1
|
Saugel B, Buhre W, Chew MS, Cholley B, Coburn M, Cohen B, De Hert S, Duranteau J, Fellahi JL, Flick M, Guarracino F, Joosten A, Jungwirth B, Kouz K, Longrois D, Buse GL, Meidert AS, Rex S, Romagnoli S, Romero CS, Sander M, Thomsen KK, Vos JJ, Zarbock A. Intra-operative haemodynamic monitoring and management of adults having noncardiac surgery: A statement from the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol 2025; 42:543-556. [PMID: 40308048 DOI: 10.1097/eja.0000000000002174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 05/02/2025]
Abstract
This article was developed by a diverse group of 25 international experts from the European Society of Anaesthesiology and Intensive Care (ESAIC), who formulated recommendations on intra-operative haemodynamic monitoring and management of adults having noncardiac surgery based on a review of the current evidence. We recommend basing intra-operative arterial pressure management on mean arterial pressure and keeping intra-operative mean arterial pressure above 60 mmHg. We further recommend identifying the underlying causes of intra-operative hypotension and addressing them appropriately. We suggest pragmatically treating bradycardia or tachycardia when it leads to profound hypotension or likely results in reduced cardiac output, oxygen delivery or organ perfusion. We suggest monitoring stroke volume or cardiac output in patients with high baseline risk for complications or in patients having high-risk surgery to assess the haemodynamic status and the haemodynamic response to therapeutic interventions. However, we recommend not routinely maximising stroke volume or cardiac output in patients having noncardiac surgery. Instead, we suggest defining stroke volume and cardiac output targets individually for each patient considering the clinical situation and clinical and metabolic signs of tissue perfusion and oxygenation. We recommend not giving fluids simply because a patient is fluid responsive but only if there are clinical or metabolic signs of hypovolaemia or tissue hypoperfusion. We suggest monitoring and optimising the depth of anaesthesia to titrate doses of anaesthetic drugs and reduce their side effects.
Collapse
Affiliation(s)
- Bernd Saugel
- From the Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (BS, MF, KK, KKT), the Outcomes Research Consortium, Houston, Texas, USA (BS, BCo, KK, KKT), the Department of Anesthesiology, Division of Vital Functions, University Medical Centre Utrecht, Utrecht, The Netherlands (WB), the Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital Huddinge, Huddinge, Sweden (MSC), the Department of Anesthesiology and Intensive Care Medicine, Hôpital européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris and Université Paris Cité, Paris, France (BCh), the Department of Anaesthesiology and Operative Intensive Care Medicine, University Hospital Bonn, Bonn, Germany (MC), the Division of Anesthesia, Intensive Care, and Pain, Tel-Aviv Medical Center, Tel-Aviv University, Tel-Aviv, Israel (BCo), the Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (SDH), the Department of Anesthesiology and Intensive Care, Paris-Saclay University, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France (JD), the Department of Cardiothoracic and Vascular Anaesthesia and Intensive Care, Louis Pradel University Hospital, Hospices Civils de Lyon, Bron, France (JLF), the Department of Cardiothoracic and Vascular Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (FG), the Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, California, USA (AJ), the Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany (BJ), the Department of Anaesthesia and Intensive Care, Bichat-Claude Bernard and Louis Mourier Hospitals, Assistance Publique-Hôpitaux de Paris, Paris, France (DL), the Department of Anesthesiology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany (GLB), the Department of Anaesthesiology, University Hospital LMU Munich, Munich, Germany (ASM), the Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium (SRe), the Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium (SRe), the Department of Health Science, University of Florence, Florence, Italy (SRo), the Department of Anesthesia and Critical Care, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (SRo), the Department of Anaesthesiology and Critical Care, Hospital General Universitario de Valencia, Valencia, Spain (CSR), the Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Giessen, Justus-Liebig-University, Giessen, Germany (MS), the Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (JJV), the Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany (AZ)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bruzzone MJ, Chapin B, Walker J, Santana M, Wang Y, Amini S, Kimmet F, Perera E, Rubinos C, Arias F, Price C. Electroencephalographic Measures of Delirium in the Perioperative Setting: A Systematic Review. Anesth Analg 2025; 140:1127-1139. [PMID: 39088366 DOI: 10.1213/ane.0000000000007079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Postoperative delirium (POD) is frequent in older adults and is associated with adverse cognitive and functional outcomes. In the last several decades, there has been an increased interest in exploring tools that easily allow the early recognition of patients at risk of developing POD. The electroencephalogram (EEG) is a widely available tool used to understand delirium pathophysiology, and its use in the perioperative setting has grown exponentially, particularly to predict and detect POD. We performed a systematic review to investigate the use of EEG in the pre-, intra-, and postoperative settings. We identified 371 studies, and 56 met the inclusion criteria. A range of techniques was used to obtain EEG data, from limited 1-4 channel setups to complex 256-channel systems. Power spectra were often measured preoperatively, yet the outcomes were inconsistent. During surgery, the emphasis was primarily on burst suppression (BS) metrics and power spectra, with a link between the frequency and timing of BS, and POD. The EEG patterns observed in POD aligned with those noted in delirium in different contexts, suggesting a reduction in EEG activity. Further research is required to investigate preoperative EEG indicators that may predict susceptibility to delirium.
Collapse
Affiliation(s)
- Maria J Bruzzone
- From the Department of Neurology, University of Florida, Gainesville, Florida
| | - Benjamin Chapin
- Department of Anesthesia, University of Florida, Gainesville, Florida
| | - Jessie Walker
- From the Department of Neurology, University of Florida, Gainesville, Florida
| | - Marcos Santana
- From the Department of Neurology, University of Florida, Gainesville, Florida
| | - Yue Wang
- From the Department of Neurology, University of Florida, Gainesville, Florida
| | - Shawna Amini
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Faith Kimmet
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
| | - Estefania Perera
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
| | - Clio Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | - Franchesca Arias
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
| | - Catherine Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Thedim M, Aydin D, Schneider G, Kumar R, Kreuzer M, Vacas S. Preoperative biomarkers associated with delayed neurocognitive recovery. J Clin Monit Comput 2025; 39:1-9. [PMID: 39266927 PMCID: PMC11821442 DOI: 10.1007/s10877-024-01218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
To identify baseline biomarkers of delayed neurocognitive recovery (dNCR) using monitors commonly used in anesthesia. In this sub-study of observational prospective cohorts, we evaluated adult patients submitted to general anesthesia in a tertiary academic center in the United States. Electroencephalographic (EEG) features and cerebral oximetry were assessed in the perioperative period. The primary outcome was dNCR, defined as a decrease of 2 scores in the global Montreal Cognitive Assessment (MoCA) between the baseline and postoperative period. Forty-six adults (median [IQR] age, 65 [15]; 57% females; 65% American Society of Anesthesiologists (ASA) 3 were analyzed. Thirty-one patients developed dNCR (67%). Baseline higher EEG power in the lower alpha band (AUC = 0.73 (95% CI 0.48-0.93)) and lower alpha peak frequency (AUC = 0.83 (95% CI 0.48-1)), as well as lower cerebral oximetry (68 [5] vs 72 [3], p = 0.011) were associated with dNCR. Higher EEG power in the lower alpha band, lower alpha peak frequency, and lower cerebral oximetry values can be surrogates of baseline brain vulnerability.
Collapse
Affiliation(s)
- Mariana Thedim
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street 444GRB, Boston, MA, 02114, USA
| | - Duygu Aydin
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Rajesh Kumar
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Susana Vacas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street 444GRB, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Manohara N, Ferrari A, Greenblatt A, Berardino A, Peixoto C, Duarte F, Moyiaeri Z, Robba C, Nascimento F, Kreuzer M, Vacas S, Lobo FA. Electroencephalogram monitoring during anesthesia and critical care: a guide for the clinician. J Clin Monit Comput 2024:10.1007/s10877-024-01250-2. [PMID: 39704777 DOI: 10.1007/s10877-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Perioperative anesthetic, surgical and critical careinterventions can affect brain physiology and overall brain health. The clinical utility of electroencephalogram (EEG) monitoring in anesthesia and intensive care settings is multifaceted, offering critical insights into the level of consciousness and depth of anesthesia, facilitating the titration of anesthetic doses, and enabling the detection of ischemic events and epileptic activity. Additionally, EEG monitoring can aid in predicting perioperative neurocognitive disorders, assessing the impact of systemic insults on cerebral function, and informing neuroprognostication. This review provides a comprehensive overview of the fundamental principles of electroencephalography, including the foundations of processed and quantitative electroencephalography. It further explores the characteristic EEG signatures associated wtih anesthetic drugs, the interpretation of the EEG data during anesthesia, and the broader clinical benefits and applications of EEG monitoring in both anesthetic practice and intensive care environments.
Collapse
Affiliation(s)
- Nitin Manohara
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates
| | | | - Adam Greenblatt
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Andrea Berardino
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | | | - Flávia Duarte
- Department of Anesthesiology, Hospital Garcia de Orta, Almada, Portugal
| | - Zahra Moyiaeri
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates
| | | | - Fabio Nascimento
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Susana Vacas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco A Lobo
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Fislage M, Zacharias N, Feinkohl I. The Thalamus in Perioperative Neurocognitive Disorders. Neuropsychol Rev 2024; 34:850-859. [PMID: 37736862 DOI: 10.1007/s11065-023-09615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Thalamus function and structure are known predictors of individual differences in the risk of age-related neurocognitive disorders (NCD), such as dementia. However, to date, little is known about their role in the perioperative setting. Here, we provide a narrative review of brain-imaging studies of preoperative and postoperative thalamus scanning parameters associated with risks of developing perioperative NCD, such as postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) during the postoperative phase. These findings are discussed in light of the concept of reserve capacity.
Collapse
Affiliation(s)
- Marinus Fislage
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany.
- Department of Neurology, National Taiwan University Hospital, Taipei City, 100225, Taiwan.
| | - Norman Zacharias
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Insa Feinkohl
- Faculty of Health/School of Medicine, Witten/Herdecke University, Witten, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
| |
Collapse
|
6
|
Fang PP, Zhang HW, Hao XX, Shang ZX, Li J, Liu XS. Intraoperative electroencephalogram features related to frailty in older patients: an exploratory prospective observational study. J Clin Monit Comput 2024; 38:613-621. [PMID: 38252194 DOI: 10.1007/s10877-024-01126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Frailty is an independent risk factor for the increased incidence of postoperative delirium (POD). To date, the effect of frailty on intraoperative electroencephalogram (EEG) changes remains unexplored. The present study, an exploratory analysis of a prospective cohort study, aimed to investigate the differences in EEG characteristics between frail and robust patients. This prospective observational study was conducted between December 2020 and November 2021. The preoperative frailty status was assessed using the FRAIL scale. The patients' baseline (before anesthesia) and intraoperative EEG data were collected using a brain function monitor. Finally, 20 robust and 26 frail older patients scheduled for elective spinal surgery or transurethral prostatectomy under propofol-based general anesthesia were included in the final analysis. Baseline and intraoperative EEG spectrogram and power spectra were compared between the frail and robust groups. No differences were observed in baseline EEG between the frail and robust groups. When the intraoperative EEG spectral parameters were compared, the alpha peak frequency (10.56 ± 0.49 vs. 10.14 ± 0.36 Hz, P = 0.002) and alpha peak, delta, theta, alpha, and beta powers were lower in the frail group. After adjusting for age, Charlson Comorbidity Index (CCI), and mini-mental state examination (MMSE) score, the FRAIL score was still negatively associated with total, delta, theta, alpha, and beta powers. Frail patients had reduced EEG (0-30 Hz) power after the induction of propofol-based general anesthesia. After adjusting for age, CCI, and MMSE score, frail patients still showed evidence of reduced δ, θ, α, and β power.
Collapse
Affiliation(s)
- Pan-Pan Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| | - Hui-Wen Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| | - Xi-Xi Hao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| | - Zi-Xiang Shang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| | - Xue-Sheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China.
| |
Collapse
|
7
|
Likhvantsev VV, Berikashvili LB, Smirnova AV, Polyakov PA, Yadgarov MY, Gracheva ND, Romanova OE, Abramova IS, Shemetova MM, Kuzovlev AN. Intraoperative electroencephalogram patterns as predictors of postoperative delirium in older patients: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1386669. [PMID: 38803541 PMCID: PMC11128674 DOI: 10.3389/fnagi.2024.1386669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Background Postoperative delirium (POD) significantly affects patient outcomes after surgery, leading to increased morbidity, extended hospital stays, and potential long-term cognitive decline. This study assessed the predictive value of intraoperative electroencephalography (EEG) patterns for POD in adults. Methods This systematic review and meta-analysis followed the PRISMA and Cochrane Handbook guidelines. A thorough literature search was conducted using PubMed, Medline, and CENTRAL databases focusing on intraoperative native EEG signal analysis in adult patients. The primary outcome was the relationship between the burst suppression EEG pattern and POD development. Results From the initial 435 articles identified, 19 studies with a total of 7,229 patients were included in the systematic review, with 10 included in the meta-analysis (3,705 patients). In patients exhibiting burst suppression, the POD incidence was 22.1% vs. 13.4% in those without this EEG pattern (p=0.015). Furthermore, an extended burst suppression duration associated with a higher likelihood of POD occurrence (p = 0.016). Interestingly, the burst suppression ratio showed no significant association with POD. Conclusions This study revealed a 41% increase in the relative risk of developing POD in cases where a burst suppression pattern was present. These results underscore the clinical relevance of intraoperative EEG monitoring in predicting POD in older patients, suggesting its potential role in preventive strategies. Systematic Review Registration This study was registered on International Platform for Registered Protocols for Systematic Reviews and Meta-Analyses: INPLASY202420001, https://doi.org/10.37766/inplasy2024.2.0001.
Collapse
Affiliation(s)
- Valery V. Likhvantsev
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Department of Clinical Trials, Moscow, Russia
- Department of Anesthesiology, First Moscow State Medical University, Moscow, Russia
| | - Levan B. Berikashvili
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Department of Clinical Trials, Moscow, Russia
| | - Anastasia V. Smirnova
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Department of Clinical Trials, Moscow, Russia
| | - Petr A. Polyakov
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Department of Clinical Trials, Moscow, Russia
| | - Mikhail Ya Yadgarov
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Department of Clinical Trials, Moscow, Russia
| | - Nadezhda D. Gracheva
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Department of Clinical Trials, Moscow, Russia
| | - Olga E. Romanova
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Department of Clinical Trials, Moscow, Russia
| | - Irina S. Abramova
- Department of Anesthesiology, City Clinical Oncological Hospital No. 1, Moscow, Russia
| | - Maria M. Shemetova
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Department of Clinical Trials, Moscow, Russia
| | - Artem N. Kuzovlev
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Department of Clinical Trials, Moscow, Russia
| |
Collapse
|
8
|
Pollak M, Leroy S, Röhr V, Brown EN, Spies C, Koch S. Electroencephalogram Biomarkers from Anesthesia Induction to Identify Vulnerable Patients at Risk for Postoperative Delirium. Anesthesiology 2024; 140:979-989. [PMID: 38295384 DOI: 10.1097/aln.0000000000004929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Postoperative delirium is a common complication in elderly patients undergoing anesthesia. Even though it is increasingly recognized as an important health issue, the early detection of patients at risk for postoperative delirium remains a challenge. This study aims to identify predictors of postoperative delirium by analyzing frontal electroencephalogram at propofol-induced loss of consciousness. METHODS This prospective, observational single-center study included patients older than 70 yr undergoing general anesthesia for a planned surgery. Frontal electroencephalogram was recorded on the day before surgery (baseline) and during anesthesia induction (1, 2, and 15 min after loss of consciousness). Postoperative patients were screened for postoperative delirium twice daily for 5 days. Spectral analysis was performed using the multitaper method. The electroencephalogram spectrum was decomposed in periodic and aperiodic (correlates to asynchronous spectrum wide activity) components. The aperiodic component is characterized by its offset (y intercept) and exponent (the slope of the curve). Computed electroencephalogram parameters were compared between patients who developed postoperative delirium and those who did not. Significant electroencephalogram parameters were included in a binary logistic regression analysis to predict vulnerability for postoperative delirium. RESULTS Of 151 patients, 50 (33%) developed postoperative delirium. At 1 min after loss of consciousness, postoperative delirium patients demonstrated decreased alpha (postoperative delirium: 0.3 μV2 [0.21 to 0.71], no postoperative delirium: 0.55 μV2 [0.36 to 0.74]; P = 0.019] and beta band power [postoperative delirium: 0.27 μV2 [0.12 to 0.38], no postoperative delirium: 0.38 μV2 [0.25 to 0.48]; P = 0.003) and lower spectral edge frequency (postoperative delirium: 10.45 Hz [5.65 to 15.04], no postoperative delirium: 14.56 Hz [9.51 to 16.65]; P = 0.01). At 15 min after loss of consciousness, postoperative delirium patients displayed a decreased aperiodic offset (postoperative delirium: 0.42 μV2 (0.11 to 0.69), no postoperative delirium: 0.62 μV2 [0.37 to 0.79]; P = 0.004). The logistic regression model predicting postoperative delirium vulnerability demonstrated an area under the curve of 0.73 (0.69 to 0.75). CONCLUSIONS The findings suggest that electroencephalogram markers obtained during loss of consciousness at anesthesia induction may serve as electroencephalogram-based biomarkers to identify at an early time patients at risk of developing postoperative delirium. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Marie Pollak
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Sophie Leroy
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Vera Röhr
- Neurotechnology Group, Technical University Berlin, Berlin, Germany
| | - Emery Neal Brown
- Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Susanne Koch
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany; and Department of Anesthesia, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Shang Z, Jiang Y, Fang P, Zhu W, Guo J, Li L, Liang Y, Zhang S, Ma S, Mei B, Fan Y, Xie Z, Shen Q, Liu X. The Association of Preoperative Diabetes With Postoperative Delirium in Older Patients Undergoing Major Orthopedic Surgery: A Prospective Matched Cohort Study. Anesth Analg 2024; 138:1031-1042. [PMID: 38335150 DOI: 10.1213/ane.0000000000006893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Postoperative delirium (POD) is a common form of postoperative brain dysfunction, especially in the elderly. However, its risk factors remain largely to be determined. This study aimed to investigate whether (1) preoperative diabetes is associated with POD after elective orthopedic surgery and (2) intraoperative frontal alpha power is a mediator of the association between preoperative diabetes and POD. METHODS This was a prospective matched cohort study of patients aged 60 years or more, with a preoperative diabetes who underwent elective orthopedic surgery. Nondiabetic patients were matched 1:1 to diabetic patients in terms of age, sex, and type of surgery. Primary outcome was occurrence of POD, assessed using the 3-minute Diagnostic Confusion Assessment Method (3D-CAM) once daily from 6 pm to 8 pm during the postoperative days 1-7 or until discharge. Secondary outcome was the severity of POD which was assessed for all participants using the short form of the CAM-Severity. Frontal electroencephalogram (EEG) was recorded starting before induction of anesthesia and lasting until discharge from the operating room. Intraoperative alpha power was calculated using multitaper spectral analyses. Mediation analysis was used to estimate the proportion of the association between preoperative diabetes and POD that could be explained by intraoperative alpha power. RESULTS A total of 138 pairs of eligible patients successfully matched 1:1. After enrollment, 6 patients in the diabetes group and 4 patients in the nondiabetes group were excluded due to unavailability of raw EEG data. The final analysis included 132 participants with preoperative diabetes and 134 participants without preoperative diabetes, with a median age of 68 years and 72.6% of patients were female. The incidence of POD was 16.7% (22/132) in patients with preoperative diabetes vs 6.0% (8/134) in patients without preoperative diabetes. Preoperative diabetes was associated with increased odds of POD after adjustment of age, sex, body mass index, education level, hypertension, arrhythmia, coronary heart disease, and history of stroke (odds ratio, 3.2; 95% confidence interval [CI], 1.4-8.0; P = .009). The intraoperative alpha power accounted for an estimated 20% (95% CI, 2.6-60%; P = .021) of the association between diabetes and POD. CONCLUSIONS This study suggests that preoperative diabetes is associated with an increased risk of POD in older patients undergoing major orthopedic surgery, and that low intraoperative alpha power partially mediates such association.
Collapse
Affiliation(s)
- Zixiang Shang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yu Jiang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Panpan Fang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Wenjie Zhu
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Jiaxin Guo
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Lili Li
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yongjie Liang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Sichen Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, P.R. China
| | - Shenglan Ma
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, P.R. China
| | - Bin Mei
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, P.R. China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Qiying Shen
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Xuesheng Liu
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
10
|
Kim YS, Kim J, Park S, Kim KN, Ha Y, Yi S, Shin DA, Kuh SU, Lee CK, Koo BN, Kim SE. Differential effects of sevoflurane and desflurane on frontal intraoperative electroencephalogram dynamics associated with postoperative delirium. J Clin Anesth 2024; 93:111368. [PMID: 38157663 DOI: 10.1016/j.jclinane.2023.111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
STUDY OBJECTIVE Intraoperative electroencephalogram (EEG) patterns associated with postoperative delirium (POD) development have been studied, but the differences in EEG recordings between sevoflurane- and desflurane-induced anesthesia have not been clarified. We aimed to distinguish the EEG characteristics of sevoflurane and desflurane in relation to POD development. DESIGN AND PATIENTS We collected frontal four-channel EEG data during the maintenance of anesthesia from 148 elderly patients who received sevoflurane (n = 77) or desflurane (n = 71); 30 patients were diagnosed with delirium postoperatively. The patients were divided into four subgroups based on anesthetics and delirium status: sevoflurane delirium (n = 17), sevoflurane non-delirium (n = 60), desflurane delirium (n = 13), and desflurane non-delirium (n = 58). We compared spectral power, coherence, and pairwise phase consistency (PPC) between sevoflurane and desflurane, and between non-delirium and delirium groups for each anesthetic. MAIN RESULTS In patients without POD, the sevoflurane non-delirium group exhibited higher EEG spectral power across 8.5-35 Hz (99.5% CI bootstrap analysis) and higher PPC from alpha to gamma bands (p < 0.005) compared to the desflurane non-delirium group. Conversely, in patients with POD, no significant EEG differences were observed between the sevoflurane and desflurane delirium groups. For the sevoflurane-induced patients, the sevoflurane delirium group had significantly lower power within 7.5-31.5 Hz (99.5% CI bootstrap analysis), reduced coherence over 8.9-23.8 Hz (99.5% CI bootstrap analysis), and lower PPC values in the alpha band (p < 0.005) compared with the sevoflurane non-delirium group. For the desflurane-induced patients, there were no significant differences in the EEG patterns between delirium and non-delirium groups. CONCLUSIONS In normal patients without POD, sevoflurane demonstrates a higher power spectrum and prefrontal connectivity than desflurane. Furthermore, reduced frontal alpha power, coherence, and connectivity of intraoperative EEG could be associated with an increased risk of POD. These intraoperative EEG characteristics associated with POD are more noticeable in sevoflurane-induced anesthesia than in desflurane-induced anesthesia.
Collapse
Affiliation(s)
- Yeon-Su Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sujung Park
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Keung Nyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seong Yi
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Uk Kuh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang Kyu Lee
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Seong-Eun Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
11
|
Ryalino C, Sahinovic MM, Drost G, Absalom AR. Intraoperative monitoring of the central and peripheral nervous systems: a narrative review. Br J Anaesth 2024; 132:285-299. [PMID: 38114354 DOI: 10.1016/j.bja.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023] Open
Abstract
The central and peripheral nervous systems are the primary target organs during anaesthesia. At the time of the inception of the British Journal of Anaesthesia, monitoring of the central nervous system comprised clinical observation, which provided only limited information. During the 100 yr since then, and particularly in the past few decades, significant progress has been made, providing anaesthetists with tools to obtain real-time assessments of cerebral neurophysiology during surgical procedures. In this narrative review article, we discuss the rationale and uses of electroencephalography, evoked potentials, near-infrared spectroscopy, and transcranial Doppler ultrasonography for intraoperative monitoring of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Christopher Ryalino
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marko M Sahinovic
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gea Drost
- Department of Neurology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands; Department of Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anthony R Absalom
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Aldecoa C, Bettelli G, Bilotta F, Sanders RD, Aceto P, Audisio R, Cherubini A, Cunningham C, Dabrowski W, Forookhi A, Gitti N, Immonen K, Kehlet H, Koch S, Kotfis K, Latronico N, MacLullich AMJ, Mevorach L, Mueller A, Neuner B, Piva S, Radtke F, Blaser AR, Renzi S, Romagnoli S, Schubert M, Slooter AJC, Tommasino C, Vasiljewa L, Weiss B, Yuerek F, Spies CD. Update of the European Society of Anaesthesiology and Intensive Care Medicine evidence-based and consensus-based guideline on postoperative delirium in adult patients. Eur J Anaesthesiol 2024; 41:81-108. [PMID: 37599617 PMCID: PMC10763721 DOI: 10.1097/eja.0000000000001876] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Postoperative delirium (POD) remains a common, dangerous and resource-consuming adverse event but is often preventable. The whole peri-operative team can play a key role in its management. This update to the 2017 ESAIC Guideline on the prevention of POD is evidence-based and consensus-based and considers the literature between 01 April 2015, and 28 February 2022. The search terms of the broad literature search were identical to those used in the first version of the guideline published in 2017. POD was defined in accordance with the DSM-5 criteria. POD had to be measured with a validated POD screening tool, at least once per day for at least 3 days starting in the recovery room or postanaesthesia care unit on the day of surgery or, at latest, on postoperative day 1. Recent literature confirmed the pathogenic role of surgery-induced inflammation, and this concept reinforces the positive role of multicomponent strategies aimed to reduce the surgical stress response. Although some putative precipitating risk factors are not modifiable (length of surgery, surgical site), others (such as depth of anaesthesia, appropriate analgesia and haemodynamic stability) are under the control of the anaesthesiologists. Multicomponent preoperative, intra-operative and postoperative preventive measures showed potential to reduce the incidence and duration of POD, confirming the pivotal role of a comprehensive and team-based approach to improve patients' clinical and functional status.
Collapse
Affiliation(s)
- César Aldecoa
- From the Department of Anaesthesia and Postoperative Critical Care, Hospital Universitario Rio Hortega, Valladolid, Spain (CA), Department of Biomedical Studies, University of the Republic of San Marino, San Marino (GB), Department of Anesthesiology, Critical Care and Pain Medicine, 'Sapienza' University of Rome, Rome, Italy (FB, AF, LM), Specialty of Anaesthetics & NHMRC Clinical Trials Centre, University of Sydney & Department of Anaesthetics and Institute of Academic Surgery, Royal Prince Alfred Hospital (RDS), Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt Universität zu Berlin, Campus Charité Mitte, and Campus Virchow Klinikum (CDS, SK, AM, BN, LV, BW, FY), Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy (PA), Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy (PA), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, Göteborg, Sweden (RA), Geriatria, Accettazione Geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, Ancona, Italy (AC), School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland (CC), First Department of Anaesthesiology and Intensive Care Medical University of Lublin, Poland (WD), Research Unit of Nursing Science and Health Management, University of Oulu, Oulu, Finland (KI), Section of Surgical Pathophysiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark (HK), Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland (KK), Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia (NG, NL, SP, SR), Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy (NL, SP), Edinburgh Delirium Research Group, Ageing and Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (AMJM), Department of Anaesthesia and Intensive Care, Nykoebing Hospital; University of Southern Denmark, SDU (SK, FR), Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia (ARB), Center for Intensive Care Medicine, Luzerner Kantonsspital, Lucerne, Switzerland (ARB), Department of Health Science, Section of Anesthesiology, University of Florence (SR), Department of Anaesthesia and Critical Care, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (SR), School of Health Sciences, Institute of Nursing, ZHAW Zurich University of Applied Science, Winterthur, Switzerland (MS), Departments of Psychiatry and Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands (AJCS), Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium (AJCS) and Dental Anesthesia and Intensive Care Unit, Polo Universitario Ospedale San Paolo, Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milano, Milan, Italy (CT)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Acker L, Wong MK, Wright MC, Reese M, Giattino CM, Roberts KC, Au S, Colon-Emeric C, Lipsitz LA, Devinney MJ, Browndyke J, Eleswarpu S, Moretti E, Whitson HE, Berger M, Woldorff MG. Preoperative electroencephalographic alpha-power changes with eyes opening are associated with postoperative attention impairment and inattention-related delirium severity. Br J Anaesth 2024; 132:154-163. [PMID: 38087743 PMCID: PMC10797508 DOI: 10.1016/j.bja.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND In the eyes-closed, awake condition, EEG oscillatory power in the alpha band (7-13 Hz) dominates human spectral activity. With eyes open, however, EEG alpha power substantially decreases. Less alpha attenuation with eyes opening has been associated with inattention; thus, we analysed whether reduced preoperative alpha attenuation with eyes opening is associated with postoperative inattention, a delirium-defining feature. METHODS Preoperative awake 32-channel EEG was recorded with eyes open and eyes closed in 71 non-neurological, noncardiac surgery patients aged ≥ 60 years. Inattention and other delirium features were assessed before surgery and twice daily after surgery until discharge. Eyes-opening EEG alpha-attenuation magnitude was analysed for associations with postoperative inattention, primarily, and with delirium severity, secondarily, using multivariate age- and Mini-Mental Status Examination (MMSE)-adjusted logistic and proportional-odds regression analyses. RESULTS Preoperative alpha attenuation with eyes opening was inversely associated with postoperative inattention (odds ratio [OR] 0.73, 95% confidence interval [CI]: 0.57, 0.94; P=0.038). Sensitivity analyses showed an inverse relationship between alpha-attenuation magnitude and inattention chronicity, defined as 'never', 'newly', or 'chronically' inattentive (OR 0.76, 95% CI: 0.62, 0.93; P=0.019). In addition, preoperative alpha-attenuation magnitude was inversely associated with postoperative delirium severity (OR 0.79, 95% CI: 0.65, 0.95; P=0.040), predominantly as a result of the inattention feature. CONCLUSIONS Preoperative awake, resting, EEG alpha attenuation with eyes opening might represent a neural biomarker for risk of postoperative attentional impairment. Further, eyes-opening alpha attenuation could provide insight into the neural mechanisms underlying postoperative inattention risk.
Collapse
Affiliation(s)
- Leah Acker
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Duke-UNC Alzheimer's Disease Research Center, Durham, NC, USA.
| | - Megan K Wong
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Mary C Wright
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Melody Reese
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Sandra Au
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - Cathleen Colon-Emeric
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA; Duke-UNC Alzheimer's Disease Research Center, Durham, NC, USA; Division of Geriatric Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Lewis A Lipsitz
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA; Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael J Devinney
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Jeffrey Browndyke
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Geriatrics Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Sarada Eleswarpu
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Eugene Moretti
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Heather E Whitson
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA; Duke-UNC Alzheimer's Disease Research Center, Durham, NC, USA; Division of Geriatric Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, USA; Geriatrics Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Duke-UNC Alzheimer's Disease Research Center, Durham, NC, USA
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Division of Behavioural Medicine & Neurosciences, Department of Psychiatry & Behavioural Sciences, Duke University Medical Center, Durham, NC, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Ellerkmann R, Söhle M. EEG-Messung in Narkose. Anasthesiol Intensivmed Notfallmed Schmerzther 2023; 58:626-638. [PMID: 38056442 DOI: 10.1055/a-2006-9907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Based on the existing literature, the application of designated, processed EEG-monitors to measure anesthetic depth and the associated clinical implications are explained. EEG-monitors quantify the hypnotic portion of anesthesia, but not the nociceptive properties of anesthetics. Depth of anesthesia monitoring is common practice in many German hospitals and helps to visualize the interindividual variability of anesthetics, especially of propofol. Although deep anesthesia is associated with increased long-term mortality, this relation seems not to be causally related. Nevertheless, depth of anesthesia monitors help to identify patients being especially susceptible to anesthetics. Moreover, they have shown to reduce the incidence of intraoperative awareness and postoperative delirium. The application of processed EEG-monitors to reduce the incidence of postoperative delirium is currently recommended by the European Society of Anaesthesiology and Intensive Care.
Collapse
|
15
|
Hata M, Miyazaki Y, Nagata C, Masuda H, Wada T, Takahashi S, Ishii R, Miyagawa S, Ikeda M, Ueno T. Predicting postoperative delirium after cardiovascular surgeries from preoperative portable electroencephalography oscillations. Front Psychiatry 2023; 14:1287607. [PMID: 38034919 PMCID: PMC10682064 DOI: 10.3389/fpsyt.2023.1287607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Postoperative delirium (POD) is common and life-threatening, however, with intensive interventions, a potentially preventable clinical syndrome. Although electroencephalography (EEG) is a promising biomarker of delirium, standard 20-leads EEG holds difficulties for screening usage in clinical practice. Objective We aimed to develop an accurate algorithm to predict POD using EEG data obtained from portable device. Methods We recruited 128 patients who underwent scheduled cardiovascular surgery. Cognitive function assessments were conducted, and portable EEG recordings were obtained prior to surgery. Results Among the patients, 47 (36.7%) patients with POD were identified and they did not significantly differ from patients without POD in sex ratio, age, cognitive function, or treatment duration of intensive care unit. However, significant differences were observed in the preoperative EEG power spectrum densities at various frequencies, especially gamma activity, between patients with and without POD. POD was successfully predicted using preoperative EEG data with a machine learning algorithm, yielding accuracy of 86% and area under the receiver operating characteristic curve of 0.93. Discussion This study provides new insights into the objective and biological vulnerability to delirium. The developed algorithm can be applied in general hospitals without advanced equipment and expertise, thereby enabling the reduction of POD occurrences with intensive interventions for high-risk patients.
Collapse
Affiliation(s)
- Masahiro Hata
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Miyazaki
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chie Nagata
- Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirotada Masuda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tamiki Wada
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shun Takahashi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Clinical Research and Education Center, Asakayama General Hospital, Osaka, Japan
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Ryouhei Ishii
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takayoshi Ueno
- Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
Gutiérrez R, Purdon PL. Anesthesia-induced Brain Oscillations and Vulnerability to Postoperative Neurocognitive Disorders. Anesthesiology 2023; 139:557-559. [PMID: 37815470 DOI: 10.1097/aln.0000000000004704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Affiliation(s)
- Rodrigo Gutiérrez
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patrick L Purdon
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Medicine, Palo Alto, California
| |
Collapse
|
17
|
Vlisides PE, Li D, Maywood M, Zierau M, Lapointe AP, Brooks J, McKinney AM, Leis AM, Mentz G, Mashour GA. Electroencephalographic Biomarkers, Cerebral Oximetry, and Postoperative Cognitive Function in Adult Noncardiac Surgical Patients: A Prospective Cohort Study. Anesthesiology 2023; 139:568-579. [PMID: 37364282 PMCID: PMC10592490 DOI: 10.1097/aln.0000000000004664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
BACKGROUND Perioperative neurocognitive disorders are a major public health issue, although there are no validated neurophysiologic biomarkers that predict cognitive function after surgery. This study tested the hypothesis that preoperative posterior electroencephalographic alpha power, alpha frontal-parietal connectivity, and cerebral oximetry would each correlate with postoperative neurocognitive function. METHODS This was a single-center, prospective, observational study of adult (older than 18 yr) male and female noncardiac surgery patients. Whole-scalp, 16-channel electroencephalography and cerebral oximetry were recorded in the preoperative, intraoperative, and immediate postoperative settings. The primary outcome was the mean postoperative T-score of three National Institutes of Health Toolbox Cognition tests-Flanker Inhibitory Control and Attention, List Sorting Working Memory, and Pattern Comparison Processing Speed. These tests were obtained at preoperative baseline and on the first two postoperative mornings. The lowest average score from the first two postoperative days was used for the primary analysis. Delirium was a secondary outcome (via 3-min Confusion Assessment Method) measured in the postanesthesia care unit and twice daily for the first 3 postoperative days. Last, patient-reported outcomes related to cognition and overall well-being were collected 3 months postdischarge. RESULTS Sixty-four participants were recruited with a median (interquartile range) age of 59 (48 to 66) yr. After adjustment for baseline cognitive function scores, no significant partial correlation (ρ) was detected between postoperative cognition scores and preoperative relative posterior alpha power (%; ρ = -0.03, P = 0.854), alpha frontal-parietal connectivity (via weight phase lag index; ρ = -0.10, P = 0.570, respectively), or preoperative cerebral oximetry (%; ρ = 0.21, P = 0.246). Only intraoperative frontal-parietal theta connectivity was associated with postoperative delirium (F[1,6,291] = 4.53, P = 0.034). No electroencephalographic or oximetry biomarkers were associated with cognitive or functional outcomes 3 months postdischarge. CONCLUSIONS Preoperative posterior alpha power, frontal-parietal connectivity, and cerebral oximetry were not associated with cognitive function after noncardiac surgery. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Phillip E. Vlisides
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, MI USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI USA
| | - Duan Li
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, MI USA
| | - Michael Maywood
- Department of Ophthalmology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Mackenzie Zierau
- College of Health Professions, University of Detroit Mercy, Detroit, MI USA
| | - Andrew P. Lapointe
- Department of Radiology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Joseph Brooks
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, MI USA
| | - Amy M. McKinney
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, MI USA
| | - Aleda M. Leis
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Graciela Mentz
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, MI USA
| | - George A. Mashour
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, MI USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI USA
| |
Collapse
|
18
|
Neuner B, Wolter S, McCarthy WJ, Spies C, Cunningham C, Radtke FM, Franck M, Koenig T. EEG microstate quantifiers and state space descriptors during anaesthesia in patients with postoperative delirium: a descriptive analysis. Brain Commun 2023; 5:fcad270. [PMID: 37942086 PMCID: PMC10629467 DOI: 10.1093/braincomms/fcad270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Postoperative delirium is a serious sequela of surgery and surgery-related anaesthesia. One recommended method to prevent postoperative delirium is using bi-frontal EEG recording. The single, processed index of depth of anaesthesia allows the anaesthetist to avoid episodes of suppression EEG and excessively deep anaesthesia. The study data presented here were based on multichannel (19 channels) EEG recordings during anaesthesia. This enabled the analysis of various parameters of global electrical brain activity. These parameters were used to compare microstate topographies under anaesthesia with those in healthy volunteers and to analyse changes in microstate quantifiers and EEG global state space descriptors with increasing exposure to anaesthesia. Seventy-three patients from the Surgery Depth of Anaesthesia and Cognitive Outcome study (SRCTN 36437985) received intraoperative multichannel EEG recordings. Altogether, 720 min of artefact-free EEG data, including 210 min (29.2%) of suppression EEG, were analysed. EEG microstate topographies, microstate quantifiers (duration, frequency of occurrence and global field power) and the state space descriptors sigma (overall EEG power), phi (generalized frequency) and omega (number of uncorrelated brain processes) were evaluated as a function of duration of exposure to anaesthesia, suppression EEG and subsequent development of postoperative delirium. The major analyses involved covariate-adjusted linear mixed-effects models. The older (71 ± 7 years), predominantly male (60%) patients received a median exposure of 210 (range: 75-675) min of anaesthesia. During seven postoperative days, 21 patients (29%) developed postoperative delirium. Microstate topographies under anaesthesia resembled topographies from healthy and much younger awake persons. With increasing duration of exposure to anaesthesia, single microstate quantifiers progressed differently in suppression or non-suppression EEG and in patients with or without subsequent postoperative delirium. The most pronounced changes occurred during enduring suppression EEG in patients with subsequent postoperative delirium: duration and frequency of occurrence of microstates C and D progressed in opposite directions, and the state space descriptors showed a pattern of declining uncorrelated brain processes (omega) combined with increasing EEG variance (sigma). With increasing exposure to general anaesthesia, multiple changes in the dynamics of microstates and global EEG parameters occurred. These changes varied partly between suppression and non-suppression EEG and between patients with or without subsequent postoperative delirium. Ongoing suppression EEG in patients with subsequent postoperative delirium was associated with reduced network complexity in combination with increased overall EEG power. Additionally, marked changes in quantifiers in microstate C and in microstate D occurred. These putatively adverse intraoperative trajectories in global electrical brain activity may be seen as preceding and ultimately predicting postoperative delirium.
Collapse
Affiliation(s)
- Bruno Neuner
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Simone Wolter
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - William J McCarthy
- Centre for Cancer Prevention and Control Research, Fielding School of Public Health and Jonsson Comprehensive Cancer Centre, University of California Los Angeles (UCLA), Los Angeles, CA 90095-1781, USA
| | - Claudia Spies
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 2 D02 R590 Dublin, Ireland
| | - Finn M Radtke
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
- Department of Anaesthesia and Intensive Care, Hospital of Nykøbing Falster, Fjordvej 15, 4800 Nykøbing Falster, Denmark
- University of Southern Denmark (SDU), Campusvej 55, 5230 Odense, Denmark
| | - Martin Franck
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
- Department of Anaesthesia, Alexianer St.Hedwig Hospital, 10115 Berlin, Germany
| | - Thomas Koenig
- University Hospital of Psychiatry, Translational Research Centre, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
19
|
Khalifa C, Lenoir C, Robert A, Watremez C, Kahn D, Mastrobuoni S, Aphram G, Ivanoiu A, Bonhomme V, Mouraux A, Momeni M. Intra-operative electroencephalogram frontal alpha-band spectral analysis and postoperative delirium in cardiac surgery: A prospective cohort study. Eur J Anaesthesiol 2023; 40:777-787. [PMID: 37551153 DOI: 10.1097/eja.0000000000001895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
BACKGROUND Postoperative delirium (POD) remains a frequent complication after cardiac surgery, with pre-operative cognitive status being one of the main predisposing factors. However, performing complete pre-operative neuropsychological testing is challenging. The magnitude of frontal electroencephalographic (EEG) α oscillations during general anaesthesia has been related to pre-operative cognition and could constitute a functional marker for brain vulnerability. OBJECTIVE We hypothesised that features of intra-operative α-band activity could predict the occurrence of POD. DESIGN Single-centre prospective observational study. SETTING University hospital, from 15 May 2019 to 15 December 2021. PATIENTS Adult patients undergoing elective cardiac surgery. MAIN OUTCOME MEASURES Pre-operative cognitive status was assessed by neuropsychological tests and scored as a global z score. A 5-min EEG recording was obtained 30 min after induction of anaesthesia. Anaesthesia was maintained with sevoflurane. Power and peak frequency in the α-band were extracted from the frequency spectra. POD was assessed using the Confusion Assessment Method for Intensive Care Unit, the Confusion Assessment Method and a chart review. RESULTS Sixty-five (29.5%) of 220 patients developed POD. Delirious patients were significantly older with median [IQR] ages of 74 [64 to 79] years vs. 67 [59 to 74] years; P < 0.001) and had lower pre-operative cognitive z scores (-0.52 ± 1.14 vs. 0.21 ± 0.84; P < 0.001). Mean α power (-14.03 ± 4.61 dB vs. -11.59 ± 3.37 dB; P < 0.001) and maximum α power (-11.36 ± 5.28 dB vs. -8.85 ± 3.90 dB; P < 0.001) were significantly lower in delirious patients. Intra-operative mean α power was significantly associated with the probability of developing POD (adjusted odds ratio, 0.88; 95% confidence interval (CI), 0.81 to 0.96; P = 0.007), independently of age and only whenever cognitive status was not considered. CONCLUSION A lower intra-operative frontal α-band power is associated with a higher incidence of POD after cardiac surgery. Intra-operative measures of α power could constitute a means of identifying patients at risk of this complication. TRIAL REGISTRATION NCT03706989.
Collapse
Affiliation(s)
- Céline Khalifa
- From the Department of Anaesthesiology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain) (CK, CW, DK, MM), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain) (CK, AR, CW, DK, SM, GA, MM), Institute of Neuroscience (IoNS), Université catholique de Louvain (UCLouvain) (CK, CL, CW, AI, AM, MM), Department of Epidemiology and Biostatistics, Université catholique de Louvain (UCLouvain) (AR), Department of Cardiothoracic and Vascular Surgery, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain) (SM, GA), Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels (AI), Department of Anaesthesia and Intensive Care Medicine, Liège University Hospital (VB) and Anaesthesia and Peri-operative Neuroscience Laboratory, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium (VB)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang X, Li A, Wang S, Wang T, Liu T, Wang Y, Fu J, Zhao G, Yang Q, Dong H. Differences in the EEG Power Spectrum and Cross-Frequency Coupling Patterns between Young and Elderly Patients during Sevoflurane Anesthesia. Brain Sci 2023; 13:1149. [PMID: 37626505 PMCID: PMC10452117 DOI: 10.3390/brainsci13081149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Electroencephalography (EEG) is widely used for monitoring the depth of anesthesia in surgical patients. Distinguishing age-related EEG features under general anesthesia will help to optimize anesthetic depth monitoring during surgery for elderly patients. This retrospective cohort study included 41 patients aged from 18 to 79 years undergoing noncardiac surgery under general anesthesia. We compared the power spectral signatures and phase-amplitude coupling patterns of the young and elderly groups under baseline and surgical anesthetic depth. General anesthesia by sevoflurane significantly increased the spectral power of delta, theta, alpha, and beta bands and strengthened the cross-frequency coupling both in young and elderly patients. However, the variation in EEG power spectral density and the modulation of alpha amplitudes on delta phases was relatively weaker in elderly patients. In conclusion, the EEG under general anesthesia using sevoflurane exhibited similar dynamic features between young and elderly patients, and the weakened alteration of spectral power and cross-frequency coupling patterns could be utilized to precisely quantify the depth of anesthesia in elderly patients.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Tingting Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Tiantian Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Yonghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Jingwen Fu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| |
Collapse
|
21
|
Berger M, Ryu D, Reese M, McGuigan S, Evered LA, Price CC, Scott DA, Westover MB, Eckenhoff R, Bonanni L, Sweeney A, Babiloni C. A Real-Time Neurophysiologic Stress Test for the Aging Brain: Novel Perioperative and ICU Applications of EEG in Older Surgical Patients. Neurotherapeutics 2023; 20:975-1000. [PMID: 37436580 PMCID: PMC10457272 DOI: 10.1007/s13311-023-01401-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/13/2023] Open
Abstract
As of 2022, individuals age 65 and older represent approximately 10% of the global population [1], and older adults make up more than one third of anesthesia and surgical cases in developed countries [2, 3]. With approximately > 234 million major surgical procedures performed annually worldwide [4], this suggests that > 70 million surgeries are performed on older adults across the globe each year. The most common postoperative complications seen in these older surgical patients are perioperative neurocognitive disorders including postoperative delirium, which are associated with an increased risk for mortality [5], greater economic burden [6, 7], and greater risk for developing long-term cognitive decline [8] such as Alzheimer's disease and/or related dementias (ADRD). Thus, anesthesia, surgery, and postoperative hospitalization have been viewed as a biological "stress test" for the aging brain, in which postoperative delirium indicates a failed stress test and consequent risk for later cognitive decline (see Fig. 3). Further, it has been hypothesized that interventions that prevent postoperative delirium might reduce the risk of long-term cognitive decline. Recent advances suggest that rather than waiting for the development of postoperative delirium to indicate whether a patient "passed" or "failed" this stress test, the status of the brain can be monitored in real-time via electroencephalography (EEG) in the perioperative period. Beyond the traditional intraoperative use of EEG monitoring for anesthetic titration, perioperative EEG may be a viable tool for identifying waveforms indicative of reduced brain integrity and potential risk for postoperative delirium and long-term cognitive decline. In principle, research incorporating routine perioperative EEG monitoring may provide insight into neuronal patterns of dysfunction associated with risk of postoperative delirium, long-term cognitive decline, or even specific types of aging-related neurodegenerative disease pathology. This research would accelerate our understanding of which waveforms or neuronal patterns necessitate diagnostic workup and intervention in the perioperative period, which could potentially reduce postoperative delirium and/or dementia risk. Thus, here we present recommendations for the use of perioperative EEG as a "predictor" of delirium and perioperative cognitive decline in older surgical patients.
Collapse
Affiliation(s)
- Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Duke South Orange Zone Room 4315B, Box 3094, Durham, NC, 27710, USA.
- Duke Aging Center, Duke University Medical Center, Durham, NC, USA.
- Duke/UNC Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, USA.
| | - David Ryu
- School of Medicine, Duke University, Durham, NC, USA
| | - Melody Reese
- Department of Anesthesiology, Duke University Medical Center, Duke South Orange Zone Room 4315B, Box 3094, Durham, NC, 27710, USA
- Duke Aging Center, Duke University Medical Center, Durham, NC, USA
| | - Steven McGuigan
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia
| | - Lisbeth A Evered
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia
- Weill Cornell Medicine, New York, NY, USA
| | - Catherine C Price
- Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - David A Scott
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia
| | - M Brandon Westover
- Department of Neurology, Beth Israel Deaconess Hospital, Boston, MA, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Aoife Sweeney
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- San Raffaele of Cassino, Cassino, FR, Italy
| |
Collapse
|
22
|
Schüßler J, Ostertag J, Georgii MT, Fleischmann A, Schneider G, Pilge S, Kreuzer M. Preoperative characterization of baseline EEG recordings for risk stratification of post-anesthesia care unit delirium. J Clin Anesth 2023; 86:111058. [PMID: 36706658 DOI: 10.1016/j.jclinane.2023.111058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/07/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
STUDY OBJECTIVE Delirium in the post-anesthesia care unit (PACU-D) presents a serious condition with a high medical and socioeconomic impact. In particular, PACU-D is among common postoperative complications of elderly patients. As PACU-D may be associated with postoperative delirium, early detection of at-risk patients and strategies to prevent PACU-D are important. We characterized EEG baseline signatures of patients who developed PACU-D following surgery and general anesthesia and patients who did not. DESIGN AND SETTING We conducted a post-hoc analysis of preoperative EEG recordings between patients with and without PACU-D, as indicated by positive bCAM scores post general anesthesia and surgery. PATIENTS AND MEASUREMENTS Preoperative baseline EEG recordings from 89 patients were recorded at controlled eyes-open (focused wakefulness) and eyes-closed (relaxed wakefulness) conditions. We computed power spectral densities, permutation entropy, spectral entropy and spectral edge frequency to see if these parameters can reflect potential baseline EEG differences between PACU-D (31.5%) and noPACU-D (68.5%) patients. Wilcoxon's Rank Sum Test as well as AUC values were used to determine statistical significance. MAIN RESULTS Baseline EEG recordings showed significant differences between PACU-D and noPACU-D patients preoperatively. Compared to the noPACU-D group, PACU-D patients presented with lower power in higher frequencies during relaxed and focused wakefulness alike. These differences in power led to AUC values of 0.73 [0.59;0.85] (permutation entropy) and 0.72 [0.61;0.83] (spectral edge frequency) indicative of a "fair" performance to separate patients with and without PACU-D. CONCLUSIONS The baseline EEG of relaxed wakefulness as well as focused wakefulness may be used to assess the risk of developing PACU-D following surgery under general anesthesia. Moreover, routinely used monitoring parameters capture these differences as well, potentially allowing an easy transfer to clinical settings. CLINICAL TRIAL NUMBER NCT03775356.
Collapse
Affiliation(s)
- Jule Schüßler
- Technical University of Munich - School of Medicine, Department of Anesthesiology & Intensive Care, Munich, Germany
| | - Julian Ostertag
- Technical University of Munich - School of Medicine, Department of Anesthesiology & Intensive Care, Munich, Germany
| | - Marie-Therese Georgii
- Technical University of Munich - School of Medicine, Department of Anesthesiology & Intensive Care, Munich, Germany
| | - Antonia Fleischmann
- Technical University of Munich - School of Medicine, Department of Anesthesiology & Intensive Care, Munich, Germany
| | - Gerhard Schneider
- Technical University of Munich - School of Medicine, Department of Anesthesiology & Intensive Care, Munich, Germany
| | - Stefanie Pilge
- Technical University of Munich - School of Medicine, Department of Anesthesiology & Intensive Care, Munich, Germany
| | - Matthias Kreuzer
- Technical University of Munich - School of Medicine, Department of Anesthesiology & Intensive Care, Munich, Germany.
| |
Collapse
|
23
|
Lendner JD, Harler U, Daume J, Engel AK, Zöllner C, Schneider TR, Fischer M. Oscillatory and aperiodic neuronal activity in working memory following anesthesia. Clin Neurophysiol 2023; 150:79-88. [PMID: 37028144 DOI: 10.1016/j.clinph.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/28/2023]
Abstract
OBJECTIVE Anesthesia and surgery are associated with cognitive impairment, particularly memory deficits. So far, electroencephalography markers of perioperative memory function remain scarce. METHODS We included male patients >60 years scheduled for prostatectomy under general anesthesia. We obtained neuropsychological assessments and a visual match-to-sample working memory task with simultaneous 62-channel scalp electroencephalography 1 day before and 2 to 3 days after surgery. RESULTS Twenty-six patients completed both pre- and postoperative sessions. Compared with preoperative performance, verbal learning deteriorated after anesthesia (California Verbal Learning Test total recall; t25 = -3.25, p = 0.015, d = -0.902), while visual working memory performance showed a dissociation between match and mismatch accuracy (match*session F1,25 = 3.866, p = 0.060). Better verbal learning was associated with an increase of aperiodic brain activity (total recall r = 0.66, p = 0.029, learning slope r = 0.66, p = 0.015), whereas visual working memory accuracy was tracked by oscillatory theta/alpha (7 - 9 Hz), low beta (14 - 18 Hz) and high beta/gamma (34 - 38 Hz) activity (matches: p < 0.001, mismatches: p = 0.022). CONCLUSIONS Oscillatory and aperiodic brain activity in scalp electroencephalography track distinct features of perioperative memory function. SIGNIFICANCE Aperiodic activity provides a potential electroencephalographic biomarker to identify patients at risk for postoperative cognitive impairments.
Collapse
|
24
|
Leroy S, Major S, Bublitz V, Dreier JP, Koch S. Unveiling age-independent spectral markers of propofol-induced loss of consciousness by decomposing the electroencephalographic spectrum into its periodic and aperiodic components. Front Aging Neurosci 2023; 14:1076393. [PMID: 36742202 PMCID: PMC9889977 DOI: 10.3389/fnagi.2022.1076393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Background Induction of general anesthesia with propofol induces radical changes in cortical network organization, leading to unconsciousness. While perioperative frontal electroencephalography (EEG) has been widely implemented in the past decades, validated and age-independent EEG markers for the timepoint of loss of consciousness (LOC) are lacking. Especially the appearance of spatially coherent frontal alpha oscillations (8-12 Hz) marks the transition to unconsciousness.Here we explored whether decomposing the EEG spectrum into its periodic and aperiodic components unveiled markers of LOC and investigated their age-dependency. We further characterized the LOC-associated alpha oscillations by parametrizing the adjusted power over the aperiodic component, the center frequency, and the bandwidth of the peak in the alpha range. Methods In this prospective observational trial, EEG were recorded in a young (18-30 years) and an elderly age-cohort (≥ 70 years) over the transition to propofol-induced unconsciousness. An event marker was set in the EEG recordings at the timepoint of LOC, defined with the suppression of the lid closure reflex. Spectral analysis was conducted with the multitaper method. Aperiodic and periodic components were parametrized with the FOOOF toolbox. Aperiodic parametrization comprised the exponent and the offset. The periodic parametrization consisted in the characterization of the peak in the alpha range with its adjusted power, center frequency and bandwidth. Three time-segments were defined: preLOC (105 - 75 s before LOC), LOC (15 s before to 15 s after LOC), postLOC (190 - 220 s after LOC). Statistical significance was determined with a repeated-measures ANOVA. Results Loss of consciousness was associated with an increase in the aperiodic exponent (young: p = 0.004, elderly: p = 0.007) and offset (young: p = 0.020, elderly: p = 0.004) as well as an increase in the adjusted power (young: p < 0.001, elderly p = 0.011) and center frequency (young: p = 0.008, elderly: p < 0.001) of the periodic alpha peak. We saw age-related differences in the aperiodic exponent and offset after LOC as well as in the power and bandwidth of the periodic alpha peak during LOC. Conclusion Decomposing the EEG spectrum over induction of anesthesia into its periodic and aperiodic components unveiled novel age-independent EEG markers of propofol-induced LOC: the aperiodic exponent and offset as well as the center frequency and adjusted power of the power peak in the alpha range.
Collapse
Affiliation(s)
- Sophie Leroy
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Viktor Bublitz
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Susanne Koch
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Susanne Koch, ✉
| |
Collapse
|
25
|
Röhr V, Blankertz B, Radtke FM, Spies C, Koch S. Machine-learning model predicting postoperative delirium in older patients using intraoperative frontal electroencephalographic signatures. Front Aging Neurosci 2022; 14:911088. [PMID: 36313029 PMCID: PMC9614270 DOI: 10.3389/fnagi.2022.911088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveIn older patients receiving general anesthesia, postoperative delirium (POD) is the most frequent form of cerebral dysfunction. Early identification of patients at higher risk to develop POD could provide the opportunity to adapt intraoperative and postoperative therapy. We, therefore, propose a machine learning approach to predict the risk of POD in elderly patients, using routine intraoperative electroencephalography (EEG) and clinical data that are readily available in the operating room.MethodsWe conducted a retrospective analysis of the data of a single-center study at the Charité-Universitätsmedizin Berlin, Department of Anesthesiology [ISRCTN 36437985], including 1,277 patients, older than 60 years with planned surgery and general anesthesia. To deal with the class imbalance, we used balanced ensemble methods, specifically Bagging and Random Forests and as a performance measure, the area under the ROC curve (AUC-ROC). We trained our models including basic clinical parameters and intraoperative EEG features in particular classical spectral and burst suppression signatures as well as multi-band covariance matrices, which were classified, taking advantage of the geometry of a Riemannian manifold. The models were validated with 10 repeats of a 10-fold cross-validation.ResultsIncluding EEG data in the classification resulted in a robust and reliable risk evaluation for POD. The clinical parameters alone achieved an AUC-ROC score of 0.75. Including EEG signatures improved the classification when the patients were grouped by anesthetic agents and evaluated separately for each group. The spectral features alone showed an AUC-ROC score of 0.66; the covariance features showed an AUC-ROC score of 0.68. The AUC-ROC scores of EEG features relative to patient data differed by anesthetic group. The best performance was reached, combining both the EEG features and the clinical parameters. Overall, the AUC-ROC score was 0.77, for patients receiving Propofol it was 0.78, for those receiving Sevoflurane it was 0.8 and for those receiving Desflurane 0.73. Applying the trained prediction model to an independent data set of a different clinical study confirmed these results for the combined classification, while the classifier on clinical parameters alone did not generalize.ConclusionA machine learning approach combining intraoperative frontal EEG signatures with clinical parameters could be an easily applicable tool to early identify patients at risk to develop POD.
Collapse
Affiliation(s)
- Vera Röhr
- Neurotechnology Group, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Vera Röhr
| | | | - Finn M. Radtke
- Department of Anaesthesia, Hospital of Nykobing, University of Southern Denmark, Odense, Denmark
| | - Claudia Spies
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Koch
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Susanne Koch
| |
Collapse
|
26
|
Han Y, Miao M, Li P, Yang Y, Zhang H, Zhang B, Sun M, Zhang J. EEG-Parameter-Guided Anesthesia for Prevention of Emergence Delirium in Children. Brain Sci 2022; 12:brainsci12091195. [PMID: 36138931 PMCID: PMC9496666 DOI: 10.3390/brainsci12091195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Emergence delirium (ED) usually occurs in children after surgery with an incidence of 10−80%. Though ED is mostly self-limited, its potential injuries cannot be ignored. Whether electroencephalography (EEG)-parameter-guided anesthesia could reduce the incidence of ED in pediatric surgery has not been fully discussed to date. Methods: Fifty-four boys aged 2−12 years undergoing elective hypospadias surgery under sevoflurane anesthesia were selected. In the EEG-parameter-guided group (E group), sevoflurane was used for anesthesia induction and was maintained by titrating the spectral edge frequency (SEF) to 10−15 and combining the monitoring of density spectral array (DSA) power spectra and raw EEG. While in the control group (C group), anesthesiologists were blinded to the SedLine screen (including SEF, DSA, and raw EEG) and adjusted the intraoperative drug usage according to their experience. Patients with a Pediatric Anesthesia Emergence Delirium (PAED) score > 10 were diagnosed with ED, while patients with a PAED score > 2 were diagnosed with emergence agitation (EA). Results: Finally, a total of 37 patients were included in this trial. The incidence of ED in the E group was lower than in the C group (5.6% vs. 36.8%; p = 0.04), while the incidence of EA was similar in the two groups (61% vs. 78.9%; p = 0.48). Intraoperative parameters including remifentanil dosage and the decrease in mean arterial pressure (MAP) were not different between the two groups (p > 0.05), but the mean end-tidal sevoflurane concentration (EtSevo) was lower in the E group than in the C group (p > 0.05). Moreover, during PACU stay, the extubation time and discharge time of the groups were similar, while the PAED scores within 5 min from extubation and the Face, Legs, Activity, Cry, and Consolability (FLACC) scores within 30 min from extubation were lower in the E group than in the C group. Conclusion: EEG-parameter-guided anesthesia management reduced the incidence of ED in children. Studies with larger sample sizes are needed to obtain more convincing results.
Collapse
Affiliation(s)
- Yaqian Han
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Mengrong Miao
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Pule Li
- Department of Anesthesiology, Tengzhou Central People’s Hospital, Jining Medical College, Tengzhou 277522, China
| | - Yitian Yang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Beibei Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Correspondence: (M.S.); (J.Z.); Tel.: +86-0371-65580728 (M.S. & J.Z.)
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Correspondence: (M.S.); (J.Z.); Tel.: +86-0371-65580728 (M.S. & J.Z.)
| |
Collapse
|
27
|
Jildenstål P, Bäckström A, Hedman K, Warrén-Stomberg M. Spectral edge frequency during general anaesthesia: A narrative literature review. J Int Med Res 2022; 50:3000605221118682. [PMID: 35971317 PMCID: PMC9386875 DOI: 10.1177/03000605221118682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previous studies have attempted to determine the depth of anaesthesia with different anaesthetic agents using electroencephalogram (EEG) measurements with variable success. Measuring depth of anaesthesia is confounded by the complexity of the EEG and the fact that different agents create different pattens. A narrative review was undertaken to examine the available research evidence on the effect and reliability of spectral edge frequency (SEF) for assessing the depth of anaesthesia in adult patients under general anaesthesia. A systematic search of the PubMed®, Scopus®, CINAHL and Cochrane databases identified six randomized controlled trials and five observational studies. The findings of these studies suggest that SEF varies according to the anaesthetic drugs used. Remifentanil and age are two factors that can affect SEF, while other opioids and benzodiazepine (administered separately) seem to have no effect. No patients experienced intraoperative awareness. However, this does not indicate that SEF can provide full protection against it and the number of articles in which intraoperative awareness was studied was too small to afford any certainty. None of the studies demonstrated a reliable SEF interval associated with adequate general anaesthesia. SEF must be adapted to the anaesthetic drug used, the patient’s age and state while under general anaesthesia.
Collapse
Affiliation(s)
- Pether Jildenstål
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden.,Department of Anaesthesia and Intensive Care, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden.,Department of Anaesthesiology, Surgery and Intensive Care, Sahlgrenska University Hospital, Goteborg, Sweden.,Department of Anaesthesiology and Intensive Care, Örebro University Hospital and School of Medical Sciences, Örebro University, Örebro, Sweden.,Department of medicine & Health Sciences, Lund University, Lund, Sweden
| | - Amanda Bäckström
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Klara Hedman
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Margareta Warrén-Stomberg
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| |
Collapse
|
28
|
Windmann V, Koch S. [Intraoperative Neuromonitoring: Electroencephalography]. Anasthesiol Intensivmed Notfallmed Schmerzther 2021; 56:773-780. [PMID: 34820815 DOI: 10.1055/a-1377-8581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Intraoperative neuromonitoring using electroencephalography (EEG) enables anaesthesiologists to monitor the depth of anaesthesia. It is intended to reduce the occurrence of intraoperative wakefulness, postoperative delirium and postoperative cognitive deficits and to shorten process times in the operating room. This article shows how to interpret the raw EEG, spectrograms and processed indices for different age groups and anaesthetics and summarizes the resulting clinical benefits. While propofol and volatile anesthetics produce characteristic frontal EEG signatures with a high activity of coherent α- and δ-waves, ketamine triggers an increase in rapid γ-waves, which leads to incorrectly high indices (BIS, PSI, NI) despite deep anaesthetic levels.In children, frontal α-waves do not appear until the age of approx. 6 months and valid indices (BIS, PSI, NI) can only be derived starting at an age of approx. 12 months. Furthermore, children of preschool and elementary school age often show epileptiform discharges in the EEG during induction of anaesthesia, what is linked to emergence delirium. In adults, the intraoperative frontal α-power decreases significantly with increasing age and older patients tend to have an increased occurrence of burst suppression patterns during anaesthesia. Clinical benefits of EEG-based neuromonitoring comprise reduced doses of anaesthesia, shorter wake-up times after surgery and a lower incidence of intraoperative awareness during total intravenous anaesthesia. Moreover, anaesthesia guided by processed EEG indices can reduce the incidence of postoperative delirium and postoperative cognitive deficits in older patients. In-depth knowledge about intraoperative EEG changes that go beyond the interpretation of processed indices could lead to a further reduction in intra- and postoperative complications in the future.
Collapse
|
29
|
Avidan MS, Mashour GA. Repurposing Propofol as a Prognostic Probe for Return of Consciousness. Am J Respir Crit Care Med 2021; 205:140-142. [PMID: 34818124 PMCID: PMC8787254 DOI: 10.1164/rccm.202111-2504ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael S Avidan
- Washington University School of Medicine in Saint Louis, 12275, St Louis, Missouri, United States;
| | - George A Mashour
- University of Michigan Michigan Medicine, 21614, Anesthesiology, Ann Arbor, Michigan, United States
| |
Collapse
|