1
|
Greco G, Sarpietro MG. Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis. Molecules 2024; 29:4689. [PMID: 39407617 PMCID: PMC11477494 DOI: 10.3390/molecules29194689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the nervous system that leads to neurological dysfunctions and severe disabilities. It is worth noting that conventional pharmacotherapy is poorly selective and causes toxicity problems and several systemic side effects. Thus, there is a need to develop new approaches to this medical challenge. The use of nanocarriers for drug delivery represents a good strategy to overcome several issues such as high therapeutic drug doses with side effects, such as diarrhea, nausea, and abdominal pain, and drug degradation processes; in addition, nanocarriers can provide controlled and targeted drug release. This review describes the application of liposomes for the delivery of pharmaceutical actives to target MS. Firstly, MS is explained. Then, liposomes are described along with their preparation, characterization, and stability. The literature about the use of liposomes for the treatment of MS is then analyzed.
Collapse
Affiliation(s)
- Giuliana Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Maria Grazia Sarpietro
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
2
|
Gnanasekaran R, Aickareth J, Hawwar M, Sanchez N, Croft J, Zhang J. CmPn/CmP Signaling Networks in the Maintenance of the Blood Vessel Barrier. J Pers Med 2023; 13:jpm13050751. [PMID: 37240921 DOI: 10.3390/jpm13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) arise when capillaries within the brain enlarge abnormally, causing the blood-brain barrier (BBB) to break down. The BBB serves as a sophisticated interface that controls molecular interactions between the bloodstream and the central nervous system. The neurovascular unit (NVU) is a complex structure made up of neurons, astrocytes, endothelial cells (ECs), pericytes, microglia, and basement membranes, which work together to maintain blood-brain barrier (BBB) permeability. Within the NVU, tight junctions (TJs) and adherens junctions (AJs) between endothelial cells play a critical role in regulating the permeability of the BBB. Disruptions to these junctions can compromise the BBB, potentially leading to a hemorrhagic stroke. Understanding the molecular signaling cascades that regulate BBB permeability through EC junctions is, therefore, essential. New research has demonstrated that steroids, including estrogens (ESTs), glucocorticoids (GCs), and metabolites/derivatives of progesterone (PRGs), have multifaceted effects on blood-brain barrier (BBB) permeability by regulating the expression of tight junctions (TJs) and adherens junctions (AJs). They also have anti-inflammatory effects on blood vessels. PRGs, in particular, have been found to play a significant role in maintaining BBB integrity. PRGs act through a combination of its classic and non-classic PRG receptors (nPR/mPR), which are part of a signaling network known as the CCM signaling complex (CSC). This network couples both nPR and mPR in the CmPn/CmP pathway in endothelial cells (ECs).
Collapse
Affiliation(s)
- Revathi Gnanasekaran
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Justin Aickareth
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Majd Hawwar
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Nickolas Sanchez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jacob Croft
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
3
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Markowicz-Piasecka M, Markiewicz A, Darłak P, Sikora J, Adla SK, Bagina S, Huttunen KM. Current Chemical, Biological, and Physiological Views in the Development of Successful Brain-Targeted Pharmaceutics. Neurotherapeutics 2022; 19:942-976. [PMID: 35391662 PMCID: PMC9294128 DOI: 10.1007/s13311-022-01228-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
One of the greatest challenges with successful pharmaceutical treatments of central nervous system (CNS) diseases is the delivery of drugs into their target sites with appropriate concentrations. For example, the physically tight blood-brain barrier (BBB) effectively blocks compounds from penetrating into the brain, also by the action of metabolizing enzymes and efflux transport mechanisms. However, many endogenous compounds, including both smaller compounds and macromolecules, like amino acids, sugars, vitamins, nucleosides, hormones, steroids, and electrolytes, have their peculiar internalization routes across the BBB. These delivery mechanisms, namely carrier-mediated transport and receptor-mediated transcytosis have been utilized to some extent in brain-targeted drug development. The incomplete knowledge of the BBB and the smaller than a desirable number of chemical tools have hindered the development of successful brain-targeted pharmaceutics. This review discusses the recent advancements achieved in the field from the point of medicinal chemistry view and discusses how brain drug delivery can be improved in the future.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland
| | - Agata Markiewicz
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Patrycja Darłak
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Sreelatha Bagina
- Charles River Discovery Research Services Finland Oy, Neulaniementie 4, 70210 Kuopio, Finland
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland
| |
Collapse
|
5
|
Bayat M, Khalili A, Bayat G, Akbari S, Yousefi Nejad A, Borhani Haghighi A, Haghani M. Effects of platelet-rich plasma on the memory impairment, apoptosis, and hippocampal synaptic plasticity in a rat model of hepatic encephalopathy. Brain Behav 2022; 12:e2447. [PMID: 34855284 PMCID: PMC8785608 DOI: 10.1002/brb3.2447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 10/30/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES In the present study, we aimed to determine whether intraperitoneal injection of platelet-rich plasma (PRP) could have a neuroprotective effect on learning, memory, and synaptic plasticity impairment as well as hippocampal apoptosis in rats with hepatic encephalopathy induced by bile duct ligated (BDL). METHODS The rats were divided into four groups: the control, sham, BDL+ V (vehicle), and BDL+ PRP. The BDL rats were treated with PRP immediately after the surgery, and the injection was done every 3 days for 30 days. The passive avoidance and Morris water maze tests were used for the evaluation of learning and memory. The long-term potentiation (LTP), basal-synaptic transmission, and paired-pulse ratio, as an index for measurement of neurotransmitter release probability, were evaluated by field-potential recording. After taking a blood sample for assessment of the liver enzymes, the animals were sacrificed and their hippocampus was removed for evaluation of cleaved caspase-3 by Western blot. RESULTS Serological assessment of the liver function showed that BDL severely impaired the liver function. Also, PRP treatment could partially improve the liver dysfunction along with recovery in fear memory and spatial learning memory performance, LTP, basal-synaptic transmission, and neurotransmitter release probability. PRP-treated rats also showed a significant reduction in neuronal apoptosis in the CA1 area. CONCLUSIONS The results of this study suggest that PRP improves cognitive performance and synaptic plasticity in BDL rats via direct neuroprotective property and/or indirectly by improvement of hepatic dysfunction.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Khalili
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Akbari
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Yousefi Nejad
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, Islamic Azad University of Kazeroon, Shiraz, Iran
| | | | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, Eslami Abriz A, Zarebkohan A, Rahbarghazi R, Sokullu E. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 2021; 11:142. [PMID: 34294165 PMCID: PMC8296716 DOI: 10.1186/s13578-021-00650-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, a large population around the world, especially the elderly, suffers from neurological inflammatory and degenerative disorders/diseases. Current drug delivery strategies are facing different challenges because of the presence of the BBB, which limits the transport of various substances and cells to brain parenchyma. Additionally, the low rate of successful cell transplantation to the brain injury sites leads to efforts to find alternative therapies. Stem cell byproducts such as exosomes are touted as natural nano-drug carriers with 50-100 nm in diameter. These nano-sized particles could harbor and transfer a plethora of therapeutic agents and biological cargos to the brain. These nanoparticles would offer a solution to maintain paracrine cell-to-cell communications under healthy and inflammatory conditions. The main question is that the existence of the intact BBB could limit exosomal trafficking. Does BBB possess some molecular mechanisms that facilitate the exosomal delivery compared to the circulating cell? Although preliminary studies have shown that exosomes could cross the BBB, the exact molecular mechanism(s) beyond this phenomenon remains unclear. In this review, we tried to compile some facts about exosome delivery through the BBB and propose some mechanisms that regulate exosomal cross in pathological and physiological conditions.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Neurology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Mehmet Kaya
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Physiology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Aysan Eslami Abriz
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey. .,Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.
| |
Collapse
|
7
|
Emerich DF, Winn SR. Neuroprotective Effects of Encapsulated CNTF-Producing Cells in a Rodent Model of Huntington's Disease are Dependent on the Proximity of the Implant to the Lesioned Striatum. Cell Transplant 2017; 13:253-9. [PMID: 15191163 DOI: 10.3727/000000004783983981] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntington's disease (HD) is a devastating genetic disorder with no effective treatments for preventing or lessening the underlying neuronal degeneration. Intracerebral delivery of CNTF in animal models of HD has shown considerable promise as a means of protecting striatal neurons that would otherwise be destined to die. The present study examines whether the neuroprotective effects of CNTF require that the delivery be immediately proximal to the lesion site or whether protective effects can be exerted when the delivery site is more distal to the site of injury. Encapsulated CNTF-producing cells were implanted into the lateral ventricle either ipsilateral or contralateral to an intrastriatal quinolinic acid (QA) injection. A robust neuroprotective effect was observed only in those animals receiving CNTF implants ipsilateral to the QA injection. In these animals, the loss of striatal ChAT and GAD activity as well as the behavioral impairments that resulted from QA were completely prevented. In contrast, no neurochemical or behavioral benefits were produced by implants of CNTF-producing cells in the contralateral ventricle. These data continue to support the use of cellular delivery of CNTF for HD but caution that delivery directly to the striatum may be needed if any clinical benefits are to be seen.
Collapse
|
8
|
Affiliation(s)
- Dwaine F. Emerich
- Department of Neuroscience, Alkermes, Inc, 64 Sidney Street, Cambridge MA 02139
| | - Heather C. Salzberg
- Department of Neuroscience, Alkermes, Inc, 64 Sidney Street, Cambridge MA 02139
| |
Collapse
|
9
|
Ganugula R, Arora M, Saini P, Guada M, Kumar MNVR. Next Generation Precision-Polyesters Enabling Optimization of Ligand-Receptor Stoichiometry for Modular Drug Delivery. J Am Chem Soc 2017; 139:7203-7216. [PMID: 28395139 DOI: 10.1021/jacs.6b13231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of receptor-mediated drug delivery primarily depends on the ability to optimize ligand-receptor stoichiometry. Conventional polyesters such as polylactide (PLA) or its copolymer, polylactide-co-glycolide (PLGA), do not allow such optimization due to their terminal functionality. We herein report the synthesis of 12 variations of the PLA-poly(ethylene glycol) (PEG) based precision-polyester (P2s) platform, permitting 5-12 periodically spaced carboxyl functional groups on the polymer backbone. These carboxyl groups were utilized to achieve variable degrees of gambogic acid (GA) conjugation to facilitate ligand-receptor stoichiometry optimization. These P2s-GA combined with fluorescent P2s upon emulsification form nanosystems (P2Ns) of size <150 nm with GA expressed on the surface. The P2Ns outclass conventional PLGA-GA nanosystems in cellular uptake using caco-2 intestinal model cultures. The P2Ns showed a proportional increase in cellular uptake with an increase in relative surface GA density from 0 to 75%; the slight decline for 100% GA density was indicative of receptor saturation. The intracellular trafficking of P2Ns in live caco-2 cells demonstrated the involvement of endocytic pathways in cellular uptake. The P2Ns manifest transferrin receptor (TfR) colocalization in ex vivo intestinal tissue sections, despite blocking of the receptor with transferrin (Tf) noncompetitively, i.e., independently of receptor occupation by native ligand. The in vivo application of P2Ns was demonstrated using cyclosporine (CsA) as a model peptide. The P2Ns exhibited modular release in vivo, as a function of surface GA density. This approach may contribute to the development of personalized dose regimen.
Collapse
Affiliation(s)
- Raghu Ganugula
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Prabhjot Saini
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Melissa Guada
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Majeti N V Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| |
Collapse
|
10
|
|
11
|
Wei X, Zhan C, Shen Q, Fu W, Xie C, Gao J, Peng C, Zheng P, Lu W. AD-Peptide Ligand of Nicotine Acetylcholine Receptors for Brain-Targeted Drug Delivery. Angew Chem Int Ed Engl 2015; 54:3023-7. [DOI: 10.1002/anie.201411226] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 12/31/2022]
|
12
|
Wei X, Zhan C, Shen Q, Fu W, Xie C, Gao J, Peng C, Zheng P, Lu W. AD-Peptide Ligand of Nicotine Acetylcholine Receptors for Brain-Targeted Drug Delivery. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Somani S, Blatchford DR, Millington O, Stevenson ML, Dufès C. Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J Control Release 2014; 188:78-86. [PMID: 24933602 DOI: 10.1016/j.jconrel.2014.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022]
Abstract
The possibility of using genes as medicines to treat brain diseases is currently limited by the lack of safe and efficacious delivery systems able to cross the blood-brain barrier, thus resulting in a failure to reach the brain after intravenous administration. On the basis that iron can effectively reach the brain by using transferrin receptors for crossing the blood-brain barrier, we propose to investigate if a transferrin-bearing generation 3-polypropylenimine dendrimer would allow the transport of plasmid DNA to the brain after intravenous administration. In vitro, the conjugation of transferrin to the polypropylenimine dendrimer increased the DNA uptake by bEnd.3 murine brain endothelioma cells overexpressing transferrin receptors, by about 1.4-fold and 2.3-fold compared to that observed with the non-targeted dendriplex and naked DNA. This DNA uptake appeared to be optimal following 2h incubation with the treatment. In vivo, the intravenous injection of transferrin-bearing dendriplex more than doubled the gene expression in the brain compared to the unmodified dendriplex, while decreasing the non-specific gene expression in the lung. Gene expression was at least 3-fold higher in the brain than in any tested peripheral organs and was at its highest 24h following the injection of the treatments. These results suggest that transferrin-bearing polypropylenimine dendrimer is a highly promising gene delivery system to the brain.
Collapse
Affiliation(s)
- Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - David R Blatchford
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Owain Millington
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - M Lynn Stevenson
- School of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
14
|
Emerich DF, Orive G, Thanos C, Tornoe J, Wahlberg LU. Encapsulated cell therapy for neurodegenerative diseases: from promise to product. Adv Drug Deliv Rev 2014; 67-68:131-41. [PMID: 23880505 DOI: 10.1016/j.addr.2013.07.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/31/2013] [Accepted: 07/12/2013] [Indexed: 12/27/2022]
Abstract
Delivering therapeutic molecules, including trophic factor proteins, across the blood brain barrier to the brain parenchyma to treat chronic neurodegenerative diseases remains one of the great challenges in biology. To be effective, delivery needs to occur in a long-term and stable manner at sufficient quantities directly to the target region in a manner that is selective but yet covers enough of the target site to be efficacious. One promising approach uses cellular implants that produce and deliver therapeutic molecules directly to the brain region of interest. Implanted cells can be precisely positioned into the desired region and can be protected from host immunological attack by encapsulating them and by surrounding them within an immunoisolatory, semipermeable capsule. In this approach, cells are enclosed within a semiporous capsule with a perm selective membrane barrier that admits oxygen and required nutrients and releases bioactive cell secretions while restricting passage of larger cytotoxic agents from the host immune defense system. Recent advances in human cell line development have increased the levels of secreted therapeutic molecules from encapsulated cells, and membrane extrusion techniques have led to the first ever clinical demonstrations of long-term survival and function of encapsulated cells in the brain parenchyma. As such, cell encapsulation is capable of providing a targeted, continuous, de novo synthesized source of very high levels of therapeutic molecules that can be distributed over significant portions of the brain.
Collapse
|
15
|
Qin LJ, Gu YT, Zhang H, Xue YX. Bradykinin-induced blood–tumor barrier opening is mediated by tumor necrosis factor-α. Neurosci Lett 2009; 450:172-5. [DOI: 10.1016/j.neulet.2008.10.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
|
16
|
Xie Y, Ye L, Zhang X, Cui W, Lou J, Nagai T, Hou X. Transport of nerve growth factor encapsulated into liposomes across the blood–brain barrier: In vitro and in vivo studies. J Control Release 2005; 105:106-19. [PMID: 15893839 DOI: 10.1016/j.jconrel.2005.03.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 03/07/2005] [Accepted: 03/11/2005] [Indexed: 11/30/2022]
Abstract
A nerve growth factor (NGF) was encapsulated into liposomes in order to protect it from the enzyme degradation in vivo and promote it permeability across the blood-brain barrier (BBB). RMP-7, a ligand to the B2 receptor on brain microvascular endothelial cells (BMVEC), was combined with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-n-[poly(ethylenegly-col)]-hydroxy succinamide (DSPE-PEG-NHS) to obtain DSPE-PEG-RMP-7. Then DSPE-PEG-RMP-7 was incorporated into the liposomes' surface to target sterically stabilized liposomes (SSL-T) to the brain. The highest percent of NGF encapsulated into liposomes was about 34%, and the average size of liposomes was below 100 nm. A primary model of BBB was established and evaluated by morphological, permeability, and transendothelial electrical resistance (TEER). The BBB model was employed to study the permeability of NGF liposomes in vitro. The results indicated that the liposomes could enhance transport of NGF across the BBB. The best transport rate was received with NGF-SSL-T. The brain distribution of NGF liposomes was studied in vivo, the amount of NGF in the brain was increased in the order: NGF-SSL-T>NGF-SSL+RMP-7>NGF-SSL>NGF-L. The maximum concentration of NGF was recorded in 30 min following the intravenous injection. In particular, a majority of NGF was distributed in striatum, hippocampus and cortex, and the concentration of NGF was relatively lower in olfactory bulb, cerebellum and brain stem. There was a close relationship between P(e) (permeability coefficient on in vitro BBB model) and T(e) (brain targeted coefficient in vivo) for NGF encapsulated into the liposomes.
Collapse
Affiliation(s)
- Ying Xie
- Department of Physical Pharmacy, School of Pharmaceutical Science, Xueyuan Road #38, Peking University, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhu ZB, Makhija SK, Lu B, Wang M, Rivera AA, Preuss M, Zhou F, Siegal GP, Alvarez RD, Curiel DT. Transport across a polarized monolayer of Caco-2 cells by transferrin receptor-mediated adenovirus transcytosis. Virology 2004; 325:116-28. [PMID: 15231391 DOI: 10.1016/j.virol.2004.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 03/26/2004] [Accepted: 04/10/2004] [Indexed: 11/17/2022]
Abstract
Adenoviral vectors have a poor record of transgene delivery efficiency through physical barriers such as the epithelium or endothelium. We report here the construction of an adenoviral vector that has the capability to be transported across polarized epithelial monolayers of Caco-2 cells (a colon carcinoma cell line) by transcytosis. This transcytosis is transferrin receptor (TfR)-mediated with use of a bifunctional adaptor, soluble coxsackie adenovirus receptor (sCAR)-Tf, and is both temperature and iron dependent. Under experimental conditions, the adenoviral transcytosis was inhibited by pretreatment of Caco-2 cells with colchicine, an inhibitor of transcytosis, and was not enhanced by pretreatment with Brefeldin A (BFA), an enhancer of transcytosis. In these Caco-2 cells, the transcytosis rate was 0.3 +/- 1.3% (SD). The transcytosed adenoviruses remain biologically functional. These data suggest the potential clinical benefit under conditions where drug delivery is a challenge, such as within the airway epithelium, at the bladder lumen urothelial cell interface, and across the blood-brain barrier for clinical treatment of lung, urogenital, and brain disorders, respectively, by adenoviral transcytosis of transgene delivery.
Collapse
Affiliation(s)
- Zeng B Zhu
- Division of Human Gene Therapy, Department of Medicine, Pathology, and The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35291, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Widera A, Norouziyan F, Shen WC. Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 2003; 55:1439-66. [PMID: 14597140 DOI: 10.1016/j.addr.2003.07.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transferrin receptor has been an important protein for many of the advances made in understanding the intricacies of the intramolecular sorting pathways of endocytosed molecules. The unique internalization and recycling functions of transferrin receptor have also made it an attractive choice for drug targeting and delivery of large protein-based therapeutics and toxins. Recent advances in elucidating the role of the intracellular controllers of transferrin recycling and sorting, such as Rab proteins and their effectors, have led to enhancement of transferrin receptor as a drug delivery vehicle. This review focuses on the use of transferrin receptor as an agent for facilitating drug delivery and targeting, and the role that mechanisms of transferrin receptor sorting and transcytosis play in these events.
Collapse
Affiliation(s)
- A Widera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, PSC 404B, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
19
|
Abstract
The mainstay of current therapy for pediatric movement disorders is oral symptomatic medication, unless a reversible etiology can be found. However, this approach is apt to pale in comparison with innovative strategies on the clinical forefront. Classical pharmacotherapy is restricted by the blood-brain barrier, which prevents access to the brain of potentially therapeutic molecules. Recent developments in molecular biotechnology include antibody-mediated drug release, feedback-responsive delivery systems, carrier-mediated transport, microspheres composed of polymers and liposomes, permeabilizers, and selective delivery to localized sites and vectors. Neuroprotective strategies for delivering neurotrophic factors and antiapoptotic and antioxidant molecules in neurodegenerative disorders are currently under study in clinical trials. Stem cell transplantation has great potential for tissue engineering and also as a carrier for gene therapy, although its use raises complex societal issues. These approaches, together with a plethora of transgenic knockout animal models of neurodegenerative disorders, offer real promise for a previously untreatable group of movement disorders.
Collapse
Affiliation(s)
- Michael R Pranzatelli
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
20
|
Abstract
Since transferrin was discovered more than half a century ago, a considerable effort has been made towards understanding tranferrin-mediated iron uptake. However, it was not until recently with the identification and characterization of several new genes related to iron homeostasis, such as the hemochromatosis protein HFE and the iron transporter DMT1, that our knowledge has been advanced dramatically. A major pathway for cellular iron uptake is through internalization of the complex of iron-bound transferrin and the transferrin receptor, which is negatively modulated by HFE, a protein related to hereditary hemochromatosis. Iron is released from transferrin as the result of the acidic pH in endosome and then is transported to the cytosol by DMT1. The iron is then utilized as a cofactor by heme and ribonucleotide reductase or stored in ferritin. Apart from iron, many other metal ions of therapeutic and diagnostic interests can also bind to transferrin at the iron sites and their transferrin complexes can be recognized by many cells. Therefore, transferrin has been thought as a "delivery system" for many beneficial and harmful metal ions into the cells. Transferrin has also be widely applied as a targeting ligand in the active targeting of anticancer agents, proteins, and genes to primary proliferating malignant cells that overexpress transferrin receptors. This is achieved by conjugation of transferrin with drugs, proteins, hybride systems with marcomolecules and as liposomal-coated systems. Conjugates of anticancer drugs with transferrin can significantly improve the selectivity and toxicity and overcome drug resistance, thereby leading to a better treatment. The coupling of DNA to transferrin via a polycation such as polylysine or via cationic liposomes can target and transfer of the extrogenous DNA particularly into proliferating cells through receptor-mediated endocytosis. These kinds of non-viral vectors are potential alternatives to viral vectors for gene therapy, if the transfection efficiency can be improved. Moreover, transferrin receptors have shown potentials in delivery of therapeutic drugs or genes into the brain across blood-brain barrier.
Collapse
Affiliation(s)
- Hongyan Li
- Laboratory of Iron Metabolism, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | |
Collapse
|
21
|
Hansen DK, Scott DO, Otis KW, Lunte SM. Comparison of in vitro BBMEC permeability and in vivo CNS uptake by microdialysis sampling. J Pharm Biomed Anal 2002; 27:945-58. [PMID: 11836058 DOI: 10.1016/s0731-7085(01)00542-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The studies presented in this report were designed to assess the correlation of the bovine brain microvessel endothelial cell (BBMEC) apparent permeability coefficient (P(app)) and in vivo BBB penetration using microdialysis sampling. A mathematical model was developed to describe the relationship of brain extracellular fluid (ECF) concentration to free drug in plasma. The compounds studied have a broad range of physico-chemical characteristics and have widely varying in vitro and in vivo permeability across the blood-brain barrier (BBB). BBMEC permeability coefficients vary in magnitude from a low of 0.9 x 10(-5) cm/s to a high value of 7.5 x 10(-5) cm/s. Corresponding in vivo measurements of BBB permeability are represented by clearance (CL(in)) into the brain ECF and range from a low of 0.023 microl/min/g to a high of 12.9 microl/min/g. While it is apparent that in vitro data from the BBMEC model can be predictive of the in vivo permeability of a compound across the BBB, there are numerous factors both prior to and following entry into the brain which impact the ultimate uptake of a compound. Even in the presence of high BBB permeability, factors such as high plasma protein binding, active efflux across the BBB, and metabolism within the CNS can greatly limit the ultimate concentrations achieved. In addition, concentrations in the intracellular space may not be the same as concentrations in the extracellular space. While these data show that the BBMEC permeability is predictive of the in vivo BBB permeability, the complexity of the living system makes prediction of brain concentrations difficult, based solely on the in vitro measurement.
Collapse
Affiliation(s)
- D K Hansen
- Drug Metabolism and Pharmacokinetics, Quintiles, Inc., Kansas City, MO 64134, USA
| | | | | | | |
Collapse
|
22
|
Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides 2001; 22:2329-43. [PMID: 11786210 DOI: 10.1016/s0196-9781(01)00537-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides have the potential to be potent pharmaceutical agents for the treatment of many central nervous system derived maladies. Unfortunately peptides are generally water-soluble compounds that will not enter the central nervous system, via passive diffusion, due to the existence of the blood-brain barrier. Peptides can also undergo metabolic deactivation by peptidases, thus further reducing their therapeutic benefits. In targeting peptides to the central nervous system consideration must be focused both on increasing bioavailability and enhancing brain uptake. To date multiple strategies have been examined with this focus. However, each strategy comes with its own complications and considerations. In this review we assess the strengths and weaknesses of many of the methods currently being examined to enhance peptide entry into the central nervous system.
Collapse
Affiliation(s)
- K A Witt
- Department of Pharmacology, The University of Arizona, College of Medicine, LSN 542, 1501 N. Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
23
|
Ivanenkov VV, Menon AG. Peptide-mediated transcytosis of phage display vectors in MDCK cells. Biochem Biophys Res Commun 2000; 276:251-7. [PMID: 11006114 DOI: 10.1006/bbrc.2000.3358] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Delivery of therapeutic macromolecules and gene vectors to certain tissues is hampered by endothelial or epithelial barriers. We show here that the transport of phage particles across epithelial cells can be facilitated by peptide ligands selected from a phage library of random peptides. Using MDCK cells, we identified a polycationic peptide sequence, RYRGDLGRR, containing a putative integrin-binding (RGD) motif that enhanced basal-to-apical transcytosis of peptide-bearing phage 1000- to 10,000-fold compared with phage with no peptide insert. Both the synthetic peptide RYRGDLGRR and the integrin-binding peptide GRGDSP inhibited phage transcytosis suggesting the involvement of integrins. Confocal immunofluorescence microscopy showed that following internalization at the basal cell surface, phage particles were delivered to the apical cytoplasm and released at the apical cell surface. These data suggest the feasibility of using short peptides for targeting transcytotic pathways and facilitating delivery of macromolecules across cellular barriers.
Collapse
Affiliation(s)
- V V Ivanenkov
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
24
|
Abstract
A dysfunctional central nervous system (CNS) resulting from neurological disorders and diseases impacts all of humanity. The outcome presents a staggering health care issue with a tremendous potential for developing interventive therapies. The delivery of therapeutic molecules to the CNS has been hampered by the presence of the blood-brain barrier (BBB). To circumvent this barrier, putative therapeutic molecules have been delivered to the CNS by such methods as pumps/osmotic pumps, osmotic opening of the BBB, sustained polymer release systems and cell delivery via site-specific transplantation of cells. This review presents an overview of some of the CNS delivery technologies with special emphasis on transplantation of cells with and without the use of polymer encapsulation technology.
Collapse
Affiliation(s)
- M S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 200 College Street, Toronto, M55 3E5, Ontario, Canada.
| | | |
Collapse
|
25
|
Albeck DS, Bäckman C, Veng L, Friden P, Rose GM, Granholm A. Acute application of NGF increases the firing rate of aged rat basal forebrain neurons. Eur J Neurosci 1999; 11:2291-304. [PMID: 10383618 DOI: 10.1046/j.1460-9568.1999.00644.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nerve growth factor (NGF) has been widely used in animal models to ameliorate age-related neurodegeneration, but it cannot cross the blood-brain barrier (BBB). NGF conjugated to an antibody against the transferrin receptor (OX-26) crosses the BBB and affects the biochemistry and morphology of NGF-deprived basal forebrain neurons. The rapid actions of NGF, including electrophysiological effects on these neurons, are not well understood. In the present study, two model systems in which basal forebrain neurons either respond dysfunctionally to NGF (aged rats) or do not have access to target-derived NGF (intraocular transplants of forebrain neurons) were tested. One group of transplanted and one group of aged animals received unconjugated OX-26 and NGF comixture as a control, while other groups received replacement NGF in the form of OX-26-NGF conjugate during the 3 months preceding the electrophysiological recording session. Neurons from animals in both the transplanted and aged control groups showed a significant increase in firing rate in response to acute NGF application, while none of the conjugate-treated groups or young intact rats showed any response. After the recordings, forebrain transplants and aged brains were immunocytochemically stained for the low-affinity NGF receptor. All conjugate treatment groups showed significantly greater staining intensity compared to controls. These data from both transplants and aged rats in situ indicate that NGF-deprived basal forebrain neurons respond to acute NGF with an increased firing rate. This novel finding may have importance even for long-term biological effects of this trophic factor in the basal forebrain.
Collapse
Affiliation(s)
- D S Albeck
- Department of Basic Science, University of Colorado Health Sciences Center, Denver, 80262, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Prokai L. Peptide drug delivery into the central nervous system. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1999; 51:95-131. [PMID: 9949860 DOI: 10.1007/978-3-0348-8845-5_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The microvasculature of the central nervous system (CNS) is characterized by tight junctions between the endothelial cells and, thus, behaves as a continuous lipid bilayer that prevents the passage of polar and lipid-insoluble substances such as peptides. Highly active enzymes expressed in the morphological components of the microcirculation also represent a metabolic component that contributes to the homeostatic balance of the CNS. Peptides generally cannot enter the brain and spinal cord from the circulating blood because they are highly polar and lipid insoluble, metabolically unstable, and active transport systems only exist for very few of them in this membraneous barrier separating the systemic circulation from the interstitial fluid of the CNS. This blood-brain barrier is, therefore, the major obstacle to peptide-based drugs that are potentially useful for combating diseases affecting the brain and spinal cord. This review discusses and critically evaluates invasive, chemical-enzymatic (prodrug and chemical delivery/targeting system) and biological carrier-based approaches to overcome the blood-brain barrier for these highly active and versatile molecules that are very attractive as a future generation of neuropharmaceuticals.
Collapse
Affiliation(s)
- L Prokai
- Center for Drug Discovery, College of Pharmacy, University of Florida, J. Hillis Miller Health Center, Gainesville 32610-0497, USA
| |
Collapse
|
27
|
Dickinson TK, Connor JR. Immunohistochemical analysis of transferrin receptor: regional and cellular distribution in the hypotransferrinemic (hpx) mouse brain. Brain Res 1998; 801:171-81. [PMID: 9729367 DOI: 10.1016/s0006-8993(98)00575-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hypotransferrinemic (hpx) mouse mutant produces <1% of the normal circulating level of transferrin (Tf). Heterozygote animals of this strain (hpx/+) have approximately 50% of normal plasma Tf levels. In this study we examine the cellular and regional distribution of Tf receptor (Tf-R) in the brain of wild type, hpx/+ and mutant (hpx/hpx) mice. Also, using slot-blot (immunoblot) analysis, we describe the relative amount of Tf-R in brain microvessels of hpx/+ animals compared with wild type. Tf-R was seen primarily in neurons throughout the brains of wild type, hpx/+ and hpx/hpx animals. Gray matter areas immunoreacted more robustly than white matter areas. Oligodendrocytes and third ventricle tanycytes, both of which we have previously described as iron-positive, did not immunoreact for Tf-R. Tf-R immunohistochemical reaction in wild type, hpx/+ and hpx/hpx brains appeared similar. Immunoblot analysis of isolated cortical microvessels from wild type and hpx/+ animals revealed no upregulation of Tf-R expression in hpx/+ (relative to normal) despite a 50% decrease in circulating Tf levels. These results indicate that Tf-R is primarily expressed by neurons and that half normal levels of Tf (hpx/+) or transferrin supplementation (hpx/hpx) are apparently sufficient for normal expression and distribution of Tf-R. Because of the lack of circulating Tf, but unaltered Tf-R expression, hpx mice could serve as a model for delivery of therapeutic agents via the Tf/Tf-R system.
Collapse
Affiliation(s)
- T K Dickinson
- Division of Natural Sciences, Keuka College, Keuka Park, NY 14478, USA
| | | |
Collapse
|
28
|
Granholm AC, Albeck D, Bäckman C, Curtis M, Ebendal T, Friden P, Henry M, Hoffer B, Kordower J, Rose GM, Söderström S, Bartus RT. A non-invasive system for delivering neural growth factors across the blood-brain barrier: a review. Rev Neurosci 1998; 9:31-55. [PMID: 9683326 DOI: 10.1515/revneuro.1998.9.1.31] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intraventricular administration of nerve growth factor (NGF) in rats has been shown to reduce age-related atrophy of central cholinergic neurons and the accompanying memory impairment, as well as protect these neurons against a variety of perturbations. Since neurotrophins do not pass the blood-brain barrier (BBB) in significant amounts, a non-invasive delivery system for this group of therapeutic molecules needs to be developed. We have utilized a carrier system, consisting of NGF covalently linked to an anti-transferrin receptor antibody (OX-26), to transport biologically active NGF across the BBB. The biological activity of this carrier system was tested using in vitro bioassays and intraocular transplants; we were able to demonstrate that cholinergic markers in both developing and aged intraocular septal grafts were enhanced by intravenous delivery of the OX-26-NGF conjugate. In subsequent experiments, aged (24 months old) Fischer 344 rats received intravenous injections of the OX-26-NGF conjugate for 6 weeks, resulting in a significant improvement in spatial learning in previously impaired rats, but disrupting the learning ability of previously unimpaired rats. Neuroanatomical analyses showed that OX-26-NGF conjugate treatment resulted in a significant increase in cholinergic cell size as well as an upregulation of both low and high affinity NGF receptors in the medial septal region of rats initially impaired in spatial learning. Finally, OX-26-NGF was able to protect striatal cholinergic neurons against excitotoxicity and basal forebrain cholinergic neurons from degeneration associated with chemically-induced loss of target neurons. These results indicate the potential utility of the transferrin receptor antibody delivery system for treatment of neurodegenerative disorders with neurotrophic substances.
Collapse
Affiliation(s)
- A C Granholm
- Department of Basic Science, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wolf S, Seehaus B, Minol K, G�nter Gassen H. Die Blut-Hirn-Schranke: Eine besonderheit des cerebralen mikrozirkulationssystems. Naturwissenschaften 1996. [DOI: 10.1007/bf01152211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Abstract
Transferrin is the major protein concerned with iron transport in the serum and may provide a route by which iron enters the brain. This study was designed to show the optimal binding conditions for in vitro transferrin receptor autoradiography and to show the regional distribution of transferrin receptors in the human brain. Optimal binding conditions were: 120 min incubation with 5.0 nM 125I-transferrin at 37 degrees C. Transferrin receptors degrade quickly even with storage at -70 degrees C, therefore binding studies should be performed within 7 days post mortem. Transferrin receptors were widely distributed in the human brain, with high density in the neocortex, moderate densities in the putamen and caudate nuclei, and very low densities in the globus pallidus and substantia nigra. Therefore transferrin receptor density shows a mismatch with the known distribution of iron in the human brain. The presence and distribution of transferrin receptors in the human brain are important because they may provide a route to deliver lipophobic substances across the blood-brain barrier by binding them to antibodies raised against transferrin receptors.
Collapse
Affiliation(s)
- P D Griffiths
- Department of Academic Radiology, University of Sheffild, Royal Hallamshire Hospital, U.K
| | | |
Collapse
|
31
|
Schröder U, Sabel BA. Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v. dalargin injections. Brain Res 1996; 710:121-4. [PMID: 8963650 DOI: 10.1016/0006-8993(95)01375-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Leu-enkephalin dalargin does not normally penetrate the blood brain barrier when given intravenously. Drug targeting to the brain was investigated by using poly(butylcyanoacrylate) nanoparticles which were coated with polysorbate 80. When injected intravenously in mice, dalargin-loaded nanoparticles coated with the polysorbate 80 induced an analgesic effect at doses of 5.0 mg/kg and 7.5 mg/kg dalargin as shown by hindlimb licking on the hot plate. Neither the intravenous injection of dalargin alone at various doses nor the mixture of dalargin-loaded nanoparticles without the polysorbate 80 were able to induce an analgesic activity. This confirms previous observations that nanoparticles provide a convenient method to deliver drugs across the blood-brain barrier.
Collapse
Affiliation(s)
- U Schröder
- Institute of Medical Psychology, Medical Faculty, Otto-v.-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
32
|
Zlokovic BV. Cerebrovascular permeability to peptides: manipulations of transport systems at the blood-brain barrier. Pharm Res 1995; 12:1395-406. [PMID: 8584471 DOI: 10.1023/a:1016254514167] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The study of peptide transport across the blood-brain barrier (BBB) is a field fraught with conflicting interpretations. This review presents a fairly strong case that peptides can be differentially transported at the BBB. However, minimal transport of peptides could have important impact on central nervous system (CNS) functions since only small amounts are needed for physiologic pharmacologic and/or pathologic effects. Several BBB peptide transport mechanisms (i.e., receptor-mediated, absorptive-mediated, carrier-mediated and non-specific passive diffusion), as well as non-transport processes (i.e., endocytosis without transcytosis, absorption and metabolism) are discussed. It is emphasized that peptide transport systems at the BBB could be important targets for both therapeutic delivery of peptides and the development of certain brain pathologies. Strategies to manipulate peptide BBB transport processes have been discussed including lipidization, chemical modifications of the N-terminal end, coupling of transport with post-BBB metabolism and formation of potent neuroactive peptides, up-regulation of putative peptide transporters, use of chimeric peptides in which non-transportable peptide is chemically linked to a transportable peptide, use of monoclonal antibodies against peptide receptors, and binding of circulating peptides to apolipoproteins. It is suggested that future directions should be directed towards development of molecular strategies to up-regulate specific BBB peptide transporters to enhance brain delivery of peptide neuropharmaceuticals, or to down-regulate transport of peptides with potential role in cerebral pathogenesis.
Collapse
Affiliation(s)
- B V Zlokovic
- Department of Neurological Surgery, Children's Hospital Los Angeles, University of Southern California School of Medicine 90033, USA
| |
Collapse
|