Vacanti NM, Cheng H, Hill PS, Guerreiro JDT, Dang TT, Ma M, Watson S, Hwang NS, Langer R, Anderson DG. Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response.
Biomacromolecules 2012;
13:3031-8. [PMID:
22920794 PMCID:
PMC3466020 DOI:
10.1021/bm300520u]
[Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/09/2012] [Indexed: 01/08/2023]
Abstract
Synthetic scaffolds are crucial to applications in regenerative medicine; however, the foreign body response can impede regeneration and may lead to failure of the implant. Herein we report the development of a tissue engineering scaffold that allows attachment and proliferation of regenerating cells while reducing the foreign body response by localized delivery of an anti-inflammatory agent. Electrospun fibers composed of poly(l-lactic) acid (PLLA) and poly(ε-caprolactone) (PCL) were prepared with and without the steroid anti-inflammatory drug, dexamethasone. Analysis of subcutaneous implants demonstrated that the PLLA fibers encapsulating dexamethasone evoked a less severe inflammatory response than the other fibers examined. They also displayed a controlled release of dexamethasone over a period of time conducive to tissue regeneration and allowed human mesenchymal stem cells to adhere to and proliferate on them in vitro. These observations demonstrate their potential as a building block for tissue engineering scaffolds.
Collapse