1
|
Song F, Wang A, Feng G, Wang L, Zhang L, Deng L. Dexmedetomidine Alleviates Remifentanil-Induced Hyperalgesia in Rats by Modulating the P2 X 4/BDNF Pathway. Neurochem Res 2025; 50:130. [PMID: 40156635 PMCID: PMC11954704 DOI: 10.1007/s11064-025-04377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/22/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
In the clinical settings, patients often develop opioid-induced hyperalgesia (OIH) after utilization of high dose intra-operative remifentanil. It is widely considered that systemic α2 agonists, including dexmedetomidine (DEX), have the potential to mitigate postoperative pain and minimize the needs for opioid, thus leading to a decrease in the incidence of hyperalgesia. However, the regulating method remains ambiguous. Recent studies have shown that DEX can alleviate spinal nerve injury via regulating P2 X 4. Although the effects of DEX on remifentanil-induced hyperalgesia (RIH) have been previously reported, the specific mechanisms remain to be fully elucidated. The objective of our study was to investigate the potential of intraperitoneal injections of DEX in attenuate RIH in rats through the modulation of P2 X 4Rs and brain-derived neurotrophic factor (BDNF) in spinal cord. The findings of this study indicate that intraperitoneal administration of DEX at a dosage of 50 µg/kg could alleviate mechanical allodynia and thermal hyperalgesia, as demonstrated through a behavioral test. Moreover, DEX suppressed the enhancement of P2 X 4 and BDNF expression induced by RIH. Furthermore, the structure of synaptic clefts caused by RIH showed improvement to a certain extent after DEX treatment, as shown using TEM transmission electron microscopy. In summary, we examined the protective effect of DEX on remifentanil-induced hyperalgesia. The findings indicates that the reduced expression of P2 X 4 and decreased synthesis and release of BDNF may be responsible for the analgesic processes. This study would provide a new perspective and strategy for the pharmacological treatment on RIH.
Collapse
Affiliation(s)
- Fengxiang Song
- Department of Anesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Aiqi Wang
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Guoyan Feng
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Lu Wang
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Liqin Deng
- Department of Anesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
2
|
Cui C, Wu X, Dong S, Chen B, Zhang T. Remifentanil-induced inflammation in microglial cells: Activation of the PAK4-mediated NF-κB/NLRP3 pathway and onset of hyperalgesia. Brain Behav Immun 2025; 123:334-352. [PMID: 39322089 DOI: 10.1016/j.bbi.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND The perioperative use of remifentanil is associated with postoperative hyperalgesia, which can impair recovery and extend hospitalization. Recent studies have revealed that microglia-mediated activation of the NLRP3 inflammasome plays a critical role in opioid-induced hyperalgesia, with NF-κB acting as a pivotal activation point for NLRP3. Despite these findings, the specific molecular mechanisms underlying remifentanil-induced postoperative hyperalgesia remain unclear. This study aims to develop a model of remifentanil-induced hyperalgesia and investigate the molecular mechanisms, focusing on the NF-κB/NLRP3 pathway, using both in vitro and in vivo approaches. METHOD We established a remifentanil-induced hyperalgesia model and performed proteomic analysis to identify differential protein expression in the spinal cord tissue of rats. NLRP3 or PAK4 antagonists were administered intrathecally in vivo, and mechanical pain thresholds in the hind paws were measured using Von Frey testing. In vitro, we applied NLRP3 or PAK4 inhibitors or used lentivirus infection to silence PAK4, NF-κB, and NLRP3 genes. Protein expression was assessed through immunohistochemistry, immunofluorescence, and Western blotting. Additionally, ELISA was performed to measure IL-1β and IL-18 levels, and RT-qPCR was conducted to evaluate the transcription of target genes. RESULTS Proteomic analysis revealed that remifentanil upregulates PAK4 protein in spinal cord tissue two hours after the surgery. In addition, remifentanil induces morphological changes in the spinal cord dorsal horn, characterized by increased expression of PAK4, p-p65, NLRP3 and Iba-1 proteins, which in turn leads to elevated IL-1β and IL-18 levels and an inflammatory response. Intrathecal injection of NLRP3 or PAK4 inhibitors mitigates remifentanil-induced hyperalgesia and associated changes. In vitro, downregulation of PAK4 inhibits the increase in PAK4, p-p65, NLRP3 and Caspase-1 induced by LPS. Conversely, the downregulation of NLRP3 does not impact the levels of PAK4 and p-p65 proteins, aligning with the in vivo results and suggesting that PAK4 acts as an upstream signaling molecule of NLRP3. CONCLUSION Remifentanil can increase PAK4 expression in spinal cord dorsal horn cells by activating the NF-κB/NLRP3 pathway and mediating microglial activation, thereby contributing to postoperative hyperalgesia.
Collapse
Affiliation(s)
- Chang Cui
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610500, Sichuan Province, China
| | - Xiaochu Wu
- West China Hospital of Sichuan University, Chengdu 610500, Sichuan Province, China
| | - Shuhua Dong
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Benzhen Chen
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610500, Sichuan Province, China
| | - Tianyao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China.
| |
Collapse
|
3
|
Koponen ME, Naray E, Hales TG, Forget P. Pharmacological interventions for remifentanil-induced hyperalgesia: A systematic review and network meta-analysis of preclinical trials. PLoS One 2024; 19:e0313749. [PMID: 39636808 PMCID: PMC11620364 DOI: 10.1371/journal.pone.0313749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND To improve perioperative pain management, several interventions have been suggested for the prevention of increased pain sensitivity caused by opioids (called opioid-induced hyperalgesia). It is currently unclear which intervention is the most effective or appropriate in preventing opioid-induced hyperalgesia. Remifentanil is the most investigated opioid causing opioid-induced hyperalgesia. Thus, to guide future research, we conducted a systematic review and a network meta-analysis of preclinical trials investigating pharmacological interventions for remifentanil-induced hyperalgesia. METHODS To identify relevant articles, electronic database searches were conducted in Embase, PubMed, Web of Science, and Google Scholar. Study characteristics were extracted, and the risk of bias was evaluated. Studies were included in the network meta-analysis if they shared similar characteristics with at least one other study. The interventions were ranked based on P-scores. RESULTS Overall, the 62 eligible trials tested 86 individual interventions and 6 combination interventions. Thirty-five studies eligible in the network meta-analysis formed five groups which were further divided into subgroups based on the quantitative sensory tests used. The best-ranked interventions within the subgroups were Anxa12-26, MRS2179, salicylaldehyde isonicotinoyl hydrazone (SIH), ANA-12, TDZD-8, ketamine, dexmedetomidine, JWH015, and the combination of KN93 and ketamine. DISCUSSION The current literature is too heterogeneous to produce a clear answer on which intervention is the most effective in preventing remifentanil-induced hyperalgesia. Future research in this field should prioritise finding the most effective intervention over testing the efficacy of new options. The results of our work can be used in planning which comparisons should be included in new trials.
Collapse
Affiliation(s)
- Mia E. Koponen
- MSc Clinical Pharmacology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Emily Naray
- MSci Biomedical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Tim G. Hales
- Division of Systems Medicine, School of Medicine, Institute of Academic Anaesthesia, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Patrice Forget
- Institute of Applied Health Sciences, Epidemiology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Department of Anaesthesia, National Health Service (NHS) Grampian, Aberdeen, United Kingdom
- Emergency and Pain Medicine Division, IMAGINE UR UM 103, Montpellier University, Anesthesia Critical Care, Nîmes University Hospital, Nîmes, France
- Pain and Opioids after Surgery (PANDOS) European Society of Anaesthesia (ID ESAIC_RG_PAND) Research Group, Brussels, Belgium
| |
Collapse
|
4
|
Liu X, Cai H, Peng L, Ma H, Yan Y, Li W, Zhao J. Microglial Nrf2/HO-1 signaling gates remifentanil-induced hyperalgesia via suppressing TRPV4-mediated M1 polarization. Free Radic Biol Med 2024; 214:87-100. [PMID: 38295888 DOI: 10.1016/j.freeradbiomed.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
Remifentanil-induced hyperalgesia (RIH) represents a significant clinical challenge due to the widespread use of opioids in pain management. However, the molecular and cellular mechanisms underlying RIH remain elusive. This study aimed to unravel the role of spinal cord microglia, focusing on the Nrf2/HO-1 signaling pathway and TRPV4 channels in the development of RIH. We used both in vivo and in vitro models to investigate the activation state of spinal cord microglia, the expression of TRPV4 channels, and the modulation of the Nrf2/HO-1 pathway under remifentanil exposure. In addition, we evaluated the potential therapeutic effects of dexmedetomidine, a perioperative α2-adrenergic agonist, on RIH and its related molecular pathways. Our results revealed a prominent role of spinal cord microglia in RIH, demonstrating an apparent microglial M1 polarization and increased TRPV4 channel expression. A notable observation was the downregulation of the Nrf2/HO-1 pathway, which was associated with increased neuroinflammation and mechanical allodynia. By upregulating or overexpressing Nrf2, we confirmed its ability to inhibit TRPV4 and thereby attenuate RIH-associated mechanical allodynia, M1 polarization, and neuroinflammation. Encouragingly, dexmedetomidine demonstrated therapeutic potential by positively modulating the Nrf2-TRPV4 nexus, attenuating mechanical allodynia, and reducing microglial inflammation. Our research highlights the critical role of spinal cord microglia in RIH mediated by the Nrf2-TRPV4 axis. The ability of dexmedetomidine to modulate this axis suggests its potential as an adjunctive therapy to remifentanil in mitigating RIH. Further studies are imperative to explore the broader implications and practical applicability of our findings.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huamei Cai
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Hongli Ma
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yun Yan
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Weixia Li
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
5
|
Microglial Cannabinoid CB 2 Receptors in Pain Modulation. Int J Mol Sci 2023; 24:ijms24032348. [PMID: 36768668 PMCID: PMC9917135 DOI: 10.3390/ijms24032348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, can strongly affect patients' quality of life. Cannabinoids ponhave been reported to produce potent analgesic effects in different preclinical pain models, where they primarily function as agonists of Gi/o protein-coupled cannabinoid CB1 and CB2 receptors. The CB1 receptors are abundantly expressed in both the peripheral and central nervous systems. The central activation of CB1 receptors is strongly associated with psychotropic adverse effects, thus largely limiting its therapeutic potential. However, the CB2 receptors are promising targets for pain treatment without psychotropic adverse effects, as they are primarily expressed in immune cells. Additionally, as the resident immune cells in the central nervous system, microglia are increasingly recognized as critical players in chronic pain. Accumulating evidence has demonstrated that the expression of CB2 receptors is significantly increased in activated microglia in the spinal cord, which exerts protective consequences within the surrounding neural circuitry by regulating the activity and function of microglia. In this review, we focused on recent advances in understanding the role of microglial CB2 receptors in spinal nociceptive circuitry, highlighting the mechanism of CB2 receptors in modulating microglia function and its implications for CB2 receptor- selective agonist-mediated analgesia.
Collapse
|
6
|
Spyridakos D, Mastrodimou N, Vemuri K, Ho TC, Nikas SP, Makriyannis A, Thermos K. Blockade of CB1 or Activation of CB2 Cannabinoid Receptors Is Differentially Efficacious in the Treatment of the Early Pathological Events in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2022; 24:240. [PMID: 36613692 PMCID: PMC9820336 DOI: 10.3390/ijms24010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress, neurodegeneration, neuroinflammation, and vascular leakage are believed to play a key role in the early stage of diabetic retinopathy (ESDR). The aim of this study was to investigate the blockade of cannabinoid receptor 1 (CB1R) and activation of cannabinoid receptor 2 (CB2R) as putative therapeutics for the treatment of the early toxic events in DR. Diabetic rats [streptozotocin (STZ)-induced] were treated topically (20 μL, 10 mg/mL), once daily for fourteen days (early stage DR model), with SR141716 (CB1R antagonist), AM1710 (CB2R agonist), and the dual treatment SR141716/AM1710. Immunohistochemical-histological, ELISA, and Evans-Blue analyses were performed to assess the neuroprotective and vasculoprotective properties of the pharmacological treatments on diabetes-induced retinal toxicity. Activation of CB2R or blockade of CB1R, as well as the dual treatment, attenuated the nitrative stress induced by diabetes. Both single treatments protected neural elements (e.g., RGC axons) and reduced vascular leakage. AM1710 alone reversed all toxic insults. These findings provide new knowledge regarding the differential efficacies of the cannabinoids, when administered topically, in the treatment of ESDR. Cannabinoid neuroprotection of the diabetic retina in ESDR may prove therapeutic in delaying the development of the advanced stage of the disease.
Collapse
Affiliation(s)
- Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Niki Mastrodimou
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Kiran Vemuri
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Thanh C. Ho
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Spyros P. Nikas
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
7
|
Koponen ME, Forget P. Pharmacological Interventions for Opioid-Induced Hyperalgesia: A Scoping Review of Preclinical Trials. J Clin Med 2022; 11:7060. [PMID: 36498635 PMCID: PMC9735807 DOI: 10.3390/jcm11237060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Opioid analgesics are the most effective pharmacological agents for moderate and severe pain. However, opioid use has several limitations such as opioid-induced hyperalgesia (OIH), which refers to the increased pain sensitivity that occurs once analgesia wears off after opioid administration. Several pharmacological interventions have been suggested for OIH, but the current literature does not provide guidelines on which interventions are the most effective and whether they differ depending on the opioid that induces hyperalgesia. This scoping review aimed to identify and describe all the preclinical trials investigating pharmacological interventions for OIH caused by remifentanil, fentanyl, or morphine as the first step towards evaluating whether the most effective OIH interventions are different for different opioids. METHODS Electronic database searches were carried out in Embase, PubMed, and Web of Science. Detailed data extraction was conducted on the eligible trials. RESULTS 72 trials were eligible for the review. Of these, 27 trials investigated remifentanil, 14 trials investigated fentanyl, and 31 trials investigated morphine. A total of 82 interventions were identified. The most studied interventions were ketamine (eight trials) and gabapentin (four trials). The majority of the interventions were studied in only one trial. The most common mechanism suggested for the interventions was inhibition of N-methyl-D-aspartate (NMDA) receptors. CONCLUSION This scoping review identified plenty of preclinical trials investigating pharmacological interventions for OIH. Using the current literature, it is not possible to directly compare the effectiveness of the interventions. Hence, to identify the most effective interventions for each opioid, the interventions must be indirectly compared in a meta-analysis.
Collapse
Affiliation(s)
- Mia Elena Koponen
- Neuroscience with Psychology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Patrice Forget
- Epidemiology Group, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Anaesthesia, National Health Service (NHS) Grampian, Aberdeen AB25 2ZN, UK
- Pain and Opioids after Surgery (PANDOS) European Society of Anaesthesiology and Intensive Care (ESAIC) Research Group, 1000 Brussels, Belgium
| |
Collapse
|
8
|
Ismail CAN, Ghazali AK, Suppian R, Abd Aziz CB, Long I. Lower Formalin-Induced Pain Responses in Painless Diabetic Neuropathy Rat Correlate with the Reduced Spinal Cord NR2B Subunit of N-Methyl-D-Aspartate Receptor Activation. J Mol Neurosci 2021; 72:598-609. [PMID: 34727325 DOI: 10.1007/s12031-021-01929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
Diabetic neuropathy (DN) is a late complication of diabetic mellitus and may rise into painful and painless variants. Limited studies have looked at nociceptive mechanisms of painless DN variant. The study aimed to determine phosphorylation and total NR2B subunit of N-methyl-D-aspartate receptor in the spinal cord of painless DN rat during early phase following formalin injection. Thirty-six Sprague-Dawley male rats were randomly assigned into three groups: control, painful, and painless DN (n = 12). The rats were developed into the early phase of DN for 2 weeks following diabetic induction. Two weeks later, the rats were injected with 5% formalin solution and flinching and licking responses were recorded for 60 min. The rats were sacrificed 3 days later, and the spinal cord enlargement region was collected. Immunohistochemistry and Western blot procedures were conducted to determine the phosphorylated and total NR2B subunit expressions. The results showed reduced flinching and licking responses in painless DN rats compared to control and painful DN groups, followed by a significant reduction in phosphorylated and total NR2B expression at both ipsilateral and contralateral regions of the spinal cord. In conclusion, reduced pain behavior responses in painless DN rats following formalin injection is possibly contributed by the reduced expression of phosphorylated and total NR2B subunit in the spinal cord.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia.
- Brain and Behaviour Clusters, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia.
| | - Anis Kausar Ghazali
- Biostatistics and Research Methodology Unit, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Rapeah Suppian
- School of Health Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Che Badariah Abd Aziz
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
| |
Collapse
|
9
|
Cabañero D, Martín-García E, Maldonado R. The CB2 cannabinoid receptor as a therapeutic target in the central nervous system. Expert Opin Ther Targets 2021; 25:659-676. [PMID: 34424117 DOI: 10.1080/14728222.2021.1971196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Targeting CB2 cannabinoid receptor (CB2r) represents a promising approach for the treatment of central nervous system disorders. These receptors were identified in peripheral tissues, but also in neurons in the central nervous system. New findings have highlighted the interest to target these central receptors to obtain therapeutic effects devoid of the classical cannabinoid side-effects. AREAS COVERED In this review, we searched PubMed (January 1991-May 2021), ClinicalTrials.gov and Cochrane Library databases for articles, reviews and clinical trials. We first introduce the relevance of CB2r as a key component of the endocannabinoid system. We discuss CB2r interest as a possible novel target in the treatment of pain. This receptor has raised interest as a potential target for neurodegenerative disorders treatment, as we then discussed. Finally, we underline studies revealing a novel potential CB2r interest in mental disorders treatment. EXPERT OPINION In spite of the interest of targeting CB2r for pain, clinical trials evaluating CB2r agonist analgesic efficacy have currently failed. The preferential involvement of CB2r in preventing the development of chronic pain could influence the failure of clinical trials designed for the treatment of already established pain syndromes. Specific trials should be designed to target the prevention of chronic pain development.
Collapse
Affiliation(s)
- David Cabañero
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández. Elche, Alicante, Spain
| | - Elena Martín-García
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Rafael Maldonado
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
10
|
Khasabova IA, Golovko MY, Golovko SA, Simone DA, Khasabov SG. Intrathecal administration of Resolvin D1 and E1 decreases hyperalgesia in mice with bone cancer pain: Involvement of endocannabinoid signaling. Prostaglandins Other Lipid Mediat 2020; 151:106479. [PMID: 32745525 PMCID: PMC7669692 DOI: 10.1016/j.prostaglandins.2020.106479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Pain produced by bone cancer is often severe and difficult to treat. Here we examined effects of Resolvin D1 (RvD1) or E1 (RvE1), antinociceptive products of ω-3 polyunsaturated fatty acids, on cancer-induced mechanical allodynia and heat hyperalgesia. Experiments were performed using a mouse model of bone cancer produced by implantation of osteolytic ficrosarcoma into and around the calcaneus bone. Mechanical allodynia and heat hyperalgesia in the tumor-bearing paw were assessed by measuring withdrawal responses to a von Frey monofilament and to radiant heat applied on the plantar hind paw. RvD1, RvE1, and cannabinoid receptor antagonists were injected intrathecally. Spinal content of endocannabinoids was evaluated using UPLC-MS/MS analysis. RvD1 and RvE1 had similar antinociceptive potencies. ED50s for RvD1 and RvE1 in reducing mechanical allodynia were 0.2 pg (0.53 fmol) and 0.6 pg (1.71 fmol), respectively, and were 0.3 pg (0.8 fmol) and 0.2 pg (0.57 fmol) for reducing heat hyperalgesia. Comparisons of dose-response relationships showed equal efficacy for reducing mechanical allodynia, however, efficacy for reducing heat hyperalgesia was greater for of RvD1. Using UPLC-MS/MS we determined that RvD1, but not RvE1, increased levels of the endocannabinoids Anandamide and 2-Arachidonoylglycerol in the spinal cord. Importantly, Resolvins did not alter acute nociception or motor function in naïve mice. Our data indicate, that RvD1 and RvE1 produce potent antiallodynia and antihyperalgesia in a model of bone cancer pain. RvD1 also triggers spinal upregulation of endocannabinoids that produce additional antinociception predominantly through CB2 receptors.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA
| | - Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Horii Y, Matsuda M, Takemura H, Ishikawa D, Sawa T, Amaya F. Spinal and Peripheral Mechanisms Individually Lead to the Development of Remifentanil-induced Hyperalgesia. Neuroscience 2020; 446:28-42. [PMID: 32818602 DOI: 10.1016/j.neuroscience.2020.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023]
Abstract
The present study was performed to determine neuronal loci and individual molecular mechanisms responsible for remifentanil-induced hyperalgesia. The effect of methylnaltrexone (MNX) on remifentanil-induced behavioral hyperalgesia was assessed to distinguish contributions of the peripheral and/or central nervous system to remifentanil-induced hyperalgesia. Phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) in the dorsal root ganglion (DRG) neurons after remifentanil infusion, and the effect of a p38MAPK inhibitor on remifentanil-induced hyperalgesia were analyzed to investigate involvement of p38MAPK in the peripheral mechanisms of remifentanil-induced hyperalgesia. Spinal levels of prodynorphin mRNA after remifentanil infusion, and the effect of the BK2 bradykinin receptor antagonist on remifentanil-induced hyperalgesia were investigated to assess potential spinal mechanisms. The effects of MNX and BK2 antagonists on remifentanil-induced exacerbation of post-incisional hyperalgesia were also investigated using behavioral analysis. Remifentanil infusion induced hyperalgesia in the early (4 h to 2 days) and late (8-14 days) post-infusion periods. MNX inhibited hyperalgesia only during the early post-infusion period. p38MAPK phosphorylation was observed in the DRG neuron, and the p38MAPK inhibitor inhibited hyperalgesia during the early post-infusion period. Prodynorphin expression increased in the spinal cord, and a BK2 antagonist inhibited hyperalgesia during the late post-infusion period. Remifentanil-induced exacerbation of incisional hyperalgesia was inhibited by MNX and the BK2 antagonist. The present study demonstrated that remifentanil activates peripheral and spinal neurons to promote chronologically distinctive hyperalgesia. p38MAPK phosphorylation in the DRG neuron leads to peripherally-driven hyperalgesia during the early post-infusion period, while spinal dynorphin-bradykinin signaling promotes hyperalgesia during the late post-infusion period.
Collapse
Affiliation(s)
- Yasuhiko Horii
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Megumi Matsuda
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitomi Takemura
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daiki Ishikawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumimasa Amaya
- Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Pain Management and Palliative Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
12
|
Wang C, Xu K, Wang Y, Mao Y, Huang Y, Liang Y, Liu Y, Hao J, Gu X, Ma Z, Sun Y. Spinal cannabinoid receptor 2 activation reduces hypersensitivity associated with bone cancer pain and improves the integrity of the blood-spinal cord barrier. Reg Anesth Pain Med 2020; 45:783-791. [PMID: 32796132 PMCID: PMC7513263 DOI: 10.1136/rapm-2019-101262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023]
Abstract
Background Disruption of the blood–spinal cord barrier (BSCB) can facilitate inflammation that results in pain hypersensitivity. Proinflammatory cytokines produced by activated microglia and astrocytes damage the BSCB. This study aims to explore whether the BSCB is damaged in the bone cancer pain (BCP) model and to investigate a potential role and mechanism of JWH015 ((2-methyl-1-propyl-1H-indol-3-yl)−1-naphthalenylmethanone), a selective cannabinoid receptor 2 (CB2R) agonist, in preserving the BSCB integrity in the BCP model. Methods We used a male mouse model of BCP. Pain hypersensitivity was measured over time. Evans blue dye extravasation, transmission electron microscopy and Western blotting were performed to investigate the permeability and structural integrity of the BSCB. Immunofluorescence staining and western blotting were used to investigate the effect of JWH015 on the activation of glial cells and the levels of proinflammatory cytokines. Results A single intrathecal injection of JWH015 ameliorated pain hypersensitivity, the BSCB disruption and microglia and astrocyte activation. Decreases in the expression of ZO-1 and claudin-5 were partially restored by JWH015. The levels of the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α and the enzyme MMP9 were reduced by JWH015. However, all effects were prevented by pretreatment with a CB2R-selective antagonist, AM630 ((6-iodo-2-methyl-1-(2-morpholinoethyl)−1H-indol-3-yl)(4-methoxyphenyl)methanone). Conclusions JWH015 alleviates neuroinflammation and maintains the BSCB integrity and permeability in a mouse model of BCP, which is probably mediated by inhibiting glial cells activation. This study reveals the new analgesic mechanism of JWH015 on BCP and provides a perspective to explore novel drugs that target the BSCB to control BCP.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Ke Xu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yu Wang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yanting Mao
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Ying Liang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yue Liu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Jing Hao
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yu'e Sun
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Jiang M, Bo J, Lei Y, Hu F, Xia Z, Liu Y, Lu C, Sun Y, Hou B, Ni K, Ma Z, Gu X. Anxiety-induced hyperalgesia in female rats is mediated by cholecystokinin 2 receptor in rostral ventromedial medulla and spinal 5-hydroxytryptamine 2B receptor. J Pain Res 2019; 12:2009-2026. [PMID: 31308730 PMCID: PMC6613357 DOI: 10.2147/jpr.s187715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Preoperative anxiety is associated with postoperative hyperalgesia; however, few studies have investigated the mechanism underlying this association in female surgical patients. Research has suggested that ON cells in the rostral ventromedial medulla (RVM) receive nerve impulses via cholecystokinin 2 (CCK2) receptors, facilitating hyperalgesia. Additionally, the downstream serotonergic projection system from the RVM to the spinal cord has a dual regulating effect on pain responses, and the 5-hydoxytryptophan 2B (5-HT2B) receptor in spinal dorsal horn neurons is critically involved in mechanical allodynia. Methods Ovariectomized rats were treated with estrogen replacement, single prolonged stress (SPS), and plantar incision. Various receptor agonists and antagonists were then administered into the RVM and spinal cord to study the mechanism underlying postoperative hyperalgesia caused by preoperative anxiety in female rats. Results Behavioral testing revealed that preoperative SPS induced postoperative hyperalgesia, as well as the expression of the CCK2 receptor in the RVM and the expression of the 5-HT2B receptor, protein kinase Cγ (PKCγ), and phosphorylation of the N-methyl-d-aspartate receptor1 (p-NR1) in the spinal cord increased confirmed by Western blot. RVM microinjection of the CCK2 receptor agonist CCK-8 and intrathecal injection of the 5-HT2B receptor agonist BW723C86 both produced hyperalgesia in female rats after plantar incision, whereas the CCK2 receptor antagonist YM022, the 5-HT2B receptor antagonist RS127445, and the PKCγ inhibitor C37H65N9O13 decreased the rats’ sensitivity to the same stimulus. Additionally, electrophysiological analysis suggested that activation of the 5-HT2B receptor increased the whole-cell current (IBa) in superficial dorsal horn neurons through the PKCγ pathway. Conclusion Our study demonstrated that preoperative anxiety-induced postoperative hyperalgesia in female rats is associated with descending pain pathways. The CCK2 receptor in the RVM and spinal 5-HT2B receptor may play a role in this hyperalgesic effect.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Jinhua Bo
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Fan Hu
- Department of Basic Medicine, Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhengrong Xia
- Department of Basic Medicine, Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Cui'e Lu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yu'e Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Kun Ni
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| |
Collapse
|
14
|
Affiliation(s)
- Jing Wang
- Key Laboratory of Orthopedics Disease of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
15
|
Xie Y, Ma J, Wang D, Chai X, Gao C. Electro-acupuncture stimulation prevents remifentanil-induced postoperative hyperalgesia by suppressing spinal microglia in rats. Exp Ther Med 2018; 16:353-359. [PMID: 29896261 DOI: 10.3892/etm.2018.6161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to assess the effect of electro-acupuncture (EA) stimulation on remifentanil-induced postoperative hyperalgesia (RIPH) and the possible involvement of spinal microglia suppression. A model of RIPH was established using adult male Sprague-Dawley rats by administration of remifentanil at 0.08 mg/kg intravenously for 60 min. The Huantiao and Yanglingquan acupoints were stimulated continuously by EA (2 Hz, ~1 mA) for 90 min from before paw incision to the end of remifentanil administration. Sham acupoints were stimulated by EA in the sham group. Paw withdrawal threshold (PWT) and paw thermal withdrawal latency (PWL) were determined. Cluster of differentiation (CD)11b, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels in spinal cord samples were measured using immunohistochemistry and ELISA. PWT and PWL values were decreased following the administration of remifentanill; however, following EA, PWT and PWL values increased compared with the sham group (P<0.05), indicating that EA alleviates remifentanil-induced RIPH. CD11b, TNF-α, IL-1β and IL-6 levels were increased following remifentanil administration and these effects were counteracted by EA (all P<0.05). In the sham group, no significant differences were observed in PWT and PWL values or CD11b, TNF-α, IL-1β and IL-6 levels compared with the control group, suggesting that EA was responsible for the reduction in CD11b and pro-inflammatory cytokine expression following remifentanil administration. The results of the present study demonstrated that EA at the Huantiao and Yanglingquan acupoints may reduce remifentanil-induced postoperative hyperalgesia, likely by inhibiting spinal microglia via reduction of CD11b and pro-inflammatory cytokine expression. However, these results are preliminary and require further validation.
Collapse
Affiliation(s)
- Yanhu Xie
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Jun Ma
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xiaoqing Chai
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Chen Gao
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
16
|
Yang T, Du S, Liu X, Ye X, Wei X. Withdrawal from spinal application of remifentanil induces long-term potentiation of c-fiber-evoked field potentials by activation of Src family kinases in spinal microglia. Neurochem Res 2018; 43:1660-1670. [PMID: 29959648 DOI: 10.1007/s11064-018-2582-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
It is well known that remifentanil, a widely used intravenous anesthesia drug, can paradoxically induce hyperalgesia. The underlying mechanisms are still not clear despite the wide investigations. The present study demonstrated that withdrawal from spinal application of remifentanil could dose-dependently induce long term potentiation (LTP) of C-fiber evoked field potentials. Remifentanil withdrawal could activate Src family kinases (SFKs) in microglia, and upregulate the expression of tumor necrosis factor alpha (TNFα) in spinal dorsal horn. Furthermore, pretreatment with either microglia inhibitor Minocycline, SFKs inhibitor PP2 or TNF αneutralization antibody could block remifentanil withdrawal induced spinal LTP, whereas supplement of recombinant rat TNFα to the spinal cord could reverse the inhibitory effect of Minocycline or PP2 on remifentanil withdrawal induced LTP. Our results suggested that TNFαrelease following SFKs activation in microglia is involved in the induction of LTP induced by remifentanil withdrawal.
Collapse
Affiliation(s)
- Tao Yang
- Department of Anesthesiology, SunYat-SenMemorial Hospital, SunYat-Sen University, 107 Yanjiang Xi Road, Guangzhou, People's Republic of China
| | - Sujuan Du
- Department of Anesthesiology, SunYat-SenMemorial Hospital, SunYat-Sen University, 107 Yanjiang Xi Road, Guangzhou, People's Republic of China
| | - Xianguo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, People's Republic of China
| | - Xijiu Ye
- Department of Anesthesiology, SunYat-SenMemorial Hospital, SunYat-Sen University, 107 Yanjiang Xi Road, Guangzhou, People's Republic of China.
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Zhou R, Xu T, Liu X, Chen Y, Kong D, Tian H, Yue M, Huang D, Zeng J. Activation of spinal dorsal horn P2Y 13 receptors can promote the expression of IL-1β and IL-6 in rats with diabetic neuropathic pain. J Pain Res 2018; 11:615-628. [PMID: 29628771 PMCID: PMC5877493 DOI: 10.2147/jpr.s154437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective The dorsal horn P2Y13 receptor is involved in the development of pain behavior induced by peripheral nerve injury. It is unclear whether the expression of proinflammatory cytokines interleukin (IL)-1β and IL-6 at the spinal dorsal horn are influenced after the activation of P2Y13 receptor in rats with diabetic neuropathic pain (DNP). Methods A rat model of type 1 DNP was induced by intraperitoneal injection of streptozotocin (STZ). We examined the expression of P2Y13 receptor, Iba-1, IL-1β, IL-6, JAK2, STAT3, pTyr1336, and pTyr1472 NR2B in rat spinal dorsal horn. Results Compared with normal rats, STZ-diabetic rats displayed obvious mechanical allodynia and the increased expression of P2Y13 receptor, Iba-1, IL-1β, and IL-6 in the dorsal spinal cord that was continued for 6 weeks in DNP rats. The data obtained indicated that, in DNP rats, administration of MRS2211 significantly attenuated mechanical allodynia. Compared with DNP rats, after MRS2211 treatment, expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 were reduced 4 weeks after the STZ injection. However, MRS2211 treatment did not attenuate the expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 at 6 weeks after the STZ injection. MRS2211 suppressed JAK2 and STAT3 expression in the early stage, but not in the later stage. Moreover, pTyr1336 NR2B was significantly decreased, whereas pTyr1472 NR2B was unaffected in the dorsal spinal cord of MRS2211-treated DNP rats. Conclusion Intrathecal MRS2211 produces an anti-nociceptive effect in early-stage DNP. A possible mechanism involved in MRS2211-induced analgesia is that blocking the P2Y13 receptor downregulates levels of IL-1β and IL-6, which subsequently inhibit the activation of the JAK2/STAT3 signaling pathway. Furthermore, blocking the activation of the P2Y13 receptor can decrease NR2B-containing NMDAR phosphorylation in dorsal spinal cord neurons, thereby attenuating central sensitization in STZ-induced DNP rats.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - XiaoHong Liu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - YuanShou Chen
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - DeYing Kong
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Hong Tian
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Mingxia Yue
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Dujuan Huang
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| |
Collapse
|
18
|
Chang L, Ye F, Luo Q, Tao Y, Shu H. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats. Anesth Analg 2018; 126:289-297. [PMID: 29135586 PMCID: PMC5732642 DOI: 10.1213/ane.0000000000002601] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. METHODS Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. RESULTS Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the spinal cord and bilateral DRG for more than 7 days and increase of ionized calcium-binding adapter molecule 1 in the spinal cord. The combination of fentanyl and incision resulted in higher increase of IL-1β, IL-6, and TNF-α in the spinal cord and bilateral DRG. CONCLUSIONS The surgical plantar incision with or without perioperative fentanyl induced significant mechanical and thermal hyperalgesia, an increased expression of IL-1β, IL-6, TNF-α in the spinal cord and DRG, and activation of microglia in the spinal cord.
Collapse
Affiliation(s)
- Lu Chang
- From the Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Fang Ye
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Quehua Luo
- From the Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yuanxiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Haihua Shu
- From the Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Xiong BJ, Xu Y, Jin GL, Liu M, Yang J, Yu CX. Analgesic effects and pharmacologic mechanisms of the Gelsemium alkaloid koumine on a rat model of postoperative pain. Sci Rep 2017; 7:14269. [PMID: 29079733 PMCID: PMC5660238 DOI: 10.1038/s41598-017-14714-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain (POP) of various durations is a common complication of surgical procedures. POP is caused by nerve damage and inflammatory responses that are difficult to treat. The neuroinflammation-glia-steroid network is known to be important in POP. It has been reported that the Gelsemium alkaloid koumine possesses analgesic, anti-inflammatory and neurosteroid modulating activities. This study was undertaken to test the analgesic effects of koumine against POP and explore the underlying pharmacologic mechanisms. Our results showed that microglia and astroglia were activated in the spinal dorsal horn post-incision, along with an increase of proinflammatory cytokines (interleukin 1β, interleukin 6, and tumor necrosis factor α). Both subcutaneous and intrathecal (i.t.) koumine treatment after incision significantly prevented mechanical allodynia and thermal hyperalgesia, inhibited microglial and astroglial activation, and suppressed expression of proinflammatory cytokines. Moreover, the analgesic effects of koumine were antagonized by i.t. administration of translocator protein (18 kDa) (TSPO) antagonist PK11195 and GABAA receptor antagonist bicuculline. Together, koumine prevented mechanical allodynia and thermal hyperalgesia caused by POP. The pharmacologic mechanism of koumine-mediated analgesia might involve inhibition of spinal neuroinflammation and activation of TSPO. These data suggested that koumine might be a potential pharmacotherapy for the management of POP.
Collapse
Affiliation(s)
- Bo-Jun Xiong
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Ying Xu
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Gui-Lin Jin
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Ming Liu
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Jian Yang
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Chang-Xi Yu
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.
| |
Collapse
|
20
|
Liu Y, Ni Y, Zhang W, Sun YE, Ma Z, Gu X. N-acetyl-cysteine attenuates remifentanil-induced postoperative hyperalgesia via inhibiting matrix metalloproteinase-9 in dorsal root ganglia. Oncotarget 2017; 8:16988-17001. [PMID: 28199982 PMCID: PMC5370016 DOI: 10.18632/oncotarget.15217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/27/2017] [Indexed: 11/25/2022] Open
Abstract
Treatment of remifentanil-induced postoperative hyperalgesia (RIH) remains a clinical challenge because the mechanisms are not fully understood. Matrix metalloproteinase-9 (MMP-9) is a key component in neuroinflammation because of its facilitation of pro-inflammatory cytokine maturation. Therefore, inhibition of MMP-9 may represent a novel therapeutic approach to the treatment of RIH. Sprague-Dawley rats were randomly divided into three groups: Control, Incision and Remifentanil. A right plantar surgical incision was performed in Group Incision, and intraoperative remifentanil (0.04 mg/kg, 0.4 ml) was infused subcutaneously for 30 min in Group Remifentanil. The results indicated that intraoperative remifentanil induced an up-regulation and activation of MMP-9 in DRGs but not spinal cords. MMP-9 was expressed primarily in DRG neurons co-expressing mu opioid receptors (MOR), and elicited interleukin-1β (IL-1β) cleavage in DRG neurons and satellite glial cells (SGCs). Intraperitoneal injection of N-acetyl-cysteine (NAC), a broadly used safe drug, significantly attenuated RIH via suppressing the activation of MMP-9 in DRGs. NAC inhibited the cleavage of IL-1β in DRGs, which is a critical substrate of MMP-9, and markedly suppressed glial activation and neuron excitability in spinal dorsal horn induced by remifentanil. These results demonstrated that NAC can effectively alleviate RIH via powerfully inhibiting MMP-9 activation in DRGs.
Collapse
Affiliation(s)
- Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yuan Ni
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yu-E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
21
|
Ye L, Xiao L, Yang SY, Duan JJ, Chen Y, Cui Y, Chen Y. Cathepsin S in the spinal microglia contributes to remifentanil-induced hyperalgesia in rats. Neuroscience 2017; 344:265-275. [DOI: 10.1016/j.neuroscience.2016.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023]
|
22
|
Lu C, Shi L, Sun B, Zhang Y, Hou B, Sun Y, Ma Z, Gu X. A Single Intrathecal or Intraperitoneal Injection of CB2 Receptor Agonist Attenuates Bone Cancer Pain and Induces a Time-Dependent Modification of GRK2. Cell Mol Neurobiol 2017; 37:101-109. [PMID: 26935064 PMCID: PMC11482228 DOI: 10.1007/s10571-016-0349-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 02/11/2016] [Indexed: 01/01/2023]
Abstract
The objective of this study was to explore the potential role of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cannabinoid 2 receptor (CB2) agonist-induced analgesic effects of bone cancer pain. Female Sprague-Dawley rats, weighing 160-180 g, were utilized to establish a model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. JWH-015, a selective CB2 agonist, was injected intrathecally or intraperitoneally on postoperative day 10. Bone cancer-induced pain behaviors-mechanical allodynia and ambulatory pain-were assessed on postoperative days -1 (baseline), 4, 7, and 10 and at post-treatment hours 2, 6, 24, 48, and 72. The expressions of spinal CB2 and GRK2 protein were detected by Western Blotting on postoperative days -1 (baseline), 4, 7, and 10 and at post-treatment hours 6, 24, and 72. The procedure produced prolonged mechanical allodynia, ambulatory pain, and different changes in spinal CB2 and GRK2 expression levels. Intrathecal or intraperitoneal administration of JWH-015 alleviated the induced mechanical allodynia and ambulatory pain, and inhibited the downregulation of spinal GRK2 expression. These effects were in a time-dependent manner and reversed by pretreatment of CB2 selective antagonist AM630. The results affirmed CB2 receptor agonists might serve as new treatment targets for bone cancer pain. Moreover, spinal GRK2 was an important regulator of CB2 receptor agonist-analgesia pathway.
Collapse
Affiliation(s)
- Cui'e Lu
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Linyu Shi
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Bei Sun
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yu Zhang
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yu'e Sun
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
23
|
Shi C, Liu Y, Zhang W, Lei Y, Lu C, Sun R, Sun Y, Jiang M, Gu X, Ma Z. Intraoperative electroacupuncture relieves remifentanil-induced postoperative hyperalgesia via inhibiting spinal glial activation in rats. Mol Pain 2017; 13:1744806917725636. [PMID: 28825338 PMCID: PMC5570117 DOI: 10.1177/1744806917725636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating studies have suggested that remifentanil, the widely-used opioid analgesic in clinical anesthesia, can activate the pronociceptive systems and enhance postoperative pain. Glial cells are thought to be implicated in remifentanil-induced hyperalgesia. Electroacupuncture is a complementary therapy to relieve various pain conditions with few side effects, and glial cells may be involved in its antinociceptive effect. In this study, we investigated whether intraoperative electroacupuncture could relieve remifentanil-induced postoperative hyperalgesia by inhibiting the activation of spinal glial cells, the production of spinal proinflammatory cytokines, and the activation of spinal mitogen-activated protein kinases. Methods A rat model of remifentanil-induced postoperative hyperalgesia was used in this study. Electroacupuncture during surgery was conducted at bilateral Zusanli (ST36) acupoints. Behavior tests, including mechanical allodynia and thermal hyperalgesia, were performed at different time points. Astrocytic marker glial fibrillary acidic protein, microglial marker Iba1, proinflammatory cytokines, and phosphorylated mitogen-activated protein kinases in the spinal cord were detected by Western blot and/or immunofluorescence. Results Mechanical allodynia and thermal hyperalgesia were induced by both surgical incision and remifentanil infusion, and remifentanil infusion significantly exaggerated and prolonged incision-induced pronociceptive effects. Glial fibrillary acidic protein, Iba1, proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α), and phosphorylated mitogen-activated protein kinases (p-p38, p-JNK, and p-ERK1/2) were upregulated after surgical incision, remifentanil infusion, and especially after their combination. Intraoperative electroacupuncture significantly attenuated incision- and/or remifentanil-induced pronociceptive effects, spinal glial activation, proinflammatory cytokine upregulation, and phosphorylated mitogen-activated protein kinase upregulation. Conclusions Our study suggests that remifentanil-induced postoperative hyperalgesia can be relieved by intraoperative electroacupuncture via inhibiting the activation of spinal glial cells, the upregulation of spinal proinflammatory cytokines, and the activation of spinal mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Changxi Shi
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, China
- Department of Anesthesiology, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Yue Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Wei Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Yishan Lei
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Cui’e Lu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Rao Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Yu’e Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Ming Jiang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Xiaoping Gu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Zhengliang Ma
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| |
Collapse
|
24
|
Gu W, Zhang W, Lei Y, Cui Y, Chu S, Gu X, Ma Z. Activation of spinal alpha-7 nicotinic acetylcholine receptor shortens the duration of remifentanil-induced postoperative hyperalgesia by upregulating KCC2 in the spinal dorsal horn in rats. Mol Pain 2017; 13:1744806917704769. [PMID: 28425312 PMCID: PMC6997724 DOI: 10.1177/1744806917704769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background Accumulating evidence has shown that the signal from spinal brain-derived neurotrophic factor/tyrosine receptor kinase B-K+-Cl- cotransporter-2 plays a critical role in the process of pain hypersensitivity. The activation of alpha-7 nicotinic acetylcholine receptors could have an analgesic effect on remifentanil-induced postoperative hyperalgesia. Nevertheless, whether intrathecal administration of PNU-120596, an alpha-7 nicotinic acetylcholine receptors selective type II positive allosteric modulator, before surgery could affect the duration of remifentanil-induced postoperative hyperalgesia remains unknown, and the effects of alpha-7 nicotinic acetylcholine receptors activation on the brain-derived neurotrophic factor/tyrosine receptor kinase B-K+-Cl- cotransporter-2 signal in the spinal dorsal horn of rats with remifentanil-induced postoperative hyperalgesia is still enigmatic. Results We demonstrated that the brain-derived neurotrophic factor/tyrosine receptor kinase B-K+-Cl- cotransporter-2 signal played a critical role in the development of remifentanil-induced postoperative hyperalgesia. Intrathecal administration of PNU-120596 (8 µg/kg, 15 min before surgery) was associated with earlier signs of recovery from remifentanil-induced postoperative hyperalgesia. Simultaneously, remifentanil-induced postoperative hyperalgesia-induced K+-Cl- cotransporter-2 downregulation was partly reversed and coincided with a decreased expression of brain-derived neurotrophic factor/tyrosine receptor kinase B in the spinal dorsal horn, approximately correlating with the time course of the nociceptive behavior. Moreover, intrathecal administration of the K+-Cl- cotransporter-2 inhibitor VU0240551 significantly reduced the analgesic effect of PNU-120596 on remifentanil-induced postoperative hyperalgesia. Conclusions The activation of alpha-7 nicotinic acetylcholine receptors induced a shorter duration of remifentanil-induced postoperative hyperalgesia by restoring the brain-derived neurotrophic factor/tyrosine receptor kinase B-K+-Cl- cotransporter-2 signal in the spinal dorsal horn of rats, which provides new insight into treatment in clinical postoperative pain management.
Collapse
Affiliation(s)
- Wei Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yin Cui
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Shuaishuai Chu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Ye L, Xiao L, Bai X, Yang SY, Li Y, Chen Y, Cui Y, Chen Y. Spinal mitochondrial-derived ROS contributes to remifentanil-induced postoperative hyperalgesia via modulating NMDA receptor in rats. Neurosci Lett 2016; 634:79-86. [DOI: 10.1016/j.neulet.2016.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
26
|
Involvement of CCL3/CCR5 Signaling in Dorsal Root Ganglion in Remifentanil-induced Hyperalgesia in Rats. Clin J Pain 2016; 32:702-10. [DOI: 10.1097/ajp.0000000000000319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
Lu C, Liu Y, Sun B, Sun Y, Hou B, Zhang Y, Ma Z, Gu X. Intrathecal Injection of JWH-015 Attenuates Bone Cancer Pain Via Time-Dependent Modification of Pro-inflammatory Cytokines Expression and Astrocytes Activity in Spinal Cord. Inflammation 2016; 38:1880-90. [PMID: 25896633 DOI: 10.1007/s10753-015-0168-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabinoid receptor type 2 (CB2) agonists display potential analgesic effects in acute and neuropathic pain. However, its complex cellular and molecular mechanisms in bone cancer pain remain unclear. And less relevant reports concerned its time-dependent effects on the long-lasting modifications of behavior, spinal inflammatory cytokines levels, astrocytes activity induced by bone cancer pain. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells was utilized. Pain behaviors at different time points were assessed by ambulatory pain scores and paw withdrawal mechanical threshold (PWMT). Pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor alpha (TNF-α), were quantitated by Western blots. Glial activity was assessed by immunohistochemistry. Intra-tibia inoculation of Walker 256 mammary gland carcinoma cells induced progressive bone cancer pain; a long-term up-regulation of IL-1β, IL-6, IL-18, and TNF-α; and the activation of glia in spinal cord. Activation of microglia was first evident on day 4 after surgery and reached to a peak on day 7 while activation of astrocytes was on day 10. A single intrathecal injection of JWH-015 attenuated bone cancer induced spontaneous pain and mechanical allodynia, reduced the expression of pro-inflammatory cytokines, and inhibited the activity of astrocytes. All the modifications were transient and peaked at 24 h after JWH-015 administration. Furthermore, the protective effects of JWH-015 were reversed in the presence of CB2-selective antagonist AM630. Overall, our results provided evidences for the persistent participation of inflammation reaction in the progression of bone cancer pain, and demonstrated that JWH-015 reduced the expression of IL-1β, IL-6, IL-18, and TNF-α and inhibited astrocytes activation in a time-dependent manner, thereby displaying an analgesic effect.
Collapse
Affiliation(s)
- Cui'e Lu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China,
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang C, Li Y, Wang H, Xie K, Shu R, Zhang L, Hu N, Yu Y, Wang G. Inhibition of DOR prevents remifentanil induced postoperative hyperalgesia through regulating the trafficking and function of spinal NMDA receptors in vivo and in vitro. Brain Res Bull 2015; 110:30-9. [DOI: 10.1016/j.brainresbull.2014.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
|
29
|
Johnson AC, Greenwood-Van Meerveld B. Stress-induced pain: a target for the development of novel therapeutics. J Pharmacol Exp Ther 2014; 351:327-35. [PMID: 25194019 PMCID: PMC4201269 DOI: 10.1124/jpet.114.218065] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022] Open
Abstract
Although current therapeutics provide relief from acute pain, drugs used for treatment of chronic pain are typically less efficacious and limited by adverse side effects, including tolerance, addiction, and gastrointestinal upset. Thus, there is a significant need for novel therapies for the treatment of chronic pain. In concert with chronic pain, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic pain disorders. Stress exacerbation of chronic pain suggests that centrally acting drugs targeting the pain- and stress-responsive brain regions represent a valid target for the development of novel therapeutics. This review provides an overview of how stress modulates spinal and central pain pathways, identifies key neurotransmitters and receptors within these pathways, and highlights their potential as novel targets for therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Anthony C Johnson
- Veterans Affairs Medical Center (B.G.-V.M.), Department of Physiology (B.G.-V.M.), and Oklahoma Center for Neuroscience (A.C.J., B.G.-V.M.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center (B.G.-V.M.), Department of Physiology (B.G.-V.M.), and Oklahoma Center for Neuroscience (A.C.J., B.G.-V.M.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|