tested, various forms of α-synuclein (α-syn), i.e., soluble, aggregated, post-translationally modified, etc. were considered potentially the most efficient. However, the encouraging recent results suggest that microRNA-based analysis may bring considerable progress, especially if it is combined with α-syn data. Another promising analysis is the advanced metabolite profiling of body fluids, called "metabolomics" which may uncover metabolic fingerprints specific for various stages of PD. Conventional pharmacological treatment of PD is based on the replacement of dopamine using dopamine precursors (levodopa, L-DOPA, L-3,4 dihydroxyphenylalanine), dopamine agonists (amantadine, apomorphine) and MAO-B inhibitors (selegiline, rasagiline), which can be used alone or in combination with each other. Potential risk factors include environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular damage, and genomic defects. This review covers molecules that might act as the biomarkers of PD. Then, PD risk factors (including genetics and non-genetic factors) and PD treatment options are discussed.
Collapse
Affiliation(s)
- Fatemeh N. Emamzadeh
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, United Kingdom
| | - Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, KS, United States
| |
Collapse
|
29
|
Kim A, Nigmatullina R, Zalyalova Z, Soshnikova N, Krasnov A, Vorobyeva N, Georgieva S, Kudrin V, Narkevich V, Ugrumov M. Upgraded Methodology for the Development of Early Diagnosis of Parkinson's Disease Based on Searching Blood Markers in Patients and Experimental Models. Mol Neurobiol 2018; 56:3437-3450. [PMID: 30128652 DOI: 10.1007/s12035-018-1315-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
Abstract
Numerous attempts to develop an early diagnosis of Parkinson's disease (PD) by searching biomarkers in biological fluids were unsuccessful. The drawback of this methodology is searching markers in patients at the clinical stage without guarantee that they are also characteristic of either preclinical stage or prodromal stage (preclinical-prodromal stage). We attempted to upgrade this methodology by selecting only markers that are found both in patients and in PD animal models. HPLC and RT-PCR were used to estimate the concentration of amino acids, catecholamines/metabolites in plasma and gene expression in lymphocytes in 36 untreated early-stage PD patients and 52 controls, and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice at modeling the clinical ("symptomatic") stage and preclinical-prodromal ("presymptomatic") stage of PD. It was shown that among 13 blood markers found in patients, 7 markers are characteristic of parkinsonian symptomatic mice and 3 markers of both symptomatic and presymptomatic mice. According to our suggestion, the detection of the same marker in patients and symptomatic animals indicates adequate reproduction of pathogenesis along the corresponding metabolic pathway, whereas the detection of the same marker in presymptomatic animals indicates its specificity for preclinical-prodromal stage. This means that the minority of markers found in patients-decreased concentration of L-3,4-dihydroxyphenylalanine (L-DOPA) and dihydroxyphenylacetic acid (DOPAC) and increased dopamine D3 receptor gene expression-are specific for preclinical-prodromal stage and are suitable for early diagnosis of PD. Thus, we upgraded a current methodology for development of early diagnosis of PD by searching blood markers not only in patients but also in parkinsonian animals.
Collapse
Affiliation(s)
- Alexander Kim
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Razina Nigmatullina
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| | - Zuleikha Zalyalova
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
- Kazan Hospital for War Veterans, Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | | | - Alexey Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sofia Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Michael Ugrumov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
- National Research University Higher School of Economics, Moscow, Russia.
| |
Collapse
|
30
|
Sadat-Shirazi MS, Vousooghi N, Alizadeh B, Makki SM, Zarei SZ, Nazari S, Zarrindast MR. Expression of NMDA receptor subunits in human blood lymphocytes: A peripheral biomarker in online computer game addiction. J Behav Addict 2018; 7:260-268. [PMID: 29788757 PMCID: PMC6174581 DOI: 10.1556/2006.7.2018.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background and aims Repeated performance of some behaviors such as playing computer games could result in addiction. The NMDA receptor is critically involved in the development of behavioral and drug addictions. It has been claimed that the expression level of neurotransmitter receptors in the brain may be reflected in peripheral blood lymphocytes (PBLs). Methods Here, using a real-time PCR method, we have investigated the mRNA expression of GluN2A, GluN2D, GluN3A, and GluN3B subunits of the NMDA receptor in PBLs of male online computer game addicts (n = 25) in comparison with normal subjects (n = 26). Results Expression levels of GluN2A, GluN2D, and GluN3B subunits were not statistically different between game addicts and the control group. However, the mRNA expression of the GluN3A subunit was downregulated in PBLs of game addicts. Discussion and conclusions Transcriptional levels of GluN2A and GluN2D subunits in online computer game addicts are similar to our previously reported data of opioid addiction and are not different from the control group. However, unlike our earlier finding of drug addiction, the mRNA expression levels of GluN3A and GluN3B subunits in PBLs of game addicts are reduced and unchanged, respectively, compared with control subjects. It seems that the downregulated state of the GluN3A subunit of NMDA receptor in online computer game addicts is a finding that deserves more studies in the future to see whether it can serve as a peripheral biomarker in addiction studies, where the researcher wants to rule out the confusing effects of abused drugs.
Collapse
Affiliation(s)
- Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran,Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Nasim Vousooghi, Pharm D, PhD; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, PO Box 1417755469, Tehran, Iran; Phone: +98 21 8899 1118; Fax: +98 21 8899 1117; E-mail:
| | - Bentolhoda Alizadeh
- Department of Biology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Makki
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrzad Nazari
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran,Institute for Cognitive Science Studies, Tehran, Iran
| |
Collapse
|
31
|
Olesen MN, Christiansen JR, Petersen SV, Jensen PH, Paslawski W, Romero-Ramos M, Sanchez-Guajardo V. CD4 T cells react to local increase of α-synuclein in a pathology-associated variant-dependent manner and modify brain microglia in absence of brain pathology. Heliyon 2018; 4:e00513. [PMID: 29560431 PMCID: PMC5857520 DOI: 10.1016/j.heliyon.2018.e00513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that immunological processes in the brain during α-synuclein-induced neurodegeneration vary depending on the presence or absence of cell death. This suggests that the immune system is able to react differently to the different stages of α-synuclein pathology. However, it was unclear whether these immune changes were governed by brain processes or by a direct immune response to α-synuclein modifications. We have herein locally increased the peripheral concentration of α-synuclein or its pathology-associated variants, nitrated or fibrillar, to characterize the modulation of the CD4 T cell pool by α-synuclein and brain microglia in the absence of any α-synuclein brain pathology. We observed that α-synuclein changed the CD4:CD8 ratio by contracting the CD3+CD4+ T cell pool and reducing the pool of memory Regulatory T cells (Treg). Nitrated α-synuclein induced the expansion of both the CD3+CD4+ and CD3+CD4- T cells, while fibrils increased the percentage of Foxp3+ Treg cells and induced anti-α-synuclein antibodies. Furthermore, the activation pattern of CD3+CD4+ T cells was modulated in a variant-dependent manner; while nitrated and fibrillar α-synuclein expanded the fraction of activated Treg, all three α-synuclein variants reduced the expression levels of STAT3, CD25 and CD127 on CD3+CD4+ T cells. Additionally, while monomeric α-synuclein increased CD103 expression, the fibrils decreased it, and CCR6 expression was decreased by nitrated and fibrillar α-synuclein, indicating that α-synuclein variants affect the homing and tolerance capacities of CD3+CD4+ T cells. Indeed, this correlated with changes in brain microglia phenotype, as determined by FACS analysis, in an α-synuclein variant-specific manner and coincided in time with CD4+ T cell infiltration into brain parenchyma. We have shown that the peripheral immune system is able to sense and react specifically to changes in the local concentration and structure of α-synuclein, which results in variant-specific T cell migration into the brain. This may have a specific repercussion for brain microglia.
Collapse
Affiliation(s)
- Mads N Olesen
- Neuroimmunology of Degenerative Diseases Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,AUideas Pilot Center NEURODIN, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Josefine R Christiansen
- Neuroimmunology of Degenerative Diseases Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,AUideas Pilot Center NEURODIN, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steen Vang Petersen
- Laboratory for Redox Regulation, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Wojciech Paslawski
- iNANO, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- AUideas Pilot Center NEURODIN, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- Neuroimmunology of Degenerative Diseases Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,AUideas Pilot Center NEURODIN, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Levite M, Marino F, Cosentino M. Dopamine, T cells and multiple sclerosis (MS). J Neural Transm (Vienna) 2017; 124:525-542. [DOI: 10.1007/s00702-016-1640-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023]
|
33
|
Sun Y, Narayan VA, Wittenberg GM. Side effect profile similarities shared between antidepressants and immune-modulators reveal potential novel targets for treating major depressive disorders. BMC Pharmacol Toxicol 2016; 17:47. [PMID: 27765060 PMCID: PMC5073882 DOI: 10.1186/s40360-016-0090-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022] Open
Abstract
Background Side effects, or the adverse effects of drugs, contain important clinical phenotypic information that may be useful in predicting novel or unknown targets of a drug. It has been suggested that drugs with similar side-effect profiles may share common targets. The diagnostic class, Major Depressive Disorder, is increasingly viewed as being comprised of multiple depression subtypes with different biological root causes. One ‘type’ of depression generating substantial interest today focuses on patients with high levels of inflammatory burden, indicated by elevated levels of C-reactive proteins (CRP) and pro-inflammatory cytokines such as interleukin 6 (IL-6). It has been suggested that drugs targeting the immune system may have beneficial effect on this subtype of depressed patients, and several studies are underway to test this hypothesis directly. However, patients have been treated with both anti-inflammatory and antidepressant compounds for decades. It may be possible to exploit similarities in clinical readouts to better understand the antidepressant effects of immune-related drugs. Methods Here we explore the space of approved drugs by comparing the drug side effect profiles of known antidepressants and drugs targeting the immune system, and further examine the findings by comparing the human cell line expression profiles induced by them with those induced by antidepressants. Results We found 7 immune-modulators and 14 anti-inflammatory drugs sharing significant side effect profile similarities with antidepressants. Five of the 7 immune modulators share most similar side effect profiles with antidepressants that modulate dopamine release and/or uptake. In addition, the immunosuppressant rapamycin and the glucocorticoid alclometasone induces transcriptional changes similar to multiple antidepressants. Conclusions These findings suggest that some antidepressants and some immune-related drugs may affect common molecular pathways. Our findings support the idea that certain medications aimed at the immune system may be helpful in relieving depressive symptoms, and suggest that it may be of value to test immune-modulators for antidepressant-like activity in future proof-of-concept studies.
Collapse
Affiliation(s)
- Yu Sun
- Neuroscience Integrative Solutions and Informatics, Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ, USA.
| | - Vaibhav A Narayan
- Neuroscience Integrative Solutions and Informatics, Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ, USA
| | - Gayle M Wittenberg
- Neuroscience Integrative Solutions and Informatics, Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ, USA
| |
Collapse
|
34
|
Transcriptome Profile Changes in Mice with MPTP-Induced Early Stages of Parkinson's Disease. Mol Neurobiol 2016; 54:6775-6784. [PMID: 27757834 DOI: 10.1007/s12035-016-0190-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/30/2016] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Despite progress in the study of the molecular, genetic, and pathogenic mechanisms of PD, it is unclear which processes trigger the development of the pathology associated with PD. Models of the presymptomatic and early symptomatic stages of PD induced by MPTP have been used to analyze changes in transcriptome profile in brain tissues, to identify specific patterns and mechanisms underlying neurodegeneration in PD. The whole-transcriptome analysis in the brain tissues of the mice with MPTP-induced PD showed that striatum is involved in the pathogenesis in the earliest stages and the processes associated with vesicular transport may be altered. The expression profiles of the genes studied in the substantia nigra and peripheral blood confirm that lymphocytes from peripheral blood may reflect processes occurring in the brain. These data suggest that messenger RNA (mRNA) levels in peripheral blood may provide potential biomarkers of the neurodegeneration occurring in PD. The changes in expression at the mRNA and protein levels suggest that Snca may be involved in neurodegeneration and Drd2 may participate in the development of the compensatory mechanisms in the early stages of PD pathogenesis. Our data suggest that the brain cortex may be involved in the pathological processes in the early stages of PD, including the presymptomatic stage.
Collapse
|
35
|
Fernandez-Egea E, Vértes PE, Flint SM, Turner L, Mustafa S, Hatton A, Smith KGC, Lyons PA, Bullmore ET. Peripheral Immune Cell Populations Associated with Cognitive Deficits and Negative Symptoms of Treatment-Resistant Schizophrenia. PLoS One 2016; 11:e0155631. [PMID: 27244229 PMCID: PMC4887013 DOI: 10.1371/journal.pone.0155631] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/01/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Hypothetically, psychotic disorders could be caused or conditioned by immunological mechanisms. If so, one might expect there to be peripheral immune system phenotypes that are measurable in blood cells as biomarkers of psychotic states. METHODS We used multi-parameter flow cytometry of venous blood to quantify and determine the activation state of 73 immune cell subsets for 18 patients with chronic schizophrenia (17 treated with clozapine), and 18 healthy volunteers matched for age, sex, BMI and smoking. We used multivariate methods (partial least squares) to reduce dimensionality and define populations of differentially co-expressed cell counts in the cases compared to controls. RESULTS Schizophrenia cases had increased relative numbers of NK cells, naïve B cells, CXCR5+ memory T cells and classical monocytes; and decreased numbers of dendritic cells (DC), HLA-DR+ regulatory T-cells (Tregs), and CD4+ memory T cells. Likewise, within the patient group, more severe negative and cognitive symptoms were associated with decreased relative numbers of dendritic cells, HLA-DR+ Tregs, and CD4+ memory T cells. Motivated by the importance of central nervous system dopamine signalling for psychosis, we measured dopamine receptor gene expression in separated CD4+ cells. Expression of the dopamine D3 (DRD3) receptor was significantly increased in clozapine-treated schizophrenia and covaried significantly with differentiated T cell classes in the CD4+ lineage. CONCLUSIONS Peripheral immune cell populations and dopaminergic signalling are disrupted in clozapine-treated schizophrenia. Immuno-phenotypes may provide peripherally accessible and mechanistically specific biomarkers of residual cognitive and negative symptoms in this treatment-resistant subgroup of patients.
Collapse
Affiliation(s)
- Emilio Fernandez-Egea
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, Cambridge, United Kingdom
- University of Cambridge, Behavioural & Clinical Neuroscience Institute, Department of Psychiatry, Cambridge, United Kingdom
- Centro de Investigación Biomedica en Red de Salud Mental (CIBERSAM), G04, Barcelona, Spain
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Petra E. Vértes
- University of Cambridge, Behavioural & Clinical Neuroscience Institute, Department of Psychiatry, Cambridge, United Kingdom
| | - Shaun M. Flint
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
| | - Lorinda Turner
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, Cambridge, United Kingdom
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
| | - Syed Mustafa
- University of Cambridge, Behavioural & Clinical Neuroscience Institute, Department of Psychiatry, Cambridge, United Kingdom
| | - Alex Hatton
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
| | - Kenneth G. C. Smith
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, Cambridge, United Kingdom
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
| | - Paul A. Lyons
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
| | - Edward T. Bullmore
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, Cambridge, United Kingdom
- University of Cambridge, Behavioural & Clinical Neuroscience Institute, Department of Psychiatry, Cambridge, United Kingdom
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, United Kingdom
- GlaxoSmithKline, ImmunoPsychiatry, Alternative Discovery & Development, Pharmaceutical R&D, Cambridge, United Kingdom
| |
Collapse
|
36
|
Contreras F, Prado C, González H, Franz D, Osorio-Barrios F, Osorio F, Ugalde V, Lopez E, Elgueta D, Figueroa A, Lladser A, Pacheco R. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:4143-9. [PMID: 27183640 DOI: 10.4049/jimmunol.1502420] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/18/2016] [Indexed: 01/10/2023]
Abstract
Dopamine receptor D3 (DRD3) expressed on CD4(+) T cells is required to promote neuroinflammation in a murine model of Parkinson's disease. However, how DRD3 signaling affects T cell-mediated immunity remains unknown. In this study, we report that TCR stimulation on mouse CD4(+) T cells induces DRD3 expression, regardless of the lineage specification. Importantly, functional analyses performed in vivo using adoptive transfer of OVA-specific OT-II cells into wild-type recipients show that DRD3 deficiency in CD4(+) T cells results in attenuated differentiation of naive CD4(+) T cells toward the Th1 phenotype, exacerbated generation of Th2 cells, and unaltered Th17 differentiation. The reciprocal regulatory effect of DRD3 signaling in CD4(+) T cells favoring Th1 generation and impairing the acquisition of Th2 phenotype was also reproduced using in vitro approaches. Mechanistic analysis indicates that DRD3 signaling evokes suppressor of cytokine signaling 5 expression, a negative regulator of Th2 development, which indirectly favors acquisition of Th1 phenotype. Accordingly, DRD3 deficiency results in exacerbated eosinophil infiltration into the airways of mice undergoing house dust mite-induced allergic response. Interestingly, our results show that, upon chronic inflammatory colitis induced by transfer of naive CD4(+) T cells into lymphopenic recipients, DRD3 deficiency not only affects Th1 response, but also the frequency of Th17 cells, suggesting that DRD3 signaling also contributes to Th17 expansion under chronic inflammatory conditions. In conclusion, our findings indicate that DRD3-mediated signaling in CD4(+) T cells plays a crucial role in the balance of effector lineages, favoring the inflammatory potential of CD4(+) T cells.
Collapse
Affiliation(s)
- Francisco Contreras
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Carolina Prado
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Hugo González
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Dafne Franz
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | | | - Fabiola Osorio
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; and
| | - Valentina Ugalde
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Ernesto Lopez
- Laboratorio de Inmunoterapia Génica, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Daniela Elgueta
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Alicia Figueroa
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Alvaro Lladser
- Laboratorio de Inmunoterapia Génica, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 8370146, Chile;
| |
Collapse
|
37
|
Ugrumov MV. [Development of preclinical diagnosis and preventive treatment of neurodegenerative diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 115:4-14. [PMID: 26978045 DOI: 10.17116/jnevro20151151114-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neurodegenerative diseases (NDD) are serious fatal neurological and mental diseases that resulted in disability and fethal outcome. Based on the advances of basic sciences over the last two decades, new knowledge on the risk factors for NDD and molecular mechanisms of the pathogenesis are obtained. It has been shown that the accelerated process of neuronal death which is the main cause of NDD development begins long before the appearance of clinical symptoms. The first symptoms appeared only after the death of most specific regulatory neurons and exhaustion of brain compensatory reserve. Only at that time, one can make the diagnosis and start traditional treatment of patients that accounts for the extremely low efficacy of the latter. Currently, complex preclinical diagnosis based on the identification of relatively specific clinical precursors and peripheral biomarkers has been developing. Development of preclinical diagnosis and preventive treatment is a strategic issue of modern neurology and psychiatry. The resolution of this issue allows to consider NDD as cured, but not fatal, diseases.
Collapse
Affiliation(s)
- M V Ugrumov
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
38
|
Christiansen JR, Olesen MN, Otzen DE, Romero-Ramos M, Sanchez-Guajardo V. α-Synuclein vaccination modulates regulatory T cell activation and microglia in the absence of brain pathology. J Neuroinflammation 2016; 13:74. [PMID: 27055651 PMCID: PMC4825077 DOI: 10.1186/s12974-016-0532-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/18/2016] [Indexed: 12/22/2022] Open
Abstract
Background Passive and active immunization with α-synuclein has been shown to be neuroprotective in animal models of Parkinson’s disease. We have previously shown that vaccination with α-synuclein, long before α-synuclein-induced brain pathology, prevents striatal degeneration by inducing regulatory T cell infiltration in parenchyma and antibody deposition on α-synuclein overexpressing neurons. However, the effect of peripheral α-synuclein on the immune system is unknown, as are the mechanistic changes induced in the CD4 T cell population during successful neuroprotective animal studies. We have studied the changes induced by vaccination with α-synuclein in the CD4 T cell pool and its impact on brain microglia to understand the immune mechanisms behind successful vaccination strategies in Parkinson’s disease animal models. Methods Mice were immunized with WT or nitrated α-synuclein at a dose equivalent to the one used in our previous successful vaccination strategy and at a higher dose to determine potential dose-dependent effects. Animals were re-vaccinated 4 weeks after and sacrificed 5 days later. These studies were conducted in naive animals in the absence of human α-synuclein expression. Results The CD4 T cell response was modulated by α-synuclein in a dose-dependent manner, in particular the regulatory T cell population. Low-dose α-synuclein induced expansion of naive (Foxp3 + CCR6-CD127lo/neg) and dopamine receptor type D3+ regulatory T cells, as well as an increase in Stat5 protein levels. On the other hand, high dose promoted activation of regulatory T cells (Foxp3CCR6 + CD127lo/neg), which were dopamine receptor D2+D3-, and induced up-regulation of Stat5 and production of anti-α-synuclein antibodies. These effects were specific to the variant of α-synuclein used as the pathology-associated nitrated form induced distinct effects at both doses. The changes observed in the periphery after vaccination with low-dose α-synuclein correlated with an increase in CD154+, CD103+, and CD54+ microglia and the reduction of CD200R+ microglia. This resulted in the induction of a polarized tolerogenic microglia population that was CD200R-CD54CD103CD172a+ (82 % of total microglia). Conclusions We have shown for the first time the mechanisms behind α-synuclein vaccination and, importantly, how we can modulate microglia’s phenotype by regulating the CD4 T cell pool, thus shedding invaluable light on the design of neuroimmunoregulatory therapies for Parkinson’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0532-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josefine R Christiansen
- Neuroimmunology of Degenerative Diseases group, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark.,CNS Disease Modeling group, Department of Biomedicine, HEALTH , Aarhus University, Aarhus, Denmark.,AU Ideas Pilot Center NEURODIN, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark
| | - Mads N Olesen
- Neuroimmunology of Degenerative Diseases group, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark.,AU Ideas Pilot Center NEURODIN, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center - iNANO, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- CNS Disease Modeling group, Department of Biomedicine, HEALTH , Aarhus University, Aarhus, Denmark.,AU Ideas Pilot Center NEURODIN, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- Neuroimmunology of Degenerative Diseases group, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark. .,AU Ideas Pilot Center NEURODIN, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
39
|
Pramipexole, a Dopamine D2/D3 Receptor-Preferring Agonist, Prevents Experimental Autoimmune Encephalomyelitis Development in Mice. Mol Neurobiol 2016; 54:1033-1045. [PMID: 26801190 DOI: 10.1007/s12035-016-9717-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/12/2016] [Indexed: 01/16/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most used animal model of multiple sclerosis (MS) for the development of new therapies. Dopamine receptors can modulate EAE and MS development, thus highlighting the potential use of dopaminergic agonists in the treatment of MS, which has been poorly explored. Herein, we hypothesized that pramipexole (PPX), a dopamine D2/D3 receptor-preferring agonist commonly used to treat Parkinson's disease (PD), would be a suitable therapeutic drug for EAE. Thus, we report the effects and the underlying mechanisms of action of PPX in the prevention of EAE. PPX (0.1 and 1 mg/kg) was administered intraperitoneally (i.p.) from day 0 to 40 post-immunization (p.i.). Our results showed that PPX 1 mg/kg prevented EAE development, abolishing EAE signs by blocking neuroinflammatory response, demyelination, and astroglial activation in spinal cord. Moreover, PPX inhibited the production of inflammatory cytokines, such as IL-17, IL-1β, and TNF-α in peripheral lymphoid tissue. PPX was also able to restore basal levels of a number of EAE-induced effects in spinal cord and striatum, such as reactive oxygen species, glutathione peroxidase, parkin, and α-synuclein (α-syn). Thus, our findings highlight the usefulness of PPX in preventing EAE-induced motor symptoms, possibly by modulating immune cell responses, such as those found in MS and other T helper cell-mediated inflammatory diseases.
Collapse
|
40
|
Levite M. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 2016; 216:42-89. [PMID: 25728499 DOI: 10.1111/apha.12476] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/07/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
Dopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >>>CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.e. T cells that have been already activated by either antigen, mitogen, anti-CD3 antibodies cytokines or other molecules), (viii) dopamine inhibits activated Tregs in an autocrine/paracrine manner. Thus, dopamine 'suppresses the suppressors' and releases the inhibition they exert on Teffs, (ix) dopamine affects intracellular signalling molecules and cascades in T cells (e.g. ERK, Lck, Fyn, NF-κB, KLF2), (x) T cells produce dopamine (Tregs>>>Teffs), can release dopamine, mainly after activation (by antigen, mitogen, anti-CD3 antibodies, PKC activators or other), uptake extracellular dopamine, and most probably need dopamine, (xi) dopamine is important for antigen-specific interactions between T cells and dendritic cells, (xii) in few autoimmune diseases (e.g. multiple sclerosis/SLE/rheumatoid arthritis), and neurological/psychiatric diseases (e.g. Parkinson disease, Alzheimer's disease, Schizophrenia and Tourette), patient's T cells seem to have abnormal DRs expression and/or responses to dopamine or production of dopamine, (xiii) drugs that affect the dopaminergic system have potent effects on T cells (e.g. dopamine=Intropin, L-dopa, bromocriptine, haloperidol, quinpirole, reserpine, pergolide, ecopipam, pimozide, amantadine, tetrabenazine, nomifensine, butaclamol). Dopamine-induced activation of resting Teffs and suppression of Tregs seem beneficial for health and may also be used for immunotherapy of cancer and infectious diseases. Independently, suppression of DRs in autoimmune and pro-inflammatory T cells, and also in cancerous T cells, may be advantageous. The review is relevant to Immunologists, Neurologists, Neuroimmunologists, Hematologists, Psychiatrists, Psychologists and Pharmacologists.
Collapse
Affiliation(s)
- M. Levite
- School of Pharmacy; Faculty of Medicine; The Hebrew University; Jerusalem Israel
- Institute of Gene Therapy; Hadassah Hebrew University Hospital; Jerusalem Israel
- School of Behavioral Sciences; Academic College of Tel-Aviv-Yaffo; Tel Aviv Israel
| |
Collapse
|
41
|
Potential Biomarkers of the Earliest Clinical Stages of Parkinson's Disease. PARKINSONS DISEASE 2015; 2015:294396. [PMID: 26483988 PMCID: PMC4592918 DOI: 10.1155/2015/294396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder. Despite the intensive studies of this pathology, in general, the picture of the etiopathogenesis has still not been clarified fully. To understand better the mechanisms underlying the pathogenesis of PD, we analyzed the expression of 10 genes in the peripheral blood of treated and untreated patients with PD. 35 untreated patients with PD and 12 treated patients with Parkinson's disease (Hoehn and Yahr scores 1-2) were studied. An analysis of the mRNA levels of ATP13A2, PARK2, PARK7, PINK1, LRRK2, SNCA, ALDH1A1, PDHB, PPARGC1A, and ZNF746 genes in the peripheral blood of patients was carried out using reverse transcription followed by real-time PCR. A statistically significant and specific increase by more than 1.5-fold in the expression of the ATP13A2, PARK7, and ZNF746 genes was observed in patients with PD. Based on these results, it can be suggested that the upregulation of the mRNA levels of ATP13A2, PARK7, and ZNF746 in untreated patients in the earliest clinical stages can also be observed in the preclinical stages of PD, and that these genes can be considered as potential biomarkers of the preclinical stage of PD.
Collapse
|
42
|
Vousooghi N, Zarei SZ, Sadat-Shirazi MS, Eghbali F, Zarrindast MR. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts. J Neural Transm (Vienna) 2015; 122:1391-8. [DOI: 10.1007/s00702-015-1408-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/04/2015] [Indexed: 12/24/2022]
|
43
|
Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2015; 2:258-270. [PMID: 26359903 PMCID: PMC4595998 DOI: 10.1016/s2215-0366(14)00122-9] [Citation(s) in RCA: 627] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022]
Abstract
Complex interactions between the immune system and the brain might have important aetiological and therapeutic implications for neuropsychiatric brain disorders. A possible association between schizophrenia and the immune system was postulated over a century ago, and is supported by epidemiological and genetic studies pointing to links with infection and inflammation. Contrary to the traditional view that the brain is an immunologically privileged site shielded behind the blood-brain barrier, studies in the past 20 years have noted complex interactions between the immune system, systemic inflammation, and the brain, which can lead to changes in mood, cognition, and behaviour. In this Review, we describe some of the important areas of research regarding innate and adaptive immune response in schizophrenia and related psychotic disorders that, we think, will be of interest to psychiatric clinicians and researchers. We discuss potential mechanisms and therapeutic implications of these findings, including studies of anti-inflammatory drugs in schizophrenia, describe areas for development, and offer testable hypotheses for future investigations.
Collapse
Affiliation(s)
- Golam M Khandaker
- Department of Psychiatry, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Lesley Cousins
- Department of Psychiatry, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Julia Deakin
- Department of Psychiatry, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | | | - Robert Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
44
|
Melnikov MV, Pashchekov МV, Boyко AN. Psychoneuroimmunology and multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:8-15. [DOI: 10.17116/jnevro2015115228-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Kuric E, Ruscher K. Reduction of rat brain CD8+ T-cells by levodopa/benserazide treatment after experimental stroke. Eur J Neurosci 2014; 40:2463-70. [PMID: 24754803 DOI: 10.1111/ejn.12598] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 12/26/2022]
Abstract
The activation of inflammatory cascades in the ischemic hemisphere impairs mechanisms of tissue reorganization with consequences for recovery of lost neurological function. Recruitment of T-cell populations to the post-ischemic brain occurs and represents a significant part of the inflammatory response. This study was conducted to investigate if treatment with levodopa, potentially acting as an immunomodulator, affects the T-cell accumulation in the post-ischemic brain. Male Sprague-Dawley rats were subjected to transient occlusion of the middle cerebral artery (tMCAO) for 105 min followed by levodopa/benserazide treatment (20 mg/kg/15 mg/kg) for 5 days initiated on day 2 post-stroke. One week after tMCAO, T-cell populations were analysed from brains, and levels of interleukin (IL)-1β, chemokine (C-X-C motif) ligand 1, IL-4, IL-5, interferon gamma and IL-13 were analysed. After levodopa/benserazide treatment, we found a significant reduction of cytotoxic T-cells (CD3+ CD8+ ) in the ischemic hemisphere together with reduced levels of T-cell-associated cytokine IL-5, while other T-cell populations (CD3+, CD3+ CD4+, CD3+ CD4+ CD25+) were unchanged compared with vehicle-treated rats. Moreover, a reduced number of cells was associated with reduced levels of intercellular adhesion molecule 1, expressed in endothelial cells, in the infarct core of levodopa/benserazide-treated animals. Together, we provide the first evidence that dopamine can act as a potential immunomodulator by attenuating inflammation in the post-ischemic brain.
Collapse
Affiliation(s)
- Enida Kuric
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | | |
Collapse
|
46
|
Reversal of stroke induced lymphocytopenia by levodopa/benserazide treatment. J Neuroimmunol 2014; 269:94-7. [DOI: 10.1016/j.jneuroim.2014.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 11/24/2022]
|
47
|
Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V. Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 2014; 10:852-67. [PMID: 24670306 DOI: 10.4161/hv.28578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disease in the world, but there is currently no available cure for it. Current treatments only alleviate some of the symptoms for a few years, but they become ineffective in the long run and do not stop the disease. Therefore it is of outmost importance to develop therapeutic strategies that can prevent, stop, or cure Parkinson disease. A very promising target for these therapies is the peripheral immune system due to its probable involvement in the disease and its potential as a tool to modulate neuroinflammation. But for such strategies to be successful, we need to understand the particular state of the peripheral immune system during Parkinson disease in order to avoid its weaknesses. In this review we examine the available data regarding how dopamine regulates the peripheral immune system and how this regulation is affected in Parkinson disease; the specific cytokine profiles observed during disease progression and the alterations documented to date in patients' peripheral blood mononuclear cells. We also review the different strategies used in Parkinson disease animal models to modulate the adaptive immune response to salvage dopaminergic neurons from cell death. After analyzing the evidence, we hypothesize the need to prime the immune system to restore natural tolerance against α-synuclein in Parkinson disease, including at the same time B and T cells, so that T cells can reprogram microglia activation to a beneficial pattern and B cell/IgG can help neurons cope with the pathological forms of α-synuclein.
Collapse
Affiliation(s)
- Marina Romero-Ramos
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Marianne von Euler Chelpin
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| |
Collapse
|
48
|
Liu L, Yuan G, Cheng Z, Zhang G, Liu X, Zhang H. Identification of the mRNA expression status of the dopamine D2 receptor and dopamine transporter in peripheral blood lymphocytes of schizophrenia patients. PLoS One 2013; 8:e75259. [PMID: 24086483 PMCID: PMC3783374 DOI: 10.1371/journal.pone.0075259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/13/2013] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to detect the mRNA expression levels of the dopamine D2 receptor (DRD2) and dopamine transporter (DAT) in peripheral blood leukocytes (PBLs) of schizophrenia patients and to explore the relationship between the mRNA expression levels and the clinical symptoms of schizophrenia. The research included 25 cases of acute schizophrenia patients, 27 cases of chronic schizophrenia patients, and 30 healthy controls. In every case, we measured the mRNA levels of DRD2 and DAT in PBLs by real-time quantitative reverse transcription-polymerase chain reaction (real-time RT-PCR), and we evaluated the patients' clinical symptoms using the Positive and Negative Syndrome Scale (PANSS). DRD2 mRNA levels in PBLs of acute schizophrenia patients, chronic schizophrenia patients, and healthy controls were 0.32±0.13, 0.37±0.19, and 0.34±0.09, respectively, and the difference was not significant. DAT mRNA levels in PBLs of the abovementioned groups were 0.48±0.24, 0.58±0.21 and 0.39±0.24, respectively (F = 4.330, P = 0.017), and comparisons between every group showed that DAT mRNA levels in PBLs of chronic schizophrenia patients were significantly higher than those in healthy controls (MS interclass = 0.198, p = 0.005). The correlation between DRD2 mRNA levels in PBLs and the positive symptom points of PANSS in acute schizophrenia patients was significant (r = 0.443, p = 0.044). In conclusion, DRD2 mRNA levels in PBLs are correlated with positive symptoms in acute schizophrenia patients, and DAT mRNA levels in PBLs of chronic schizophrenia patients are over-expressed.
Collapse
Affiliation(s)
- Liang Liu
- Clinical Psychiatry Department, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Guozhen Yuan
- Clinical Psychiatry Department, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Zaohuo Cheng
- Clinical Psychiatry Department, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
- * E-mail:
| | - Guofu Zhang
- Clinical Psychiatry Department, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Xiaowei Liu
- Clinical Psychiatry Department, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Huifang Zhang
- Clinical Psychiatry Department, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| |
Collapse
|
49
|
González H, Contreras F, Prado C, Elgueta D, Franz D, Bernales S, Pacheco R. Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson's disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:5048-56. [PMID: 23589621 DOI: 10.4049/jimmunol.1203121] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Emerging evidence has demonstrated that CD4(+) T cells infiltrate into the substantia nigra (SN) in Parkinson's disease (PD) patients and in animal models of PD. SN-infiltrated CD4(+) T cells bearing inflammatory phenotypes promote microglial activation and strongly contribute to neurodegeneration of dopaminergic neurons. Importantly, altered expression of dopamine receptor D3 (D3R) in PBLs from PD patients has been correlated with disease severity. Moreover, pharmacological evidence has suggested that D3R is involved in IFN-γ production by human CD4(+) T cells. In this study, we examined the role of D3R expressed on CD4(+) T cells in neurodegeneration of dopaminergic neurons in the SN using a mouse model of PD. Our results show that D3R-deficient mice are strongly protected against loss of dopaminergic neurons and microglial activation during 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. Notably, D3R-deficient mice become susceptible to MPTP-induced neurodegeneration and microglial activation upon transfer of wild-type (WT) CD4(+) T cells. Furthermore, RAG1 knockout mice, which are devoid of T cells and are resistant to MPTP-induced neurodegeneration, become susceptible to MPTP-induced loss of dopaminergic neurons when reconstituted with WT CD4(+) T cells but not when transferred with D3R-deficient CD4(+) T cells. In agreement, experiments analyzing activation and differentiation of CD4(+) T cells revealed that D3R favors both T cell activation and acquisition of the Th1 inflammatory phenotype. These findings indicate that D3R expressed on CD4(+) T cells plays a fundamental role in the physiopathology of MPTP-induced PD in a mouse model.
Collapse
Affiliation(s)
- Hugo González
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
50
|
Amigó S, Caselles A, Micó JC. Self-regulation therapy to reproduce drug effects: a suggestion technique to change personality and the DRD3 gene expression. Int J Clin Exp Hypn 2013; 61:282-304. [PMID: 23679112 DOI: 10.1080/00207144.2013.784094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study proposes a strategy, based on self-regulation therapy, to change personality and its biological substrate, the DRD3 gene expression. It has been demonstrated that acute doses of stimulating drugs, like methylphenidate, are able to change personality and the expression of certain genes in the short term. On the other hand, self-regulation therapy has been proven to reproduce the effects of drugs. Thus, it is feasible to hope that self-regulation therapy is equally effective as methylphenidate in changing personality and the gene expression. This is a preliminary study with a single-case experimental design with replication in which 2 subjects participated. The results and potential implications for research and psychotherapy are discussed.
Collapse
|