1
|
Jia B, Zhang L, Ma F, Wang X, Li J, Diao N, Leng X, Shi K, Zeng F, Zong Y, Liu F, Gong Q, Cai R, Yang F, Du R, Chang Z. Comparison of miRNA and mRNA Expression in Sika Deer Testes With Age. Front Vet Sci 2022; 9:854503. [PMID: 35464385 PMCID: PMC9019638 DOI: 10.3389/fvets.2022.854503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
To elucidate the complex physiological process of testis development and spermatogenesis in Sika deer, this study evaluated the changes of miRNA and mRNA profiles in the four developmental stages of testis in the juvenile (1-year-old), adolescence (3-year-old), adult (5-year-old), and aged (10-year-old) stages. The results showed that a total of 198 mature, 66 novel miRNAs, and 23,558 differentially expressed (DE) unigenes were obtained; 14,918 (8,413 up and 6,505 down), 4,988 (2,453 up and 2,535 down), and 5,681 (2,929 up and 2,752 down) DE unigenes, as well as 88 (43 up and 45 down), 102 (44 up and 58 down), and 54 (18 up and 36 down) DE miRNAs were identified in 3- vs. 1-, 5- vs. 3-, and 10- vs. 5-year-old testes, respectively. By integrating miRNA and mRNA expression profiles, we predicted 10,790 mRNA-mRNA and 69,883 miRNA-mRNA interaction sites. The target genes were enriched by GO and KEGG pathways to obtain DE mRNA (IGF1R, ALKBH5, Piwil, HIF1A, BRDT, etc.) and DE miRNA (miR-140, miR-145, miR-7, miR-26a, etc.), which play an important role in testis development and spermatogenesis. The data show that DE miRNAs could regulate testis developmental and spermatogenesis through signaling pathways, including the MAPK signaling pathway, p53 signaling pathway, PI3K-Akt signaling pathway, Hippo signaling pathway, etc. miR-140 was confirmed to directly target mutant IGF1R-3'UTR by the Luciferase reporter assays. This study provides a useful resource for future studies on the role of miRNA regulation in testis development and spermatogenesis.
Collapse
Affiliation(s)
- Boyin Jia
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Linlin Zhang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Fuquan Ma
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xue Wang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Naichao Diao
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Xue Leng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fanli Zeng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fei Liu
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Qinglong Gong
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Ruopeng Cai
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Fuhe Yang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rui Du
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Zhiguang Chang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Hu T, Luo S, Xi Y, Tu X, Yang X, Zhang H, Feng J, Wang C, Zhang Y. Integrative bioinformatics approaches for identifying potential biomarkers and pathways involved in non-obstructive azoospermia. Transl Androl Urol 2021; 10:243-257. [PMID: 33532314 PMCID: PMC7844508 DOI: 10.21037/tau-20-1029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Non-obstructive azoospermia (NOA) is a disease related to spermatogenic disorders. Currently, the specific etiological mechanism of NOA is unclear. This study aimed to use integrated bioinformatics to screen biomarkers and pathways involved in NOA and reveal their potential molecular mechanisms. Methods GSE145467 and GSE108886 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between NOA tissues and matched obstructive azoospermia (OA) tissues were identified using the GEO2R tool. Common DEGs in the two datasets were screened out by the VennDiagram package. For the functional annotation of common DEGs, DAVID v.6.8 was used to perform Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. In accordance with data collected from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, a protein–protein interaction (PPI) network was constructed by Cytoscape. Cytohubba in Cytoscape was used to screen the hub genes. Furthermore, the hub genes were validated based on a separate dataset, GSE9210. Finally, potential micro RNAs (miRNAs) of hub genes were predicted by miRWalk 3.0. Results A total of 816 common DEGs, including 52 common upregulated and 764 common downregulated genes in two datasets, were screened out. Some of the more important of these pathways, including focal adhesion, PI3K-Akt signaling pathway, cell cycle, oocyte meiosis, AMP-activated protein kinase (AMPK) signaling pathway, FoxO signaling pathway, and Huntington disease, were involved in spermatogenesis. We further identified the top 20 hub genes from the PPI network, including CCNB2, DYNLL2, HMMR, NEK2, KIF15, DLGAP5, NUF2, TTK, PLK4, PTTG1, PBK, CEP55, CDKN3, CDC25C, MCM4, DNAI1, TYMS, PPP2R1B, DNAI2, and DYNLRB2, which were all downregulated genes. In addition, potential miRNAs of hub genes, including hsa-miR-3666, hsa-miR-130b-3p, hsa-miR-15b-5p, hsa-miR-6838-5p, and hsa-miR-195-5p, were screened out. Conclusions Taken together, the identification of the above hub genes, miRNAs and pathways will help us better understand the mechanisms associated with NOA, and provide potential biomarkers and therapeutic targets for NOA.
Collapse
Affiliation(s)
- Tengfei Hu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoge Luo
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Xi
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuchong Tu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojian Yang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiarong Feng
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunlin Wang
- Department of Andrology, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Yan Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Hua R, Chu QJ, Zhou Y, Zhou X, Huang DX, Zhu YT. MicroRNA-449a Suppresses Mouse Spermatogonia Proliferation via Inhibition of CEP55. Reprod Sci 2020; 28:595-602. [PMID: 33095425 DOI: 10.1007/s43032-020-00354-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/11/2020] [Indexed: 02/03/2023]
Abstract
At present, infertile patients with maturation arrest (MA) are difficult to obtain mature sperm. Spermatogenesis and its molecular mechanism are still not clear. Patients with MA and normal spermatogenesis (NS) were collected. iTRAQ-based proteomic approach was performed to reveal the different proteins between them. To validate the confidence of proteome data, the individual samples were analyzed by Western blotting (WB), quantitative polymerase chain reaction (qPCR), and immunofluorescence. The miR-449a and CEP55 were determined by Luciferase assay. Mouse GC-1 cells were transfected with CEP55 siRNAs, miR-449a mimic, or inhibitor, and cell proliferation was determined. Compared with NS, 27 proteins were differentially expressed in MA, and CEP55 protein was the most significant difference. WB and qPCR showed that CEP55 levels were significantly elevated in NS than MA. In transfected cells, overexpression of miR-449a and knockdown of CEP55 both downregulated CEP55 expression and decreased cell proliferation. miR-449a suppresses mouse spermatogonia proliferation via inhibition of CEP55.
Collapse
Affiliation(s)
- Rui Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qing-Jun Chu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yao Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Da-Xiong Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Tong Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|