1
|
Tsantes AG, Konstantinidi A, Parastatidou S, Ioakeimidis G, Tsante KA, Mantzios PG, Kriebardis AG, Gialeraki A, Houhoula D, Iacovidou N, Piovani D, Bonovas S, Tsantes AE, Sokou R. Assessment of agreement between EXTEM and NATEM thromboelastometry measurement assays in critically ill neonates. Eur J Haematol 2022; 109:327-335. [PMID: 35690886 DOI: 10.1111/ejh.13812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the agreement between the EXTEM and NATEM measurements. METHODS In this retrospective observational study, EXTEM and NATEM analyses were performed on blood samples from 162 ill neonates, providing 324 paired measurements. The agreement between EXTEM and NATEM measurements was evaluated by the nonparametric spearman's rank correlation to assess the correlation between the paired measurements, by the Bland-Altman analysis for the graphical presentation of the agreement, and by the Deming regression model to assess the significance of the agreement. The agreement between the two methods for the detection of bleeding events was determined by kappa statistic. RESULTS Strong correlations were found between EXTEM and NATEM measurements for A10, MCF. The Bland-Altman plots showed good agreement for A10, MCF, LI60, and alpha angle parameters, while CT showed a nearly linear slope indicating that bias increased with the mean. The highest agreement for bleeding events was found for the A10 parameter (κ = 0.70, p < .001), while the lowest for the CT parameter (κ = 0.36, p = .94). CONCLUSIONS NATEM parameters that reflect clot firmness and fibrinolytic activity are strongly correlated with the corresponding EXTEM measurements with a good agreement between them, indicating that these two methods could be used interchangeably.
Collapse
Affiliation(s)
- Andreas G Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Stavroula Parastatidou
- Neonatal Intensive Care Unit, "Agios Panteleimon" General Hospital of Nikea, Piraeus, Greece
| | - Georgios Ioakeimidis
- Neonatal Intensive Care Unit, "Agios Panteleimon" General Hospital of Nikea, Piraeus, Greece
| | - Konstantina A Tsante
- Laboratory of Reliability and Quality Control in Laboratory Hematology, Department of Biomedical Science, School of Health and Caring Science, University of West Attica, Athens, Greece
| | - Petros G Mantzios
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology, Department of Biomedical Science, School of Health and Caring Science, University of West Attica, Athens, Greece
| | - Argyri Gialeraki
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Houhoula
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Argirios E Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, "Agios Panteleimon" General Hospital of Nikea, Piraeus, Greece
| |
Collapse
|
2
|
Abstract
During sepsis, an initial prothrombotic shift takes place, in which coagulatory acute-phase proteins are increased, while anticoagulatory factors and platelet count decrease. Further on, the fibrinolytic system becomes impaired, which contributes to disease severity. At a later stage in sepsis, coagulation factors may become depleted, and sepsis patients may shift into a hypo-coagulable state with an increased bleeding risk. During the pro-coagulatory shift, critically ill patients have an increased thrombosis risk that ranges from developing micro-thromboses that impair organ function to life-threatening thromboembolic events. Here, thrombin plays a key role in coagulation as well as in inflammation. For thromboprophylaxis, low molecular weight heparins (LMWH) and unfractionated heparins (UFHs) are recommended. Nevertheless, there are conditions such as heparin resistance or heparin-induced thrombocytopenia (HIT), wherein heparin becomes ineffective or even puts the patient at an increased prothrombotic risk. In these cases, argatroban, a direct thrombin inhibitor (DTI), might be a potential alternative anticoagulatory strategy. Yet, caution is advised with regard to dosing of argatroban especially in sepsis. Therefore, the starting dose of argatroban is recommended to be low and should be titrated to the targeted anticoagulation level and be closely monitored in the further course of treatment. The authors of this review recommend using DTIs such as argatroban as an alternative anticoagulant in critically ill patients suffering from sepsis or COVID-19 with suspected or confirmed HIT, HIT-like conditions, impaired fibrinolysis, in patients on extracorporeal circuits and patients with heparin resistance, when closely monitored.
Collapse
|
3
|
Pavoni V, Gianesello L, Pazzi M, Dattolo P, Prisco D. Questions about COVID-19 associated coagulopathy: possible answers from the viscoelastic tests. J Clin Monit Comput 2022; 36:55-69. [PMID: 34264472 PMCID: PMC8280589 DOI: 10.1007/s10877-021-00744-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022]
Abstract
Abnormal coagulation parameters are often observed in patients with coronavirus disease 2019 (COVID-19) and the severity of derangement has been associated with a poor prognosis. The COVID-19 associated coagulopathy (CAC) displays unique features that include a high risk of developing thromboembolic complications. Viscoelastic tests (VETs), such as thromboelastometry (ROTEM), thromboelastography (TEG) and Quantra Hemostasis Analyzer (Quantra), provide "dynamic" data on clot formation and dissolution; they are used in different critical care settings, both in hemorrhagic and in thrombotic conditions. In patients with severe COVID-19 infection VETs can supply to clinicians more information about the CAC, identifying the presence of hypercoagulable and hypofibrinolysis states. In the last year, many studies have proposed to explain the underlying characteristics of CAC; however, there remain many unanswered questions. We tried to address some of the important queries about CAC through VETs analysis.
Collapse
Affiliation(s)
- Vittorio Pavoni
- Emergency Department and Critical Care Area, Anesthesia and Intensive Care Unit, Santa Maria Annunziata Hospital, Bagno a Ripoli, Florence, Italy
| | - Lara Gianesello
- Department of Anesthesia and Intensive Care, Orthopedic Anesthesia, University-Hospital Careggi, Largo Palagi, 1, 50139, Florence, Italy.
| | - Maddalena Pazzi
- Emergency Department and Critical Care Area, Anesthesia and Intensive Care Unit, Santa Maria Annunziata Hospital, Bagno a Ripoli, Florence, Italy
| | - Pietro Dattolo
- Nephrology Unit Florence 1, Santa Maria Annunziata Hospital, Bagno a Ripoli, Florence, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Limper U, Ahnert T, Maegele M, Froehlich M, Grau M, Gauger P, Bauerfeind U, Görlinger K, Pötzsch B, Jordan J. Simulated Hypergravity Activates Hemostasis in Healthy Volunteers. J Am Heart Assoc 2020; 9:e016479. [PMID: 33283577 PMCID: PMC7955367 DOI: 10.1161/jaha.120.016479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Hypergravity may promote human hemostasis thereby increasing thrombotic risk. Future touristic suborbital spaceflight will expose older individuals with chronic medical conditions, who are at much higher thromboembolic risk compared with professional astronauts, to hypergravity. Therefore, we tested the impact of hypergravity on hemostasis in healthy volunteers undergoing centrifugation. Methods and Results We studied 20 healthy seated men before and after 15 minutes under 3 Gz hypergravity on a long‐arm centrifuge. We obtained blood samples for hemostasis testing before, immediately after, and 30 minutes after centrifugation. Tests included viscoelastic thromboelastometry, platelet impedance aggregometry, endothelial activation markers, blood rheology testing, microparticle analyses, and clotting factor analysis. Exposure to hypergravity reduced plasma volume by 12.5% (P=0.002) and increased the red blood cell aggregation index (P<0.05). With hypergravity, thrombelastographic clotting time of native blood shortened from 719±117 seconds to 628±89 seconds (P=0.038) and platetet reactivity increased (P=0.045). Hypergravity shortened partial thromboplastin time from 28 (26–29) seconds to 25 (24–28) seconds (P<0.001) and increased the activity of coagulation factors (eg, factor VIII 117 [93–134] versus 151 [133–175] %, P<0.001). Tissue factor concentration was 188±95 pg/mL before and 298±136 pg/mL after hypergravity exposure (P=0.023). Antithrombin (P=0.005), thrombin‐antithrombin complex (P<0.001), plasmin‐alpha2‐antiplasmin complex (0.002), tissue‐plasminogen activatior (P<0.001), and plasminogen activator inhibitor‐1 (P=0.002) increased with centrifugation. Statistical adjustment for plasma volume attenuated changes in coagulation. Conclusions Hypergravity triggers low‐level hemostasis activation through endothelial cell activation, increased viscoelasticity, and augmented platelet reactivity, albeit partly counteracted through endogenous coagulation inhibitors release. Hemoconcentration may contribute to the response.
Collapse
Affiliation(s)
- Ulrich Limper
- Department of Anesthesiology and Intensive Care Medicine Merheim Medical Center Hospitals of Cologne University of Witten/Herdecke Cologne Germany.,German Aerospace Center (DLR)Institute of Aerospace Medicine Cologne Germany
| | - Tobias Ahnert
- Department of Orthopedic Surgery Traumatology and Sports Medicine Merheim Medical Center Hospitals of Cologne University of Witten/Herdecke Cologne Germany
| | - Marc Maegele
- Department of Orthopedic Surgery Traumatology and Sports Medicine Merheim Medical Center Hospitals of Cologne University of Witten/Herdecke Cologne Germany
| | - Matthias Froehlich
- Department of Orthopedic Surgery Traumatology and Sports Medicine Merheim Medical Center Hospitals of Cologne University of Witten/Herdecke Cologne Germany
| | - Marijke Grau
- Department of Molecular and Cellular Sports Medicine German Sport University Cologne Cologne Germany
| | - Peter Gauger
- German Aerospace Center (DLR)Institute of Aerospace Medicine Cologne Germany
| | - Ursula Bauerfeind
- Department of Haematology and Transfusion Medicine (DTM) Merheim Medical Center Hospitals of Cologne Germany
| | - Klaus Görlinger
- Department of Anesthesiology and Intensive Care Medicine University Hospital Essen Essen Germany.,Medical Director Tem Innovations Munich Germany
| | - Bernhard Pötzsch
- Institute of Experimental Haematology and Transfusion Medicine University Hospital Bonn Bonn Germany
| | - Jens Jordan
- German Aerospace Center (DLR)Institute of Aerospace Medicine Cologne Germany.,Chair of Aerospace Medicine Medical Faculty University of Cologne Germany
| |
Collapse
|
5
|
Görlinger K, Dirkmann D, Gandhi A, Simioni P. COVID-19-Associated Coagulopathy and Inflammatory Response: What Do We Know Already and What Are the Knowledge Gaps? Anesth Analg 2020; 131:1324-1333. [PMID: 33079850 PMCID: PMC7389937 DOI: 10.1213/ane.0000000000005147] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with coronavirus disease 2019 (COVID-19) frequently experience a coagulopathy associated with a high incidence of thrombotic events leading to poor outcomes. Here, biomarkers of coagulation (such as D-dimer, fibrinogen, platelet count), inflammation (such as interleukin-6), and immunity (such as lymphocyte count) as well as clinical scoring systems (such as sequential organ failure assessment [SOFA], International Society on Thrombosis and Hemostasis disseminated intravascular coagulation [ISTH DIC], and sepsis-induced coagulopathy [SIC] score) can be helpful in predicting clinical course, need for hospital resources (such as intensive care unit [ICU] beds, intubation and ventilator therapy, and extracorporeal membrane oxygenation [ECMO]) and patient's outcome in patients with COVID-19. However, therapeutic options are actually limited to unspecific supportive therapy. Whether viscoelastic testing can provide additional value in predicting clinical course, need for hospital resources and patient's outcome or in guiding anticoagulation in COVID-19-associated coagulopathy is still incompletely understood and currently under investigation (eg, in the rotational thromboelastometry analysis and standard coagulation tests in hospitalized patients with COVID-19 [ROHOCO] study). This article summarizes what we know already about COVID-19-associated coagulopathy and-perhaps even more importantly-characterizes important knowledge gaps.
Collapse
Affiliation(s)
- Klaus Görlinger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany, and Medical Director, Tem Innovations GmbH, Martin-Kollar-Strasse 15, 81829 Munich, Germany, mobile: +49 1726596069, e-mail:
| | - Daniel Dirkmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany, mobile: +49 201 723 84423,
| | - Ajay Gandhi
- Clinical Affairs, Instrumentation Laboratory India Private Limited, New Delhi, India, 1471-76, Agrawal Millennium Tower II, Plot Number E-4, Netaji Subhash Place, Pitampura, New Delhi, India 110034, mobile: +91 9826870517, e-mail:
| | - Paolo Simioni
- General Internal Medicine and Thrombotic and Haemorrhagic Diseases Units, Department of Medicine, Padova University Hospital, Via Ospedale Civile 105, 35100 Padova, Italy, phone: +39 0498212667, e-mail:
| |
Collapse
|
6
|
Tracheostomy in intensive care unit patients can be performed without bleeding complications in case of normal thromboelastometry results (EXTEM CT) despite increased PT-INR: a prospective pilot study. BMC Anesthesiol 2015; 15:89. [PMID: 26060042 PMCID: PMC4460867 DOI: 10.1186/s12871-015-0073-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 06/01/2015] [Indexed: 02/01/2023] Open
Abstract
Background Coagulopathy is often accompanied by prolongation of prothrombin time (PT) in septic and nonseptic patients in intensive care unit (ICU). The conventional way to correct the coagulopathy is to administer fresh frozen plasma (FFP) before invasive procedures to minimise the risk of bleeding. However, prolonged PT can be present even in hypercoagulation status, resulting in unnecessary administration of FFP. In the present study, we have assessed the reliability of thromboelastometry in case of prolonged PT and the relationship to bleeding complications during surgical tracheostomy. Methods The study was conducted during the period between April 2013 and April 2014 in patients undergoing surgical tracheostomy. Coagulation status was assessed using PT, and the status was reassessed by thromboelastometry for prolonged PT. Tracheostomy was performed in patients with normal thromboelastometry results without administering FFP. Results Tracheostomy was performed in total 119 patients. Normal value of PT as measured by international normalized ratio (INR) ≤ 1.2 was found in 64 (54 %) patients, while prolonged INR > 1.2 was found in 55 (46 %) patients. Patients with INR ≥ 1.3 (with INR min- 1.3, max- 1.84, and median- 1.48) were further analysed by thromboelastometry. Despite prolonged INR, thromboelastometry results were in normal ranges in all cases except one. With normal thromboelastometry, tracheostomy was performed safely without any bleeding complication. Conclusions Surgical tracheostomy in septic and nonseptic patients can be performed without bleeding complications in case of normal thromboelastometry results (EXTEM CT) despite increased PT-INR. This method can help physicians to reduce unnecessary administration of FFP in patients.
Collapse
|
7
|
Anderson SL, Duke-Novakovski T, Singh B. The immune response to anesthesia: part 2 sedatives, opioids, and injectable anesthetic agents. Vet Anaesth Analg 2014; 41:553-66. [PMID: 24962601 DOI: 10.1111/vaa.12191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To review the immune response to injectable anesthetics and sedatives and to compare the immunomodulatory properties between inhalation and injectable anesthetic protocols. STUDY DESIGN Review. METHODS AND DATABASES Multiple literature searches were performed using PubMed and Google Scholar from March 2012 through November 2013. Relevant anesthetic and immune terms were used to search databases without year published or species constraints. The online database for Veterinary Anaesthesia and Analgesia and the Journal of Veterinary Emergency and Critical Care were searched by issue starting in 2000 for relevant articles. CONCLUSION Sedatives, injectable anesthetics, opioids, and local anesthetics have immunomodulatory effects that may have positive or negative consequences on disease processes such as endotoxemia, generalized sepsis, tumor growth and metastasis, and ischemia-reperfusion injury. Therefore, anesthetists should consider the immunomodulatory effects of anesthetic drugs when designing anesthetic protocols for their patients.
Collapse
Affiliation(s)
- Stacy L Anderson
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
8
|
Görlinger K, Bergmann L, Dirkmann D. Coagulation management in patients undergoing mechanical circulatory support. Best Pract Res Clin Anaesthesiol 2013; 26:179-98. [PMID: 22910089 DOI: 10.1016/j.bpa.2012.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/25/2012] [Accepted: 04/20/2012] [Indexed: 12/28/2022]
Abstract
The incidence of bleeding and thrombo-embolic complications in patients undergoing mechanical circulatory support therapy remains high and is associated with bad outcomes and increased costs. The need for anticoagulation and anti-platelet therapy varies widely between different pulsatile and non-pulsatile ventricular-assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) systems. Therefore, a unique anticoagulation protocol cannot be recommended. Notably, most thrombo-embolic complications occur despite values of conventional coagulation tests being within the targeted range. This is due to the fact that conventional coagulation tests such as international normalised ratio (INR), activated partial thromboplastin time (aPTT) and platelet count cannot detect hyper- or hypofibrinolysis, hypercoagulability due to tissue factor expression on circulating cells or increased clot firmness, and platelet aggregation as well as response to anti-platelet drugs. By contrast, point-of-care (POC) whole blood viscoelastic tests (thromboelastometry/-graphy) and platelet function tests (impedance or turbidimetric aggregometry) reflect in detail the haemostatic status of patients undergoing mechanical circulatory support therapy and the efficacy of their anticoagulation and antiaggregation therapy. Therefore, monitoring of haemostasis using POC thromboelastometry/-graphy and platelet function analysis is recommended during mechanical circulatory support therapy to reduce the risk of bleeding and thrombo-embolic complications. Notably, these haemostatic tests should be performed repeatedly during mechanical circulatory support therapy since thrombin generation, clot firmness and platelet response may change significantly over time with a high inter- and intra-individual variability. Furthermore, coagulation management can be hampered in non-pulsatile VADs by acquired von Willebrand syndrome, and in general by acquired factor XIII deficiency as well as by heparin-induced thrombocytopenia. In addition, POC testing can be used in bleeding patients to guide calculated goal-directed therapy with allogeneic blood products, haemostatic drugs and coagulation factor concentrates to optimise the haemostasis and to minimise transfusion requirements, transfusion-associated adverse events and to avoid thrombo-embolic complications, as well. However, coagulation management in patients undergoing mechanical circulatory support therapy is somehow like navigating between Scylla and Charybdis, and development of protocols based on POC testing seems to be beneficial.
Collapse
Affiliation(s)
- Klaus Görlinger
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinkum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | |
Collapse
|
9
|
Koch L, Hofer S, Weigand MA, Frommhold D, Poeschl J, Ruef P. Inhibition of LPS-Induced Activation of Coagulation by p38 MAPK Inhibitor. ISRN HEMATOLOGY 2012; 2012:762614. [PMID: 22461999 PMCID: PMC3313583 DOI: 10.5402/2012/762614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/27/2011] [Indexed: 11/23/2022]
Abstract
During Gram-negative sepsis, lipopolysaccharide (LPS) activates toll-like receptor (TLR) 4 and induces complex responses of immune system and coagulation. However, the underlying LPS signalling mechanism on coagulation activation remains complex. To determine the role of the intracellular signalling factors p38 mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and c-Jun N-terminal kinase (JNK) in the procoagulant response to LPS, coagulation process of human whole blood exposed to specific inhibitors was measured by thrombelastography. Samples were stimulated with LPS (100 μg/mL) after preincubation with BAY117082 (specific NF-κB inhibitor), SP600125 (specific JNK inhibitor), SB203580 (specific p38 MAPK inhibitor), or vehicle. SB203580 strongly inhibited LPS-induced coagulation activation, whereas BAY117082 and SP600125 showed no significant effect. Activation of p38 MAPK, NF-κB, and JNK and respective inhibitory effects were confirmed by Multi-Target Sandwich ELISA. In conclusion, activation of p38 MAPK is crucial for early LPS-induced activation of coagulation.
Collapse
Affiliation(s)
- Lutz Koch
- Division of Neonatology, Department of Paediatrics, Medical School, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|