1
|
Evers S, Frese A, Hornberg P, Summ O. Trigemino-autonomic activation in a human trigeminal pain model. BMC Neurol 2025; 25:145. [PMID: 40188078 PMCID: PMC11972533 DOI: 10.1186/s12883-025-04147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Autonomic symptoms are mandatory for making the diagnosis of a trigemino-autonomic cephalalgia (TAC). These symptoms can occasionally also occur in migraine and facial pain disorders. This leads to the question whether the trigeminal pain itself can induce autonomic symptoms also in healthy subjects. METHODS We enrolled healthy subjects without a history of migraine or a TAC and provoked severe trigeminal pain by injection of 0.05 ml capsaicin (0.01%) into the right forehead. Autonomic symptoms occurring at the right eye or right nostril were registered until they disappeared. We also calculated an autonomic score for the frequency and duration of autonomic symptoms in an individual. RESULTS We enrolled 60 healthy volunteers (30 male, 30 female; mean age 28 +/- 5 years). All but two subjects developed at least one autonomic symptom after injection of capsaicin. One minute after injection, the pain was rated as 9.2 +/- 1.1 and 8.5 +/- 1.2 (scale from 0 to 10) in female and male subjects, respectively. The autonomic score was 4.4 +/- 1.6 and 1.7 +/- 0.9 for female and male subjects, respectively. All differences between female and male subjects were significant. Pain rating and autonomic score showed a significant positive correlation which remained significant even after adjusting for sex. CONCLUSIONS Severe trigeminal pain was accompanied by autonomic symptoms in almost all subjects in this experiment. The pain rating and the severity of autonomic symptoms were significantly higher in female subjects than in male. The higher the pain the more severe was this autonomic activation. We conclude that activation of autonomic symptoms is an unspecific consequence of severe trigeminal pain. This does, however, not exclude the possibility that primary headache disorders might have an independent anatomic pathway to induce autonomic symptoms because these symptoms can, although very rarely, also occur without pain.
Collapse
Affiliation(s)
- Stefan Evers
- Faculty of Medicine, University of Münster, Münster, Germany.
- Department of Neurology, Lindenbrunn Hospital, Lindenbrunn 1, 31863, Coppenbrügge, Germany.
| | - Achim Frese
- Faculty of Medicine, University of Münster, Münster, Germany
- Akademie für Manuelle Medizin, Münster, Germany
| | | | - Oliver Summ
- Department of Neurology and Research Center of Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Bertotti G, Fernández-Ruiz V, Roldán-Ruiz A, López-Moreno M. Cluster Headache and Migraine Shared and Unique Insights: Neurophysiological Implications, Neuroimaging, and Biomarkers: A Comprehensive Review. J Clin Med 2025; 14:2160. [PMID: 40217611 PMCID: PMC11989414 DOI: 10.3390/jcm14072160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Migraine headache (MH) and cluster headache (CH) are debilitating primary headache disorders that impose a significant global burden. While they share certain clinical features, such as unilateral pain and autonomic dysfunction, their underlying pathophysiological mechanisms remain distinct. Advances in the understanding of neurophysiological features, such as neuroimaging and biomarker research, have provided critical insights into both their overlapping and divergent characteristics. Neurophysiological research has revealed differences in nociceptive processing, cortical excitability, and sensory integration, underscoring the complexity of these conditions. Neuroimaging studies reveal common activation patterns within pain-processing networks, including the trigeminal system and hypothalamus, while highlighting key differences, such as hypothalamic hyperactivity in CH and cortical alterations in MH. Additionally, biomarker research has identified shared elements, including elevated calcitonin gene-related peptide (CGRP), yet distinct variations in its regulation and genetic predispositions. Genome-wide association studies have further elucidated the genetic architecture of these disorders, uncovering susceptibility loci that reinforces their unique yet occasionally intersecting genetic foundations. These multifield advancements not only enhance the understanding of MH and CH pathophysiology but also pave the way for improved diagnostic precision, personalized therapeutic strategies, and future research.
Collapse
Affiliation(s)
- Gabriele Bertotti
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain; (G.B.); (V.F.-R.); (M.L.-M.)
- CranioSPain Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
| | - Vicente Fernández-Ruiz
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain; (G.B.); (V.F.-R.); (M.L.-M.)
| | - Alberto Roldán-Ruiz
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain; (G.B.); (V.F.-R.); (M.L.-M.)
| | - Miguel López-Moreno
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain; (G.B.); (V.F.-R.); (M.L.-M.)
| |
Collapse
|
3
|
Sen A, Mukherjee A, Chakravarty A. Neurological and Systemic Pitfalls in the Diagnosis of Cluster Headaches: A Case-Based Review. Curr Neurol Neurosci Rep 2024; 24:581-592. [PMID: 39432226 DOI: 10.1007/s11910-024-01381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE OF REVIEW To describe different pitfalls in the diagnosis of primary cluster headaches (CHs) with the guidance of seven case vignettes. RECENT FINDINGS The question of whether primary CHs and migraines are totally different entities has been long debated. Autonomic features can be detected in as many as 60% of migraine patients. Although some genetic similarities have been found, CACNA1A mutations have not been detected among CH patients with hemimotor aura in contrast to hemiplegic migraine. Recently, functional MRI studies have shown that the left thalamic network was the most discriminative MRI feature in distinguishing migraine from CH patients. Compared to migraine, CH patients showed decreased functional interaction between the left thalamus and cortical areas mediating interception and sensory integration. However, clinically the most significant feature had been the restlessness and agitation seen during headache attacks patients with CHs. This feature is also important in distinguishing cluster patients from other patients having other trigeminal autonomic cephalalgias except for a subset of patients with hemicrania continua. CH is an important member of the group of headache disorders characterized by their association with one or more autonomic features in the trigeminal nerve distribution and termed Trigeminal Autonomic Cephalalgias (TACs). Although CH is a relatively rare condition, judged by the distress it generally causes to the affected individual, early diagnosis and institution of appropriate therapy seem mandatory. Correct diagnosis of CHs needs avoidance of pitfalls. Such pitfalls generally include differentiation from migraine, differentiation from other side locked headache disorders, from other trigeminal autonomic cephalalgias (TACs), and lastly, recognition of rare presentations of cluster-like manifestations with hemiplegic aura and simulating trigeminal and glossopharyngeal neuralgias. Differentiation between primary and symptomatic CHs related to sellar pathologies and systemic medical conditions is of equal importance. In the present review such issues are discussed with the assistance of seven case vignettes.
Collapse
Affiliation(s)
- Ansu Sen
- Department of Neurology, Vivekananda Institute of Medical Science, Kolkata, West Bengal, India
| | - Angshuman Mukherjee
- Department of Neurology, Vivekananda Institute of Medical Science, Kolkata, West Bengal, India
| | - Ambar Chakravarty
- Department of Neurology, Vivekananda Institute of Medical Science, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Karsan N, Edvinsson L, Vecsei L, Goadsby PJ. Pituitary cyclase-activating polypeptide targeted treatments for the treatment of primary headache disorders. Ann Clin Transl Neurol 2024; 11:1654-1668. [PMID: 38887982 PMCID: PMC11251486 DOI: 10.1002/acn3.52119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Migraine is a complex and disabling neurological disorder. Recent years have witnessed the development and emergence of novel treatments for the condition, namely those targeting calcitonin gene-related peptide (CGRP). However, there remains a substantial need for further treatments for those unresponsive to current therapies. Targeting pituitary adenylate cyclase-activating polypeptide (PACAP) as a possible therapeutic strategy in the primary headache disorders has gained interest over recent years. METHODS This review will summarize what we know about PACAP to date: its expression, receptors, roles in migraine and cluster headache biology, insights gained from preclinical and clinical models of migraine, and therapeutic scope. RESULTS PACAP shares homology with vasoactive intestinal polypeptide (VIP) and is one of several vasoactive neuropeptides along with CGRP and VIP, which has been implicated in migraine neurobiology. PACAP is widely expressed in areas of interest in migraine pathophysiology, such as the thalamus, trigeminal nucleus caudalis, and sphenopalatine ganglion. Preclinical evidence suggests a role for PACAP in trigeminovascular sensitization, while clinical evidence shows ictal release of PACAP in migraine and intravenous infusion of PACAP triggering attacks in susceptible individuals. PACAP leads to dural vasodilatation and secondary central phenomena via its binding to different G-protein-coupled receptors, and intracellular downstream effects through cyclic adenosine monophosphate (cAMP) and phosphokinase C (PKC). Targeting PACAP as a therapeutic strategy in headache has been explored using monoclonal antibodies developed against PACAP and against the PAC1 receptor, with initial positive results. INTERPRETATION Future clinical trials hold considerable promise for a new therapeutic approach using PACAP-targeted therapies in both migraine and cluster headache.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Lars Edvinsson
- Department of Medicine, Institute of Clinical SciencesLund University221 84LundSweden
| | - Laszlo Vecsei
- Department of Neurology, Albert Szent‐Györgyi Medical School, and HUN‐REN‐SZTE Neuroscience Research Group, Hungarian Research NetworkUniversity of SzegedSemmelweis u. 6SzegedH‐6725Hungary
| | - Peter J Goadsby
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Department of NeurologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Stanyer EC, Hoffmann J, Holland PR. Orexins and primary headaches: an overview of the neurobiology and clinical impact. Expert Rev Neurother 2024; 24:487-496. [PMID: 38517280 PMCID: PMC11034548 DOI: 10.1080/14737175.2024.2328728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Primary headaches, including migraines and cluster headaches, are highly prevalent disorders that significantly impact quality of life. Several factors suggest a key role for the hypothalamus, including neuroimaging studies, attack periodicity, and the presence of altered homeostatic regulation. The orexins are two neuropeptides synthesized almost exclusively in the lateral hypothalamus with widespread projections across the central nervous system. They are involved in an array of functions including homeostatic regulation and nociception, suggesting a potential role in primary headaches. AREAS COVERED This review summarizes current knowledge of the neurobiology of orexins, their involvement in sleep-wake regulation, nociception, and functions relevant to the associated symptomology of headache disorders. Preclinical reports of the antinociceptive effects of orexin-A in preclinical models are discussed, as well as clinical evidence for the potential involvement of the orexinergic system in headache. EXPERT OPINION Several lines of evidence support the targeted modulation of orexinergic signaling in primary headaches. Critically, orexins A and B, acting differentially via the orexin 1 and 2 receptors, respectively, demonstrate differential effects on trigeminal pain processing, indicating why dual-receptor antagonists failed to show clinical efficacy. The authors propose that orexin 1 receptor agonists or positive allosteric modulators should be the focus of future research.
Collapse
Affiliation(s)
- Emily C. Stanyer
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Sir Jules Thorne Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jan Hoffmann
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Philip R. Holland
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
6
|
Coppola G, Abagnale C, Sebastianelli G, Goadsby PJ. Pathophysiology of cluster headache: From the trigeminovascular system to the cerebral networks. Cephalalgia 2024; 44:3331024231209317. [PMID: 38415635 DOI: 10.1177/03331024231209317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND Despite advances in neuroimaging and electrophysiology, cluster headache's pathogenesis remains unclear. This review will examine clinical neurophysiology studies, including electrophysiological and functional neuroimaging, to determine if they might help us construct a neurophysiological model of cluster headache. RESULTS Clinical, biochemical, and electrophysiological research have implicated the trigeminal-parasympathetic system in cluster headache pain generation, although the order in which these two systems are activated, which may be somewhat independent, is unknown. Electrophysiology and neuroimaging have found one or more central factors that may cause seasonal and circadian attacks. The well-known posterior hypothalamus, with its primary circadian pacemaker suprachiasmatic nucleus, the brainstem monoaminergic systems, the midbrain, with an emphasis on the dopaminergic system, especially when cluster headache is chronic, and the descending pain control systems appear to be involved. Functional connection investigations have verified electrophysiological evidence of functional changes in distant brain regions connecting to wide cerebral networks other than pain. CONCLUSION We propose that under the impact of external time, an inherited misalignment between the primary circadian pacemaker suprachiasmatic nucleus and other secondary extra- suprachiasmatic nucleus clocks may promote disturbance of the body's internal physiological clock, lowering the threshold for bout recurrence.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, and Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London UK
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Madsen MK, Petersen AS, Stenbaek DS, Sørensen IM, Schiønning H, Fjeld T, Nykjaer CH, Larsen SMU, Grzywacz M, Mathiesen T, Klausen IL, Overgaard-Hansen O, Brendstrup-Brix K, Linnet K, Johansen SS, Fisher PM, Jensen RH, Knudsen GM. CCH attack frequency reduction after psilocybin correlates with hypothalamic functional connectivity. Headache 2024; 64:55-67. [PMID: 38238974 DOI: 10.1111/head.14656] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE To evaluate the feasibility and prophylactic effect of psilocybin as well as its effects on hypothalamic functional connectivity (FC) in patients with chronic cluster headache (CCH). BACKGROUND CCH is an excruciating and difficult-to-treat disorder with incompletely understood pathophysiology, although hypothalamic dysfunction has been implicated. Psilocybin may have beneficial prophylactic effects, but clinical evidence is limited. METHODS In this small open-label clinical trial, 10 patients with CCH were included and maintained headache diaries for 10 weeks. Patients received three doses of peroral psilocybin (0.14 mg/kg) on the first day of weeks five, six, and seven. The first 4 weeks served as baseline and the last 4 weeks as follow-up. Hypothalamic FC was determined using functional magnetic resonance imaging the day before the first psilocybin dose and 1 week after the last dose. RESULTS The treatment was well tolerated. Attack frequency was reduced by mean (standard deviation) 31% (31) from baseline to follow-up (pFWER = 0.008). One patient experienced 21 weeks of complete remission. Changes in hypothalamic-diencephalic FC correlated negatively with a percent change in attack frequency (pFWER = 0.03, R = -0.81), implicating this neural pathway in treatment response. CONCLUSION Our results indicate that psilocybin may have prophylactic potential and implicates the hypothalamus in possible treatment response. Further clinical studies are warranted.
Collapse
Affiliation(s)
- Martin K Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Anja Sofie Petersen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dea S Stenbaek
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Inger Marie Sørensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Harald Schiønning
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Tobias Fjeld
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Charlotte H Nykjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sara Marie Ulv Larsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Maria Grzywacz
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Tobias Mathiesen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ida L Klausen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Oliver Overgaard-Hansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Kristian Linnet
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sys S Johansen
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rigmor H Jensen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Merli E, Rustici A, Gramegna LL, Di Donato M, Agati R, Tonon C, Lodi R, Favoni V, Pierangeli G, Cortelli P, Cevoli S, Cirillo L. Vessel-wall MRI in primary headaches: The role of neurogenic inflammation. Headache 2023; 63:1372-1379. [PMID: 35137395 DOI: 10.1111/head.14253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate if vessel-wall magnetic resonance imaging (VW-MRI) could differentiate among primary headaches disorders, such as migraine and cluster headache (CH), and detect the presence of neurogenic inflammation. BACKGROUND The pathophysiology of primary headaches disorders is complex and not completely clarified. The activation of nociceptive trigeminal afferents through the release of vasoactive neuropeptides, termed "neurogenic inflammation," has been hypothesized. VW-MRI can identify vessel wall changes, reflecting the inflammatory remodeling of the vessel walls despite different etiologies. METHODS In this case series, we enrolled seven patients with migraine and eight patients with CH. They underwent a VW-MRI study before and after the intravenous administration of contrast medium, during and outside a migraine attack or cluster period. Two expert neuroradiologists analyzed the magnetic resonance imaging (MRI) studies to identify the presence of vessel wall enhancement or other vascular abnormalities. RESULTS Fourteen out of 15 patients had no enhancement. One out of 15, with migraine, showed a focal parietal enhancement in the intracranial portion of a vertebral artery, unmodified during and outside the attack, thus attributable to atherosclerosis. No contrast enhancement attributable to neurogenic inflammation was observed in VW-MRI, both during and outside the attack/cluster in all patients. Moreover, MRI angiography registered slight diffuse vasoconstriction in one of seven patients with migraine during the attack and in one of eight patients with cluster headache during the cluster period; both patients had taken triptans as symptomatic therapy for pain. CONCLUSIONS These preliminary results suggest that VW-MRI studies are negative in patients with primary headache disorders even during migraine attacks or cluster periods. The VW-MRI studies did not detect signs of neurogenic inflammation in the intracranial intradural vessels of patients with migraine or CH.
Collapse
Affiliation(s)
- Elena Merli
- UOC Neurologia e Rete Stroke metropolitana, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Arianna Rustici
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Di Donato
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Raffaele Agati
- Programma Neuroradiologia con Tecniche ad Elevata Complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valentina Favoni
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giulia Pierangeli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Cevoli
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luigi Cirillo
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Programma Neuroradiologia con Tecniche ad Elevata Complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Karsan N, Bose RP, O'Daly O, Zelaya F, Goadsby PJ. Regional cerebral perfusion during the premonitory phase of triggered migraine: A double-blind randomized placebo-controlled functional imaging study using pseudo-continuous arterial spin labeling. Headache 2023; 63:771-787. [PMID: 37337681 DOI: 10.1111/head.14538] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE To identify changes in regional cerebral blood flow (CBF) associated with premonitory symptoms (PS) of nitroglycerin (NTG)-triggered migraine attacks. BACKGROUND PS could provide insights into attack initiation and alterations in neuronal function prior to headache onset. METHODS We undertook a functional imaging study using a double-blind placebo-controlled randomized approach in patients with migraine who spontaneously experienced PS, and in whom PS and migraine-like headache could be induced by administration of NTG. All study visits took place in a dedicated clinical research facility housing a monitoring area with clinical beds next to a 3Tesla magnetic resonance imaging scanner. Fifty-three patients with migraine were enrolled; imaging on at least one triggered visit was obtained from 25 patients, with 21 patients completing the entire imaging protocol including a placebo visit. Whole brain CBF maps were acquired using 3D pseudo-continuous arterial spin labeling (3D pCASL). RESULTS The primary outcome was that patients with migraine not taking preventive treatment (n = 12) displayed significant increases in CBF in anterior cingulate cortex, caudate, midbrain, lentiform, amygdala and hippocampus (p < 0.05 family-wise error-corrected) during NTG-induced PS. A separate region of interest analysis revealed significant CBF increases in the region of the hypothalamus (p = 0.006, effect size 0.77). Post hoc analyses revealed significant reductions in CBF over the occipital cortices in participants with a history of migraine with underlying aura (n = 14). CONCLUSIONS We identified significant regional CBF changes associated with NTG-induced PS, consistent with other investigations and with novel findings, withstanding statistical comparison against placebo. These findings were not present in patients who continually took preventive medication. Additional findings were identified only in participants who experience migraine with aura. Understanding this biological and treatment-related heterogeneity is vital to evaluating functional imaging outcomes in migraine research.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility, King's College Hospital, London, UK
| | - Ray Pyari Bose
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility, King's College Hospital, London, UK
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility, King's College Hospital, London, UK
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Jennysdotter Olofsgård F, Ran C, Qin Y, Fourier C, Sjöstrand C, Waldenlind E, Steinberg A, Belin AC. Investigating Vitamin D Receptor Genetic Markers in a Cluster Headache Meta-Analysis. Int J Mol Sci 2023; 24:ijms24065950. [PMID: 36983024 PMCID: PMC10051627 DOI: 10.3390/ijms24065950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Patients diagnosed with the primary headache disorder known as cluster headache (CH) commonly report that their headache attacks occur in patterns of both circadian and seasonal rhythmicity. Vitamin D is essential for a variety of bodily functions and vitamin D levels are largely regulated by daylight exposure in connection with seasonal variation. For this Sweden-based study, the association between CH and three single-nucleotide polymorphisms in the vitamin D receptor gene, rs2228570, rs1544410, and rs731236, were investigated, as well as CH bouts and trigger factors in relation to seasonal and weather changes. Over 600 study participants with CH and 600 controls were genotyped for rs2228570, and genotyping results for rs1544410 and rs731236 were obtained from a previous genome-wide association study. The genotyping results were combined in a meta-analysis, with data from a Greek study. No significant association was found between rs2228570 and CH or the CH subtype in Sweden, nor did the meta-analysis show significant results for any of the three markers. The most common period of the year to experience CH bouts in Sweden was autumn, and conditions linked to weather or weather changes were also identified as potential triggers for CH bouts for a quarter of the responders who reported bout triggers. Though we cannot rule out vitamin D involvement in CH, this study does not indicate any connection between CH and the three vitamin D receptor gene markers.
Collapse
Affiliation(s)
| | - Caroline Ran
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Yuyan Qin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carmen Fourier
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christina Sjöstrand
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Neurology, Danderyd Hospital, 182 88 Stockholm, Sweden
| | - Elisabet Waldenlind
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
11
|
Sleep and Chronobiology as a Key to Understand Cluster Headache. Neurol Int 2023; 15:497-507. [PMID: 36976672 PMCID: PMC10051701 DOI: 10.3390/neurolint15010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The cluster headache is a primary headache characterized by attacks of unilateral pain associated with ipsilateral cranial autonomic features. These attacks recur in clusters during the years alternating with periods of complete remission, and their onset is often during the night. This annual and nocturnal periodicity hides a strong and mysterious link among CH, sleep, chronobiology and circadian rhythm. Behind this relationship, there may be the influence of genetic components or of anatomical structures such as the hypothalamus, which are both involved in regulating the biological clock and contributing even to the periodicity of cluster headaches. The bidirectional relationship manifests itself also with the presence of sleep disturbances in patients affected by cluster headaches. What if the key to studying the physiopathology of such disease could rely on the mechanisms of chronobiology? The purpose of this review is to analyze this link in order to interpret the pathophysiology of cluster headaches and the possible therapeutic implications.
Collapse
|
12
|
Dominguez Garcia MM, Abejon Gonzalez D, de Diego Gamarra JM, Cánovas Martinez ML, Balboa Díaz M, Hadjigeorgiou I. Symptoms and pathophysiology of cluster headache. Approach to combined occipital and supraorbital neurostimulation. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2023; 70:83-96. [PMID: 36822404 DOI: 10.1016/j.redare.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/05/2021] [Indexed: 02/25/2023]
Abstract
Cluster headache (CH) is included under section 3 - Trigeminal autonomic cephalalgias (TAC) of the International Headache Society (IHS) classification. It is one of the most frequent, painful and disabling primary headaches. Acute and preventive pharmacological treatments are often poorly tolerated and of limited effectiveness. Due to improved understanding of the pathophysiology of CH, neuromodulation devices are now considered safe and effective options for preventive and acute treatment of CH. In this paper, we review the information available to date, and present the case of a patient with disabling cluster headache highly resistant to medical treatment who underwent implantation of a peripheral nerve neurostimulation system to stimulate the supraorbital nerves (SON) and greater occipital nerve (GON) in our Pain Unit. We also review the diagnostic criteria for CH, the state of the knowledge on the pathophysiology of CH, and the role played by neuromodulation in treating this condition.
Collapse
Affiliation(s)
- M M Dominguez Garcia
- Hospital Doctor José Molina Orosa de Lanzarote: Hospital Doctor José Molina Orosa Arrecife, Las Palmas, Spain.
| | - D Abejon Gonzalez
- Hospital Doctor José Molina Orosa de Lanzarote: Hospital Doctor José Molina Orosa Arrecife, Las Palmas, Spain
| | - J M de Diego Gamarra
- Hospital Doctor José Molina Orosa de Lanzarote: Hospital Doctor José Molina Orosa Arrecife, Las Palmas, Spain
| | - M L Cánovas Martinez
- Hospital Doctor José Molina Orosa de Lanzarote: Hospital Doctor José Molina Orosa Arrecife, Las Palmas, Spain
| | - M Balboa Díaz
- Hospital Doctor José Molina Orosa de Lanzarote: Hospital Doctor José Molina Orosa Arrecife, Las Palmas, Spain
| | - I Hadjigeorgiou
- Hospital Doctor José Molina Orosa de Lanzarote: Hospital Doctor José Molina Orosa Arrecife, Las Palmas, Spain
| |
Collapse
|
13
|
Silvestro M, Orologio I, Tartaglione L, Sozio P, Siciliano M, Trojsi F, Tessitore A, Tedeschi G, Russo A. Infodemiology of cluster headache seasonality: A proof of concept by a Google Trends analysis. Headache 2023; 63:89-93. [PMID: 36651518 DOI: 10.1111/head.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cluster headache is commonly reported to follow an annual pattern with a peak in the spring and a second peak in autumn. Patients with headache frequently use search engines, such as Google, to look for terms related to their disease, creating trend data that can be analyzed with Google Trends. Indeed, Google Trends has been used for surveillance studies and can provide indirect estimates of the burden of diseases and symptoms. The present cross-sectional study investigated the seasonality of searches for "cluster headache" in the northern and southern hemispheres using 10 years of Google Trends data. METHODS The term "cluster headache" or its translation in the 10 most spoken languages in the world was searched on Google Trends to obtain relative search volumes (from 0 to 100), in order to compare variations in searches across periods. Twenty-eight countries were selected according to the following criteria: (1) a relative search volume of >40 for the term for cluster headache; and (2) a population of at least 5 million inhabitants. For statistical purposes, countries were grouped in relation to hemisphere (northern or southern). Relative search volumes were extracted from January 2012 to January 2022 and analyzed according to two subgroups based on meteorological seasons (summer and winter vs. spring and autumn). RESULTS A seasonal trend for in searches for cluster headache was found worldwide exhibiting higher relative search volumes in spring and autumn compared with summer and winter (17 [0, 39] vs. 13 [0, 37]; p = 0.016). CONCLUSION Higher search volumes for the term during the meteorological seasons of spring and autumn clearly reflect a circannual pattern of cluster headache occurrence, representing new evidence for its seasonality.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Center, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ilaria Orologio
- Headache Center, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lorenzo Tartaglione
- Headache Center, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Pasquale Sozio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- Headache Center, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Trojsi
- Headache Center, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Headache Center, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Headache Center, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Russo
- Headache Center, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
14
|
Rocha DN, Carvalho ED, Relvas JB, Oliveira MJ, Pêgo AP. Mechanotransduction: Exploring New Therapeutic Avenues in Central Nervous System Pathology. Front Neurosci 2022; 16:861613. [PMID: 35573316 PMCID: PMC9096357 DOI: 10.3389/fnins.2022.861613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are continuously exposed to physical forces and the central nervous system (CNS) is no exception. Cells dynamically adapt their behavior and remodel the surrounding environment in response to forces. The importance of mechanotransduction in the CNS is illustrated by exploring its role in CNS pathology development and progression. The crosstalk between the biochemical and biophysical components of the extracellular matrix (ECM) are here described, considering the recent explosion of literature demonstrating the powerful influence of biophysical stimuli like density, rigidity and geometry of the ECM on cell behavior. This review aims at integrating mechanical properties into our understanding of the molecular basis of CNS disease. The mechanisms that mediate mechanotransduction events, like integrin, Rho/ROCK and matrix metalloproteinases signaling pathways are revised. Analysis of CNS pathologies in this context has revealed that a wide range of neurological diseases share as hallmarks alterations of the tissue mechanical properties. Therefore, it is our belief that the understanding of CNS mechanotransduction pathways may lead to the development of improved medical devices and diagnostic methods as well as new therapeutic targets and strategies for CNS repair.
Collapse
Affiliation(s)
- Daniela Nogueira Rocha
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Eva Daniela Carvalho
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia (FEUP), Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Alterations of thalamic nuclei volumes in patients with cluster headache. Neuroradiology 2022; 64:1839-1846. [DOI: 10.1007/s00234-022-02951-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/05/2022] [Indexed: 01/03/2023]
|
16
|
Silvestro M, Tessitore A, Orologio I, Battista G, Siciliano M, Tedeschi G, Russo A. Cluster headache pathophysiology: What we have learned from advanced neuroimaging. Headache 2022; 62:436-452. [PMID: 35315064 PMCID: PMC9314615 DOI: 10.1111/head.14279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Background Although remarkable progress has been achieved in understanding cluster headache (CH) pathophysiology, there are still several gaps about the mechanisms through which independent subcortical and cortical brain structures interact with each other. These gaps could be partially elucidated by structural and functional advanced neuroimaging investigations. Objective Although we are aware that substantial achievements have come from preclinical, neurophysiological, and biochemical experiments, the present narrative review aims to summarize the most significant findings from structural, microstructural, and functional neuroimaging investigations, as well as the consequent progresses in understanding CH pathophysiological mechanisms, to achieve a comprehensive and unifying model. Results Advanced neuroimaging techniques have contributed to overcoming the peripheral hypothesis that CH is of cavernous sinus pathology, in transitioning from the pure vascular hypothesis to a more comprehensive trigeminovascular model, and, above all, in clarifying the role of the hypothalamus and its connections in the genesis of CH. Conclusion Altogether, neuroimaging findings strongly suggest that, beyond the theoretical model of the “pain matrix,” the model of the “neurolimbic pain network” that is accepted in migraine research could also be extended to CH. Indeed, although the hypothalamus’ role is undeniable, the genesis of CH attacks is complex and seems to not be just the result of a single “generator.” Cortical‐hypothalamic‐brainstem functional interconnections that can switch between out‐of‐bout and in‐bout periods, igniting the trigeminovascular system (probably by means of top‐down mechanisms) and the consensual trigeminal autonomic reflexes, may represent the “neuronal background” of CH.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giorgia Battista
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Russo
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
17
|
Wei DY, O'Daly O, Zelaya FO, Goadsby PJ. Areas of cerebral blood flow changes on arterial spin labelling with the use of symmetric template during nitroglycerin triggered cluster headache attacks. Neuroimage Clin 2022; 33:102920. [PMID: 34972033 PMCID: PMC8724947 DOI: 10.1016/j.nicl.2021.102920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Cluster headache is a severe unilateral primary headache disorder; however, the brain is asymmetric, therefore using a symmetric template before flipping in the x-axis allows for ipsilateral analysis of attacks without loss of coherence across the group. Increases in cerebral blood flow beyond pain anticipation, processing and modulation areas, including hypothalamic regions and ipsilateral pons, have a crucial pathophysiological role in cluster headache attacks. The pain experienced during cluster headache attacks is so severe that it “switches off” areas involved in the default brain network.
Background Cluster headache is a rare, strictly unilateral, severe episodic primary headache disorder. Due to the unpredictable and episodic nature of the attacks, nitroglycerin has been used to trigger attacks for research purposes to further our understanding of cluster headache pathophysiology. Objectives We aimed to identify regions of significant cerebral blood flow (CBF) changes during nitroglycerin triggered cluster headache attacks, using MRI with arterial spin labelling (ASL). Methods Thirty-three subjects aged 18–60 years with episodic and chronic cluster headache were recruited and attended an open clinical screening visit without scanning to receive an intravenous nitroglycerin infusion (0.5 μg/kg/min over 20 min). Those for whom nitroglycerin successfully triggered a cluster headache attack, were invited to attend two subsequent scanning visits. They received either single-blinded intravenous nitroglycerin (0.5 μg/kg/min) or an equivalent volume of single-blinded intravenous 0.9% sodium chloride over a 20-minute infusion. Whole-brain CBF maps were acquired using a 3 Tesla MRI scanner pre-infusion and post-infusion. As cluster headache is a rare condition and purely unilateral disorder, an analysis strategy to ensure all the image data corresponded to symptomatology in the same hemisphere, without losing coherence across the group, was adopted. This consisted of spatially normalising all CBF maps to a standard symmetric reference template before flipping the images about the anterior-posterior axis for those CBF maps of subjects who experienced their headache in the right hemisphere. This procedure has been employed in previous studies and generated a group data set with expected features on the left hemisphere only. Results Twenty-two subjects successfully responded to the nitroglycerin infusion and experienced triggered cluster headache attacks. A total of 20 subjects completed the placebo scanning visit, 20 completed the nitroglycerin scanning visit, and 18 subjects had completed both the nitroglycerin and placebo scanning visits. In a whole-brain analysis, we identified regions of significantly elevated CBF in the medial frontal gyrus, superior frontal gyrus, inferior frontal gyrus and cingulate gyrus, ipsilateral to attack side, in CBF maps acquired during cluster headache attack; compared with data from the placebo session. We also identified significantly reduced CBF in the precuneus, cuneus, superior parietal lobe and occipital lobe contralateral to the attack side. Of particular interest to this field of investigation, both the hypothalamus and ipsilateral ventral pons showed higher CBF in a separate region of interest analysis. Conclusion Our data demonstrate that severe cluster headache leads to significant increases in regional cerebral perfusion, likely to reflect changes in neuronal activity in several regions of the brain, including the hypothalamus and the ventral pons. These data contribute to our understanding of cluster headache pathophysiology; and suggest that non-invasive ASL technology may be valuable in future mechanistic studies of this debilitating condition.
Collapse
Affiliation(s)
- Diana Y Wei
- Headache Group, Wolfson Centre for Age-Related Diseases, King's College London, UK; NIHR Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, King's College London, UK; NIHR Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK; Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Serousova OV, Karpova MI. [Trigeminal autonomic cephalgias: features of diagnosis and treatment]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:105-112. [PMID: 34874664 DOI: 10.17116/jnevro2021121101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Trigeminal autonomic cephalgias is a group of primary headaches, including cluster headache, paroxysmal hemicrania and hemicrania continua, as well as two forms of short- lasting unilateral neuralgiform headache attacks, the complexity of diagnosis of which is determined by the low prevalence and some similarity of clinical manifestations both among themselves and with other diseases in particular with migraine and trigeminal neuralgia. Despite the rather short duration of headache attacks, the intensity of the pain syndrome reaches a severe and very severe degree, and the high frequency of paroxysms per day significantly complicates abortion treatment and leads to a pronounced professional and social maladjustment. At the same time, the possibility of using effective specific prophylactic therapy determines the importance of accurate diagnosis and, therefore, the knowledge of neurologists on this issue.
Collapse
Affiliation(s)
- O V Serousova
- South Ural State Medical University, Chelyabinsk, Russia
| | - M I Karpova
- South Ural State Medical University, Chelyabinsk, Russia
| |
Collapse
|
19
|
Abstract
Background Key structures for the pathophysiology of primary headache disorders such as migraine, cluster headache, and other trigeminal autonomic cephalalgias were identified by imaging in the past years. Objective Available data on functional imaging in primary headache disorders are summarized in this review. Material and Methods We performed a MEDLINE search on December 27th, 2020 using the search terms "primary headache" AND "imaging" that returned 453 results in English, out of which 137 were labeled reviews. All articles were evaluated for content and relevance for this narrative review. Results The structure depicted most consistently using functional imaging in different states of primary headaches (without and with pain) was the posterior hypothalamus. Whole-brain imaging techniques such as resting-state functional resonance imaging showed a wide-ranging association of cortical and subcortical areas with human nociceptive processing in the pathophysiological mechanisms underlying the different TACs. Similarities of distinct groups of primary headache disorders, as well as their differences in brain activation across these disorders, were highlighted. Conclusion The importance of neuroimaging research from clinical practice point of view remains the reliable and objective distinction of each individual pain syndrome from one another. This will help to make the correct clinical diagnosis and pave the way for better and effective treatment in the future. More research will be necessary to fulfill this unmet need.
Collapse
Affiliation(s)
- Steffen Naegel
- Department of Neurology, Martin Luther University Halle- Wittenberg and University Hospital Halle, Halle (Saale), Germany
| | - Mark Obermann
- Department of Neurology, Klinikum Weser-Egge, Höxter, Germany
| |
Collapse
|
20
|
Younis S, Christensen CE, Vestergaard MB, Lindberg U, Tolnai D, Paulson OB, Larsson HBW, Hougaard A, Ashina M. Glutamate levels and perfusion in pons during migraine attacks: A 3T MRI study using proton spectroscopy and arterial spin labeling. J Cereb Blood Flow Metab 2021; 41:604-616. [PMID: 32423331 PMCID: PMC7922760 DOI: 10.1177/0271678x20906902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Migraine is a complex disorder, involving peripheral and central brain structures, where mechanisms and site of attack initiation are an unresolved puzzle. While abnormal pontine neuronal activation during migraine attacks has been reported, exact implication of this finding is unknown. Evidence suggests an important role of glutamate in migraine, implying a possible association of pontine hyperactivity to increased glutamate levels. Migraine without aura patients were scanned during attacks after calcitonin gene-related peptide and sildenafil in a double-blind, randomized, double-dummy, cross-over design, on two separate study days, by proton magnetic resonance spectroscopy and pseudo-continuous arterial spin labeling at 3T. Headache characteristics were recorded until 24 h after drug administrations. Twenty-six patients were scanned during migraine, yielding a total of 41 attacks. Cerebral blood flow increased in dorsolateral pons, ipsilateral to pain side during attacks, compared to outside attacks (13.6%, p = 0.009). Glutamate levels in the same area remained unchanged during attacks (p = 0.873), while total creatine levels increased (3.5%, p = 0.041). In conclusion, dorsolateral pontine activation during migraine was not associated with higher glutamate levels. However, the concurrently increased total creatine levels may suggest an altered energy metabolism, which should be investigated in future studies to elucidate the role of pons in acute migraine.
Collapse
Affiliation(s)
- Samaira Younis
- Danish Headache Center, Department of Neurology, Rigshospitalet
Glostrup, Glostrup, Denmark
| | - Casper E Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet
Glostrup, Glostrup, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology,
Nuclear Medicine and PET, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology,
Nuclear Medicine and PET, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Daniel Tolnai
- Department of Radiology, Rigshospitalet Glostrup, Glostrup,
Denmark
| | - Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology,
Rigshospitalet, Copenhagen, Denmark
| | - Henrik BW Larsson
- Functional Imaging Unit, Department of Clinical Physiology,
Nuclear Medicine and PET, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Anders Hougaard
- Danish Headache Center, Department of Neurology, Rigshospitalet
Glostrup, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet
Glostrup, Glostrup, Denmark
| |
Collapse
|
21
|
Liampas I, Siokas V, Brotis A, Aloizou A, Mentis AA, Vikelis M, Dardiotis E. Meta-analysis of melatonin levels in cluster headache-Review of clinical implications. Acta Neurol Scand 2020; 142:356-367. [PMID: 32677039 DOI: 10.1111/ane.13317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
Cluster headache (CH) has been associated with circadian disturbances. The present systematic review examined available evidence for the utilization of melatonin (MT) in CH prophylaxis. First, case-control studies assessing nocturnal MT or its urine-expelled metabolite 6-sulfatoxymelatonin (aMT6s) in CH individuals and healthy controls (HC) were reviewed and meta-analyzed. Secondly, the results from randomized controlled trials (RCTs) and non-randomized studies evaluating MT's use in the prevention of CH were discussed. Literature search included MEDLINE, EMBASE, CENTRAL, PsycINFO, trial registries, Google Scholar, and OpenGrey. Bouts and remissions were assessed separately. Ten case-control studies (adult participants) were retrieved. Seven evaluated serum MT; meta-analysis involved only three of them (due to deficient reporting, n: bout = 31, remission = 38, HC = 31). Results were compatible with lower nocturnal serum MT levels during bouts [bout-HC; FE-MD = -29.89 pg/mL, 95% CI = (-46.00, -13.78), remission-HC; FE-MD = -2.40 pg/mL, 95% CI = (-16.57, 21.38), bout-remission; RE-MD = -32.10 pg/mL, 95% CI = (-56.78, -7.42)]. Nocturnal urinary melatonin was appraised in two studies, but reporting issues impeded the capitalization of the results. Nocturnal urine aMT6s was evaluated by two studies (n: bout = 29, remission = 22, HC = 20), and pooled results were indicative of lower aMT6s concentration in CH individuals during both active and inactive periods [bout-HC; FE-MD = -9.63 μg/nocturnal urine collection, 95% CI = (-14.40, -4.85), remission-HC; FE-MD = -9.12 μg/nocturnal urine collection, 95% CI = (-14.63,-3.62), bout-remission; FE-MD = -0.58 μg/nocturnal urine collection, 95% CI = (-4.58, 3.42)]. Regarding CH prophylaxis, one RCT and two non-randomized trials were retrieved, involving a total of 41 adult CH individuals (11-episodic, 31-chronic) and rendering the deduction of any conclusions precarious. Overall, available data for the role use of MT in CH are insufficient and inconclusive. Complementary studies evaluating endogenous MT concentrations and MT administration to patients with CH are warranted.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology University Hospital of LarissaSchool of MedicineUniversity of Thessaly Larissa Greece
| | - Vasileios Siokas
- Department of Neurology University Hospital of LarissaSchool of MedicineUniversity of Thessaly Larissa Greece
| | - Alexandros Brotis
- Department of Neurosurgery University Hospital of LarissaSchool of MedicineUniversity of Thessaly Larissa Greece
| | - Athina‐Maria Aloizou
- Department of Neurology University Hospital of LarissaSchool of MedicineUniversity of Thessaly Larissa Greece
| | - Alexios‐Fotios A. Mentis
- Department of Microbiology University Hospital of LarissaSchool of MedicineUniversity of Thessaly Larissa Greece
- Public Health Laboratories Hellenic Pasteur Institute Athens Greece
| | - Michail Vikelis
- Headache Clinic Mediterraneo Hospital Glyfada Greece
- Glyfada Headache Clinic Glyfada Greece
| | - Efthimios Dardiotis
- Department of Neurology University Hospital of LarissaSchool of MedicineUniversity of Thessaly Larissa Greece
| |
Collapse
|
22
|
D'Andrea G, Gucciardi A, Perini F, Leon A. Pathogenesis of Cluster Headache: From Episodic to Chronic Form, the Role of Neurotransmitters and Neuromodulators. Headache 2020; 59:1665-1670. [PMID: 31603552 DOI: 10.1111/head.13673] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To describe the role of biochemical anomalies of tyrosine (TYR), tryptophan (TRP), and arginine (ARG) metabolism in patients suffering from episodic and chronic cluster headache (CCH). BACKGROUND The pathogenesis of cluster headache (CH) and the process that transforms the episodic into the chronic form are unknown. However, the accompanying symptoms suggest a dysfunction of the sympathetic system and hypothalamus along with anomalies of metabolism of catecholamines, elusive amines, and nitric oxide (NO) metabolism. METHODS We describe the results obtained from the last papers published on this issue. The level of metabolites were analyzed by different high-performance liquid chromatography methods. RESULTS In both episodic and CH patients, the levels of dopamine and elusive amines are very elevated. The only biochemical difference found in studies between episodic and chronic cluster was that norepinephrine levels were significantly lower in episodic cluster in comparison to control and chronic subjects. In addition, the levels of ARG, homoarginine, and citrulline, precursors of synthesis of NO, were significantly lower in chronic cluster. CONCLUSIONS All these results suggest that TYR, TRP, and ARG metabolism is abnormal and may constitute a biochemical fingerprint of CH patients. The increased levels of norepinephrine in chronic cluster constitute a possible cause of chronicity of this primary headache. The high levels of tryptamine and its activity on the central serotoninergic system may explain why the length of CH is brief in comparison to migraine and tension-type headache. The low levels of ARG, homoarginine, and citrulline may be the consequence of high circulating levels of α1 -agonists, such as epinephrine and norepinephrine, and their biochemical interaction with endothelial trace amine-associated receptor 1 that induces activation of NO synthase, resulting in NO synthesis in the circulation, NO release, intense vasodilation, and as a result, the cluster attack.
Collapse
Affiliation(s)
- Giovanni D'Andrea
- Research Division, Research and Innovation (R&I) s.r.l., Padua, Italy
| | - Antonina Gucciardi
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padua, Italy.,Department of Pediatrics, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Francesco Perini
- Neurology Department, Headache Center, Vicenza Hospital, Vicenza, Italy
| | - Alberta Leon
- Research Division, Research and Innovation (R&I) s.r.l., Padua, Italy
| |
Collapse
|
23
|
Green AL, Paterson DJ. Using Deep Brain Stimulation to Unravel the Mysteries of Cardiorespiratory Control. Compr Physiol 2020; 10:1085-1104. [PMID: 32941690 DOI: 10.1002/cphy.c190039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article charts the history of deep brain stimulation (DBS) as applied to alleviate a number of neurological disorders, while in parallel mapping the electrophysiological circuits involved in generating and integrating neural signals driving the cardiorespiratory system during exercise. With the advent of improved neuroimaging techniques, neurosurgeons can place small electrodes into deep brain structures with a high degree accuracy to treat a number of neurological disorders, such as movement impairment associated with Parkinson's disease and neuropathic pain. As well as stimulating discrete nuclei and monitoring autonomic outflow, local field potentials can also assess how the neurocircuitry responds to exercise. This technique has provided an opportunity to validate in humans putative circuits previously identified in animal models. The central autonomic network consists of multiple sites from the spinal cord to the cortex involved in autonomic control. Important areas exist at multiple evolutionary levels, which include the anterior cingulate cortex (telencephalon), hypothalamus (diencephalon), periaqueductal grey (midbrain), parabrachial nucleus and nucleus of the tractus solitaries (brainstem), and the intermediolateral column of the spinal cord. These areas receive afferent input from all over the body and provide a site for integration, resulting in a coordinated efferent autonomic (sympathetic and parasympathetic) response. In particular, emerging evidence from DBS studies have identified the basal ganglia as a major sub-cortical cognitive integrator of both higher center and peripheral afferent feedback. These circuits in the basal ganglia appear to be central in coupling movement to the cardiorespiratory motor program. © 2020 American Physiological Society. Compr Physiol 10:1085-1104, 2020.
Collapse
Affiliation(s)
- Alexander L Green
- Division of Medical Sciences, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David J Paterson
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Ferraro S, Nigri A, Demichelis G, Pinardi C, Chiapparini L, Giani L, Proietti Cecchini A, Leone M. Understanding Cluster Headache Using Magnetic Resonance Imaging. Front Neurol 2020; 11:535. [PMID: 32695062 PMCID: PMC7338680 DOI: 10.3389/fneur.2020.00535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Cluster headache is an excruciating pain syndrome characterized by unilateral head pain attacks, lasting between 15 and 180 min, accompanied by marked ipsilateral cranial autonomic symptoms, such as lacrimation and conjunctival injection. Despite important insights provided by neuroimaging studies and deep brain stimulation findings, the pathophysiology of cluster headache and its pathways of chronicization are still elusive. In this mini-review, we will provide an overview of the functional and structural neuroimaging studies in episodic and chronic cluster headache conditions conducted to clarify the underlying pathophysiology.
Collapse
Affiliation(s)
- Stefania Ferraro
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Greta Demichelis
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pinardi
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Giani
- Neurology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Massimo Leone
- Neurology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
25
|
Grangeon L, O'Connor E, Chan CK, Akijian L, Pham Ngoc TM, Matharu MS. New insights in post-traumatic headache with cluster headache phenotype: a cohort study. J Neurol Neurosurg Psychiatry 2020; 91:572-579. [PMID: 32381638 PMCID: PMC7279192 DOI: 10.1136/jnnp-2019-322725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To define the characteristics of post-traumatic headache with cluster headache phenotype (PTH-CH) and to compare these characteristics with primary CH. METHODS A retrospective study was conducted of patients seen between 2007 and 2017 in a headache centre and diagnosed with PTH-CH that developed within 7 days of head trauma. A control cohort included 553 patients with primary CH without any history of trauma who attended the headache clinic during the same period. Data including demographics, attack characteristics and response to treatments were recorded. RESULTS Twenty-six patients with PTH-CH were identified. Multivariate analysis revealed significant associations between PTH-CH and family history of CH (OR 3.32, 95% CI 1.31 to 8.63), chronic form (OR 3.29, 95% CI 1.70 to 6.49), parietal (OR 14.82, 95% CI 6.32 to 37.39) or temporal (OR 2.04, 95% CI 1.10 to 3.84) location of pain, and presence of prominent cranial autonomic features during attacks (miosis OR 11.24, 95% CI 3.21 to 41.34; eyelid oedema OR 5.79, 95% CI 2.57 to 13.82; rhinorrhoea OR 2.65, 95% CI 1.26 to 5.86; facial sweating OR 2.53, 95% CI 1.33 to 4.93). Patients with PTH-CH were at a higher risk of being intractable to acute (OR 12.34, 95% CI 2.51 to 64.73) and preventive (OR 16.98, 95% CI 6.88 to 45.52) treatments and of suffering from associated chronic migraine (OR 10.35, 95% CI 3.96 to 28.82). CONCLUSION This largest series of PTH-CH defines it as a unique entity with specific evolutive profile. Patients with PTH-CH are more likely to suffer from the chronic variant, have marked autonomic features, be intractable to treatment and have associated chronic migraine compared with primary CH.
Collapse
Affiliation(s)
- Lou Grangeon
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, University Hospital Centre Rouen, Rouen, Normandie, France
| | - Emer O'Connor
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Chun-Kong Chan
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK
| | - Layan Akijian
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK
| | - Thanh Mai Pham Ngoc
- Mathematics Institute of Orsay, Paris-Sud University, CNRS and Paris-Saclay University, Orsay, Île-de-France, France
| | - Manjit Singh Matharu
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK .,Headache and Facial Pain Group, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
26
|
Kakusa B, Saluja S, Dadey DYA, Barbosa DAN, Gattas S, Miller KJ, Cowan RP, Kouyoumdjian Z, Pouratian N, Halpern CH. Electrophysiology and Structural Connectivity of the Posterior Hypothalamic Region: Much to Learn From a Rare Indication of Deep Brain Stimulation. Front Hum Neurosci 2020; 14:164. [PMID: 32670034 PMCID: PMC7326144 DOI: 10.3389/fnhum.2020.00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cluster headache (CH) is among the most common and debilitating autonomic cephalalgias. We characterize clinical outcomes of deep brain stimulation (DBS) to the posterior hypothalamic region through a novel analysis of the electrophysiological topography and tractography-based structural connectivity. The left posterior hypothalamus was targeted ipsilateral to the refractory CH symptoms. Intraoperatively, field potentials were captured in 1 mm depth increments. Whole-brain probabilistic tractography was conducted to assess the structural connectivity of the estimated volume of activated tissue (VAT) associated with therapeutic response. Stimulation of the posterior hypothalamic region led to the resolution of CH symptoms, and this benefit has persisted for 1.5-years post-surgically. Active contacts were within the posterior hypothalamus and dorsoposterior border of the ventral anterior thalamus (VAp). Delta- (3 Hz) and alpha-band (8 Hz) powers increased and peaked with proximity to the posterior hypothalamus. In the posterior hypothalamus, the delta-band phase was coupled to beta-band amplitude, the latter of which has been shown to increase during CH attacks. Finally, we identified that the VAT encompassing these regions had a high proportion of streamlines of pain processing regions, including the insula, anterior cingulate gyrus, inferior parietal lobe, precentral gyrus, and the brainstem. Our unique case study of posterior hypothalamic region DBS supports durable efficacy and provides a platform using electrophysiological topography and structural connectivity, to improve mechanistic understanding of CH and this promising therapy.
Collapse
Affiliation(s)
- Bina Kakusa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sabir Saluja
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - David Y A Dadey
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandra Gattas
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Robert P Cowan
- Department of Neurology and Neurosciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Zepure Kouyoumdjian
- Department of Neurology, South Valley Neurology, Morgan Hill, CA, United States
| | - Nader Pouratian
- Department of Neurosurgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
27
|
Schulte LH, Haji AA, May A. Phase dependent hypothalamic activation following trigeminal input in cluster headache. J Headache Pain 2020; 21:30. [PMID: 32228453 PMCID: PMC7106813 DOI: 10.1186/s10194-020-01098-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Task-free imaging approaches using PET have shown the posterior hypothalamus to be specifically activated during but not outside cluster headache attacks. Evidence from task related functional imaging approaches however is scarce. METHODS Twenty-one inactive cluster headache patients (episodic cluster headache out of bout), 16 active cluster headache patients (10 episodic cluster headache in bout, 6 chronic cluster headache) and 18 control participants underwent high resolution brainstem functional magnetic resonance imaging of trigeminal nociception using gaseous ammonia as a painful stimulus. RESULTS Following trigeminonociceptive stimulation with ammonia there was a significantly stronger activation within the posterior hypothalamus in episodic cluster headache patients out of bout when compared to controls. When contrasting estimates of the pain contrast, active cluster headache patients where in between the two other groups but did not differ significantly from either. CONCLUSION The posterior hypothalamus might thus be hyperexcitable in cluster headache patients outside the bout while excitability to external nociceptive stimuli decreases during in bout periods, probably due to frequent hypothalamic activation and possible neurotransmitter exhaustion during cluster attacks.
Collapse
Affiliation(s)
- Laura H Schulte
- Department of Systems Neuroscience, University Medical Center Eppendorf, University of Hamburg, Hamburg, Germany.,Clinic for Psychiatry, University Medical Center Eppendorf, University of Hamburg, Hamburg, Germany
| | - Ame Abdu Haji
- Department of Systems Neuroscience, University Medical Center Eppendorf, University of Hamburg, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Eppendorf, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
28
|
Chong CD, Aguilar M, Schwedt TJ. Altered Hypothalamic Region Covariance in Migraine and Cluster Headache: A Structural MRI Study. Headache 2020; 60:553-563. [PMID: 31967334 DOI: 10.1111/head.13742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The hypothalamus plays a key role in both migraine and cluster headache (CH). As brain region-to-region structural correlations are believed to reflect structural and functional brain connectivity patterns, we assessed the structural covariance patterns between the volume of the hypothalamic region and vertex-by-vertex measurements of cortical thickness in patients with migraine and in those with CH relative to healthy controls (HC). METHODS T1-weighted images were acquired on a 3T MRI scanner for a total of 59 subjects including 18 patients with CH (age: mean = 43.8, SD = 12.4), 19 with migraine (age: mean = 40.1, SD = 12.2), and 22 HCs (age: mean = 39.1, SD = 8.2). Imaging was collected between attacks (migraineurs) and during out-of-bout phases (CH). Data were post-processed using FreeSurfer version 6.0 and within-group correlations between hypothalamic region volume with cortical thickness were explored using a whole-brain vertex-wise linear model approach. Between-group differences in correlation slopes between hypothalamic region volume and vertex-by-vertex measurements of cortical thickness were interrogated using post-hoc comparisons. RESULTS There were no significant between-group differences (migraine vs CH; migraine vs HC; or CH vs HC) for age, sex, total brain volume or volume of the left or right hypothalamic region. For each group, there were significant positive correlations (P < .01) between right and left hypothalamic region volumes with cortical thickness measurements. HC had significant positive correlations between hypothalamic region volume and cortical thickness over large portions of the superior and rostral medial frontal, orbitofrontal cortex and rostral anterior cingulate, and smaller clusters in the superior and middle temporal, posterior cingulate, fusiform, and precentral cortex. Post-hoc analysis showed significant differences in covariance patterns in those with migraine and CH relative to HC, with both migraine patients and CH having weaker structural covariance of hypothalamic region volume with frontal and temporal cortical thickness. CONCLUSION Recent evidence suggests hypothalamic region connectivity to frontal and temporal areas to be relevant for regulating pain perception. Thus, the diminished structural covariance in migraineurs and CH might suggest abnormal functioning of the pain control circuitry and contribute to mechanisms underlying central sensitization and chronification of pain.
Collapse
Affiliation(s)
| | - Maria Aguilar
- Department of Neurology, Centura Health, Colorado Springs, CO, USA
| | | |
Collapse
|
29
|
Abstract
BACKGROUND The clinical picture, but also neuroimaging findings, suggested the brainstem and midbrain structures as possible driving or generating structures in migraine. FINDINGS This has been intensely discussed in the last decades and the advent of modern imaging studies refined the involvement of rostral parts of the pons in acute migraine attacks, but more importantly suggested a predominant role of the hypothalamus and alterations in hypothalamic functional connectivity shortly before the beginning of migraine headaches. This was shown in the NO-triggered and also in the preictal stage of native human migraine attacks. Another headache type that is clinically even more suggestive of hypothalamic involvement is cluster headache, and indeed a structure in close proximity to the hypothalamus has been identified to play a crucial role in attack generation. CONCLUSION It is very likely that spontaneous oscillations of complex networks involving the hypothalamus, brainstem, and dopaminergic networks lead to changes in susceptibility thresholds that ultimately start but also terminate headache attacks. We will review clinical and neuroscience evidence that puts the hypothalamus in the center of scientific attention when attack generation is discussed.
Collapse
Affiliation(s)
- Arne May
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Rami Burstein
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical center, Department of Anesthesia, Harvard medical School, Boston, MA, USA
| |
Collapse
|
30
|
The role of neurotransmitters and neuromodulators in the pathogenesis of cluster headache: a review. Neurol Sci 2019; 40:39-44. [PMID: 30825019 DOI: 10.1007/s10072-019-03768-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pathogenesis underlying cluster headache remains an unresolved issue. Although both the autonomic system and the hypothalamus play a central role, the modality of their involvement remains largely unknown. It is, also, unknown why the duration of the pain attacks is so brief and why their onset and termination are abrupt and extremely painful. This review summarizes the evidence to date accumulated in favor of a possible role of anomalies in the metabolism of tyrosine, tryptophan, and arginine in these unresolved issues.
Collapse
|
31
|
Chen Z, Chen X, Liu M, Ma L, Yu S. Volume of Hypothalamus as a Diagnostic Biomarker of Chronic Migraine. Front Neurol 2019; 10:606. [PMID: 31244765 PMCID: PMC6563769 DOI: 10.3389/fneur.2019.00606] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/22/2019] [Indexed: 12/04/2022] Open
Abstract
It is believed than hypothalamus (HTH) might be involved in generation of migraine, and evidence from high resolution fMRI reported that the more anterior part of HTH seemed to play an important role in migraine chronification. The current study was aimed to identify the alteration of morphology and resting-state functional connectivity (FC) of the hypothalamus (HTH) in interictal episodic migraine (EM) and chronic migraine (CM). High-resolution structural and resting-state functional magnetic resonance images were acquired in 18 EM patients, 16 CM patients, and 21 normal controls (NC). The volume of HTH was calculated and voxel-based morphometry (VBM) was performed over the whole HTH. Receiver operating characteristics (ROC) curve analysis was applied to evaluate the diagnostic efficacy of HTH volume. Correlation analyses with clinical variables were performed and FC maps were generated for positive HTH regions according to VBM comparison. The volume of the HTH significantly decreased in both EM and CM patients compared with NC. The cut-off volume of HTH as 1.429 ml had a good diagnostic accuracy for CM with sensitivity of 81.25% and specificity of 100%. VBM analyses identified volume reduction of posterior HTH in EM vs. NC which was negatively correlated with headache frequency. The posterior HTH presented decreased FC with the left inferior temporal gyrus (Brodmann area 20) in EM. Decreased volume of anterior HTH was identified in CM vs. NC and CM vs. EM which was positively correlated with headache frequency in CM. The anterior HTH presented increased FC with the right anterior orbital gyrus (AOrG) (Brodmann area 11) in CM compared with NC and increased FC with the right medial orbital gyrus (MOrG) (Brodmann area 11) in CM compared with EM. Our study provided evidence of structural plasticity and FC changes of HTH in the pathogensis of migraine generation and chronification, supporting potential therapeutic target toward the HTH and its peptide.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
The unique role of the trigeminal autonomic reflex and its modulation in primary headache disorders. Curr Opin Neurol 2019; 32:438-442. [DOI: 10.1097/wco.0000000000000691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
de Coo IF, van Oosterhout WPJ, Wilbrink LA, van Zwet EW, Ferrari MD, Fronczek R. Chronobiology and Sleep in Cluster Headache. Headache 2019; 59:1032-1041. [PMID: 31148161 PMCID: PMC6771706 DOI: 10.1111/head.13567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2019] [Indexed: 01/03/2023]
Abstract
Background Cluster headache attacks follow a striking circadian rhythm with an intriguing influence of sleep. We aim to investigate differences in sleep quality, chronotype, and the ability to alter individual sleep rhythms in episodic and chronic cluster headache patients vs controls. Methods Cluster headache patients and non‐headache controls from the Dutch Leiden University Cluster headache neuro‐Analysis program aged 18 and above completed web‐based questionnaires in a cross‐sectional study. Results A total of 478 episodic, 147 chronic cluster headache patients and 367 controls participated. Chronic cluster headache patients had more often early chronotypes than controls, as measured by mid‐sleep phase (P = .021 adjusted B −15.85 minutes CI −29.30; −2.40). Compared to controls, chronic cluster headache participants were less able to alter their sleep rhythms (P < .001 adjusted B −1.65 CI −2.55; 0.74), while episodic cluster headache participants reported more difficulty in coping with reduced sleep (P = .025 adjusted B 0.75 CI 0.09; 1.40). Sleep quality was reduced in both types of cluster headache compared to controls (“poor sleepers”: 71.4% (105/147) in chronic and 48.3% (235/367) in episodic cluster headache vs 25.6% (94/367) in controls; both P < .001; episodic adjusted B −1.71 CI 0.10; 0.32; chronic adjusted B −0.93 CI 0.24; 0.65). Conclusion Sleep quality is decreased in both episodic and chronic cluster headache, most likely caused by cluster headache attacks that strike during the night. Episodic cluster headache patients report more difficulty in coping with reduced sleep, while chronic patients are less able to alter their sleep rhythm. Although not directly proven, cluster headache patients will likely benefit from a structured, regular daily schedule.
Collapse
Affiliation(s)
- Ilse F de Coo
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Basalt Medical Rehabilitation Center, Hague, the Netherlands
| | - Willebrordus P J van Oosterhout
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, OLVG Hospital, Amsterdam, the Netherlands
| | | | - Erik W van Zwet
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Slaap-Waakcentrum SEIN, Heemstede, the Netherlands
| |
Collapse
|
34
|
Naber WC, Fronczek R, Haan J, Doesborg P, Colwell CS, Ferrari MD, Meijer JH. The biological clock in cluster headache: A review and hypothesis. Cephalalgia 2019; 39:1855-1866. [DOI: 10.1177/0333102419851815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective To review and discuss the putative role of light, sleep, and the biological clock in cluster headache. Discussion Cluster headache attacks are believed to be modulated in the hypothalamus; moreover, the severe pain and typical autonomic cranial features associated with cluster headache are caused by abnormal activity of the trigeminal-autonomic reflex. The temporal pattern of cluster headache attacks suggests involvement of the biological clock, and the seasonal pattern is influenced by the number of daylight hours. Although sleep is often reported as a trigger for cluster headache attacks, to date no clear correlation has been established between these attacks and sleep stage. Conclusions We hypothesize that light, sleep, and the biological clock can change the brain’s state, thereby lowering the threshold for activating the trigeminal-autonomic reflex, resulting in a cluster headache attack. Understanding the mechanisms that contribute to the daily and seasonal fluctuations in cluster headache attacks may provide new therapeutic targets.
Collapse
Affiliation(s)
- Willemijn C Naber
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Haan
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Alrijne Hospital, Leiderdorp, the Netherlands
| | - Patty Doesborg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christopher S Colwell
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
35
|
Hansen JM, Schankin CJ. Cerebral hemodynamics in the different phases of migraine and cluster headache. J Cereb Blood Flow Metab 2019; 39:595-609. [PMID: 28857642 PMCID: PMC6446414 DOI: 10.1177/0271678x17729783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022]
Abstract
Headache is one of the most common ailments; migraine is one of the most prevalent and disabling neurological disorders and cluster headache presents as one of the most excruciating pain disorders. Both are complex disorder characterized by recurrent episodes of headache. A key feature is that various triggers can set off an attack providing the opportunity to explore disease mechanisms by experimentally inducing attacks. This review summarizes neuroimaging and hemodynamic studies in human in provoked and spontaneous attacks of migraine and cluster headache. Cerebral hemodynamics during different phases of the migraine attack demonstrate alterations in cerebral blood flow and perfusion, vessel caliber, cortical and sub-cortical function, underscoring that migraine pathophysiology is highly complex. Migraine attacks might begin in diencephalic and brainstem areas, whereas migraine aura is a cortical phenomenon. In cluster headache pathophysiology, the hypothalamus might also play a pivotal role, whereas the pattern of cerebral blood flood differs from migraine. For both disorders, alterations of arterial blood vessel diameter might be more an epiphenomenon of the attack than a causative trigger. Studying cerebral hemodynamics in provocation models are important in the search for specific biomarkers in the hope to discover future targets for more specific and effective mechanism-based anti-headache treatment.
Collapse
Affiliation(s)
- Jakob M Hansen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Christoph J Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Chong CD, Schwedt TJ, Hougaard A. Brain functional connectivity in headache disorders: A narrative review of MRI investigations. J Cereb Blood Flow Metab 2019; 39:650-669. [PMID: 29154684 PMCID: PMC6446420 DOI: 10.1177/0271678x17740794] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is used to interrogate the functional connectivity and network organization amongst brain regions. Functional connectivity is determined by measuring the extent of synchronization in the spontaneous fluctuations of blood oxygenation level dependent (BOLD) signal. Here, we review current rs-fMRI studies in headache disorders including migraine, trigeminal autonomic cephalalgias, and medication overuse headache. We discuss (1) brain network alterations that are shared amongst the different headache disorders and (2) network abnormalities distinct to each headache disorder. In order to focus the section on migraine, the headache disorder that has been most extensively studied, we chose to include articles that interrogated functional connectivity: (i) during the attack phase; (ii) in migraine patients with aura compared to migraine patients without aura; and (iii) of regions within limbic, sensory, motor, executive and default mode networks and those which participate in multisensory integration. The results of this review show that headache disorders are associated with atypical functional connectivity of regions associated with pain processing as well as atypical functional connectivity of multiple core resting state networks such as the salience, sensorimotor, executive, attention, limbic, visual, and default mode networks.
Collapse
Affiliation(s)
| | - Todd J Schwedt
- 1 Department of Neurology, Mayo Clinic, Arizona, AZ, USA
| | - Anders Hougaard
- 2 Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Navarro-Fernández G, de-la-Puente-Ranea L, Gandía-González M, Gil-Martínez A. Endogenous Neurostimulation and Physiotherapy in Cluster Headache: A Clinical Case. Brain Sci 2019; 9:brainsci9030060. [PMID: 30870974 PMCID: PMC6468612 DOI: 10.3390/brainsci9030060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The aim of this paper is to describe the progressive changes of chronic cluster headaches (CHs) in a patient who is being treated by a multimodal approach, using pharmacology, neurostimulation and physiotherapy. SUBJECT A male patient, 42 years of age was diagnosed with left-sided refractory chronic CH by a neurologist in November 2009. In June 2014, the patient underwent a surgical intervention in which a bilateral occipital nerve neurostimulator was implanted as a treatment for headache. METHODS Case report. RESULTS Primary findings included a decreased frequency of CH which lasted up to 2 months and sometimes even without pain. Besides this, there were decreased levels of anxiety, helplessness (PCS subscale) and a decreased impact of headache (HIT-6 scale). Bilateral pressure pain thresholds (PPTs) were improved along with an increase in strength and motor control of the neck muscles. These improvements were present at the conclusion of the treatment and maintained up to 4 months after the treatment. CONCLUSIONS A multimodal approach, including pharmacology, neurostimulation and physiotherapy may be beneficial for patients with chronic CHs. Further studies such as case series and clinical trials are needed to confirm these results.
Collapse
Affiliation(s)
- Gonzalo Navarro-Fernández
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid 28023, Spain.
- Motion in Brains Research Group, Instituto de Neurociencias y Ciencias del Movimiento, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid 28023, Spain.
| | - Lucía de-la-Puente-Ranea
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid 28023, Spain.
| | | | - Alfonso Gil-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid 28023, Spain.
- Motion in Brains Research Group, Instituto de Neurociencias y Ciencias del Movimiento, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid 28023, Spain.
- Hospital La Paz Institute for Health Research, Madrid 28046, Spain.
| |
Collapse
|
38
|
|
39
|
Ha SY, Park KM. Alterations of structural connectivity in episodic cluster headache: A graph theoretical analysis. J Clin Neurosci 2019; 62:60-65. [PMID: 30655236 DOI: 10.1016/j.jocn.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
We evaluated structural volumes and connectivity using graph theoretical analysis in patients with cluster headache. Ten patients with episodic cluster headache were recruited, who had a normal brain MRI on visual inspection. We also enrolled a control group of 20 healthy volunteers. All of the participants underwent 3-D volumetric T1-weighted imaging. We obtained the structural volumes using FreeSurfer image analysis and performed structural global and local connectivity analysis using BRAPH. The volumes of the left caudal anterior cingulate and postcentral gyrus were decreased in the patients with cluster headache compared to healthy individuals. In addition, in the measures of local structural connectivity, there was significant hub re-organization in the patients with cluster headache; the strength of the right frontopolar, left pericalcarine, and left posterior cingulate gyrus, the betweenness centrality of the right precentral and left pericalcarine gyrus, and the closeness centrality of the left pericalcarine and left posterior cingulate gyrus were decreased. Whereas the betweenness centrality of the right rostral middle frontal and left inferior temporal gyrus were increased in the patients with cluster headache. However, the measures of global structural connectivity were not different between the patients with cluster headache and healthy individuals. We demonstrate that the structural volumes and connectivity in patients with cluster headache are significantly different from those in healthy controls, especially revealing hub re-organization. These alterations are implicated in the pathogenesis of cluster headache and suggest that cluster headache is a network disease.
Collapse
Affiliation(s)
- Sam Yeol Ha
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea.
| |
Collapse
|
40
|
Fourier C, Ran C, Steinberg A, Sjöstrand C, Waldenlind E, Belin AC. Analysis of HCRTR2 Gene Variants and Cluster Headache in Sweden. Headache 2019; 59:410-417. [PMID: 30652302 PMCID: PMC6590220 DOI: 10.1111/head.13462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 01/03/2023]
Abstract
Objective The purpose of this study was to investigate the HCRTR2 gene variants rs3122156, rs2653342, and rs2653349 in a large homogenous Swedish case‐control cohort in order to further evaluate the possible contribution of HCRTR2 to cluster headache. Background Cluster headache is a severe neurovascular disorder and the pathophysiology is not yet fully understood. Due to striking circadian and circannual patterns of this disease, the hypothalamus has been a research focus in cluster headache. Several studies with many different cohorts from Europe have investigated the hypocretin receptor 2 (HCRTR2) gene, which is expressed in the hypothalamus. In particular, one HCRTR2 single nucleotide polymorphism, rs2653349, has been subject to a number of genetic association studies on cluster headache, with conflicting results. Two other HCRTR2 gene variants, rs2653342 and rs2653349, have been reported to be linked to cluster headache in an Italian study. Methods We genotyped a total of 517 patients diagnosed with cluster headache and 581 controls, representing a general Swedish population, for rs3122156, rs2653342, and rs2653349 using quantitative real‐time PCR. Statistical analyses of genotype, allele, and haplotype frequencies for the 3 gene variants were performed comparing patients and controls. Results For rs3122156, the minor allele frequency in patients was 25.9% compared to 29.9% in controls (P = .0421). However, this significance did not hold after correction for multiple testing. The minor allele frequencies for rs2653342 (14.7% vs 14.7%) and rs2653349 (19.5% vs 18.8%) were similar for patients and controls. Furthermore, we found one haplotype that was significantly less common in patients than controls (P = .0264). This haplotype included the minor allele for rs3122156 and the major alleles for rs2653342 and rs2653349. Significance did not hold after applying a permutation test. Conclusions Our data show a trend for association between cluster headache and the HCRTR2 polymorphism rs3122156, where the minor allele seems to be a protective factor. However, the other 2 HCRTR2 gene variants, including the previously reported rs2653349, were not associated with cluster headache in our Swedish material. A comparison with previous studies points to variance in genotype and allele frequencies among the different populations, which most likely contributes to the opposing results regarding rs2653349. Although the results from this study do not strongly support an association, HCRTR2 remains an interesting candidate gene for involvement in the pathophysiology of cluster headache.
Collapse
Affiliation(s)
- Carmen Fourier
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ran
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Sjöstrand
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Waldenlind
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
41
|
Buture A, Boland JW, Dikomitis L, Ahmed F. Update on the pathophysiology of cluster headache: imaging and neuropeptide studies. J Pain Res 2019; 12:269-281. [PMID: 30655693 PMCID: PMC6324919 DOI: 10.2147/jpr.s175312] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Cluster headache (CH) is the most severe primary headache condition. Its pathophysiology is multifaceted and incompletely understood. This review brings together the latest neuroimaging and neuropeptide evidence on the pathophysiology of CH. METHODS A review of the literature was conducted by searching PubMed and Web of Science. The search was conducted using the following keywords: imaging studies, voxel-based morphometry, diffusion-tensor imaging, diffusion magnetic resonance imaging, tractography, connectivity, cerebral networks, neuromodulation, central modulation, deep brain stimulation, orexin-A, orexin-B, tract-based spatial statistics, single-photon emission computer tomography studies, positron-emission tomography, functional magnetic resonance imaging, magnetic resonance spectroscopy, trigeminovascular system, neuropeptides, calcitonin gene-related peptide, neurokinin A, substance P, nitric oxide synthase, pituitary adenylate cyclase-activating peptide, vasoactive intestinal peptide, neuropeptide Y, acetylcholine, noradrenaline, and ATP. "Cluster headache" was combined with each keyword for more relevant results. All irrelevant and duplicated records were excluded. Search dates were from October 1976 to May 2018. RESULTS Neuroimaging studies support the role of the hypothalamus in CH, as well as other brain areas involved in the pain matrix. Activation of the trigeminovascular system and the release of neuropeptides play an important role in CH pathophysiology. Among neuropeptides, calcitonin gene-related peptide, vasoactive intestinal peptide, and pituitary adenylate cyclase-activating peptide have been reported to be reliable biomarkers for CH attacks, though not specific for CH. Several other neuropeptides are involved in trigeminovascular activation, but the current evidence does not qualify them as reliable biomarkers in CH. CONCLUSION CH has a complex pathophysiology and the pain mechanism is not completely understood. Recent neuroimaging studies have provided insight into the functional and structural network bases of CH pathophysiology. Although there has been important progress in neuropeptide studies, a specific biomarker for CH is yet to be found.
Collapse
Affiliation(s)
- Alina Buture
- Department of Neurology, Hull Royal Infirmary, Hull, UK,
- Hull York Medical School, University of Hull, Hull, UK,
| | | | - Lisa Dikomitis
- School of Medicine and Institute of Primary Care and Health Sciences, Keele University, Newcastle, UK
| | - Fayyaz Ahmed
- Department of Neurology, Hull Royal Infirmary, Hull, UK,
- Hull York Medical School, University of Hull, Hull, UK,
| |
Collapse
|
42
|
Santos-Lasaosa S, Bellosta-Diago E, López-Bravo A, Viloria-Alebesque A, Garrido-Fernández A, Pilar Navarro-Pérez M. Cognitive Performance in Episodic Cluster Headache. PAIN MEDICINE 2018; 20:1032-1037. [DOI: 10.1093/pm/pny238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sonia Santos-Lasaosa
- Neurology Department, University Clinical Hospital Lozano Blesa, Instituto Aragonés de Ciencias de la Salud, Grupo de Estudio de Trastornos del Movimiento y Cefaleas (GIIS070), Zaragoza, Spain
| | - Elena Bellosta-Diago
- Neurology Department, University Clinical Hospital Lozano Blesa, Instituto Aragonés de Ciencias de la Salud, Grupo de Estudio de Trastornos del Movimiento y Cefaleas (GIIS070), Zaragoza, Spain
| | - Alba López-Bravo
- Neurology Department, University Clinical Hospital Lozano Blesa, Zaragoza, Spain
| | - Alejandro Viloria-Alebesque
- Neurology Department, University Clinical Hospital Lozano Blesa, Instituto Aragonés de Ciencias de la Salud, Grupo de Estudio de Trastornos del Movimiento y Cefaleas (GIIS070), Zaragoza, Spain
| | | | | |
Collapse
|
43
|
Lund NLT, Snoer AH, Jennum PJ, Jensen RH, Barloese MCJ. Sleep in cluster headache revisited: Results from a controlled actigraphic study. Cephalalgia 2018; 39:742-749. [DOI: 10.1177/0333102418815506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background and aim Cluster headache attacks exhibit a nocturnal predilection, but little is known of long-term sleep and circadian rhythm. The aim was to compare actigraphy measures, firstly in episodic cluster headache patients in bout and in remission and, secondly, to compare each disease phase with controls. Methods Episodic cluster headache patients (ICHD III-beta), from the Danish Headache Center and healthy, age- and sex-matched controls participated. Sleep and activity were measured using actigraphy continuously for 2 weeks, along with sleep diaries and, for patients, also attack registration. Results Patients in bout (n = 17, 2.3 attacks/day) spent more time in bed (8.4 vs. 7.7 hours, p = 0.021) and slept more (7.2 vs. 6.6 hours, p = 0.036) than controls (n = 15). In remission (n = 11), there were no differences compared with controls. Neither were there differences between patients in the two disease phases. In five patients, attacks/awakenings occurred at the same hour several nights in a row. Conclusion Actigraphy offers the possibility of a continuous and long study period in a natural (non-hospital) environment. The study indicates that sleep does not differ between the bout and remission phase of episodic cluster headache. The repeated attacks/awakenings substantiate that circadian or homeostatic mechanisms are involved in the pathophysiology. The protocol was made available at ClinicalTrials.gov (NCT02853487).
Collapse
Affiliation(s)
- Nunu LT Lund
- Danish Headache Center, Department of Neurology, Rigshospitalet–Glostrup, University of Copenhagen, Denmark
| | - Agneta Henriette Snoer
- Danish Headache Center, Department of Neurology, Rigshospitalet–Glostrup, University of Copenhagen, Denmark
| | - Poul Jørgen Jennum
- Danish Center for Sleep Medicine, Department of Neurophysiology, Rigshospitalet-Glostrup, University of Copenhagen, Denmark
| | - Rigmor Højland Jensen
- Danish Headache Center, Department of Neurology, Rigshospitalet–Glostrup, University of Copenhagen, Denmark
| | - Mads Christian J Barloese
- Danish Headache Center, Department of Neurology, Rigshospitalet–Glostrup, University of Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging, Hvidovre Hospital, Copenhagen, Denmark
| |
Collapse
|
44
|
Vyas DB, Ho AL, Dadey DY, Pendharkar AV, Sussman ES, Cowan R, Halpern CH. Deep Brain Stimulation for Chronic Cluster Headache: A Review. Neuromodulation 2018; 22:388-397. [DOI: 10.1111/ner.12869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Daivik B. Vyas
- Department of Neurosurgery Stanford University Stanford CA USA
| | - Allen L. Ho
- Department of Neurosurgery Stanford University Stanford CA USA
| | - David Y. Dadey
- Department of Neurosurgery Stanford University Stanford CA USA
| | | | - Eric S. Sussman
- Department of Neurosurgery Stanford University Stanford CA USA
| | - Robert Cowan
- Department of Neurology Stanford University Stanford CA USA
| | | |
Collapse
|
45
|
|
46
|
Obermann M, Holle D, Nagel S. Functional Neuroimaging in Trigeminal Autonomic Cephalalgias. Ann Indian Acad Neurol 2018; 21:S51-S56. [PMID: 29720819 PMCID: PMC5909135 DOI: 10.4103/aian.aian_357_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Functional neuroimaging was able to identify key structures for the pathophysiology of trigeminal autonomic cephalalgias (TACs) including cluster headache, paroxysmal hemicrania, and short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing or cranial autonomic features and hemicrania continua. The posterior hypothalamus was the structure most consistently depicted with functional imaging in different states of disease with and without pain. Network-oriented imaging techniques such as resting-state functional resonance imaging were able to show a broader involvement of human trigeminal pain processing in the underlying pathophysiological mechanisms of the different TACs, highlighting similarities between this distinct group of primary headache disorders, while also demonstrating the differences in brain activation across these disorders. The most important clinical assignment for neuroimaging research from the treating physician remains the objective and reliable distinction of each individual TAC syndrome from one another, to make the correct clinical diagnosis as the foundation for proper treatment. More research will be necessary to fulfill this unmet need.
Collapse
Affiliation(s)
- Mark Obermann
- Center for Neurology, Asklepios Hospitals Schildautal, Seesen, Germany.,Department of Neurology and Westgerman Headache Center, University of Duisburg-Essen, Essen, Germany
| | - Dagny Holle
- Department of Neurology and Westgerman Headache Center, University of Duisburg-Essen, Essen, Germany
| | - Steffen Nagel
- Department of Neurology and Westgerman Headache Center, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
47
|
Abstract
Trigeminal autonomic cephalalgia (TAC) encompasses 4 unique primary headache types: cluster headache, paroxysmal hemicrania, hemicrania continua, and short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing and short-lasting unilateral neuralgiform headache attacks with cranial autonomic symptoms. They are grouped on the basis of their shared clinical features of unilateral headache of varying durations and ipsilateral cranial autonomic symptoms. The shared clinical features reflect the underlying activation of the trigeminal-autonomic reflex. The treatment for TACs has been limited and not specific to the underlying pathogenesis. There is a proportion of patients who are refractory or intolerant to the current standard medical treatment. From instrumental bench work research and neuroimaging studies, there are new therapeutic targets identified in TACs. Treatment has become more targeted and aimed towards the pathogenesis of the conditions. The therapeutic targets range from the macroscopic and structural level down to the molecular and receptor level. The structural targets for surgical and noninvasive neuromodulation include central neuromodulation targets: posterior hypothalamus and, high cervical nerves, and peripheral neuromodulation targets: occipital nerves, sphenopalatine ganglion, and vagus nerve. In this review, we will also discuss the neuropeptide and molecular targets, in particular, calcitonin gene-related peptide, somatostatin, transient receptor potential vanilloid-1 receptor, nitric oxide, melatonin, orexin, pituitary adenylate cyclase-activating polypeptide, and glutamate.
Collapse
Affiliation(s)
- Diana Y Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Rigmor H Jensen
- Danish Headache Centre, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Wei DYT, Yuan Ong JJ, Goadsby PJ. Cluster Headache: Epidemiology, Pathophysiology, Clinical Features, and Diagnosis. Ann Indian Acad Neurol 2018; 21:S3-S8. [PMID: 29720812 PMCID: PMC5909131 DOI: 10.4103/aian.aian_349_17] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cluster headache is a primary headache disorder affecting up to 0.1% of the population. Patients suffer from cluster headache attacks lasting from 15 to 180 min up to 8 times a day. The attacks are characterized by the severe unilateral pain mainly in the first division of the trigeminal nerve, with associated prominent unilateral cranial autonomic symptoms and a sense of agitation and restlessness during the attacks. The male-to-female ratio is approximately 2.5:1. Experimental, clinical, and neuroimaging studies have advanced our understanding of the pathogenesis of cluster headache. The pathophysiology involves activation of the trigeminovascular complex and the trigeminal-autonomic reflex and accounts for the unilateral severe headache, the prominent ipsilateral cranial autonomic symptoms. In addition, the circadian and circannual rhythmicity unique to this condition is postulated to involve the hypothalamus and suprachiasmatic nucleus. Although the clinical features are distinct, it may be misdiagnosed, with patients often presenting to the otolaryngologist or dentist with symptoms. The prognosis of cluster headache remains difficult to predict. Patients with episodic cluster headache can shift to chronic cluster headache and vice versa. Longitudinally, cluster headache tends to remit with age with less frequent bouts and more prolonged periods of remission in between bouts.
Collapse
Affiliation(s)
- Diana Yi-Ting Wei
- Department of Basic and Clinical Neuroscience, Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK
| | - Jonathan Jia Yuan Ong
- Department of Basic and Clinical Neuroscience, Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Medicine, Division of Neurology, National University Health System, University Medicine Cluster, Singapore
| | - Peter James Goadsby
- Department of Basic and Clinical Neuroscience, Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK
| |
Collapse
|
49
|
Ferraro S, Nigri A, Bruzzone MG, Brivio L, Proietti Cecchini A, Verri M, Chiapparini L, Leone M. Defective functional connectivity between posterior hypothalamus and regions of the diencephalic-mesencephalic junction in chronic cluster headache. Cephalalgia 2018. [PMID: 29517304 DOI: 10.1177/0333102418761048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We tested the hypothesis of a defective functional connectivity between the posterior hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache based on: a) clinical and neuro-endocrinological findings in cluster headache patients; b) neuroimaging findings during cluster headache attacks; c) neuroimaging findings in drug-refractory chronic cluster headache patients improved after successful deep brain stimulation. METHODS Resting state functional magnetic resonance imaging, associated with a seed-based approach, was employed to investigate the functional connectivity of the posterior hypothalamus in chronic cluster headache patients (n = 17) compared to age and sex-matched healthy subjects (n = 16). Random-effect analyses were performed to study differences between patients and controls in ipsilateral and contralateral-to-the-pain posterior hypothalamus functional connectivity. RESULTS Cluster headache patients showed an increased functional connectivity between the ipsilateral posterior hypothalamus and a number of diencephalic-mesencephalic structures, comprising ventral tegmental area, dorsal nuclei of raphe, and bilateral substantia nigra, sub-thalamic nucleus, and red nucleus ( p < 0.005 FDR-corrected vs . control group). No difference between patients and controls was found comparing the contralateral hypothalami. CONCLUSIONS The observed deranged functional connectivity between the posterior ipsilateral hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache patients mainly involves structures that are part of (i.e. ventral tegmental area, substantia nigra) or modulate (dorsal nuclei of raphe, sub-thalamic nucleus) the midbrain dopaminergic systems. The midbrain dopaminergic systems could play a role in cluster headache pathophysiology and in particular in the chronicization process. Future studies are needed to better clarify if this finding is specific to cluster headache or if it represents an unspecific response to chronic pain.
Collapse
Affiliation(s)
- Stefania Ferraro
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Anna Nigri
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Maria Grazia Bruzzone
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Luca Brivio
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Alberto Proietti Cecchini
- 2 Headache and Neuroalgology Department, Pain Neuromodulation Unit of Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Mattia Verri
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Luisa Chiapparini
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Massimo Leone
- 2 Headache and Neuroalgology Department, Pain Neuromodulation Unit of Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| |
Collapse
|
50
|
Abstract
Cluster headache is an excruciating, strictly one-sided pain syndrome with attacks that last between 15 minutes and 180 minutes and that are accompanied by marked ipsilateral cranial autonomic symptoms, such as lacrimation and conjunctival injection. The pain is so severe that female patients describe each attack as worse than childbirth. The past decade has seen remarkable progress in the understanding of the pathophysiological background of cluster headache and has implicated the brain, particularly the hypothalamus, as the generator of both the pain and the autonomic symptoms. Anatomical connections between the hypothalamus and the trigeminovascular system, as well as the parasympathetic nervous system, have also been implicated in cluster headache pathophysiology. The diagnosis of cluster headache involves excluding other primary headaches and secondary headaches and is based primarily on the patient's symptoms. Remarkable progress has been achieved in developing effective treatment options for single cluster attacks and in developing preventive measures, which include pharmacological therapies and neuromodulation.
Collapse
Affiliation(s)
- Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | - Delphine Magis
- University Department of Neurology CHR, CHU de Liege, Belgium
| | - Patricia Pozo-Rosich
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Headache Research Group, VHIR, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Stefan Evers
- Department of Neurology, Krankenhaus Lindenbrunn, Coppenbrügge, Germany
| | - Shuu-Jiun Wang
- Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|