1
|
Mei Z, Liu J, Bennett DA, Seyfried N, Wingo AP, Wingo TS. Unraveling sex differences in Alzheimer's disease and related endophenotypes with brain proteomes. Alzheimers Dement 2025; 21:e70206. [PMID: 40346727 PMCID: PMC12064417 DOI: 10.1002/alz.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Sex differences exist in Alzheimer's disease (AD), but the underlying mechanisms remain unclear. METHODS We examined brain proteomes profiled from the dorsolateral prefrontal cortex of 770 donors (66.2% female). RESULTS Proteome-wide differential expression analysis in males and females jointly identified many significant proteins for AD dementia (n = 1228), amyloid beta (n = 1183), tangles (n = 1309), and global cognitive trajectory (n = 2325) at a false discovery rate of <0.05. Sex-stratified analyses also identified many proteins associated with AD or its endophenotypes. Finally, we found 10 proteins with significant sex-by-trait interactions, including one in AD clinical diagnosis (MARCKS), seven in cognitive trajectories (TOGARAM1, PLCD3, SLC22A5, MTFR1L, DCUN1D5, S100A12, and TRIM46), and two in cerebral pathologies (PANK4 and SOS1). DISCUSSION The 10 proteins with sex interaction in AD cover a range of functions likely relevant for AD pathogenesis, including estrogen response, inflammation, and mitochondrial biology, and their specific roles in AD ought to be studied. Future work should test their potential as sex-specific AD biomarkers. HIGHLIGHTS At the phenotypic level, we found sex differences in baseline cognitive performance, cognitive trajectories, and AD hallmark pathologies. Proteome-wide differential expression analyses identified many brain proteins associated with AD and its endophenotypes in either sex alone or when considered together. We found 10 brain proteins with significant sex interactions in AD and its endophenotypes, which could be investigated as potential sex-specific biomarkers of AD.
Collapse
Affiliation(s)
- Zhen Mei
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Jiaqi Liu
- Department of PsychiatryUniversity of California, DavisSacramentoCaliforniaUSA
| | - David A Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Nicholas Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Aliza P. Wingo
- Department of PsychiatryUniversity of California, DavisSacramentoCaliforniaUSA
- Division of Mental HealthAtlanta VA Medical CenterDecaturGeorgiaUSA
| | - Thomas S. Wingo
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
- Alzheimer's Disease Research CenterUniversity of California, DavisSacramentoCaliforniaUSA
| |
Collapse
|
2
|
Mukherjee AG, Mishra S, Gopalakrishnan AV, Kannampuzha S, Murali R, Wanjari UR, B S, Vellingiri B, Madhyastha H, Kanagavel D, Vijayan M. Unraveling the mystery of citrate transporters in Alzheimer's disease: An updated review. Ageing Res Rev 2025; 107:102726. [PMID: 40073978 DOI: 10.1016/j.arr.2025.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/26/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
A key molecule in cellular metabolism, citrate is essential for lipid biosynthesis, energy production, and epigenetic control. The etiology of Alzheimer's disease (AD), a progressive neurodegenerative illness marked by memory loss and cognitive decline, may be linked to dysregulated citrate transport, according to recent research. Citrate transporters, which help citrate flow both inside and outside of cells, are becoming more and more recognized as possible participants in the molecular processes underlying AD. Citrate synthase (CS), a key enzyme in the tricarboxylic acid (TCA) cycle, supports mitochondrial function and neurotransmitter synthesis, particularly acetylcholine (ACh), essential for cognition. Changes in CS activity affect citrate availability, influencing energy metabolism and neurotransmitter production. Choline, a precursor for ACh, is crucial for neuronal function. Lipid metabolism, oxidative stress reactions, and mitochondrial function can all be affected by aberrant citrate transport, and these changes are linked to dementia. Furthermore, the two main pathogenic characteristics of AD, tau hyperphosphorylation and amyloid-beta (Aβ) aggregation, may be impacted by disturbances in citrate homeostasis. The goal of this review is to clarify the complex function of citrate transporters in AD and provide insight into how they contribute to the development and course of the illness. We aim to provide an in-depth idea of which particular transporters are dysregulated in AD and clarify the functional implications of these dysregulated transporters in brain cells. To reduce neurodegenerative processes and restore metabolic equilibrium, we have also discussed the therapeutic potential of regulating citrate transport. Gaining insight into the relationship between citrate transporters and the pathogenesis of AD may help identify new indicators for early detection and creative targets for treatment. This study offers hope for more potent ways to fight this debilitating illness and is a crucial step in understanding the metabolic foundations of AD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shatakshi Mishra
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Stany B
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Deepankumar Kanagavel
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Culley G, Henriques A, Hardy D, Wojcinski A, Chabert A, El Waly B, Poindron P, Callizot N. Amyloid-beta peptide toxicity in the aged brain is a one-way journey into Alzheimer's disease. Front Aging Neurosci 2025; 17:1569181. [PMID: 40370748 PMCID: PMC12075133 DOI: 10.3389/fnagi.2025.1569181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Aging is the primary risk factor for Alzheimer's disease (AD), and the aging brain shares many characteristics with the early stages of AD. This study investigates the interplay between aging and amyloid-beta (Aβ) induced pathology. We developed an AD-like in vivo model, using the stereotactic injection of Aβ1-42 oligomers into the hippocampi of aged mice. Cognitive impairments were assessed using a Y maze. Immunohistochemical and protein analyses were conducted to evaluate neuronal survival, synaptic function and number, levels of tau hyperphosphorylation, microglial activation, autophagy, and mitochondrial function. We compared baseline aging effects in young adult (3 months) and aged (16-18 months) healthy mice. We found that aged mice displayed significant deficits in working memory, synaptic density and neurogenesis, and an increased basal inflammation. In response to acute injury to the hippocampus with Aβ oligomer injection, aged mice suffered sustained deficits, including impaired cognitive function, further reduced neurogenesis and synaptic density, increased microglial activation, astrogliosis, mitochondrial stress, and lysosomal burden. Furthermore, in the weeks following injury, the aged mice show increased amyloid accumulation, microglial activation and phosphorylated tau propagation, expanding from the injection site to adjacent hippocampal regions. In contrast, the young adult mice exhibited only acute effects without long-term progression of pathology or neurodegeneration. We conclude that the aging brain environment increases susceptibility to an acute Aβ injury, creating fertile soil for the progression of AD, whereas younger brains are able to overcome this injury. The processes of aging should be considered as an integral factor in the development of the disease. Targeting aging mechanisms may provide new strategies for AD prevention and treatment, as well as for other neurodegenerative diseases.
Collapse
|
4
|
Emrani S, Sundermann EE. Sex/gender differences in the clinical trajectory of Alzheimer's disease: Insights into diagnosis and cognitive reserve. Front Neuroendocrinol 2025; 77:101184. [PMID: 39951912 DOI: 10.1016/j.yfrne.2025.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
The two-times higher prevalence of Alzheimer's disease (AD) in females versus males is well-known; however, there are also sex/gender differences in clinical presentation and diagnostic accuracy that are less examined but equally important to understand in terms of improving early detection, intervention and disease tracking in each sex/gender. This review explores how these disparities in clinical presentation manifest across the AD continuum, with a focus on the earlier stages of preclinical AD and mild cognitive impairment (MCI). We summarize evidence indicating that female's verbal memory advantage may mask early cognitive decline, leading to delayed MCI diagnosis and limiting opportunities for early intervention. Conversely, females demonstrate steeper cognitive decline at later disease stages compared to males. These patterns align with the cognitive reserve theory, suggesting female's verbal memory strength may act as a domain-specific resilience factor. Lastly, this review emphasizes the need for sex-sensitive diagnostic tools to improve early detection accuracy and equity in clinical practice.
Collapse
Affiliation(s)
- Sheina Emrani
- Department of Neurology, University of Pennsylvania, Dulles 3(rd) Floor, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego, UCSD ACTRI Building, Office 2W517, USA.
| |
Collapse
|
5
|
Duggan MR, Paterson C, Lu Y, Biegel H, Dark HE, Cordon J, Bilgel M, Kaneko N, Shibayama M, Kato S, Furuichi M, Waga I, Hiraga K, Katsuno M, Nishita Y, Otsuka R, Davatzikos C, Erus G, Loupy K, Simpson M, Lewis A, Moghekar A, Palta P, Gottesman RF, Resnick SM, Coresh J, Williams SA, Walker KA. The Dementia SomaSignal Test (dSST): A plasma proteomic predictor of 20-year dementia risk. Alzheimers Dement 2025; 21:e14549. [PMID: 39936291 PMCID: PMC11851157 DOI: 10.1002/alz.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
INTRODUCTION There is an unmet need for tools to quantify dementia risk during its multi-decade preclinical/prodromal phase, given that current biomarkers predict risk over shorter follow-up periods and are specific to Alzheimer's disease. METHODS Using high-throughput proteomic assays and machine learning techniques in the Atherosclerosis Risk in Communities study (n = 11,277), we developed the Dementia SomaSignal Test (dSST). RESULTS In addition to outperforming existing plasma biomarkers, the dSST predicted mid-life dementia risk over a 20-year follow-up across two independent cohorts with different ethnic backgrounds (areas under the curve [AUCs]: dSST 0.68-0.70, dSST+age 0.75-0.81). In a separate cohort, the dSST was associated with longitudinal declines across multiple cognitive domains, accelerated brain atrophy, and elevated measures of neuropathology (as evidenced by positron emission tomography and plasma biomarkers). DISCUSSION The dSST is a cost-effective, scalable, and minimally invasive protein-based prognostic aid that can quantify risk up to two decades before dementia onset. HIGHLIGHTS The Dementia SomaSignal Test (dSST) predicts 20-year dementia risk across two independent cohorts. dSST outperforms existing plasma biomarkers in predicting multi-decade dementia risk. dSST predicts cognitive decline and accelerated brain atrophy in a third cohort. dSST is a prognostic aid that can predict dementia risk over two decades.
Collapse
Grants
- U01HL096812 NHLBI, NIA, NINDS, NIDCD
- U01 HL096812 NHLBI NIH HHS
- 75N92022D00002 NHLBI NIH HHS
- U01 HL096917 NHLBI NIH HHS
- U01 HL096902 NHLBI NIH HHS
- U01HL096902 NHLBI, NIA, NINDS, NIDCD
- 75N92022D00004 NHLBI NIH HHS
- U01HL096917 NHLBI, NIA, NINDS, NIDCD
- U01HL096814 NHLBI, NIA, NINDS, NIDCD
- U01 HL096814 NHLBI NIH HHS
- 75N92022D00003 NHLBI NIH HHS
- 75N92022D00005 NHLBI NIH HHS
- Intramural Research Program (IRP) of the National Institute on Aging (NIA)
- 75N92022D00001 NHLBI NIH HHS
- National Center for Geriatrics and Gerontology
- Nagoya University
- U01HL096899 NHLBI, NIA, NINDS, NIDCD
- NEC Solution Innovators Limited
- U01 HL096899 NHLBI NIH HHS
- National Center for Geriatrics and Gerontology
- Nagoya University
Collapse
Affiliation(s)
- Michael R. Duggan
- Laboratory of Behavioral NeuroscienceNational Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Clare Paterson
- Department of Clinical and Research DevelopmentStandard BioToolsBoulderColoradoUSA
| | - Yifei Lu
- Department of EpidemiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Hannah Biegel
- Department of Clinical and Research DevelopmentStandard BioToolsBoulderColoradoUSA
| | - Heather E. Dark
- Laboratory of Behavioral NeuroscienceNational Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Jenifer Cordon
- Laboratory of Behavioral NeuroscienceNational Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Murat Bilgel
- Laboratory of Behavioral NeuroscienceNational Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Naoto Kaneko
- Innovation LaboratoryNEC Solution Innovators Limited, TokyoKoto‐kuJapan
| | - Masaki Shibayama
- Innovation LaboratoryNEC Solution Innovators Limited, TokyoKoto‐kuJapan
| | - Shintaro Kato
- Innovation LaboratoryNEC Solution Innovators Limited, TokyoKoto‐kuJapan
- FonesLife Proteomics LaboratoryFonesLife Corporation, Chuo CityTokyoJapan
| | - Makio Furuichi
- Innovation LaboratoryNEC Solution Innovators Limited, TokyoKoto‐kuJapan
- FonesLife Proteomics LaboratoryFonesLife Corporation, Chuo CityTokyoJapan
| | - Iwao Waga
- Innovation LaboratoryNEC Solution Innovators Limited, TokyoKoto‐kuJapan
- FonesLife Proteomics LaboratoryFonesLife Corporation, Chuo CityTokyoJapan
- Well‐being Design Institute for HealthTohoku UniversityAoba‐kuSendaiJapan
| | - Keita Hiraga
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Masahisa Katsuno
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaAichiJapan
- Department of Clinical Research EducationNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Yukiko Nishita
- Department of Epidemiology of AgingNational Center for Geriatrics and GerontologyObuAichiJapan
| | - Rei Otsuka
- Department of Epidemiology of AgingNational Center for Geriatrics and GerontologyObuAichiJapan
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging LaboratoryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging LaboratoryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kelsey Loupy
- Department of Clinical and Research DevelopmentStandard BioToolsBoulderColoradoUSA
| | - Melissa Simpson
- Department of Clinical and Research DevelopmentStandard BioToolsBoulderColoradoUSA
| | - Alexandria Lewis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Abhay Moghekar
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Priya Palta
- Department of NeurologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Rebecca F. Gottesman
- Stroke BranchNational Institute of Neurological Disorders and StrokeBethesdaMarylandUSA
| | - Susan M. Resnick
- Laboratory of Behavioral NeuroscienceNational Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Josef Coresh
- Departments of Population Health and MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Stephen A. Williams
- Department of Clinical and Research DevelopmentStandard BioToolsBoulderColoradoUSA
| | - Keenan A. Walker
- Laboratory of Behavioral NeuroscienceNational Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
6
|
Joynes CM, Bilgel M, An Y, Moghekar AR, Ashton NJ, Kac PR, Karikari TK, Blennow K, Zetterberg H, Thambisetty M, Ferrucci L, Resnick SM, Walker KA. Sex differences in the trajectories of plasma biomarkers, brain atrophy, and cognitive decline relative to amyloid onset. Alzheimers Dement 2025; 21:e14405. [PMID: 39609257 PMCID: PMC11775450 DOI: 10.1002/alz.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION The factors that influence the progression of Alzheimer's disease (AD) after individuals become amyloid-positive are poorly understood. This study examines how sex influences the longitudinal trajectories of plasma AD and neurodegenerative biomarkers in the years following a person's estimated onset of amyloid-β. METHODS Linear mixed-effects modeling investigated overall and sex-specific longitudinal trajectories of plasma biomarkers, brain volumes, and cognition relative to the estimated age of amyloid onset in a cohort of 78 amyloid-positive Baltimore Longitudinal Study of Aging (BLSA) participants (n = 45 male; follow-up time: 6.8 years [SD 3.31]). Amyloid status was ascertained with 11C-Pittsburgh compound B (PiB) PET imaging. RESULTS After amyloid onset, men displayed steeper increases in pTau181, pTau231, and neurofilament light (NfL) compared to women. In this same period, men demonstrated steeper declines in brain volume and cognitive performance. DISCUSSION These findings suggest that sex influences the trajectory of AD pathology, neuronal injury, and symptom progression after individuals become amyloid-positive. HIGHLIGHTS Steeper rates of increase in pTau and GFAP among amyloid-positive individuals. After amyloid onset, steeper increases in pTau and NfL concentrations in men than in women. Steeper declines in brain volume and cognition in men corroborate biomarker results.
Collapse
Affiliation(s)
- Cassandra M. Joynes
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Murat Bilgel
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Yang An
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Abhay R. Moghekar
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgMölndalSweden
- King's College LondonInstitute of PsychiatryPsychology and NeuroscienceMaurice Wohl Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical ResearchUnit for Dementia at South London and MaudsleyNHS FoundationLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Przemysław R. Kac
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgMölndalSweden
| | - Thomas K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesShatinHong Kong
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Madhav Thambisetty
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Translational Gerontology BranchNational Institute on AgingBaltimoreMarylandUSA
| | - Susan M. Resnick
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Keenan A. Walker
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| |
Collapse
|
7
|
Barragán AG, Gómez IE, Cuesta DIL. Social patterning of cognitive impairment in Colombia: evidence from the SABE 2015 study. BMC Geriatr 2024; 24:1002. [PMID: 39702136 DOI: 10.1186/s12877-024-05432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/03/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Dementia, an increasingly critical public health concern in low and middle-income countries, is associated with lower socioeconomic status, early cognitive impairment, and elevated dementia-related mortality risk. This study seeks to estimate the prevalence of cognitive impairment, investigate its links with social indicators, and visualize social gradients across different regions in Colombia. METHODS Secondary data analysis from the SABE 2015 survey, multinomial regression analyses, and equiplot graphs. RESULTS A sample of 23,694 individuals 60 years or older from Colombia. Higher risks were observed among individuals with dark skin color (OR 1.27; 95%CI: 1.10 - 1.47), lower educational levels (OR 3.01; 95%CI:2.04 - 4.42) and reading illiteracy (OR 2.14; 95%CI: 1.87 - 2.46). Inequity patterns were identified by region of residence and income. DISCUSSION This study underscores the need for targeted interventions aimed at reducing health inequities. The results highlight the higher prevalence rates of cognitive impairment among socially disadvantaged individuals.
Collapse
Affiliation(s)
- Alejandra Guerrero Barragán
- Global Brain Health Institute, Trinity College Institute of Neuroscience, Trinity College Dublin, Room 0.60 Lloyd Building, Dublin, 2, Ireland.
- Global Brain Health Institute, University of California, San Francisco (UCSF), 1651 4Th St, 3Rd Floor, San Francisco, CA, 94158, USA.
- Universidad de los Andes, Escuela de Gobierno Alberto Lleras Camargo, Carrera 1° N° 19-27. Bloque AU, Piso 2, Bogotá, 111711, Colombia.
| | - Inés Elvira Gómez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Carrera 98 No. 18 - 49, Cali, 760032, Colombia
- Facultad de Ciencias de La Salud, Departamento de Salud Pública y Medicina Comunitaria, Universidad ICESI, Calle 18 No. 122-135 Pance, Cali, 760031, Colombia
| | - Diego Iván Lucumí Cuesta
- Universidad de los Andes, Escuela de Gobierno Alberto Lleras Camargo, Carrera 1° N° 19-27. Bloque AU, Piso 2, Bogotá, 111711, Colombia
| |
Collapse
|
8
|
Yu G, Thorpe A, Zeng Q, Wang E, Cai D, Wang M, Zhang B. The Landscape of Sex- and APOE Genotype-Specific Transcriptional Changes in Alzheimer's Disease at the Single Cell Level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626234. [PMID: 39677706 PMCID: PMC11642736 DOI: 10.1101/2024.12.01.626234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with approximately two-thirds of AD patients are females. Basic and clinical research studies show evidence supporting sex-specific differences contributing to the complexity of AD. There is also strong evidence supporting sex-specific interaction between the primary genetic risk factor of AD, APOE4 and AD-associated neurodegenerative processes. Recent studies by us and others have identified sex and/or APOE4 specific differentially expressed genes in AD based on the bulk tissue RNA-sequencing data of postmortem human brain samples in AD. However, there lacks a comprehensive investigation of the interplay between sex and APOE genotypes at the single cell level. In the current study, we systematically explore sex and APOE genotype differences in single cell transcriptomics in AD. Our work provides a comprehensive overview of sex and APOE genotype-specific transcriptomic changes across 54 high-resolution cell types in AD and highlights individual genes and brain cell types that show significant differences between sexes and APOE genotypes. This study lays the groundwork for exploring the complex molecular mechanisms of AD and will inform the development of effective sex- and APOE-stratified interventions for AD.
Collapse
|
9
|
Besser LM, Fuentes AJ, Zhang JN, O'Shea DM, Galvin JE. Intersectionality of gender with social determinants of health and asymptomatic Alzheimer's disease neuropathology. J Alzheimers Dis 2024; 102:110-118. [PMID: 39497306 PMCID: PMC11915083 DOI: 10.1177/13872877241283823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
BACKGROUND Women comprise approximately two-thirds of Alzheimer's disease cases. OBJECTIVE This is the first known study to investigate the role of intersectionality between gender and other social determinants of health (SDOH) in the presentation of cognitive symptoms (i.e., being asymptomatic or symptomatic) among those with pathologically confirmed Alzheimer's disease. METHODS We studied 3107 individuals with Alzheimer's disease neuropathology (ADNP) confirmed at autopsy. Asymptomatic ADNP was defined as the absence of a clinical diagnosis of mild cognitive impairment (MCI) or dementia before death (versus symptomatic: diagnosis of MCI/dementia). SDOH included gender, education, ethnoracial group, living alone, and primary language. Multivariable logistic regression tested associations between SDOH and asymptomatic ADNP (versus symptomatic); models were also stratified by gender. RESULTS Women, Hispanics, those living alone, and more educated individuals were found to have higher odds of asymptomatic ADNP. Non-English speakers had lower odds of asymptomatic ADNP. Both women and men had higher odds of asymptomatic ADNP if Hispanic or living alone. In only women, non-English speakers had lower odds while in only men, more education was associated with higher odds of asymptomatic ADNP. CONCLUSIONS Gender, education, ethnicity, primary language, and living alone, and intersectionality of gender with primary language, may differentially influence MCI and dementia diagnosis prior to death among those with underlying ADNP. These findings emphasize the need for future Alzheimer's disease research to prioritize social determinants of brain health including their intersectionality with gender and how to inform targeted interventions.
Collapse
Affiliation(s)
- Lilah M Besser
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | | | - Jessica N Zhang
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deirdre M O'Shea
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
10
|
Cortés Malagón EM, López Ornelas A, Olvera Gómez I, Bonilla Delgado J. The Kynurenine Pathway, Aryl Hydrocarbon Receptor, and Alzheimer's Disease. Brain Sci 2024; 14:950. [PMID: 39335444 PMCID: PMC11429728 DOI: 10.3390/brainsci14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, mainly affecting elderly individuals. AD is characterized by β-amyloid plaques, abnormal tau tangles, neuronal loss, and metabolic disruptions. Recent studies have revealed the involvement of the kynurenine (KP) pathway and the aryl hydrocarbon receptor (AhR) in AD development. The KP pathway metabolizes tryptophan to produce neuroactive substances like kynurenine, kynurenic acid, and quinolinic acid. In AD, high levels of kynurenine and the neurotoxic quinolinic acid are associated with increased neuroinflammation and excitotoxicity; conversely, reduced levels of kynurenic acid, which acts as a glutamate receptor antagonist, compromise neuroprotection. Research has indicated elevated KP metabolites and enzymes in the hippocampus of AD patients and other tissues such as blood, cerebrospinal fluid, and urine. However, the finding that KP metabolites are AD biomarkers in blood, cerebrospinal fluid, and urine has been controversial. This controversy, stemming from the lack of consideration of the specific stage of AD, details of the patient's treatment, cognitive deficits, and psychiatric comorbidities, underscores the need for more comprehensive research. AhR, a ligand-activated transcription factor, regulates immune response, oxidative stress, and xenobiotic metabolism. Various ligands, including tryptophan metabolites, can activate it. Some studies suggest that AhR activation contributes to AD, while others propose that it provides neuroprotection. This discrepancy may be explained by the specific ligands that activate AhR, highlighting the complex relationship between the KP pathway, AhR activation, and AD, where the same pathway can produce both neuroprotective and harmful effects.
Collapse
Affiliation(s)
- Enoc Mariano Cortés Malagón
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| | - Adolfo López Ornelas
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| | - Irlanda Olvera Gómez
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Facultad Ciencias de la Salud, Universidad Anáhuac Norte, Estado de México 52786, Mexico
| | - José Bonilla Delgado
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BINESTAR, Ixtapaluca 56530, Mexico
| |
Collapse
|
11
|
Voigt RM, Ouyang B, Keshavarzian A. Outdoor nighttime light exposure (light pollution) is associated with Alzheimer's disease. Front Neurosci 2024; 18:1378498. [PMID: 39308948 PMCID: PMC11412842 DOI: 10.3389/fnins.2024.1378498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/09/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Alzheimer's disease (AD) prevalence has increased in the last century which can be attributed to increased lifespan, but environment is also important. Exposure to artificial light at night is one environmental factor that may influence AD. Methods This study evaluated the relationship between outdoor nighttime light exposure and AD prevalence in the United States using satellite acquired outdoor nighttime light intensity and Medicare data. Results Higher outdoor nighttime light was associated with higher prevalence of AD. While atrial fibrillation, diabetes, hyperlipidemia, hypertension, and stroke were associated more strongly with AD prevalence than nighttime light intensity, nighttime light was more strongly associated with AD prevalence than alcohol abuse, chronic kidney disease, depression, heart failure, and obesity. Startlingly, nighttime light exposure more strongly associated with AD prevalence in those under the age of 65 than any other disease factor examined. Discussion These data suggest light exposure at night may influence AD, but additional studies are needed.
Collapse
Affiliation(s)
- Robin M. Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
12
|
Duggan MR, Peng Z, Sipilä PN, Lindbohm JV, Chen J, Lu Y, Davatzikos C, Erus G, Hohman TJ, Andrews SJ, Candia J, Tanaka T, Joynes CM, Alvarado CX, Nalls MA, Cordon J, Daya GN, An Y, Lewis A, Moghekar A, Palta P, Coresh J, Ferrucci L, Kivimäki M, Walker KA. Proteomics identifies potential immunological drivers of postinfection brain atrophy and cognitive decline. NATURE AGING 2024; 4:1263-1278. [PMID: 39143319 PMCID: PMC11408246 DOI: 10.1038/s43587-024-00682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Infections have been associated with the incidence of Alzheimer disease and related dementias, but the mechanisms responsible for these associations remain unclear. Using a multicohort approach, we found that influenza, viral, respiratory, and skin and subcutaneous infections were associated with increased long-term dementia risk. These infections were also associated with region-specific brain volume loss, most commonly in the temporal lobe. We identified 260 out of 942 immunologically relevant proteins in plasma that were differentially expressed in individuals with an infection history. Of the infection-related proteins, 35 predicted volumetric changes in brain regions vulnerable to infection-specific atrophy. Several of these proteins, including PIK3CG, PACSIN2, and PRKCB, were related to cognitive decline and plasma biomarkers of dementia (Aβ42/40, GFAP, NfL, pTau-181). Genetic variants that influenced expression of immunologically relevant infection-related proteins, including ITGB6 and TLR5, predicted brain volume loss. Our findings support the role of infections in dementia risk and identify molecular mediators by which infections may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Pyry N Sipilä
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Joni V Lindbohm
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Broad Institute of the MIT and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA
- Brain Sciences, University College London, London, UK
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yifei Lu
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Guray Erus
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shea J Andrews
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jenifer Cordon
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gulzar N Daya
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Priya Palta
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mika Kivimäki
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Brain Sciences, University College London, London, UK
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Ma YZ, Cao JX, Zhang YS, Su XM, Jing YH, Gao LP. T Cells Trafficking into the Brain in Aging and Alzheimer's Disease. J Neuroimmune Pharmacol 2024; 19:47. [PMID: 39180590 DOI: 10.1007/s11481-024-10147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
The meninges, choroid plexus (CP) and blood-brain barrier (BBB) are recognized as important gateways for peripheral immune cell trafficking into the central nervous system (CNS). Accumulation of peripheral immune cells in brain parenchyma can be observed during aging and Alzheimer's disease (AD). However, the mechanisms by which peripheral immune cells enter the CNS through these three pathways and how they interact with resident cells within the CNS to cause brain injury are not fully understood. In this paper, we review recent research on T cells recruitment in the brain during aging and AD. This review focuses on the possible pathways through which T cells infiltrate the brain, the evidence that T cells are recruited to the brain, and how infiltrating T cells interact with the resident cells in the CNS during aging and AD. Unraveling these issues will contribute to a better understanding of the mechanisms of aging and AD from the perspective of immunity, and hopefully develop new therapeutic strategies for brain aging and AD.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
14
|
Kolahchi Z, Henkel N, Eladawi MA, Villarreal EC, Kandimalla P, Lundh A, McCullumsmith RE, Cuevas E. Sex and Gender Differences in Alzheimer's Disease: Genetic, Hormonal, and Inflammation Impacts. Int J Mol Sci 2024; 25:8485. [PMID: 39126053 PMCID: PMC11313277 DOI: 10.3390/ijms25158485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Two-thirds of Americans with Alzheimer's disease are women, indicating a profound variance between the sexes. Variances exist between the sexes in the age and intensity of the presentation, cognitive deficits, neuroinflammatory factors, structural and functional brain changes, as well as psychosocial and cultural circumstances. Herein, we summarize the existing evidence for sexual dimorphism and present the available evidence for these distinctions. Understanding these complexities is critical to developing personalized interventions for the prevention, care, and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Nicholas Henkel
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Mahmoud A. Eladawi
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Emma C. Villarreal
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Prathik Kandimalla
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Anna Lundh
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Robert E. McCullumsmith
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
- ProMedica Neurosciences Center, Toledo, OH 43606, USA
| | - Elvis Cuevas
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| |
Collapse
|
15
|
Duggan MR, Gomez GT, Joynes CM, Bilgel M, Chen J, Fattorelli N, Hohman TJ, Mancuso R, Cordon J, Castellano T, Koran MEI, Candia J, Lewis A, Moghekar A, Ashton NJ, Kac PR, Karikari TK, Blennow K, Zetterberg H, Martinez-Muriana A, De Strooper B, Thambisetty M, Ferrucci L, Gottesman RF, Coresh J, Resnick SM, Walker KA. Proteome-wide analysis identifies plasma immune regulators of amyloid-beta progression. Brain Behav Immun 2024; 120:604-619. [PMID: 38977137 PMCID: PMC11682725 DOI: 10.1016/j.bbi.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
While immune function is known to play a mechanistic role in Alzheimer's disease (AD), whether immune proteins in peripheral circulation influence the rate of amyloid-β (Aβ) progression - a central feature of AD - remains unknown. In the Baltimore Longitudinal Study of Aging, we quantified 942 immunological proteins in plasma and identified 32 (including CAT [catalase], CD36 [CD36 antigen], and KRT19 [keratin 19]) associated with rates of cortical Aβ accumulation measured with positron emission tomography (PET). Longitudinal changes in a subset of candidate proteins also predicted Aβ progression, and the mid- to late-life (20-year) trajectory of one protein, CAT, was associated with late-life Aβ-positive status in the Atherosclerosis Risk in Communities (ARIC) study. Genetic variation that influenced plasma levels of CAT, CD36 and KRT19 predicted rates of Aβ accumulation, including causal relationships with Aβ PET levels identified with two-sample Mendelian randomization. In addition to associations with tau PET and plasma AD biomarker changes, as well as expression patterns in human microglia subtypes and neurovascular cells in AD brain tissue, we showed that 31 % of candidate proteins were related to mid-life (20-year) or late-life (8-year) dementia risk in ARIC. Our findings reveal plasma proteins associated with longitudinal Aβ accumulation, and identify specific peripheral immune mediators that may contribute to the progression of AD pathophysiology.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gabriela T Gomez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicola Fattorelli
- VIB Center for Brain and Disease Research, Flanders Institute for Biotechnology, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders Laboratory, Center for Molecular Neurology, Flanders Institute for Biotechnology, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jenifer Cordon
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tonnar Castellano
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ellen I Koran
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Biomedical Research Center for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK; Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; ICM Institute, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France; First Affiliated Hospital, University of Science and Technology of China, Anhui, PR China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, University College London Institute of Neurology, London, UK; UK Dementia Research Institute, University College London, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Special Administrative Region; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Martinez-Muriana
- VIB Center for Brain and Disease Research, Flanders Institute for Biotechnology, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Flanders Institute for Biotechnology, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium; UK Dementia Research Institute, University College London, London, UK
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Josef Coresh
- Departments of Population Health and Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
16
|
Reeder HT, Haneuse S, Lee KH. Group lasso priors for Bayesian accelerated failure time models with left-truncated and interval-censored data. Stat Methods Med Res 2024; 33:1412-1423. [PMID: 39053572 PMCID: PMC11833807 DOI: 10.1177/09622802241262523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
An important task in health research is to characterize time-to-event outcomes such as disease onset or mortality in terms of a potentially high-dimensional set of risk factors. For example, prospective cohort studies of Alzheimer's disease (AD) typically enroll older adults for observation over several decades to assess the long-term impact of genetic and other factors on cognitive decline and mortality. The accelerated failure time model is particularly well-suited to such studies, structuring covariate effects as "horizontal" changes to the survival quantiles that conceptually reflect shifts in the outcome distribution due to lifelong exposures. However, this modeling task is complicated by the enrollment of adults at differing ages, and intermittent follow-up visits leading to interval-censored outcome information. Moreover, genetic and clinical risk factors are not only high-dimensional, but characterized by underlying grouping structures, such as by function or gene location. Such grouped high-dimensional covariates require shrinkage methods that directly acknowledge this structure to facilitate variable selection and estimation. In this paper, we address these considerations directly by proposing a Bayesian accelerated failure time model with a group-structured lasso penalty, designed for left-truncated and interval-censored time-to-event data. We develop an R package with a Markov chain Monte Carlo sampler for estimation. We present a simulation study examining the performance of this method relative to an ordinary lasso penalty and apply the proposed method to identify groups of predictive genetic and clinical risk factors for AD in the Religious Orders Study and Memory and Aging Project prospective cohort studies of AD and dementia.
Collapse
Affiliation(s)
- Harrison T Reeder
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Kyu Ha Lee
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
17
|
Roberts A, Swerdlow RH, Wang N. Adaptive and Maladaptive DNA Breaks in Neuronal Physiology and Alzheimer's Disease. Int J Mol Sci 2024; 25:7774. [PMID: 39063016 PMCID: PMC11277458 DOI: 10.3390/ijms25147774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
DNA strand breaks excessively accumulate in the brains of patients with Alzheimer's disease (AD). While traditionally considered random, deleterious events, neuron activity itself induces DNA breaks, and these "adaptive" breaks help mediate synaptic plasticity and memory formation. Recent studies mapping the brain DNA break landscape reveal that despite a net increase in DNA breaks in ectopic genomic hotspots, adaptive DNA breaks around synaptic genes are lost in AD brains, and this is associated with transcriptomic dysregulation. Additionally, relationships exist between mitochondrial dysfunction, a hallmark of AD, and DNA damage, such that mitochondrial dysfunction may perturb adaptive DNA break formation, while DNA breaks may conversely impair mitochondrial function. A failure of DNA break physiology could, therefore, potentially contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Anysja Roberts
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, KS, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ning Wang
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
2024 Alzheimer's disease facts and figures. Alzheimers Dement 2024; 20:3708-3821. [PMID: 38689398 PMCID: PMC11095490 DOI: 10.1002/alz.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This article describes the public health impact of Alzheimer's disease (AD), including prevalence and incidence, mortality and morbidity, use and costs of care and the ramifications of AD for family caregivers, the dementia workforce and society. The Special Report discusses the larger health care system for older adults with cognitive issues, focusing on the role of caregivers and non-physician health care professionals. An estimated 6.9 million Americans age 65 and older are living with Alzheimer's dementia today. This number could grow to 13.8 million by 2060, barring the development of medical breakthroughs to prevent or cure AD. Official AD death certificates recorded 119,399 deaths from AD in 2021. In 2020 and 2021, when COVID-19 entered the ranks of the top ten causes of death, Alzheimer's was the seventh-leading cause of death in the United States. Official counts for more recent years are still being compiled. Alzheimer's remains the fifth-leading cause of death among Americans age 65 and older. Between 2000 and 2021, deaths from stroke, heart disease and HIV decreased, whereas reported deaths from AD increased more than 140%. More than 11 million family members and other unpaid caregivers provided an estimated 18.4 billion hours of care to people with Alzheimer's or other dementias in 2023. These figures reflect a decline in the number of caregivers compared with a decade earlier, as well as an increase in the amount of care provided by each remaining caregiver. Unpaid dementia caregiving was valued at $346.6 billion in 2023. Its costs, however, extend to unpaid caregivers' increased risk for emotional distress and negative mental and physical health outcomes. Members of the paid health care and broader community-based workforce are involved in diagnosing, treating and caring for people with dementia. However, the United States faces growing shortages across different segments of the dementia care workforce due to a combination of factors, including the absolute increase in the number of people living with dementia. Therefore, targeted programs and care delivery models will be needed to attract, better train and effectively deploy health care and community-based workers to provide dementia care. Average per-person Medicare payments for services to beneficiaries age 65 and older with AD or other dementias are almost three times as great as payments for beneficiaries without these conditions, and Medicaid payments are more than 22 times as great. Total payments in 2024 for health care, long-term care and hospice services for people age 65 and older with dementia are estimated to be $360 billion. The Special Report investigates how caregivers of older adults with cognitive issues interact with the health care system and examines the role non-physician health care professionals play in facilitating clinical care and access to community-based services and supports. It includes surveys of caregivers and health care workers, focusing on their experiences, challenges, awareness and perceptions of dementia care navigation.
Collapse
|
19
|
Dark HE, An Y, Duggan MR, Joynes C, Davatzikos C, Erus G, Lewis A, Moghekar AR, Resnick SM, Walker KA. Alzheimer's and neurodegenerative disease biomarkers in blood predict brain atrophy and cognitive decline. Alzheimers Res Ther 2024; 16:94. [PMID: 38689358 PMCID: PMC11059745 DOI: 10.1186/s13195-024-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Although blood-based biomarkers have been identified as cost-effective and scalable alternatives to PET and CSF markers of neurodegenerative disease, little is known about how these biomarkers predict future brain atrophy and cognitive decline in cognitively unimpaired individuals. Using data from the Baltimore Longitudinal Study of Aging (BLSA), we examined whether plasma biomarkers of Alzheimer's disease (AD) pathology (amyloid-β [Aβ42/40], phosphorylated tau [pTau-181]), astrogliosis (glial fibrillary acidic protein [GFAP]), and neuronal injury (neurofilament light chain [NfL]) were associated with longitudinal brain volume loss and cognitive decline. Additionally, we determined whether sex, APOEε4 status, and plasma amyloid-β status modified these associations. METHODS Plasma biomarkers were measured using Quanterix SIMOA assays. Regional brain volumes were measured by 3T MRI, and a battery of neuropsychological tests assessed five cognitive domains. Linear mixed effects models adjusted for demographic factors, kidney function, and intracranial volume (MRI analyses) were completed to relate baseline plasma biomarkers to baseline and longitudinal brain volume and cognitive performance. RESULTS Brain volume analyses included 622 participants (mean age ± SD: 70.9 ± 10.2) with an average of 3.3 MRI scans over 4.7 years. Cognitive performance analyses included 674 participants (mean age ± SD: 71.2 ± 10.0) with an average of 3.9 cognitive assessments over 5.7 years. Higher baseline pTau-181 was associated with steeper declines in total gray matter volume and steeper regional declines in several medial temporal regions, whereas higher baseline GFAP was associated with greater longitudinal increases in ventricular volume. Baseline Aβ42/40 and NfL levels were not associated with changes in brain volume. Lower baseline Aβ42/40 (higher Aβ burden) was associated with a faster decline in verbal memory and visuospatial performance, whereas higher baseline GFAP was associated with a faster decline in verbal fluency. Results were generally consistent across sex and APOEε4 status. However, the associations of higher pTau-181 with increasing ventricular volume and memory declines were significantly stronger among individuals with higher Aβ burden, as was the association of higher GFAP with memory decline. CONCLUSIONS Among cognitively unimpaired older adults, plasma biomarkers of AD pathology (pTau-181) and astrogliosis (GFAP), but not neuronal injury (NfL), serve as markers of future brain atrophy and cognitive decline.
Collapse
Affiliation(s)
- Heather E Dark
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Cassandra Joynes
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | | | - Guray Erus
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
20
|
Kac PR, González-Ortiz F, Emeršič A, Dulewicz M, Koutarapu S, Turton M, An Y, Smirnov D, Kulczyńska-Przybik A, Varma VR, Ashton NJ, Montoliu-Gaya L, Camporesi E, Winkel I, Paradowski B, Moghekar A, Troncoso JC, Lashley T, Brinkmalm G, Resnick SM, Mroczko B, Kvartsberg H, Gregorič Kramberger M, Hanrieder J, Čučnik S, Harrison P, Zetterberg H, Lewczuk P, Thambisetty M, Rot U, Galasko D, Blennow K, Karikari TK. Plasma p-tau212 antemortem diagnostic performance and prediction of autopsy verification of Alzheimer's disease neuropathology. Nat Commun 2024; 15:2615. [PMID: 38521766 PMCID: PMC10960791 DOI: 10.1038/s41467-024-46876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n = 388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.
Collapse
Grants
- R01 AG075336 NIA NIH HHS
- R01 AG078796 NIA NIH HHS
- R01 AG083874 NIA NIH HHS
- R01 AG072641 NIA NIH HHS
- P30 AG062429 NIA NIH HHS
- R01 AG068398 NIA NIH HHS
- R21 AG078538 NIA NIH HHS
- R01 MH108509 NIMH NIH HHS
- RF1 AG025516 NIA NIH HHS
- P30 AG066468 NIA NIH HHS
- R01 AG073267 NIA NIH HHS
- P01 AG025204 NIA NIH HHS
- #AARF-21-850325 Alzheimer's Association
- R01 MH121619 NIMH NIH HHS
- R37 AG023651 NIA NIH HHS
- R21 AG080705 NIA NIH HHS
- U24 AG082930 NIA NIH HHS
- R01 AG025516 NIA NIH HHS
- RF1 AG052525 NIA NIH HHS
- R01 AG053952 NIA NIH HHS
- Demensförbundet (Dementia Association)
- Anna Lisa and Brother Björnsson’s Foundation
- BrightFocus Foundation (BrightFocus)
- Alzheimerfonden
- the Swedish Dementia Foundation, Gun and Bertil Stohnes Foundation, Åhlén-stifelsen, and Gamla Tjänarinnor Foundation.
- Vetenskapsrådet (Swedish Research Council)
- Alzheimer’s Drug Discovery Foundation (ADDF)
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- EU Joint Programme – Neurodegenerative Disease Research (Programi i Përbashkët i BE-së për Kërkimet mbi Sëmundjet Neuro-degjeneruese)
- Swedish State Support for Clinical Research (#ALFGBG-71320), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C) the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Hjärnfonden, Sweden (#FO2022-0270), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003)
- the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the National Institute of Health (NIH), USA, (grant #1R01AG068398-01) the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495).
- Alzheimer’s Association
- National Institute of Health (NIH) - (R01 AG083874-01, U24 AG082930-01 1 RF1 AG052525-01A1, 5 P30 AG066468-04, 5 R01 AG053952-05, 3 R01 MH121619-04S1, 5 R37 AG023651-18, 2 RF1 AG025516-12A1, 5 R01 AG073267-02, 2 R01 MH108509-06, 5 R01 AG075336-02, 5 R01 AG072641-02, 2 P01 AG025204-16) the Swedish Alzheimer Foundation (Alzheimerfonden), the Aina (Ann) Wallströms and Mary-Ann Sjöbloms stiftelsen, and the Emil och Wera Cornells stiftelsen.
Collapse
Affiliation(s)
- Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden.
| | - Fernando González-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | | | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Denis Smirnov
- Department of Neurosciences, University of California, San Diego, CA, 92161, USA
| | | | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Old Age Psychiatry, King's College London, London, SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011, Stavanger, Norway
- South London & Maudsley NHS Foundation, NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia, SE5 8AF, London, UK
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Izabela Winkel
- Dementia Disorders Center, Medical University of Wrocław, 59-330, Ścinawa, Poland
| | - Bogusław Paradowski
- Department of Neurology, Medical University of Wrocław, 50-556, Wrocław, Poland
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, WC1N 1PJ, London, UK
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, 15-269, Poland
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, 141 52, Huddinge, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, UK
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Rheumatology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, HKCeND, Hong Kong, 1512-1518, China
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Piotr Lewczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, 15-269, Poland
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Uroš Rot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, CA, 92161, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
21
|
Voigt RM, Ouyang B, Keshavarzian A. Outdoor Nighttime Light Exposure (Light Pollution) is Associated with Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.14.24302831. [PMID: 38405987 PMCID: PMC10889016 DOI: 10.1101/2024.02.14.24302831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Alzheimer's disease (AD) prevalence has increased in the last century which can be attributed to increased lifespan, but environment is also important. This study evaluated the relationship between outdoor nighttime light exposure and AD prevalence in the United States. Higher outdoor nighttime light was associated with higher prevalence of AD. While atrial fibrillation, diabetes, hyperlipidemia, hypertension, and stroke were associated more strongly with AD prevalence than nighttime light intensity, nighttime light was more strongly associated with AD prevalence than alcohol abuse, chronic kidney disease, depression, heart failure, and obesity. Startlingly, nighttime light exposure more strongly associated with AD prevalence in those under the age of 65 than any other disease factor examined. These data indicate a need to investigate how nighttime light exposure influences AD pathogenesis.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center; Chicago, IL, USA
- Department of Internal Medicine, Rush University Medical Center; Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center; Chicago, IL, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center; Chicago, IL, USA
- Department of Internal Medicine, Rush University Medical Center; Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center; Chicago, IL, USA
- Department of Physiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
22
|
Varma VR, An Y, Kac PR, Bilgel M, Moghekar A, Loeffler T, Amschl D, Troncoso J, Blennow K, Zetterberg H, Ashton NJ, Resnick SM, Thambisetty M. Longitudinal progression of blood biomarkers reveals a key role of astrocyte reactivity in preclinical Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.25.24301779. [PMID: 38343809 PMCID: PMC10854357 DOI: 10.1101/2024.01.25.24301779] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Defining the progression of blood biomarkers of Alzheimer's disease (AD) is essential for targeting treatments in patients most likely to benefit from early intervention. We delineated the temporal ordering of blood biomarkers a decade prior to the onset of AD symptoms in participants in the Baltimore Longitudinal Study of Aging. We show that increased astrocyte reactivity, assessed by elevated glial fibrillary acidic protein (GFAP) levels is an early event in the progression of blood biomarker changes in preclinical AD. In AD-converters who are initially cognitively unimpaired (N=158, 377 serial plasma samples), higher plasma GFAP levels are observed as early as 10-years prior to the onset of cognitive impairment due to incident AD compared to individuals who remain cognitively unimpaired (CU, N=160, 379 serial plasma samples). Plasma GFAP levels in AD-converters remain elevated 5-years prior to and coincident with the onset of cognitive impairment due to AD. In participants with neuropathologically confirmed AD, plasma GFAP levels are elevated relative to cognitively normal individuals and intermediate in those who remain cognitively unimpaired despite significant AD pathology (asymptomatic AD). Higher plasma GFAP levels at death are associated with greater severity of both neuritic plaques and neurofibrillary tangles. In the 5XFAD transgenic model of AD, we observed greater GFAP levels in the cortex and hippocampus of transgenic mice relative to wild-type prior to the development of cognitive impairment. Reactive astrocytosis, an established biological response to neuronal injury, may be an early initiator of AD pathogenesis and a promising therapeutic target.
Collapse
Affiliation(s)
- V R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, United States of America
| | - Y An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - P R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - M Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - A Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - T Loeffler
- Scantox Neuro GmbH, Parkring 12, 8074, Grambach, Austria
| | - D Amschl
- Scantox Neuro GmbH, Parkring 12, 8074, Grambach, Austria
| | - J Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - N J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute London UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation London UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - S M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - M Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, United States of America
| |
Collapse
|
23
|
O’Neal MA. Women and the risk of Alzheimer's disease. Front Glob Womens Health 2024; 4:1324522. [PMID: 38250748 PMCID: PMC10796575 DOI: 10.3389/fgwh.2023.1324522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose of the review This review will elucidate reasons to explain why women may be at greater risk for Alzheimer's disease. Recent findings Potential mechanisms to explain sex and gender differences in Alzheimer dementia include: differences in risk associated with the apolipoprotein E 4 allele; telomere shortening- which is linked with neurodegeneration, higher incidence of depression and insomnia in women as psychiatric co-morbidities which are linked with an increased Alzheimer disease risk, disorders of pregnancy including gestational hypertension and preeclampsia and psychosocial factors such as educational level which may contribute to differences in cognitive reserve. Summary The sex and gender differences in Alzheimer's disease can be explained by biological and psychosocial factors.
Collapse
Affiliation(s)
- Mary A. O’Neal
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Gu Y, Chen N, Zhu L, Chen X, Jiang T, Zhang Y. Whole Transcriptome Sequencing of Peripheral Blood Identifies the Alzheimer's Disease-Related circRNA-miRNA-lncRNA Pathway. Curr Neurovasc Res 2024; 21:184-197. [PMID: 38482622 DOI: 10.2174/0115672026305417240209062508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Previous studies on transcriptional profiles suggested dysregulation of multiple RNA species in Alzheimer's disease. However, despite recent investigations revealing various aspects of circular RNA (circRNA)-associated competing endogenous RNA (ceRNA) networks in Alzheimer's Disease (AD) pathogenesis, few genome-wide studies have explored circRNA-associated profiles in AD patients exhibiting varying degrees of cognitive loss. OBJECTIVE To investigate the potential pathogenesis-related molecular biological changes in the various stages of AD progression. METHODS Whole transcriptome sequencing was performed on the peripheral blood of 7 normal cognition (NC) subjects, 8 patients with mild cognitive impairment, 8 AD patients with mild dementia (miD), and 7 AD patients with moderate dementia (moD). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to predict the potential functions of the maternal genes of microRNAs (miRNAs), circRNAs and long non-coding RNAs (lncRNAs). The construction of ceRNA network was performed between the NC group and each diseased group based on the differently expressed RNAs. RESULTS In total, 3568 messenger RNAs (mRNAs), 142 miRNAs, 990 lncRNAs, and 183 circRNAs were identified as significantly differentially expressed across the four groups. GO and KEGG enrichment analysis revealed the significant roles of GTPase activity and the MAPK signaling pathway in AD pathogenesis. A circRNA-miRNA-lncRNA ceRNA pathway, characterized by the downregulated hsa-miR-7-5p and upregulated hsa_circ_0001170, was identified based on the differentially expressed RNAs between the NC group and the moD group. CONCLUSION The study suggests that circRNAs may be independent of mRNAs in AD pathogenesis and holds promise as potential biomarkers for AD clinical manifestations and pathological changes.
Collapse
Affiliation(s)
- Yucheng Gu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nihong Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Kac PR, González-Ortiz F, Emeršič A, Dulewicz M, Koutarapu S, Turton M, An Y, Smirnov D, Kulczyńska-Przybik A, Varma V, Ashton NJ, Montoliu-Gaya L, Camporesi E, Winkel I, Paradowski B, Moghekar A, Troncoso JC, Brinkmalm G, Resnick SM, Mroczko B, Kvartsberg H, Kramberger MG, Hanrieder J, Čučnik S, Harrison P, Zetterberg H, Lewczuk P, Thambisetty M, Rot U, Galasko D, Blennow K, Karikari TK. Plasma p-tau212: antemortem diagnostic performance and prediction of autopsy verification of Alzheimer's disease neuropathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.11.23299806. [PMID: 38168323 PMCID: PMC10760276 DOI: 10.1101/2023.12.11.23299806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Thereafter, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n=388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a novel peripherally accessible biomarker of AD pathophysiology.
Collapse
Affiliation(s)
- Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Fernando González-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | | | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Denis Smirnov
- Department of Neurosciences, University of California, San Diego, CA 92161 United States of America
| | | | - Vijay Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Old Age Psychiatry, King's College London, London SE5 8AF, United Kingdom
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
- South London & Maudsley NHS Foundation, NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia, SE5 8AF London, United Kingdom
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Izabela Winkel
- Dementia Disorders Center, Medical University of Wrocław, 59-330 Scinawa, Poland
| | - Bogusław Paradowski
- Department of Neurology, Medical University of Wrocław, 50-556 Wroclaw, Poland
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok 15-269, Poland
| | - Hlin Kvartsberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, 141 52 Huddinge, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, United Kingdom
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Rheumatology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, United Kingdom
- UK Dementia Research Institute, University College London, London, WC1E 6BT, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, HKCeND, Hong Kong, 1512-1518, China
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, 15-269, Poland
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Uroš Rot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, CA 92161 United States of America
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States of America
| |
Collapse
|
26
|
Cai Y, Schrack JA, Agrawal Y, Armstrong NM, Wanigatunga AA, Kitner-Triolo M, Moghekar A, Ferrucci L, Simonsick EM, Resnick SM, Gross AL. Application and validation of an algorithmic classification of early impairment in cognitive performance. Aging Ment Health 2023; 27:2187-2192. [PMID: 37354067 PMCID: PMC10592406 DOI: 10.1080/13607863.2023.2227118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVE Due to the long prodromal period for dementia pathology, approaches are needed to detect cases before clinically recognizable symptoms are apparent, by which time it is likely too late to intervene. This study contrasted two theoretically-based algorithms for classifying early cognitive impairment (ECI) in adults aged ≥50 enrolled in the Baltimore Longitudinal Study of Aging. METHOD Two ECI algorithms were defined as poor performance (1 standard deviation [SD] below age-, sex-, race-, and education-specific means) in: (1) Card Rotations or California Verbal Learning Test (CVLT) immediate recall and (2) ≥1 (out of 2) memory or ≥3 (out of 6) non-memory tests. We evaluated concurrent criterion validity against consensus diagnoses of mild cognitive impairment (MCI) or dementia and global cognitive scores using receiver operating characteristic (ROC) curve analysis. Predictive criterion validity was evaluated using Cox proportional hazards models to examine the associations between algorithmic status and future adjudicated MCI/dementia. RESULTS Among 1,851 participants (mean age = 65.2 ± 11.8 years, 50% women, 74% white), the two ECI algorithms yielded comparably moderate concurrent criterion validity with adjudicated MCI/dementia. For predictive criterion validity, the algorithm based on impairment in Card Rotations or CVLT immediate recall was the better predictor of MCI/dementia (HR = 3.53, 95%CI: 1.59-7.84) over 12.3 follow-up years. CONCLUSIONS Impairment in visuospatial ability or memory may be capable of detecting early cognitive changes in the preclinical phase among cognitively normal individuals.
Collapse
Affiliation(s)
- Yurun Cai
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Health and Community Systems, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | - Jennifer A. Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yuri Agrawal
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicole M. Armstrong
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Amal A. Wanigatunga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Abhay Moghekar
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | | | - Susan M. Resnick
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Alden L. Gross
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Balu D, Valencia-Olvera AC, Islam Z, Mielczarek C, Hansen A, Perez Ramos TM, York J, LaDu MJ, Tai LM. APOE genotype and sex modulate Alzheimer's disease pathology in aged EFAD transgenic mice. Front Aging Neurosci 2023; 15:1279343. [PMID: 38020764 PMCID: PMC10644540 DOI: 10.3389/fnagi.2023.1279343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Increasing evidence supports that age, APOE and sex interact to modulate Alzheimer's disease (AD) risk, however the underlying pathways are unclear. One way that AD risk factors may modulate cognition is by impacting amyloid beta (Aβ) accumulation as plaques, and/or neuroinflammation Therefore, the goal of the present study was to evaluate the extent to which age, APOE and sex modulate Aβ pathology, neuroinflammation and behavior in vivo. To achieve this goal, we utilized the EFAD mice, which express human APOE3 or APOE4 and have five familial AD mutations (FAD) that result in Aβ42 overproduction. We assessed Aβ levels, reactive glia and Morris water maze performance in 6-, 10-, 14-, and 18-month-old EFAD mice. Female APOE4 mice had the highest Aβ deposition, fibrillar amyloid deposits and neuroinflammation as well as earlier behavior deficits. Interestingly, we found that female APOE3 mice and male APOE4 mice had similar levels of pathology. Collectively our data support that the combination of APOE4 and female sex is the most detrimental combination for AD, and that at older ages, female sex may be equivalent to APOE4 genotype.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ana C. Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zarak Islam
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois College of Medicine, Chicago, IL, United States
| | - Clare Mielczarek
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Allison Hansen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois College of Medicine, Peoria, IL, United States
| | - Tamara M. Perez Ramos
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- School of Medicine, St. George’s University, St. George’s, Grenada
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M. Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
28
|
O’Connell ME, Kadlec H, Griffith LE, Wolfson C, Maimon G, Taler V, Kirkland S, Raina P. Cognitive impairment indicator for the neuropsychological test batteries in the Canadian Longitudinal Study on Aging: definition and evidence for validity. Alzheimers Res Ther 2023; 15:167. [PMID: 37798677 PMCID: PMC10552318 DOI: 10.1186/s13195-023-01317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Prevalence of overall cognitive impairment based on each participant's performance across a neuropsychological battery is challenging; consequently, we define and validate a dichotomous cognitive impairment/no cognitive indicator (CII) using a neuropsychological battery administered in a population-based study. This CII approximates the clinical practice of interpretation across a neuropsychological battery and can be applied to any neuropsychological dataset. METHODS Using data from participants aged 45-85 in the Canadian Longitudinal Study on Aging receiving a telephone-administered neuropsychological battery (Tracking, N = 21,241) or a longer in-person battery (Comprehensive, N = 30,097), impairment was determined for each neuropsychological test based on comparison with normative data. We adjusted for the joint probability of abnormally low scores on multiple neuropsychological tests using baserates of low scores demonstrated in the normative samples and created a dichotomous CII (i.e., cognitive impairment vs no cognitive impairment). Convergent and discriminant validity of the CII were assessed with logistic regression analyses. RESULTS Using the CII, the prevalence of cognitive impairment was 4.3% in the Tracking and 5.0% in the Comprehensive cohorts. The CII demonstrated strong convergent and discriminant validity. CONCLUSIONS The approach for the CII is a feasible method to identify participants who demonstrate cognitive impairment on a battery of tests. These methods can be applied in other epidemiological studies that use neuropsychological batteries.
Collapse
Affiliation(s)
- Megan E. O’Connell
- Department of Psychology and Health Studies, University of Saskatchewan, 9 Campus Drive, Arts 182, Saskatoon, SK S7N 5A5 Canada
| | - Helena Kadlec
- Institute On Aging & Lifelong Health, University of Victoria, STN CSC, PO Box 1700, Victoria, BC V8W 2Y2 Canada
| | - Lauren E. Griffith
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 175 Longwood Rd. S. Suite 309a, Hamilton, ON L8P 0A1 Canada
| | - Christina Wolfson
- Department of Epidemiology and Biostatistics and Occupational Health, School of Population and Global Health, McGill University, 2001 McGill College Avenue Suite 1200, Montreal, QC H3A 1G1 Canada
| | - Geva Maimon
- CLSA Data Curation Centre, Research Institute of the McGill University Health Centre, 2155 Guy Street, 4th Floor, Montreal, QC H3H 2R9 Canada
| | - Vanessa Taler
- School of Psychology, University of Ottawa, 136 Jean Jacques Lussier, Vanier Hall, Ottawa, ON K1N 6N5 Canada
| | - Susan Kirkland
- Department of Community Health and Epidemiology, Dalhousie University, 5790 University Ave, Halifax, NS B3H 1V7 Canada
| | - Parminder Raina
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster Institute for Research On Aging & Labarge Centre for Mobility in Aging, McMaster University, MIP Suite 309A, 1280 Main St. W, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|
29
|
Gong J, Harris K, Lipnicki DM, Castro‐Costa E, Lima‐Costa MF, Diniz BS, Xiao S, Lipton RB, Katz MJ, Wang C, Preux P, Guerchet M, Gbessemehlan A, Ritchie K, Ancelin M, Skoog I, Najar J, Sterner TR, Scarmeas N, Yannakoulia M, Kosmidis MH, Guaita A, Rolandi E, Davin A, Gureje O, Trompet S, Gussekloo J, Riedel‐Heller S, Pabst A, Röhr S, Shahar S, Singh DKA, Rivan NFM, van Boxtel M, Köhler S, Ganguli M, Chang C, Jacobsen E, Haan M, Ding D, Zhao Q, Xiao Z, Narazaki K, Chen T, Chen S, Ng TP, Gwee X, Numbers K, Mather KA, Scazufca M, Lobo A, De‐la‐Cámara C, Lobo E, Sachdev PS, Brodaty H, Hackett ML, Peters SAE, Woodward M, for the Cohort Studies of Memory in an International Consortium (COSMIC). Sex differences in dementia risk and risk factors: Individual-participant data analysis using 21 cohorts across six continents from the COSMIC consortium. Alzheimers Dement 2023; 19:3365-3378. [PMID: 36790027 PMCID: PMC10955774 DOI: 10.1002/alz.12962] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Sex differences in dementia risk, and risk factor (RF) associations with dementia, remain uncertain across diverse ethno-regional groups. METHODS A total of 29,850 participants (58% women) from 21 cohorts across six continents were included in an individual participant data meta-analysis. Sex-specific hazard ratios (HRs), and women-to-men ratio of hazard ratios (RHRs) for associations between RFs and all-cause dementia were derived from mixed-effect Cox models. RESULTS Incident dementia occurred in 2089 (66% women) participants over 4.6 years (median). Women had higher dementia risk (HR, 1.12 [1.02, 1.23]) than men, particularly in low- and lower-middle-income economies. Associations between longer education and former alcohol use with dementia risk (RHR, 1.01 [1.00, 1.03] per year, and 0.55 [0.38, 0.79], respectively) were stronger for men than women; otherwise, there were no discernible sex differences in other RFs. DISCUSSION Dementia risk was higher in women than men, with possible variations by country-level income settings, but most RFs appear to work similarly in women and men.
Collapse
Affiliation(s)
- Jessica Gong
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- The George Institute for Global HealthImperial College LondonLondonUK
| | - Katie Harris
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
| | - Darren M. Lipnicki
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Erico Castro‐Costa
- Center for Studies in Public Health and Aging Rene Rachou InstituteOswaldo Cruz FoundationBelo HorizonteBrazil
| | - Maria Fernanda Lima‐Costa
- Center for Studies in Public Health and Aging Rene Rachou InstituteOswaldo Cruz FoundationBelo HorizonteBrazil
| | - Breno S. Diniz
- UConn Center on AgingDepartment of PsychiatrySchool of MedicineUniversity of Connecticut Health CenterFarmingtonConnecticutUSA
| | - Shifu Xiao
- Department of Geriatric PsychiatryShanghai Mental Health CentreShanghai Jiaotong University School of MedicineShanghaiChina
| | - Richard B. Lipton
- Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Mindy J. Katz
- Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Cuiling Wang
- Department of Epidemiology and Community HeathAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Pierre‐Marie Preux
- Inserm U1094, IRD U270, Univ. LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of chronic diseases in tropical zoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Maëlenn Guerchet
- Inserm U1094, IRD U270, Univ. LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of chronic diseases in tropical zoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Antoine Gbessemehlan
- Inserm U1094, IRD U270, Univ. LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of chronic diseases in tropical zoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Karen Ritchie
- INM Institute for Neurosciences of MontpellierUniv MontpellierINSERMMontpellierFrance
| | - Marie‐Laure Ancelin
- INM Institute for Neurosciences of MontpellierUniv MontpellierINSERMMontpellierFrance
| | - Ingmar Skoog
- Department of Psychiatry and NeurochemistryCenter for Ageing and Health (Age Cap)University of GothenburgGothenburgSweden
| | - Jenna Najar
- Department of Psychiatry and NeurochemistryCenter for Ageing and Health (Age Cap)University of GothenburgGothenburgSweden
| | - Therese Rydberg Sterner
- Department of Psychiatry and NeurochemistryCenter for Ageing and Health (Age Cap)University of GothenburgGothenburgSweden
| | - Nikolaos Scarmeas
- 1st Department of NeurologyAiginition HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
| | - Mary Yannakoulia
- Department of Nutrition and DieteticsHarokopio UniversityAthensGreece
| | - Mary H. Kosmidis
- Lab of Cognitive NeuroscienceSchool of PsychologyAristotle University of ThessalonikiThessalonikiGreece
| | | | - Elena Rolandi
- Golgi Cenci FoundationAbbiategrassoItaly
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | | | - Oye Gureje
- WHO Collaborating Centre for Research and Training in Mental HealthNeurosciences and Substance AbuseDepartment of PsychiatryUniversity of IbadanIbadanNigeria
| | - Stella Trompet
- Section of Gerontology and GeriatricsDepartment of Internal MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jacobijn Gussekloo
- Section of Gerontology and GeriatricsDepartment of Internal MedicineLeiden University Medical CenterLeidenthe Netherlands
- Department of Public Health and Primary CareLeidenthe Netherlands
| | - Steffi Riedel‐Heller
- Institute of Social MedicineOccupational Health and Public Health (ISAP)University of LeipzigLeipzigGermany
| | - Alexander Pabst
- Institute of Social MedicineOccupational Health and Public Health (ISAP)University of LeipzigLeipzigGermany
| | - Susanne Röhr
- Institute of Social MedicineOccupational Health and Public Health (ISAP)University of LeipzigLeipzigGermany
| | - Suzana Shahar
- Centre for Healthy Ageing and WellnessUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | | | | | - Martin van Boxtel
- Alzheimer Centrum LimburgSchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Sebastian Köhler
- Alzheimer Centrum LimburgSchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Mary Ganguli
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Chung‐Chou Chang
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Erin Jacobsen
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mary Haan
- Department of Epidemiology and BiostatisticsSchool of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ding Ding
- Institute of NeurologyNational Center for Neurological DisordersNational Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Qianhua Zhao
- Institute of NeurologyNational Center for Neurological DisordersNational Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Zhenxu Xiao
- Institute of NeurologyNational Center for Neurological DisordersNational Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Kenji Narazaki
- Center for Liberal ArtsFukuoka Institute of TechnologyFukuokaJapan
| | - Tao Chen
- Sports and Health Research CenterDepartment of Physical EducationTongji UniversityShanghaiChina
| | - Sanmei Chen
- Global Health NursingDepartment of Health SciencesGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tze Pin Ng
- Gerontology Research ProgrammeDepartment of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeQueenstownSingapore
| | - Xinyi Gwee
- Gerontology Research ProgrammeDepartment of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeQueenstownSingapore
| | - Katya Numbers
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Karen A. Mather
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Marcia Scazufca
- Instituto de Psiquiátria e LIM‐23Hospital da ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Antonio Lobo
- Department of Medicine and Psychiatry Universidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain
- n°33 CIBERSAMMadridSpain
| | - Concepción De‐la‐Cámara
- Department of Medicine and Psychiatry Universidad de ZaragozaZaragozaSpain
- n°33 CIBERSAMMadridSpain
| | - Elena Lobo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain
- n°33 CIBERSAMMadridSpain
- Department of Public Health Universidad de ZaragozaZaragozaSpain
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Maree L. Hackett
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- Faculty of Health and WellbeingUniversity of Central LancashireLancashireUK
| | - Sanne A. E. Peters
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- The George Institute for Global HealthImperial College LondonLondonUK
- Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Mark Woodward
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- The George Institute for Global HealthImperial College LondonLondonUK
| | | |
Collapse
|
30
|
Morrill K, Chen F, Karlsson E. Comparative neurogenetics of dog behavior complements efforts towards human neuropsychiatric genetics. Hum Genet 2023; 142:1231-1246. [PMID: 37578529 DOI: 10.1007/s00439-023-02580-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/02/2023] [Indexed: 08/15/2023]
Abstract
Domestic dogs display a wide array of heritable behaviors that have intermediate genetic complexity thanks to a long history of human-influenced selection. Comparative genetics in dogs could address the scarcity of non-human neurogenetic systems relevant to human neuropsychiatric disorders, which are characterized by mental, emotional, and behavioral symptoms and involve vastly complex genetic and non-genetic risk factors. Our review describes the diverse behavioral "phenome" of domestic dogs, past and ongoing sources of behavioral selection, and the state of canine behavioral genetics. We highlight two naturally disordered behavioral domains that illustrate how dogs may prove useful as a comparative, forward neurogenetic system: canine age-related cognitive dysfunction, which can be examined more rapidly given the attenuated lifespan of dogs, and compulsive disorders, which may have genetic roots in purpose-bred behaviors. Growing community science initiatives aimed at the companion dog population will be well suited to investigating such complex behavioral phenotypes and offer a comparative resource that parallels human genomic initiatives in scale and dimensionality.
Collapse
Affiliation(s)
- Kathleen Morrill
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Morningside Graduate School of Biomedical Sciences UMass Chan Medical School, Worcester, MA, USA.
| | - Frances Chen
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elinor Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
31
|
Duffy MF, Ding J, Langston RG, Shah SI, Nalls MA, Scholz SW, Whitaker DT, Auluck PK, Marenco S, Gibbs JR, Cookson MR. Divergent patterns of healthy aging across human brain regions at single-cell resolution reveal links to neurodegenerative disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551097. [PMID: 37577533 PMCID: PMC10418086 DOI: 10.1101/2023.07.31.551097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell. In this study, we leveraged single nucleus RNA-sequencing (snRNAseq) to examine changes in cell proportions and transcriptomes in four different brain regions, each from 12 donors aged 20-30 years (young) or 60-85 years (old). We sampled 155,192 nuclei from two cortical regions (entorhinal cortex and middle temporal gyrus) and two subcortical regions (putamen and subventricular zone) relevant to neurodegenerative diseases or the proliferative niche. We found no changes in cellular composition of different brain regions with healthy aging. Surprisingly, we did find that each brain region has a distinct aging signature, with only minor overlap in differentially associated genes across regions. Moreover, each cell type shows distinct age-associated expression changes, including loss of protein synthesis genes in cortical inhibitory neurons, axonogenesis genes in excitatory neurons and oligodendrocyte precursor cells, enhanced gliosis markers in astrocytes and disease-associated markers in microglia, and genes critical for neuron-glia communication. Importantly, we find cell type-specific enrichments of age associations with genes nominated by Alzheimer's disease and Parkinson's disease genome-wide association studies (GWAS), such as apolipoprotein E (APOE), and leucine-rich repeat kinase 2 (LRRK2) in microglia that are independent of overall expression levels across cell types. We present this data as a new resource which highlights, first, region- and cell type-specific transcriptomic changes in healthy aging that may contribute to selective vulnerability and, second, provide context for testing GWAS-nominated disease risk genes in relevant subtypes and developing more targeted therapeutic strategies. The data is readily accessible without requirement for extensive computational support in a public website, https://brainexp-hykyffa56a-uc.a.run.app/.
Collapse
Affiliation(s)
- Megan F. Duffy
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Rebekah G. Langston
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Syed I. Shah
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Mike A. Nalls
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - D. Thad Whitaker
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Pavan K. Auluck
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Stefano Marenco
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| |
Collapse
|
32
|
Becerril A, Pfoh ER, Hashmi AZ, Mourany L, Gunzler DD, Berg KA, Krieger NI, Krishnan K, Moore SE, Kahana E, Dawson NV, Luezas Shamakian L, Campbell JW, Perzynski AT, Dalton JE. Racial, ethnic and neighborhood socioeconomic differences in incidence of dementia: A regional retrospective cohort study. J Am Geriatr Soc 2023; 71:2406-2418. [PMID: 36928611 DOI: 10.1111/jgs.18322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Evidence on the effects of neighborhood socioeconomic disadvantage on dementia risk in racially and ethically diverse populations is limited. Our objective was to evaluate the relative extent to which neighborhood disadvantage accounts for racial/ethnic variation in dementia incidence rates. Secondarily, we evaluated the spatial relationship between neighborhood disadvantage and dementia risk. METHODS In this retrospective study using electronic health records (EHR) at two regional health systems in Northeast Ohio, participants included 253,421 patients aged >60 years who had an outpatient primary care visit between January 1, 2005 and December 31, 2015. The date of the first qualifying visit served as the study baseline. Cumulative incidence of composite dementia outcome, defined as EHR-documented dementia diagnosis or dementia-related death, stratified by neighborhood socioeconomic deprivation (as measured by Area Deprivation Index) was determined by competing-risk regression analysis, with non-dementia-related death as the competing risk. Fine-Gray sub-distribution hazard ratios were determined for neighborhood socioeconomic deprivation, race/ethnicity, and clinical risk factors. The degree to which neighborhood socioeconomic position accounted for racial/ethnic disparities in the incidence of composite dementia outcome was evaluated via mediation analysis with Poisson rate models. RESULTS Increasing neighborhood disadvantage was associated with increased risk of EHR-documented dementia diagnosis or dementia-related death (most vs. least disadvantaged ADI quintile HR = 1.76, 95% confidence interval = 1.69-1.84) after adjusting for age and sex. The effect of neighborhood disadvantage on this composite dementia outcome remained after accounting for known medical risk factors of dementia. Mediation analysis indicated that neighborhood disadvantage accounted for 34% and 29% of the elevated risk for composite dementia outcome in Hispanic and Black patients compared to White patients, respectively. CONCLUSION Neighborhood disadvantage is related to the risk of EHR-documented dementia diagnosis or dementia-related death and accounts for a portion of racial/ethnic differences in dementia burden, even after adjustment for clinically important confounders.
Collapse
Affiliation(s)
- Alissa Becerril
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elizabeth R Pfoh
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Value-Based Care Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ardeshir Z Hashmi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Geriatric Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lyla Mourany
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Douglas D Gunzler
- Center for Healthcare Research and Policy, Case Western Reserve University at MetroHealth, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen A Berg
- Center for Healthcare Research and Policy, Case Western Reserve University at MetroHealth, Cleveland, Ohio, USA
| | - Nikolas I Krieger
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kamini Krishnan
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Scott Emory Moore
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eva Kahana
- Sociology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Neal V Dawson
- Center for Healthcare Research and Policy, Case Western Reserve University at MetroHealth, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | - Adam T Perzynski
- Center for Healthcare Research and Policy, Case Western Reserve University at MetroHealth, Cleveland, Ohio, USA
| | - Jarrod E Dalton
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Roberts JA, Varma VR, Candia J, Tanaka T, Ferrucci L, Bennett DA, Thambisetty M. Unbiased proteomics and multivariable regularized regression techniques identify SMOC1, NOG, APCS, and NTN1 in an Alzheimer's disease brain proteomic signature. NPJ AGING 2023; 9:18. [PMID: 37414805 PMCID: PMC10326005 DOI: 10.1038/s41514-023-00112-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Advancements in omics methodologies have generated a wealth of high-dimensional Alzheimer's disease (AD) datasets, creating significant opportunities and challenges for data interpretation. In this study, we utilized multivariable regularized regression techniques to identify a reduced set of proteins that could discriminate between AD and cognitively normal (CN) brain samples. Utilizing eNetXplorer, an R package that tests the accuracy and significance of a family of elastic net generalized linear models, we identified 4 proteins (SMOC1, NOG, APCS, NTN1) that accurately discriminated between AD (n = 31) and CN (n = 22) middle frontal gyrus (MFG) tissue samples from Religious Orders Study participants with 83 percent accuracy. We then validated this signature in MFG samples from Baltimore Longitudinal Study of Aging participants using leave-one-out logistic regression cross-validation, finding that the signature again accurately discriminated AD (n = 31) and CN (n = 19) participants with a receiver operating characteristic curve area under the curve of 0.863. These proteins were strongly correlated with the burden of neurofibrillary tangle and amyloid pathology in both study cohorts. We additionally tested whether these proteins differed between AD and CN inferior temporal gyrus (ITG) samples and blood serum samples at the time of AD diagnosis in ROS and BLSA, finding that the proteins differed between AD and CN ITG samples but not in blood serum samples. The identified proteins may provide mechanistic insights into the pathophysiology of AD, and the methods utilized in this study may serve as the basis for further work with additional high-dimensional datasets in AD.
Collapse
Affiliation(s)
- Jackson A Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
34
|
Han ZZ, Fleet A, Larrieu D. Can accelerated ageing models inform us on age-related tauopathies? Aging Cell 2023; 22:e13830. [PMID: 37013265 PMCID: PMC10186612 DOI: 10.1111/acel.13830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Ageing is the greatest risk factor of late-onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing-related disorders.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Alex Fleet
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Delphine Larrieu
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| |
Collapse
|
35
|
Abstract
This article describes the public health impact of Alzheimer's disease, including prevalence and incidence, mortality and morbidity, use and costs of care, and the overall impact on family caregivers, the dementia workforce and society. The Special Report examines the patient journey from awareness of cognitive changes to potential treatment with drugs that change the underlying biology of Alzheimer's. An estimated 6.7 million Americans age 65 and older are living with Alzheimer's dementia today. This number could grow to 13.8 million by 2060 barring the development of medical breakthroughs to prevent, slow or cure AD. Official death certificates recorded 121,499 deaths from AD in 2019, and Alzheimer's disease was officially listed as the sixth-leading cause of death in the United States. In 2020 and 2021, when COVID-19 entered the ranks of the top ten causes of death, Alzheimer's was the seventh-leading cause of death. Alzheimer's remains the fifth-leading cause of death among Americans age 65 and older. Between 2000 and 2019, deaths from stroke, heart disease and HIV decreased, whereas reported deaths from AD increased more than 145%. This trajectory of deaths from AD was likely exacerbated by the COVID-19 pandemic in 2020 and 2021. More than 11 million family members and other unpaid caregivers provided an estimated 18 billion hours of care to people with Alzheimer's or other dementias in 2022. These figures reflect a decline in the number of caregivers compared with a decade earlier, as well as an increase in the amount of care provided by each remaining caregiver. Unpaid dementia caregiving was valued at $339.5 billion in 2022. Its costs, however, extend to family caregivers' increased risk for emotional distress and negative mental and physical health outcomes - costs that have been aggravated by COVID-19. Members of the paid health care workforce are involved in diagnosing, treating and caring for people with dementia. In recent years, however, a shortage of such workers has developed in the United States. This shortage - brought about, in part, by COVID-19 - has occurred at a time when more members of the dementia care workforce are needed. Therefore, programs will be needed to attract workers and better train health care teams. Average per-person Medicare payments for services to beneficiaries age 65 and older with AD or other dementias are almost three times as great as payments for beneficiaries without these conditions, and Medicaid payments are more than 22 times as great. Total payments in 2023 for health care, long-term care and hospice services for people age 65 and older with dementia are estimated to be $345 billion. The Special Report examines whether there will be sufficient numbers of physician specialists to provide Alzheimer's care and treatment now that two drugs are available that change the underlying biology of Alzheimer's disease.
Collapse
|
36
|
Hydroxychloroquine lowers Alzheimer's disease and related dementias risk and rescues molecular phenotypes related to Alzheimer's disease. Mol Psychiatry 2023; 28:1312-1326. [PMID: 36577843 PMCID: PMC10005941 DOI: 10.1038/s41380-022-01912-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
We recently nominated cytokine signaling through the Janus-kinase-signal transducer and activator of transcription (JAK/STAT) pathway as a potential AD drug target. As hydroxychloroquine (HCQ) has recently been shown to inactivate STAT3, we hypothesized that it may impact AD pathogenesis and risk. Among 109,124 rheumatoid arthritis patients from routine clinical care, HCQ initiation was associated with a lower risk of incident AD compared to methotrexate initiation across 4 alternative analyses schemes addressing specific types of biases including informative censoring, reverse causality, and outcome misclassification (hazard ratio [95% confidence interval] of 0.92 [0.83-1.00], 0.87 [0.81-0.93], 0.84 [0.76-0.93], and 0.87 [0.75-1.01]). We additionally show that HCQ exerts dose-dependent effects on late long-term potentiation (LTP) and rescues impaired hippocampal synaptic plasticity prior to significant accumulation of amyloid plaques and neurodegeneration in APP/PS1 mice. Additionally, HCQ treatment enhances microglial clearance of Aβ1-42, lowers neuroinflammation, and reduces tau phosphorylation in cell culture-based phenotypic assays. Finally, we show that HCQ inactivates STAT3 in microglia, neurons, and astrocytes suggesting a plausible mechanism associated with its observed effects on AD pathogenesis. HCQ, a relatively safe and inexpensive drug in current use may be a promising disease-modifying AD treatment. This hypothesis merits testing through adequately powered clinical trials in at-risk individuals during preclinical stages of disease progression.
Collapse
|
37
|
Hendriks S, Peetoom K, Bakker C, Koopmans R, van der Flier W, Papma J, Verhey F, de Vugt M, Köhler S. Global incidence of young-onset dementia: A systematic review and meta-analysis. Alzheimers Dement 2023; 19:831-843. [PMID: 35715891 DOI: 10.1002/alz.12695] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/19/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Reliable data on the incidence rates for young-onset dementia (YOD) are lacking, but are necessary for research on disease etiology and to raise awareness among health care professionals. METHODS We performed a systematic review and meta-analysis on population-based studies on the incidence of YOD, published between January 1, 1990 and February 1, 2022, according to Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines. Data were analyzed using random-effects meta-analyses. Results were age-standardized, and heterogeneity was assessed by subgroup analyses and meta-regression. RESULTS Sixty-one articles were included. Global age-standardized incidence rates increased from 0.17/100,000 in age 30 to 34 years, to 5.14/100,000 in age 60 to 64 years, giving a global total age-standardized incidence rate of 11 per 100,000 in age 30 to 64. This corresponds to 370,000 new YOD cases annually worldwide. Heterogeneity was high and meta-regression showed geographic location significantly influenced this heterogeneity. DISCUSSION This meta-analysis shows the current best estimate of YOD incidence. New prospective cohort studies are needed.
Collapse
Affiliation(s)
- Stevie Hendriks
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Kirsten Peetoom
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Christian Bakker
- Department of Primary and Community Care, Radboud UMC Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Groenhuysen, Center for Specialized Geriatric Care, Roosendaal, The Netherlands
| | - Raymond Koopmans
- Department of Primary and Community Care, Radboud UMC Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wiesje van der Flier
- Department of Neurology, Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Janne Papma
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Marjolein de Vugt
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
38
|
Cai Y, Schrack JA, Agrawal Y, Armstrong NM, Wanigatunga A, Kitner-Triolo M, Moghekar A, Ferrucci L, Simonsick EM, Resnick SM, Gross AL. Application and validation of an algorithmic classification of early impairment in cognitive performance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.04.23285477. [PMID: 36798178 PMCID: PMC9934722 DOI: 10.1101/2023.02.04.23285477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Objective Due to the long prodromal period for dementia pathology, approaches are needed to detect cases before clinically recognizable symptoms are apparent, by which time it is likely too late to intervene. This study contrasted two theoretically-based algorithms for classifying early cognitive impairment (ECI) in adults aged ≥50 enrolled in the Baltimore Longitudinal Study of Aging. Method Two ECI algorithms were defined as poor performance (1 standard deviation [SD] below age-, sex-, race-, and education-specific means) in: (1) Card Rotations or California Verbal Learning Test (CVLT) immediate recall and (2) ≥1 (out of 2) memory or ≥3 (out of 6) non- memory tests. We evaluated concurrent criterion validity against consensus diagnoses of mild cognitive impairment (MCI) or dementia and global cognitive scores using receiver operating characteristic (ROC) curve analysis. Predictive criterion validity was evaluated using Cox proportional hazards models to examine the associations between algorithmic status and future adjudicated MCI/dementia. Results Among 1,851 participants (mean age=65.2±11.8 years, 50% women, 74% white), the two ECI algorithms yielded comparably moderate concurrent criterion validity with adjudicated MCI/dementia. For predictive criterion validity, the algorithm based on impairment in Card Rotations or CVLT immediate recall was the better predictor of MCI/dementia (HR=3.53, 95%CI: 1.59-7.84) over 12.3 follow-up years. Conclusions Impairment in visuospatial ability or memory may be capable of detecting early cognitive changes in the preclinical phase among cognitively normal individuals.
Collapse
|
39
|
Sultana F, Davis SR, Bell RJ, Taylor S, Islam RM. Association between testosterone and cognitive performance in postmenopausal women: a systematic review of observational studies. Climacteric 2023; 26:5-14. [PMID: 36366914 DOI: 10.1080/13697137.2022.2139600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review was conducted to explore the association between endogenous testosterone blood concentrations and cognitive performance among community dwelling postmenopausal women. We searched Ovid MEDLINE, EMBASE, PsycINFO and Web of Science databases for observational studies with at least 100 postmenopausal participants. The results were categorized by study design, reporting of total or free testosterone and risk of bias assessments, narratively. Ten of the 26 articles retrieved for full-text review met the inclusion criteria, six provided cross-sectional data, seven provided longitudinal data and one provided case-control data. Cognitive performance tests differed between studies. Eight studies measured testosterone by immunoassay, one by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and one did not specify their methodology. Eleven different cognitive domains were tested by 37 different instruments. Irrespective of the study design, the findings were inconsistent and inconclusive. Both positive and inverse associations were reported for each of global cognition and immediate and delayed verbal recall. The majority of studies reported no association between total or free testosterone and cognitive performance. Although this review did not demonstrate an association between testosterone and cognitive performance in postmenopausal women, the findings should be considered inconclusive due to the imprecision of testosterone measurement and the methodological heterogeneity of the included studies.
Collapse
Affiliation(s)
- F Sultana
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - S R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of Endocrinology and Diabetes, Alfred Health, Melbourne, VIC, Australia
| | - R J Bell
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - S Taylor
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - R M Islam
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Vogrinc D, Gregorič Kramberger M, Emeršič A, Čučnik S, Goričar K, Dolžan V. Genetic Polymorphisms in Oxidative Stress and Inflammatory Pathways as Potential Biomarkers in Alzheimer's Disease and Dementia. Antioxidants (Basel) 2023; 12:antiox12020316. [PMID: 36829875 PMCID: PMC9952323 DOI: 10.3390/antiox12020316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Oxidative stress and neuroinflammation are important processes involved in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Numerous risk factors, including genetic background, can affect the complex interplay between those mechanisms in the aging brain and can also affect typical AD hallmarks: amyloid plaques and neurofibrillary tangles. Our aim was to evaluate the association of polymorphisms in oxidative stress- and inflammation-related genes with cerebrospinal fluid (CSF) biomarker levels and cognitive test results. The study included 54 AD patients, 14 MCI patients with pathological CSF biomarker levels, 20 MCI patients with normal CSF biomarker levels and 62 controls. Carriers of two polymorphic IL1B rs16944 alleles had higher CSF Aβ1-42 levels (p = 0.025), while carriers of at least one polymorphic NFE2L2 rs35652124 allele had lower CSF Aβ1-42 levels (p = 0.040). Association with IL1B rs16944 remained significant in the AD group (p = 0.029). Additionally, MIR146A rs2910164 was associated with Aβ42/40 ratio (p = 0.043) in AD. Significant associations with cognitive test scores were observed for CAT rs1001179 (p = 0.022), GSTP1 rs1138272 (p = 0.005), KEAP1 rs1048290 and rs9676881 (both p = 0.019), as well as NFE2L2 rs35652124 (p = 0.030). In the AD group, IL1B rs1071676 (p = 0.004), KEAP1 rs1048290 and rs9676881 (both p = 0.035) remained associated with cognitive scores. Polymorphisms in antioxidative and inflammation genes might be associated with CSF biomarkers and cognitive test scores and could serve as additional biomarkers contributing to early diagnosis of dementia.
Collapse
Affiliation(s)
- David Vogrinc
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
41
|
Kim J, Kim YK. Molecular Imaging of Neuroinflammation in Alzheimer's Disease and Mild Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:301-326. [PMID: 36949316 DOI: 10.1007/978-981-19-7376-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
42
|
O’Shea DM, Galvin JE. Female APOE ɛ4 Carriers with Slow Rates of Biological Aging Have Better Memory Performances Compared to Female ɛ4 Carriers with Accelerated Aging. J Alzheimers Dis 2023; 92:1269-1282. [PMID: 36872781 PMCID: PMC10535361 DOI: 10.3233/jad-221145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Evidence suggests that APOE ɛ4 carriers have worse memory performances compared to APOE ɛ4 non-carriers and effects may vary by sex and age. Estimates of biological age, using DNA methylation may enhance understanding of the associations between sex and APOE ɛ4 on cognition. OBJECTIVE To investigate whether associations between APOE ɛ4 status and memory vary according to rates of biological aging, using a DNA methylation age biomarker, in older men and women without dementia. METHODS Data were obtained from 1,771 adults enrolled in the 2016 wave of the Health and Retirement Study. A series of ANCOVAs were used to test the interaction effects of APOE ɛ4 status and aging rates (defined as 1 standard deviation below (i.e., slow rate), or above (i.e., fast rate) their sex-specific mean rate of aging on a composite measure of verbal learning and memory. RESULTS APOE ɛ4 female carriers with slow rates of GrimAge had significantly better memory performances compared to fast and average aging APOE ɛ4 female carriers. There was no effect of aging group rate on memory in the female non-carriers and no significant differences in memory according to age rate in either male APOE ɛ4 carriers or non-carriers. CONCLUSION Slower rates of aging in female APOE ɛ4 carriers may buffer against the negative effects of the ɛ4 allele on memory. However, longitudinal studies with larger sample sizes are needed to evaluate risk of dementia/memory impairment based on rates of aging in female APOE ɛ4 carriers.
Collapse
Affiliation(s)
- Deirdre M. O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
43
|
Mercan D, Heneka MT. The Contribution of the Locus Coeruleus-Noradrenaline System Degeneration during the Progression of Alzheimer's Disease. BIOLOGY 2022; 11:1822. [PMID: 36552331 PMCID: PMC9775634 DOI: 10.3390/biology11121822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), which is characterized by extracellular accumulation of amyloid-beta peptide and intracellular aggregation of hyperphosphorylated tau, is the most common form of dementia. Memory loss, cognitive decline and disorientation are the ultimate consequences of neuronal death, synapse loss and neuroinflammation in AD. In general, there are many brain regions affected but neuronal loss in the locus coeruleus (LC) is one of the earliest indicators of neurodegeneration in AD. Since the LC is the main source of noradrenaline (NA) in the brain, degeneration of the LC in AD leads to decreased NA levels, causing increased neuroinflammation, enhanced amyloid and tau burden, decreased phagocytosis and impairment in cognition and long-term synaptic plasticity. In this review, we summarized current findings on the locus coeruleus-noradrenaline system and consequences of its dysfunction which is now recognized as an important contributor to AD progression.
Collapse
Affiliation(s)
- Dilek Mercan
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michael Thomas Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
44
|
Alam R, Quintero Silva L, Jahan N, Chodzko-Zajko W, Ogunjesa B, Selzer Ninomiya A, Schwingel A. Relationships of Low Cognitive Performance and Sleep Disorder With Functional Disabilities Among Older Adults. J Aging Health 2022:8982643221143221. [DOI: 10.1177/08982643221143221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives This study examined the relationships of low cognitive performance and sleep disorder with functional disabilities among older adults. Methods: NHANES 2011–2014 data on 3179 individuals [Mage=69.71] were analyzed. Functional domains included: activities of daily living (ADL), instrumental ADL (IADL) and leisure and social activities (LSA). Animal Fluency Test and the Digit Symbol Substitution Test assessed cognitive performance. Participants self-reported having physician-diagnosed sleep disorder. Results: Participants with both low cognitive performance and sleep disorder had 4- to 10-times greater odds for ADL, IADL, and LSA difficulties compared to the participants with no low cognitive performance/sleep disorder. Participants with only low cognitive performance and those with only sleep disorder were two to three times more likely to experience these difficulties. Discussion: Low cognitive performance and sleep disorder together or independently were associated with functional disabilities. Participants with both low cognitive performance and sleep disorder had higher odds of functional disabilities.
Collapse
Affiliation(s)
- Rifat Alam
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Laura Quintero Silva
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Nilufer Jahan
- Department of Organic and Geriatric Psychiatry, National Institute of Mental Health, Dhaka, Bangladesh
| | - Wojtek Chodzko-Zajko
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Babatope Ogunjesa
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Ana Selzer Ninomiya
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Andiara Schwingel
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
45
|
Mielke MM, Aggarwal NT, Vila‐Castelar C, Agarwal P, Arenaza‐Urquijo EM, Brett B, Brugulat‐Serrat A, DuBose LE, Eikelboom WS, Flatt J, Foldi NS, Franzen S, Gilsanz P, Li W, McManus AJ, van Lent DM, Milani SA, Shaaban CE, Stites SD, Sundermann E, Suryadevara V, Trani J, Turner AD, Vonk JMJ, Quiroz YT, Babulal GM, for the Diversity and Disparity Professional Interest Area Sex and Gender Special Interest Group. Consideration of sex and gender in Alzheimer's disease and related disorders from a global perspective. Alzheimers Dement 2022; 18:2707-2724. [PMID: 35394117 PMCID: PMC9547039 DOI: 10.1002/alz.12662] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 01/31/2023]
Abstract
Sex or gender differences in the risk of Alzheimer's disease and related dementias (ADRD) differ by world region, suggesting that there are potentially modifiable risk factors for intervention. However, few epidemiological or clinical ADRD studies examine sex differences; even fewer evaluate gender in the context of ADRD risk. The goals of this perspective are to: (1) provide definitions of gender, biologic sex, and sexual orientation. and the limitations of examining these as binary variables; (2) provide an overview of what is known with regard to sex and gender differences in the risk, prevention, and diagnosis of ADRD; and (3) discuss these sex and gender differences from a global, worldwide perspective. Identifying drivers of sex and gender differences in ADRD throughout the world is a first step in developing interventions unique to each geographical and sociocultural area to reduce these inequities and to ultimately reduce global ADRD risk. HIGHLIGHTS: The burden of dementia is unevenly distributed geographically and by sex and gender. Scientific advances in genetics and biomarkers challenge beliefs that sex is binary. Discrimination against women and sex and gender minority (SGM) populations contributes to cognitive decline. Sociocultural factors lead to gender inequities in Alzheimer's disease and related dementias (ADRD) worldwide.
Collapse
Affiliation(s)
- Michelle M. Mielke
- Division of Epidemiology, Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Neelum T. Aggarwal
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Clara Vila‐Castelar
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalMassachusettsBostonUSA
| | - Puja Agarwal
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Eider M. Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Benjamin Brett
- Department of NeurosurgeryMedical College of WisconsinWisconsinMilwaukeeUSA
| | - Anna Brugulat‐Serrat
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Atlantic Fellow for Equity in Brain HealthThe University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lyndsey E. DuBose
- Department of Medicine, Division of GeriatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Willem S. Eikelboom
- Department of NeurologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jason Flatt
- Social and Behavioral Health Program, School of Public HealthUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Nancy S. Foldi
- Department of Psychology, Queens College and The Graduate CenterCity University of New YorkNew YorkUSA
- Department of PsychiatryNew York University Long Island School of MedicineNew YorkUSA
| | - Sanne Franzen
- Department of NeurologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Paola Gilsanz
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
| | - Wei Li
- Department of Clinical and Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Alison J. McManus
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Debora Melo van Lent
- UT Health San AntonioGlenn Biggs Institute for Alzheimer's and Neurodegenerative diseasesSan AntonioTexasUSA
- Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Sadaf Arefi Milani
- Division of Geriatrics & Palliative Medicine, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTexasUSA
| | - C. Elizabeth Shaaban
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shana D. Stites
- Department of PsychiatryPerlman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Erin Sundermann
- Department of PsychiatryUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Vidyani Suryadevara
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jean‐Francoise Trani
- Department of Public HealthWashington University in St. LouisSt. LouisMissouriUSA
| | - Arlener D. Turner
- Department of Psychiatry & Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jet M. J. Vonk
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Julius Center for Health Sciences and Primary CareDepartment of EpidemiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Yakeel T. Quiroz
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalMassachusettsBostonUSA
- Grupo de Neurociencias de Antioquia of Universidad de AntioquiaMedellinColumbiaUSA
| | - Ganesh M. Babulal
- Department of NeurologyWashington University in St. LouisSt. LouisMississippiUSA
- Department of Clinical Research and LeadershipThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- Department of Psychology, Faculty of HumanitiesUniversity of JohannesburgJohannesburgSouth Africa
| | | |
Collapse
|
46
|
Wang Y, Zhu J, Jia W, Xiong H, Qiu W, Xu R, Lin Y. BACE1 Aptamer-Modified Tetrahedral Framework Nucleic Acid to Treat Alzheimer's Disease in an APP-PS1 Animal Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44228-44238. [PMID: 36149663 DOI: 10.1021/acsami.2c14626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease caused by excessive amyloid β protein-induced neurotoxicity. However, drugs targeting amyloid β protein production face many problems, such as the low utilization rate of drugs by cells and the difficulty of drugs in penetrating the blood-brain barrier. A tetrahedral framework nucleic acid is a new type of nanonucleic acid structure that functions as a therapy and drug carrier. Here, we synthesized a BACE1 aptamer-modified tetrahedral framework nucleic acid and tested its therapeutic effect on Alzheimer's disease in vitro and in vivo. Our results demonstrated that the tetrahedral framework nucleic acid could be used as a carrier to deliver the BACE1 aptamer to the brain to reduce the production of amyloid β proteins. It also played an antiapoptotic role by reducing the production of reactive oxygen species. Thus, this nanomaterial is a potential drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianwei Zhu
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weiqiang Jia
- Department of neurosurgery, The First People's Hospital in Shuangliu District/West China Airport Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
47
|
Chen F, Chen Y, Wang Y, Ke Q, Cui L. The COVID-19 pandemic and Alzheimer's disease: mutual risks and mechanisms. Transl Neurodegener 2022; 11:40. [PMID: 36089575 PMCID: PMC9464468 DOI: 10.1186/s40035-022-00316-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a life-threatening disease, especially in elderly individuals and those with comorbidities. The predominant clinical manifestation of COVID-19 is respiratory dysfunction, while neurological presentations are increasingly being recognized. SARS-CoV-2 invades host cells primarily via attachment of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor expressed on cell membranes. Patients with Alzheimer's disease (AD) are more susceptible to SARS-CoV-2 infection and prone to severe clinical outcomes. Recent studies have revealed some common risk factors for AD and COVID-19. An understanding of the association between COVID-19 and AD and the potential related mechanisms may lead to the development of novel approaches to treating both diseases. In the present review, we first summarize the mechanisms by which SARS-CoV-2 invades the central nervous system (CNS) and then discuss the associations and potential shared key factors between COVID-19 and AD, with a focus on the ACE2 receptor, apolipoprotein E (APOE) genotype, age, and neuroinflammation.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
48
|
Ultrasensitive probeless capacitive biosensor for amyloid beta (Aβ1-42) detection in human plasma using interdigitated electrodes. Biosens Bioelectron 2022; 212:114365. [DOI: 10.1016/j.bios.2022.114365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
|
49
|
Lim U, Wang S, Park S, Bogumil D, Wu AH, Cheng I, Haiman CA, Le Marchand L, Wilkens LR, White L, Setiawan VW. Risk of Alzheimer's disease and related dementia by sex and race/ethnicity: The Multiethnic Cohort Study. Alzheimers Dement 2022; 18:1625-1634. [PMID: 34882963 PMCID: PMC9177893 DOI: 10.1002/alz.12528] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/26/2021] [Accepted: 10/14/2021] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Data are limited for comparison of sex- and race/ethnicity-specific risks of Alzheimer's disease and related dementia (ADRD). METHODS In the population-based Multiethnic Cohort, we estimated the age-standardized diagnostic incidence rate (ASDIR) and relative risk of late-onset ADRD (n = 16,410) among 105,796 participants based on Medicare claims (1999-2014) by sex and race/ethnicity. RESULTS The ASDIR for ADRD was higher for women (17.0 per 1000 person-years) than for men (15.3) and varied across African Americans (22.9 in women, 21.5 in men), Native Hawaiians (19.3, 19.4), Latinos (16.8, 14.7), Whites (16.4, 15.5), Japanese Americans (14.8, 13.8), and Filipinos (12.5, 9.7). Similar risk patterns were observed for AD. Adjustment for education and cardiometabolic diseases attenuated the differences. Accounting for deaths from competing causes increased the sex difference, while reducing the racial/ethnic differences. Less racial/ethnic disparity was detected among apolipoprotein E (APOE) e4 carriers. DISCUSSION More research is needed to understand the sex and racial/ethnic differences in ADRD.
Collapse
Affiliation(s)
- Unhee Lim
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Songren Wang
- Department of Population and Public Health SciencesKeck School of Medicine and Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Song‐Yi Park
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - David Bogumil
- Department of Population and Public Health SciencesKeck School of Medicine and Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Anna H. Wu
- Department of Population and Public Health SciencesKeck School of Medicine and Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Iona Cheng
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Christopher A. Haiman
- Department of Population and Public Health SciencesKeck School of Medicine and Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Loïc Le Marchand
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Lynne R. Wilkens
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Lon White
- Pacific Health Research and Education InstituteHonoluluHawaiiUSA,John A Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - V. Wendy Setiawan
- Department of Population and Public Health SciencesKeck School of Medicine and Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
50
|
Salwierz P, Davenport C, Sumra V, Iulita MF, Ferretti MT, Tartaglia MC. Sex and gender differences in dementia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:179-233. [PMID: 36038204 DOI: 10.1016/bs.irn.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dementia landscape has undergone a striking paradigm shift. The advances in understanding of neurodegeneration and proteinopathies has changed our approach to patients with cognitive impairment. Firstly, it has recently been shown that the various proteinopathies that are the cause of the dementia begin to build up long before the appearance of any obvious symptoms. This has cemented the idea that there is an urgency in diagnosis as it occurs very late in the pathophysiology of these diseases. Secondly, that accurate diagnosis is required to deliver targeted therapies, that is precision medicine. With this latter point, the realization that various factors of a person need to be considered as they may impact the presentation and progression of disease has risen to the forefront. Two of these factors aside from race and age are biological sex and gender (social construct), as both can have tremendous impact on manifestation of disease. This chapter will cover what is known and remains to be known on the interaction of sex and gender with some of the major causes of dementia.
Collapse
Affiliation(s)
- Patrick Salwierz
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Carly Davenport
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Vishaal Sumra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - M Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Women's Brain Project, Guntershausen, Switzerland
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Memory Clinic, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|