1
|
Song G, Zhang Y, Jiang Y, Zhang H, Gu W, Xu X, Yao J, Chen Z. Circular RNA PIP5K1A Promotes Glucose and Lipid Metabolism Disorders and Inflammation in Type 2 Diabetes Mellitus. Mol Biotechnol 2024; 66:3549-3558. [PMID: 37966664 DOI: 10.1007/s12033-023-00954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Disorders of glucose and lipid metabolism are an important cause of type 2 diabetes mellitus (T2DM). Identifying the molecular mechanism of metabolic disorders is key to the treatment of T2DM. The study was to investigate the effect of circRNA PIP5K1A (circPIP5K1A) on glucose and lipid metabolism and inflammation in T2DM rats. A T2DM rat model was established, and then the T2DM rats were injected with lentiviral vectors that interfere with circPIP5K1A, miR-552-3p, or ENO1 expression. Fasting blood glucose (FBG) and fasting insulin (FINS) levels of rats were detected by an automatic analyzer and insulin detection kit, and HOMA-IR was calculated. Lipid metabolism was assessed by measuring serum levels of TG, TC, LDL-C, leptin, and resistin. Serum levels of inflammatory factors (TNF-α and IL-6) were detected by ELISA. The pathological conditions of pancreatic tissue were observed by HE staining. circPIP5K1A, miR-552-3p and ENO1 levels were recorded. The experimental results showed that circPIP5K1A and ENO1 were up-regulated, and miR-552-3p was down-regulated in T2DM rats. Down-regulating circPIP5K1A or up-regulating miR-552-3p reduced blood glucose and lipid levels, inhibited inflammation, and improved pancreatic histopathological changes in T2DM rats. In addition, up-regulating ENO1 rescued the ameliorating effects of down-regulated circPIP5K1A on T2DM rats. In general, downregulating circPIP5K1A improves insulin resistance and lipid metabolism disorders and inhibits inflammation by targeting miR-552-3p to mediate ENO1 expression.
Collapse
Affiliation(s)
- Ge Song
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - YiQian Zhang
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - YiHua Jiang
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Huan Zhang
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Wen Gu
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Xiu Xu
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Jing Yao
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - ZhengFang Chen
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China.
| |
Collapse
|
2
|
孔 祥, 张 腾, 张 妍, 高 灵, 汪 文, 汪 梦, 王 国, 吕 坤. [Overexpression of lncRNA HEM2M alleviates liver injury in mice with non-alcoholic fatty liver disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1-8. [PMID: 38293970 PMCID: PMC10878907 DOI: 10.12122/j.issn.1673-4254.2024.01.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To explore the effects of long non-coding RNA (lncRNA) HEM2M overexpression on liver injury in mice with non-alcoholic fatty liver disease (NAFLD). METHODS Wild-type C57BL/6 (WT) mice and myeloid cell-specific HEM2M knock-in (MYKI) mice were fed normal (ND) or high-fat diet (HFD) for 12 weeks. After intraperitoneal glucose tolerance and insulin tolerance tests, the mice were euthanized for detection of liver function indicators in the serum and liver tissue. HE staining and F4/80 immunohistochemical staining were used to examine liver pathologies, and the levels of IL-6, IL-1β, and TNF-α in the liver tissues were determined with ELISA. The mRNA expressions of HEM2M and the markers of M1 macrophages (TNF-α, iNOS, and IL-6) and M2 macrophages (Arg-1, YM-1, and IL-10) were detected using qRT-PCR, and the protein expressions of P-AKT, T-AKT, NLRC4, caspase-1 and GSDMD were assayed using immunoblotting. Caspase-1 activity in the liver tissues was determined with colorimetric measurement and immunofluorescence assay. RESULTS Compared with HFD-fed WT mice, MYKI mice with HFD feeding showed milder liver function damage (P < 0.01), alleviated hepatic steatosis, and reduced liver macrophage infiltration, glucose tolerance impairment and insulin resistance (P < 0.01). The levels of IL-6, IL-1β, and TNF-α and mRNA expressions of M1 type macrophage markers were significantly decreased (P < 0.01) and those of M2 type markers increased (P < 0.01) in the liver tissues of HFD-fed MYKI mice, which also showed reduced NLRC4 inflammasome activity, caspase-1 activation, and GSDMD-N protein expression compared with their WT counterparts (P < 0.05). CONCLUSION Overexpression of HEM2M reduces the production of hepatic inflammatory factors, improves insulin resistance and inhibits hepatic NLRC4 inflammasome activation, which leads to reduced hepatic pyroptosis and liver injury in NAFLD mice.
Collapse
Affiliation(s)
- 祥 孔
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院中心实验室,安徽 芜湖 241001Central Laboratory, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院内分泌科,安徽 芜湖 241001Department of Endocrinology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 腾 张
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院消化内科,安徽 芜湖 241001Department of Gastroenterology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 妍 张
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院消化内科,安徽 芜湖 241001Department of Gastroenterology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 灵犀 高
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院消化内科,安徽 芜湖 241001Department of Gastroenterology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 文 汪
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院消化内科,安徽 芜湖 241001Department of Gastroenterology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 梦燕 汪
- 皖南医学院药学院//安徽省多糖药物工程技术研究中心,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
| | - 国栋 王
- 皖南医学院药学院//安徽省多糖药物工程技术研究中心,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
| | - 坤 吕
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院中心实验室,安徽 芜湖 241001Central Laboratory, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
3
|
Yi X, Dong M, Guo N, Tian J, Lei P, Wang S, Yang Y, Shi Y. Flavonoids improve type 2 diabetes mellitus and its complications: a review. Front Nutr 2023; 10:1192131. [PMID: 37324738 PMCID: PMC10265523 DOI: 10.3389/fnut.2023.1192131] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing every year. Medications are currently the most common therapy for T2DM. However, these medications have certain adverse effects. In order to find safe and effective ways to improve this disease, researchers have discovered that some natural products can decrease blood sugar. Flavonoids are one of the most essential low molecular weight phenolic chemicals in the plant world, which widely exist in plant roots, stems, leaves, flowers, and fruits. They possess a variety of biological activities, including organ protection, hypoglycemic, lipid-lowering, anti-oxidative and anti-inflammatory effects. Some natural flavonoids ameliorate T2DM and its complications through anti-oxidation, anti-inflammatory action, glucose and lipid metabolism regulation, insulin resistance management, etc. Hence, this review aims at demonstrating the potential benefits of flavonoids in T2DM and its complications. This laid the foundation for the development of novel hypoglycemic medications from flavonoids.
Collapse
Affiliation(s)
- Xinrui Yi
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jinlong Tian
- Food Science College, Shenyang Agricultural University, Shenyang, China
| | - Ping Lei
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Song Wang
- Liaoning Shengqi Haotian Biomedical Technology Co., Ltd., Liaoning, Shenyang, China
| | - Yufeng Yang
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
4
|
Luo MJ, Wang Y, Chen SY, Yang ZM. Astragalus Polysaccharides Alleviate Type 2 Diabetic Rats by Reversing the Expressions of Sweet Taste Receptors and Genes Related to Glycolipid Metabolism in Liver. Front Pharmacol 2022; 13:916603. [PMID: 36059978 PMCID: PMC9428788 DOI: 10.3389/fphar.2022.916603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Sweet taste receptors (STRs) play an important role in glucose metabolism, and type 2 diabetic rats have abnormal expressions of STRs in multiple tissues. Astragalus polysaccharides (APS) has shown a significant therapeutic effect on type 2 diabetes mellitus (T2DM), but its mechanism needs to be further clarified. T2DM rat model was induced by intraperitoneal streptozotocin injection and treated with APS for 8 weeks. Daily indicators of experimental rats were observed, and expression levels of STRs and genes related to glycolipid metabolism were determined by real-time quantitative PCR and western blot. The present study revealed that APS alleviated the symptoms of T2DM rats, improved HOMA-IR and promoted insulin secretion. Gene expression analysis found that APS significantly increased the expressions of signaling molecules in STRs pathways, including taste receptor family 1 member 2 (T1R2), α-gustducin (Gα) and transient receptor potential cation channel subfamily member 5 (TRPM5), and reversed the expressions of genes related to glucolipid metabolism, including glucose transporters 2 and 4 (GLUT2 and GLUT4), pyruvate carboxylase (PC), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) in the liver of T2DM rats. However, APS had no influences on the expressions of genes, including glycogen synthase kinase-3 beta (GSK-3β), pyruvate kinase (PK) and phosphoenolpyruvate carboxykinase (PEPCK) in the liver of T2DM rats. These results suggested that the physiological roles of STRs in the liver were involved with glucose transport and metabolism. APS alleviated T2DM rats by activating the STRs pathway, and promoted glucose transport and lipogenesis.
Collapse
|